高等数学不定积分课后复习题详细讲解

合集下载

高等数学 第四章不定积分课后习题详解.doc

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

高等数学第四章不定积分讲义

高等数学第四章不定积分讲义

第四章 不定积分讲义【考试要求】1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理. 2.熟练掌握不定积分的基本公式.3.熟练掌握不定积分的第一类换元法,掌握第二类换元法(限于三角代换与简单的根式代换).4.熟练掌握不定积分的分部积分法.【考试内容】一、原函数与不定积分的概念1.原函数的定义如果在区间I上,可导函数()F x 的导函数为()f x ,即对任一x I∈,都有()()F x f x '=或()()dF x f x dx =,那么函数()F x 就称为()f x (或()f x dx )在区间I 上的原函数.例如,因(sin )cos x x '=,故sin x 是cos x 的一个原函数.2.原函数存在定理如果函数()f x 在区间I 上连续,那么在区间I 上存在可导函数()F x ,使对任一x I ∈都有()()F x f x '=.简单地说就是,连续函数一定有原函数.3.不定积分的定义在区间I 上,函数()f x 的带有任意常数项的原函数称为()f x (或()f x dx )在区间I 上的不定积分,记作()f x dx ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量.如果()F x 是()f x 在区间I 上的一个原函数,那么()F x C +就是()f x 的不定积分,即()()f x dx F x C =+⎰,因而不定积分()f x dx ⎰可以表示()f x 的任意一个原函数.函数()f x 的原函数的图形称为()f x 的积分曲线.4.不定积分的性质(1)设函数()f x 及()g x 的原函数存在,则[()()]()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.(2)设函数()f x 的原函数存在,k 为非零常数,则()()k f x d x k f x d x=⎰⎰. 5.不定积分与导数的关系(1)由于()f x dx ⎰是()f x 的原函数,故()()d f x dx f x dx⎡⎤=⎣⎦⎰ 或 ()()d f x dx f x dx ⎡⎤=⎣⎦⎰ . (2)由于()F x 是()F x '的原函数,故()()F x d x F x C '=+⎰ 或()()dF x F x C =+⎰ .二、基本积分公式1.kdx kx C =+⎰ (k 是常数)2.11x x dx C μμμ+=++⎰ (1μ≠-)3.1ln dx x C x =+⎰4.21arctan 1dx x C x =++⎰5.arcsin dx x C =+⎰6.cos sin xdx x C =+⎰ 7.sin cos xdx x C =-+⎰8.221sec tan cos dx xdx x C x ==+⎰⎰9.221csc cot sin dx xdx x C x ==-+⎰⎰10.sec tan sec x xdx x C =+⎰11.csc cot csc x xdx x C =-+⎰ 12.xxe dx e C =+⎰13.ln xxa a dx C a=+⎰ *14.tan ln cos xdx x C =-+⎰ *15.cot ln sin xdx x C =+⎰*16.sec ln sec tan xdx x x C =++⎰ *17.csc ln csc cot xdx x x C =-+⎰*18.2211arctan xdx C a x a a =++⎰*19.2211ln 2x adx C x a a x a-=+-+⎰*20.arcsin xC a =+*21.ln(dx x C =++ *22.ln x C =++说明:带“*”号的公式大家可以不记住,但必须会推导.三、第一类换元法(凑微分法)1.定理若()f u ,()x ϕ及()x ϕ'都是连续函数,且()()f u du F u C =+⎰,则[()]()[()]f x x dx F x C ϕϕϕ'=+⎰.2.常用凑微分公式(1)1()()dx d x b d ax b a=+=+ (a ,b 均为常数且0a ≠)(2)11()1aa xdx d x b a +=++ (a ,b 均为常数且1a ≠-)2211()()22xdx d x d x b ==+2dx d = (3)1(ln )(ln )dx d x d x b x==+ (4)()()xx x e dx d e d e b ==+(5)11()()ln ln xxx a dx d a d a b a a==+(6)sin (cos )(cos )xdx d x d x b =-=-+ (7)cos (sin )(sin )xdx d x d x b ==+(8)2sec(tan )(tan )xdx d x d x b ==+(9)2csc(cot )(cot )xdx d x d x b ==+(10(arcsin )(arcsin )dx d x d x b ==+(11)21(arctan )(arctan )1dx d x d x b x==++ (12)22211[ln(1)][ln(1)]122x dx d x d x b x =+=+++ 四、第二类换元法定理:设()f x 连续,()x t ϕ=及()t ϕ'都是连续函数,()x t ϕ=的反函数1()t x ϕ-=存在且可导,并且[()]()()f t t dt F t C ϕϕ'=+⎰,则1()[()]f x dx F x C ϕ-=+⎰.说明:第二类换元法常见是三角代换,三角代换的目的是化掉根式,一般有如下情形: (1sin x a t =; (2tan xa t =;(3sec x a t =.五、分部积分法1.公式的推导设函数()uu x =及()v v x =具有连续导数,那么两个函数乘积的导数公式为()uv u v uv '''=+,移项,得()uv uv u v '''=-,对这个等式两边求不定积分,得u v d x u v u v d ''=-⎰⎰,为简便起见,上述公式也写为udv uv vdu =-⎰⎰ .2.注意事项(1)如果被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数为u ,这样用一次分部积分法就可以使幂函数的幂次降低一次(这里假定幂指数是正整数).(2)如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可以考虑用分部积分法,并设对数函数或反三角函数为u (有时也可利用变量代换). (3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.六、简单有理函数的不定积分分子分母均为x 的多项式的分式函数称为有理函数,简单有理函数可通过适当变换如加项、减项等分解为可求不定积分的简单函数.或u ,由于这样的变换具有反函数,且反函数是u 的有理函数,因此原积分即可化为有理函数的积分.【典型例题】 【例4-1】计算下列不定积分. 1.2x xedx ⎰.解:222211()22x x x xe dx e d x e C ==+⎰⎰.2.21xdx x +⎰.解:2222111(1)ln(1)1212x dx d x x C x x =+=++++⎰⎰.3.221(1)x x dx x x +++⎰.解:2222221111(1)(1)(1)1x x x x dx dx dx dx dx x x x x x x x x +++=+=+++++⎰⎰⎰⎰⎰arctan ln x x C =++.4.ln x dx x ⎰.解:2ln 1ln (ln )ln 2x dx xd x x C x ==+⎰⎰.5.1ln dx x x ⎰.解:11(ln )ln ln ln ln dx d x x C x x x ==+⎰⎰.6.sec (sec tan )x x x dx -⎰.解: 2sec (sec tan )secsec tan x x x dx xdx x xdx -=-⎰⎰⎰t a n s e c x x C=-+. 7.2sin xdx ⎰.解:21cos211sin cos2222x xdx dx dx xdx -==-⎰⎰⎰⎰11sin 224x x C =-+. 8.2cos xdx ⎰.解:21cos211cos cos2222x xdx dx dx xdx +==+⎰⎰⎰⎰11sin 224x x C =++. 9.2tan xdx ⎰.解:222tan (sec 1)sec tan xdx x dx xdx dx x x C =-=-=-+⎰⎰⎰⎰. 10.2cot xdx ⎰.解:222cot (csc 1)csc cot xdx x dx xdx dx x x C =-=-=--+⎰⎰⎰⎰.11.11x dx e +⎰.解:11(1)1111x x x xx x x x e e e e dx dx dx dx dx e e e e +-==-=-++++⎰⎰⎰⎰⎰1(1)ln(1)1x xxdx d e x e C e=-+=-+++⎰⎰. 12.21825dx x x -+⎰.解:22211114825(4)99()13dx dx dx x x x x ==--+-++⎰⎰⎰211414()arctan 43333()13x x d C x --==+-+⎰.13.25sin cos x xdx ⎰. 解: 原式2242sincos (sin )sin (1sin )(sin )x xd x x x d x ==-⎰⎰246(sin 2sin sin )(sin )x x x d x =-+⎰357121sin sin sin 357x x x C =-++. 14.cos3cos 2x xdx ⎰.解:111cos3cos2(cos cos5)sin sin52210x xdx x x dx x x C =+=++⎰⎰.【例4-2】计算下列不定积分. 1.cos x xdx ⎰.解:cos (sin )sin sin sin cos x xdx xd x x x xdx x x x C ==-=++⎰⎰⎰.2.x xe dx ⎰.解:()(1)x x x x x x x xe dx xd e xe e dx xe e C x e C ==-=-+=-+⎰⎰⎰. 3.ln x xdx ⎰.解:222221ln ln ()ln (ln )ln 22222x x x x x x xdx xd x d x x dx x==-=-⋅⎰⎰⎰⎰ 222ln ln 2224x x x x x dx x C =-=-+⎰.说明:此题也可用变量代换解,即令ln xt =,则t x e =,t dx e dt =,故原式2222111()222t t t t t t e t e dt te dt td e te e dt =⋅⋅===-⎰⎰⎰⎰ 2222221111ln ln 242424t t x xte e C x x x C x C =-+=⋅-+=-+.4.arctan x xdx ⎰.解:222arctan arctan ()arctan (arctan )222x x x x xdx xd x d x ==-⎰⎰⎰ 22222111arctan arctan (1)221221x x x x dx x dx x x =-⋅=--++⎰⎰ 211arctan arctan 222x x x x C =-++.5.ln xdx ⎰.解:1ln ln (ln )ln ln xdx x x xd x x x x dx x x x C x=-=-⋅=-+⎰⎰⎰.6.arctan xdx ⎰.解:2arctan arctan (arctan )arctan 1x xdx x x xd x x x dx x =-=-+⎰⎰⎰ 2221(1)1a r c t a n a r c t a nl n (1)212d x x x x x x C x+=-=-+++⎰. 7.cos xe xdx ⎰.解:原式(sin )sin sin sin (cos )x x x x xe d x e x x e dx e x e d x ==-⋅=+⎰⎰⎰sin cos cos x x x e x e x x e dx =+-⋅⎰,所以1cos (sin cos )2xxe xdx e x x C =++⎰.8.sin(ln )x dx ⎰.解:1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰sin(ln )x x =- 1cos(ln )sin(ln )cos(ln )[sin(ln )]x dx x x x x x x dx x =-+-⋅⎰⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,故1sin(ln )[sin(ln )cos(ln )]2x dx x x x x C =-+⎰.说明:此题也可用变量代换法求解,即令ln t x =,则t x e =,t dx e dt =,则原式sin sin ()sin cos t t t tt e dt td e e t e tdt =⋅==-⎰⎰⎰s i n c o s ()s i n c o s(s i n t t t t te t t d e e t e t e t d t=-=-+-⎰⎰, 故原式11(sin cos )[sin(ln )cos(ln )]22t t e t e t C x x x x C =-+=-+. 【例4-3】计算下列不定积分.1.2156x dx x x +-+⎰.解:被积函数的分母分解成(2)(3)x x --,故可设215632x A Bx x x x +=+-+--, 其中A 、B 为待定系数.上式两端去分母后,得 1(2)(3)x A x B x +=-+-,即1()23x A B x A B +=+--.比较此式两端同次幂的系数,即有 1A B +=,231A B +=-,从而解得4A =,3B =-,于是2143()4ln 33ln 25632x dx dx x x C x x x x +=-=---+-+--⎰⎰.2.22(21)(1)x dx x x x ++++⎰.解:设222(21)(1)211x A Bx Cx x x x x x ++=+++++++, 则 22(1)()(21)x A x x B x C x +=+++++,即22(2)(2)x A B x A B C x A C+=++++++,有 20,21,2,A B A B C A C +=⎧⎪++=⎨⎪+=⎩ 解得 2,1,0.A B C =⎧⎪=-⎨⎪=⎩于是2222()(21)(1)211x xdx dx x x x x x x +=-++++++⎰⎰22221(21)11(1)1ln 21ln 211321212()24x d x x dxx dx x x x x x x +-++=+-=+-+++++++⎰⎰⎰21ln 21ln(1)2x x x C =+-++++.3.dx x⎰.u =,于是21x u =+,2dx udu =,故22221222(1)111u u dx udu du du x u u u=⋅==-+++⎰⎰⎰⎰2(arctan )arctan u u C C =-+=-+.4..解:为了去掉根号,可以设u =,于是32x u =-,23dx u du =,故22313(1)3(ln 1)112u u du u du u u C u u ==-+=-+++++⎰⎰3ln 1C =-+++. 【例4-4】设()arcsin xf x dx x C =+⎰,求1()dx f x ⎰. 解:对等式()arcsin xf x dx x C =+⎰ 两边对 x 求导,可得()xf x =, 则()f x =故211()(1)()2dx x f x ==--⎰⎰⎰ 332222121()(1)(1)233x C x C =-⋅-+=--+.【例4-5】已知sin xx是()f x 的一个原函数,求()xf x dx '⎰.解:因为sin xx是 ()f x 的一个原函数,所以 2sin cos sin ()()x x x x f x x x -'== 且 s i n ()xf x dx C x=+⎰, 故根据不定积分的分部积分法可得2cos sin sin ()()()()x x x xxf x dx xdf x xf x f x dx x C x x-'==-=⋅-+⎰⎰⎰cos sin sin 2sin cos x x x x xC x C x x x-=-+=-+.【历年真题】一、选择题1.(2009年,1分)下列等式中,正确的一个是 (A )()()f x dx f x '⎡⎤=⎣⎦⎰ (B )()()d f x dx f x ⎡⎤=⎣⎦⎰ (C )()()F x dx f x '=⎰ (D )()()d f x dx f x C ⎡⎤=+⎣⎦⎰ 解:选项(A )正确;()()d f x dx f x dx ⎡⎤=⎣⎦⎰,故选项(B )和选项(D )均不正确;()()F x dx F x C '=+⎰,故选项(C )错误.故选(A ). 2.(2007年,3分)设21()f x x'=(0x >),则()f x =(A )2x C + (B )ln x C + (C)C + (DC + 解:令2xt =,因0x >,故x =21()f x x '= 变为()f t '=,该式两边对x取不定积分得,()f t C ==+,即()f x C =+.选(C ). 3.(2006年,2分)若11()xxf x edx e C --=+⎰,则()f x =(A )1x (B )1x - (C )21x (D )21x -解:等式11()xxf x e dx e C--=+⎰两边对x 求导得,1121()xxf x ee x --=⋅,故21()f x x =.选项(C )正确.4.(2005年,3分)ln sin tan xd x =⎰(A )tan lnsin x x x c -+(B )tan lnsin x x x c ++ (C )tan lnsin cos dx x x x -⎰ (D )tan lnsin cos dxx x x +⎰解:ln sin tan tan ln sin tan (ln sin )xd x x x xd x =-⎰⎰cos tan lnsin tan tan lnsin sin xx x x dx x x x C x=-=-+⎰.选项(A )正确.二、填空题1.(2010年,2分)不定积分()df x =⎰.解:根据不定积分与微分的关系可得,()()df x f x C =+⎰.2.(2009年,2分)设()xf x e-=,则(ln )f x dx x'=⎰.解:由题意,()x f x e -=,则()x f x e -'=-,那么ln 1(ln )x f x e x-'=-=-,于是2(ln )11f x dx dx C x x x'==-+⎰⎰. 三、计算题1.(2010年,5分)求不定积分2ln 1x dx x -⎰.解:2ln 11ln 11(ln 1)()()(ln 1)x x dx x d d x x x x x--=--=----⎰⎰⎰21ln 11ln 1ln x x x dx C C x x x x x --=+=-+=-+⎰.2.(2009年,5分)求不定积分.解:ln (ln )xd x x ==-⎰⎰x x C =-=-+⎰. 3.(2006年,4分)若2()f x dx x C =+⎰,求2(1)xf x dx -⎰.解:等式2()f x dx x C =+⎰两边对x 求导,可得 ()2f x x =,则22(1)2(1)f x x -=-,从而223241(1)2(1)(22)2xf x dx x x dx x x dx x x C -=-=-=-+⎰⎰⎰. 4.(2005年,5分)求不定积分12cos dx x +⎰.解:2222sec 2(tan )11222cos 12cos 2sec 3tan222x xd dx dx dx x x x x ===++++⎰⎰⎰⎰令tan 2xt =,则原式22222233[1]]dt dt t t ===+++⎰⎰tan x C C ⎛⎫ ⎪=+=+⎝⎭.四、应用题或综合题 1.(2008年,8分)设()f x 的一个原函数为ln x ,求()()f x f x dx '⎰.解:因ln x 是()f x 的一个原函数,故1()(ln )f x x x '==,211()()f x x x''==-,从而2321111()()()2f x f x dx dx dx C x x x x'=⋅-=-=+⎰⎰⎰.说明:此题也可用分部积分解之,步骤如下. 因2()()()()()()()f x f x dx f x df x f x f x f x dx ''==-⎰⎰⎰,故2221111()()()222f x f x dx f x C C C x x⎛⎫'=+=+=+ ⎪⎝⎭⎰.。

武忠祥辅导讲义不定积分例十三

武忠祥辅导讲义不定积分例十三

武忠祥辅导讲义不定积分例十三【原创实用版】目录一、引言二、不定积分的概念和性质三、分部积分公式四、运用分部积分公式的技巧五、有理函数的积分六、三角函数的积分七、万能代换八、实际题目解答九、结论正文一、引言本文主要讲解武忠祥辅导讲义中的不定积分例十三。

不定积分是微积分中的一个重要概念,其目的是求出一个函数在某一区间内的累积效果。

通过不定积分,我们可以得到许多实际问题中的解,如求解变化率、面积、体积等。

二、不定积分的概念和性质不定积分是指对一个函数 f(x) 在某一区间 [a, b] 上进行积分,求其累积效果。

不定积分的结果称为原函数,记作 F(x) ,即:F(b) - F(a) = ∫[a, b] f(x)dx三、分部积分公式分部积分公式是求解不定积分的一种方法,其公式为:∫udv = uv - ∫vdu其中,u 和 v 是两个可积函数,【u】和【v】分别表示它们的原函数。

四、运用分部积分公式的技巧在使用分部积分公式时,需要注意以下几点:1.选择适当的可积函数 u 和 v,使得被积式容易积分。

2.观察被积函数的性质,如奇偶性、周期性等,以便选择合适的积分方法。

3.注意积分区间的变化,避免出现错误的积分结果。

五、有理函数的积分有理函数是指形如 f(x) = p(x) / q(x) 的函数,其中 p(x) 和q(x) 是多项式函数。

有理函数的积分方法相对简单,可以直接运用分部积分公式进行求解。

六、三角函数的积分三角函数是指形如 f(x) = sin(x) 或 f(x) = cos(x) 等函数。

对于三角函数的积分,可以利用一些特殊的三角恒等式进行求解,如:∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C七、万能代换万能代换是一种求解不定积分的技巧,适用于许多复杂的被积函数。

其核心思想是将复杂的被积函数替换为一个简单的可积函数,从而简化积分过程。

万能代换的方法有很多,如代换 x = sin(t) 或 x = cos(t) 等。

高等数学第四章不定积分习题知识讲解

高等数学第四章不定积分习题知识讲解

第四章 不 定 积 分§ 4 – 1 不定积分的概念与性质一.填空题1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。

2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为ƒ(x)的一条_________. 3.因为dxx x d 211)(arcsin -=,所以arcsinx 是______的一个原函数。

4.若曲线y=ƒ(x)上点(x,y)的切线斜率与3x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________ 。

二.是非判断题1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3.()()()⎰⎰'='dx x f dx x f . [ ]4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5.=y ()ax ln 与x y ln =是同一函数的原函数. [ ]三.单项选择题1.c 为任意常数,且)('x F =f(x),下式成立的有 。

(A )⎰=dx x F )('f(x)+c; (B )⎰dx x f )(=F(x)+c; (C )⎰=dx x F )()('x F +c; (D) ⎰dx x f )('=F(x)+c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。

(A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ⋅=c. 3.下列各式中 是||sin )(x x f =的原函数。

(A) ||cos x y -= ; (B) y=-|cosx|; (c)y={;0,2cos ,0,cos <-≥-x x x x (D) y={.0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。

高数—不定积分.讲解和例题-PPT.共68页文档

高数—不定积分.讲解和例题-PPT.共68页文档
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!高数—不定积分.讲来自和例题-PPT.56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈

不定积分复习题及答案

不定积分复习题及答案

不定积分复习题及答案不定积分是微积分中的重要概念之一,它在求解函数的原函数时起到了关键作用。

通过对不定积分的复习,我们可以更好地理解和运用这一概念。

本文将通过一些典型的不定积分复习题,来帮助读者加深对不定积分的理解。

首先,我们来看一个简单的例子。

求解函数f(x) = 2x的不定积分。

根据不定积分的定义,我们可以将这个问题转化为求解函数F(x),使得F'(x) = f(x)。

在这个例子中,我们可以很容易地得出F(x) = x^2 + C,其中C为常数。

这个结果告诉我们,函数f(x) = 2x的不定积分是F(x) = x^2 + C。

接下来,我们来看一个稍微复杂一些的例子。

求解函数f(x) = 3x^2 + 2x的不定积分。

同样地,我们可以通过求解函数F(x),使得F'(x) = f(x),来得到结果。

在这个例子中,我们可以使用不定积分的基本公式来求解。

根据不定积分的线性性质,我们可以将这个问题分解为求解3x^2的不定积分和求解2x的不定积分两部分。

首先,我们来求解3x^2的不定积分。

根据不定积分的幂函数积分公式,我们可以得到3x^2的不定积分是x^3 + C1,其中C1为常数。

接下来,我们来求解2x的不定积分。

根据不定积分的线性性质,我们可以得到2x的不定积分是x^2 + C2,其中C2为常数。

将这两部分的结果相加,我们可以得到函数f(x) = 3x^2 + 2x的不定积分是F(x) = x^3 + x^2 + C,其中C为常数。

这个结果告诉我们,函数f(x) = 3x^2 + 2x的不定积分是F(x) = x^3 + x^2 + C。

通过以上两个例子,我们可以看到不定积分的求解过程是通过找到函数F(x),使得F'(x) = f(x),来得到结果的。

在实际应用中,我们可以利用不定积分的基本公式和性质,来求解更加复杂的函数的不定积分。

除了基本的不定积分公式之外,还有一些特殊的不定积分需要我们注意。

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。

2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。

4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。

二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dx???f??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。

(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x) +c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c; (D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。

(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。

10分钟掌握高数上不定积分问题(考研、期末复习均可以用)

10分钟掌握高数上不定积分问题(考研、期末复习均可以用)

10分钟掌握高数上不定积分问题(考研、期末复习均可以用)好久没有更新高数的内容了,之前一直更新的是概率论和线性代数的内容,其中概率基本更完了,线性代数还没,知识点有点多,道阻且长,哭唧唧T_T!!下面是之前更新的内容,请自取10分钟掌握高等数学上册函数极限求解问题(考研、期末复习均可以用)10分钟掌握高等数学上册导数及微分问题(考研、期末复习均可以用)10分钟掌握高等数学上册函数图像绘制问题(考研、期末复习均可以用)10分钟掌握中值定理相关问题(考研、期末复习均可以用)码字不易,观看后的同学请给个赞+关注如果有考研或是期末复习方面问题的话可以随时留言或者私信【答学百科】,更多期末复习资料更多更新内容也可以点击下方链接加入社群--------------分割线---------------首先简单介绍下积分,积分是导数的一个反向求解过程,很多人在高中的时候是学过导数的,所以在大学再学的时候会觉得比较简单,但是到了积分这一节,会突然卡住,发现怎么那么难,正着做会,反着就不会了,那么下面重点讲讲不定积分的求解吧一、原函数与不定积分的基本概念1、原函数设 f(x),F(x) 为定义在区间 I 上的函数,若对一切的 x\in I ,有 F'(x)=f(x) ,则称 F(x) 为 f(x) 的原函数备注:(1)函数 f(x) 是否存在原函数与区间 I 有关(2)连续函数一定存在原函数,反之不对(3)有第一类间断的函数一定不存在原函数,但有第二类间断点的函数可能有原函数(这句话还有另一种表达方式:即某个函数的导函数不一定连续),如F(x)=x^{2}sin\frac{1}{x}(x\ne0) ,F(x)=0(x=0)f(x)=2xsin\frac{1}{x}-cos\frac{1}{x}(x\ne0) ,f(x)=0(x=0)显然 F'(x)=f(x) ,但 x=0 为 f(x) 的二类间断点,即导函数不连续(4)若 f(x) 有原函数,则一定有无数个原函数,且任意两个原函数之差为常数(5)原函数、函数及导函数对比2、不定积分设 F(x) 为 f(x) 的一个原函数,则 f(x) 的所有原函数F(x)+C 称为 f(x) 的不定积分,记为 \int f(x)dx=F(x)+C注解:(1)\int [f(x)\pm g(x)]dx=\int f(x)dx\pm \int g(x)dx (2) \int kf(x)dx=k\int f(x)dx【例题】\int (x+\frac{1}{x})dx=\int xdx+\int\frac{1}{x}dx=\frac{1}{2}x^{2}+ln\left| x\right|+C\int 5xdx=5\intxdx=5\times\frac{1}{2}x^{2}=\frac{5}{2}x^{2}+C二、不定积分基本公式1、常数函数积分\int kdx=kx+C2、幂函数积分\int x^{n}dx=\frac{1}{n+1}x^{n+1}+C ,\int\frac{1}{x}dx=ln\left| x \right|+C3、指数函数积分\int a^{x}dx=\frac{1}{lna}a^{x}+C ,\inte^{x}dx=e^{x}+C4、三角函数积分\int sinxdx=-cosx+C ,\int cosxdx=sinx+C,\inttanxdx=-ln\left| cosx \right|+C, \int cotxdx=ln\left| sinx \right|+C , \int secxdx=ln\left| secx+tanx\right|+C , \int cscxdx=ln\left| cscx-cotx\right|+C , \int sec^{2}xdx=tanx+C , \intcsc^{2}xdx=-cotx+C , \int secxtanxdx=secx+C , \int cscxcotxdx=-cscx+C5、特殊函数积分\int \frac{1}{\sqrt{1-x^{2}}}dx=arcsinx+C , \int\frac{1}{1+x^{2}}dx=arctanx+C三、不定积分的积分法不定积分的积分方法主要有五种:一类换元法、二类换元法、分步积分法、有理函数积分法、三角函数积分法,课本上一般只介绍了前三种,不够全面,下面具体来看看(一)一类换元法(凑微法)1、定义设 f(u) 的原函数为 F(u) , \varphi(x) 为可导函数,则\int f[\varphi(x)]\varphi'(x)dx=\intf[\varphi(x)]d\varphi(x)令 \varphi(x)=u ,则原式 =\intf(u)du=F(u)+C=F[\varphi(x)]+C在微凑法里面,很多同学会懵逼:d后面那个是怎么来的,完全没有思路实际上,一类换元法的话会涉及到微分的知识,如果对微分熟悉的同学应该还是可以看懂的,下面简单讲解一下回顾下微分的内容, dy=f'(x)dx ,其中 y=f(x) ,基于这个点,看下几个例子y=x^{2},dy=2xdx\Rightarrowdx^{2}=2xdxy=sinx,dy=cosxdx\Rightarrowdsinx=cosxdx【例题】\int 2xdx=\int d(x^{2})=x^{2}+C\intcosxdx=\int d(sinx)=sinx+C上述两道题从第一步到第二部的变化现在应该可以看懂了,主要就是利用微分的形式进行变化的2、凑微法基本公式以下列举了一些凑微法中常用的公式,不过不建议大家去背下来,主要还是要靠题目去巩固【例题】\int \frac{arcsinx}{\sqrt{1-x^{2}}}dx=\intarcsinxdarcsinx=\frac{1}{2}(arcsinx)^2+C(二)二类换元法1、定义设 \varphi(t) 为单调可导函数,且\varphi'(t)\ne0, f(x) 有原函数,则令 x=\varphi(t)\int f(x)dx=\int f[\varphi(t)]\varphi'(t)dt=\intg(t)dt=G(t)+C =G[\varphi^{-1}(x)]+C2、适用范围(1)二类换元法经常使用在根号下的平方相加减的积分计算中,这时候就利用三角替换进行解答主要利用两个三角函数公式的变换:sin^{2}x+cos^{2}x=1 , tan^{2}x+1=sec^{2}x ,利用三角函数的变化,去掉根号,再进行计算,常用的替换如下:情形一:若函数中含有 \sqrt{a^{2}-x^{2}} ,变换 x=asint情形二:若函数中含有 \sqrt{a^{2}+x^{2}},变换 x=atant情形三:若函数中含有 \sqrt{x^{2}-a^{2}},变换 x=asect(2)无理函数化成有利函数的积分【例题1】求解\int \frac{dx}{\sqrt{x}+1}解答:令 \sqrt{x}=t,x=t^{2},dx=2tdt原式为 \int\frac{dx}{\sqrt{x}+1}=\int\frac{2tdt}{t+1}=\int \frac{2t+2-2}{t+1}dt=2-\int \frac{2}{t+1}dt=2t-2ln\left| t+1\right|+C最后将 t 换回 x 即可,即原函数为2\sqrt{x}-2ln\left| \sqrt{x}+1 \right|+C【例题2】求解 \int \frac{dx}{\sqrt{1+x^{2}}}解答:令 x=tant,dx=sec^{2}t原式为 \int\frac{sec^{2}tdt}{\sqrt{1+tan^{2}t}}=\int\frac{sec^2t}{sect}dt=\int sectdt=ln\left|tant+sect \right|+C做到这边很多人又有疑问了,tant 可以换回去 x ,那么 sect 呢,如何换成 x的表达式,这里介绍一种图像结合的方法,大家看下下面这张三角形结合直角三角形及t和x的函数关系,即可推导出其余三角函数的公式所以原式为 =ln\left|x+\sqrt{1+x^{2}} \right|+C(三)分部积分法1、定义设 u(x),v(x) 连续可导,则分部积分法公式为 \intu(x)dv(x)=u(x)v(x)-\int v(x)du(x)2、适用情况以下几种形式可以采用分部积分法进行计算:(1)被积函数为幂函数与指数函数之积,如\int x^ne^{x}dx (2)被积函数为幂函数与指数函数之积,如\int x^nlnxdx (3)被积函数为幂函数与三角函数之积(4)被积函数为幂函数与反三角函数之积(5)被积函数为指数函数与三角函数之积(6)被积函数含有 sec^nx 或 csc^nx ( n 为奇数)备注:用分部积分法时一定要注意,哪个函数设为 u(x) ,哪个函数为 v(x) ,下列简述下不同的设法最后的结果是怎么样的【例题】求解 \int xe^{x}dx解答一:u(x)=e^{x},v'(x)=x 则u'(x)=e^{x},v(x)=\frac{1}{2}x^2\intxe^{x}dx=\inte^{x}d\frac{1}{2}x^2=\frac{1}{2}x^2e^{x}-\int\frac{1}{2}x^2e^{x}dx做到这发现一个问题,原来的积分仅为一次方,而用了一次分部积分后发现变成了二次方,解答难度变得更大了,这说明在函数的假设过程中是有问题的,若利用该方法继续往下算,会发现永远算不出来解答二:u(x)=x,v'(x)=e^{x} 则 u'(x)=1,v(x)=e^{x}\intxe^{x}dx=\int xde^{x}=xe^{x}-\inte^{x}dx=xe^{x}-e^{x}+C做到这里会发现分部积分法最重要的就是要将 u,v 设正确了,只要假设正确了,一般就能做出来(四)有理函数积分1、形式设 R(x)=\frac{P(x)}{Q(x)} ,其中 P(x),Q(x) 为多项式,此处仅考虑P(x)的次数比 Q(x) 次数低时的情况(若P(x)的次数比 Q(x) 次数高时,可对 P(x) 进行拆分)(1) \int \frac{dx}{(x+a)(x+b)}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}dx(2) \int \frac{dx}{(x+a)(x+b)^2}=\int\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^2}dx(3)\int \frac{dx}{(x+a)(x^2+bx+c)}=\int\frac{A}{(x+a)}+\frac{Bx+C}{(x^2+bx+c)}dx将有理函数设成上面带有 A,B,C 的函数,通过与原式对比,解答出 A,B,C ,再进行计算【例题】求解 \int \frac{x+1}{x^2-x-6}dx分析:\frac{x+1}{x^2-x-6}=\frac{x+1}{(x+2)(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x-3)}由 A(x-3)+B(x+2)=(A+B)x+(2B-3A)=x+1A+B=1 , 2B-3A=1\RightarrowA=\frac{1}{5} , B=\frac{4}{5}解答:\int \frac{x+1}{x^2-x-6}dx=\int\frac{1}{5}\frac{1}{x+2}+\frac{4}{5}\frac{1}{x-3}dx\frac{1}{5}ln\left| x+2\right|+\frac{4}{5}ln\left| x-3 \right|+C(五)三角函数积分三角函数的积分一般利用几个基础的三角变换公式进行化简,化简后再进行积分求解:1、倍角公式:sin2x=2sinxcosx , cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2、半角公式:利用背角公式进行推导,此处不进行列举3、和积化差公式:sin\alpha+sin\beta=2sin(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})sin\alpha-sin\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{2})sin(\fr ac{\alpha}{2}-\frac{\beta}{2})cos\alpha+cos\beta=2cos(\frac{\alpha}{2}+\frac{\beta}{ 2})cos(\frac{\alpha}{2}-\frac{\beta}{2})cos\alpha-cos\beta=-2sin(\frac{\alpha}{2}+\frac{\beta}{2})sin(\frac{\alpha }{2}-\frac{\beta}{2})4、万能公式法令 tan\frac{x}{2}=u ,则 sinx=\frac{2u}{1+u^2} ,cosx=\frac{1-u^2}{1+u^2} , dx=\frac{2}{1+u^2}du利用万能公式便可将三角函数积分变换成有理函数积分进行求解,不过该解法相对比较麻烦,很少会采用该方法进行计算不定积分的解答方法基本就是这些了,方法比较多,但是不同方法有对应的积分形式,只要熟悉了积分形式,解答的时候也相对快捷--------------分割线---------------码字不易,请大家点个赞吧~另外如果有考研或者数学方面问题的话可以随时留言或者私信,有问必答哈~也可以点击头像加入社群进行交流~。

不定积分典型例题讲解

不定积分典型例题讲解

4
目录 上页 下页 返回 结束
例1. 求
2 9x
x3x 4
x
dx
.
解: 原式
2x3x 32 x 22
x
dx
1
(
32) x d (32)2 x
ax dx
a
x
ln
a
dx
1
ln
2 3
d (32) x 1 (32)2 x
arctan(
2 3
)x
C
ln 2 ln3
2021/11/14
5
目录 上页 下页 返回 结束
一般经验: 按“反, 对, 幂, 指 , 三” 的顺
序,
排前者取为 u , 排后者取为 v .
计算格式: 列表计算
2021/11/14
3
目录 上页 下页 返回 结束
多次分部积分的 规 律
u v(n1) dx u v(n) uv(n) dx
u v(n) uv(n1) uv(n1) dx u v(n) uv(n1) uv(n2) uv(n2) dx
习题课
第四章
不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
2021/11/14
1
目录 上页 下页 返回 结束
一、 求不定积分的基本方法
1. 直接积分法
通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 .
2. 换元积分法
第一类换元法
f (x)dx
f [(t)](t) dt

F(x)F(x)dx
sin2
2xdx
1
cos 2
4xdx

F
2
(x)

高等数学-不定积分习题讲解

高等数学-不定积分习题讲解

2
x a sin t

cos t dt sin t cos t
1 cos t sin t cos t sin t dt 2 sin t cos t
1 cos t sin t 1 1 [ dt dt ] [ dt d sin t cos t ] 2 sin t cos t 2 sin t cos t 1 [t ln sin t cos t ] C 2
2

u 1 x2 2 1 1 99 100 du 98 ( x 1)100 dx x 1 u u100 d u 1 u u u
(12)
x
dx a x
2
dx a2 x2
a 0
dx x a x
2 2
x
第四章
1.求下列不定积分 ( 1) I
5 x2 d x 3 8 3 x d x x3 C 3x 8
不定积分
§1 不定积分概念
( 2) I

5 x x 3e x x 2 1 x d x x 2 d x e d x x d x x3
2 3 x 2 e x ln x C 3
1 2 x x C1 2 故 f x dx x2 1 C 1 2
x 1 x 1
2.一曲线通过点 e 2 ,3 ,且在曲线上任一点 处的切线斜率等于该点的横坐标倒数,求曲 线方程。 解:设曲线是由函数 y f x 决定,由题意得 f x
dx
1 da sec t a tan t
sec tdt
1 cos t 1 dt dt d sin t cos t cos 2 t 1 sin 2 t

第四章不定积分习题课-带解答

第四章不定积分习题课-带解答

. 1 .第四章 不定积分 习题课1.原函数 若)()(x f x F =',则称)(x F 为)(x f 的一个原函数. 若)(x F 是)(x f 的一个原函数,则)(x f 的所有原函数都可表示为C x F +)(.2.不定积分 )(x f 的带有任意常数项的原函数叫做)(x f 的不定积分,记作⎰dx x f )(.若)(x F 是)(x f 的一个原函数,则C x F dx x f +=⎰)()(, 3.基本性质1))(])([x f dx x f ='⎰,或dx x f dx x f d )(])([=⎰; 2)C x F x dF +=⎰)()(,或C x F dx x F +='⎰)()(; 3)⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([; 4)⎰⎰=dx x f k dx x kf )()(,(0≠k ,常数).4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。

不定积分的运算是积分学中最重要、最基本的运算之一. 5. 例题例1 已知)(x f 的一个原函数是x 2ln ,求)(x f '.解 x x x x f 1ln 2)(ln )(2⋅='=, )ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='.. 2 .例2 设C xdx x f +=⎰2sin 2)(,求)(x f . 解 积分运算与微分运算互为逆运算,所以2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰.例3 若)(x f 的一个原函数是x 2,求⎰'dx x f )(.解 因为x 2是)(x f 的原函数,故2ln 2)2()(x x x f ='=,所以C C x f dx x f x +=+='⎰2ln 2)()(.例4 求不定积分⎰-dx e x x 3.解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13.例5 求不定积分⎰'⎪⎭⎫⎝⎛dx x x 2sin . 解 利用求导运算与积分运算的互逆性,得C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin .例6 求不定积分⎰⋅dx xxx 533.解 先用幂函数的性质化简被积函数,然后积分.C x dx x dx xdx xxx +===⋅⎰⎰⎰-+15261511533115332615.. 3 .例7 求不定积分⎰++++dx xx x x x 32313. 解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln .例8 求不定积分⎰-dx x2cos 11.解 用三角恒等式x x 2sin 212cos -=将被积函数变形,然后积分.⎰⎰=-dxxdx x 2sin 212cos 11 ⎰=xdx 2csc 21C x +-=cot 21.例9 求不定积分⎰+dx x x )sec (tan 22.解 用三角恒等式1sec t an 22-=x x 将被积函数统一化为x 2sec 的函数,再积分.⎰⎰+-=+dx x x dx x x )sec 1(sec )sec (tan2222⎰-=dx x )1sec 2(2C x x +-=t a n2.例10 求不定积分⎰++dx x x x )1(21222. 解⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan .. 4 .例11 求不定积分⎰+dx x x )1(124.解 类似于例10,拆项后再积分⎰⎰++--+=+dx x x x x x x dx x x )1(1)1(124442224⎰⎪⎭⎫⎝⎛++-=dx x xx2241111C x xx +++-=arctan 1313.例12 一连续曲线过点)3,(2e ,且在任一点处的切线斜率等于x2,求该曲线的方程.解 设曲线方程为)(x f y =,则xx f 2)(=',积分得 C x dx xx f +==⎰ln 22)(. (曲线连续,过点)3,(2e ,故0>x ) 将3)(2=e f 代入,得C e +=2ln 23,解出1-=C .所以,曲线方程为1ln 2-=x y .例13 判断下列计算结果是否正确1)C x dx xx +=+⎰322)(arctan 311)(arctan ; 2)()C e dx e x x ++=+⎰1ln 11. 解 1)2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+,所以计算结果正确. 2)[]xx x xe e e C e +≠+='++111)1ln(, 计算结果不正确,即()C e dx ex x++≠+⎰1ln 11.. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式 1)0≠a 时,⎰⎰++=+)()(1)(b ax d b ax f adx b ax f . 2)⎰⎰=x d x f xdx x f sin )(sin cos )(sin . 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln5)0>a ,1≠a 时,=⎰dx a a f x x )( 6)0≠μ时,1()f x x dx μμ-=⎰ 7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()( 例14 求⎰dx xx xcos sin tan ln .解⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=x d xxtan tan tan ln⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21.. 6 .注 由于被积函数中含有x t a n ln ,表明0t a n >x ,故x d x d xt a nln tan tan 1=. 例15 求下列不定积分 1)⎰+dx xx x ln 1ln ; 2)⎰+dx x x 100)1(.解 1)⎰⎰⋅+-+=+dx xx x dx xx x 1ln 111ln ln 1ln (请注意加1、减1的技巧) ⎰+⎪⎪⎭⎫⎝⎛+-+=)ln 1(ln 11ln 1x d x x C x x ++-+=2123)ln 1(2)ln 1(32.2)dx x x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x C x x ++-+=101102)1(1011)1(1021. 例16 设C x dx x f +=⎰2)(,不求出)(x f ,试计算不定积分⎰-dx x xf )1(2. 解 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰ (将21x -看作变量u ) C x +--=22)1(21.例17 设x e x f -=)(,求⎰'dx xx f )(ln . 解 先凑微分,然后利用C u f u d u f +='⎰)()(写出计算结果.即⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1.. 7 .例18 计算不定积分⎰+dx x x )1(124.【提示】 分母中有k x 时,考虑用“倒代换”tx 1=.解 设t x 1=,则dt tdx 21-=, 4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111 ⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+ 3111a r c t a n 3C x x x=-+-+. 例19 求不定积分⎰+dx x x )4(16.解⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 1ln 244tC t =++ 661ln 244x C x =++. 分部积分⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分.目的,使公式右边的积分u vdx '⎰要比左边的积分⎰'dx v u 容易计算,关键在于正确地选取u 和凑出. 例 20 求不定积分⎰dx xxarcsin .解一 这是一道综合题,先作变量代换,再分部积分.令x t =,. 8 .则2t x =,tdt dx 2=,⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=t d t t t arcsin arcsin 2⎰--=dttt t t 212arcsin 222arcsin (1)t t t =+-Ct t t +-+=212arcsin 2C x x x +-+=12arcsin 2.解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2⎰--=dt tt t t 212arcsin 2C t t t +-+=212a r c s i n 2C x xx +-+=12a r c s i n 2.例 21 已知)(x f 的一个原函数是2x e-,求⎰'dx x f x )(.【提 示】 不必求出)(x f ',直接运用分部积分公式. 解 由已知条件,)(x f ()'=-2x e,且⎰dx x f )(C ex +=-2,故⎰⎰=')()(x xdf dx x f x ⎰-=dx x f x xf )()(()C ee x x x+-'=--22C e e x x x +--=--2222.. 9 .例 22 设x x x f ln )1()(ln +=',求)(x f .解 先求出)(x f '的表达式.设t x =ln ,则t e x =,)1()(+='t e t t f .⎰+=dt e t t f t )1()(⎰⎰+=tdt tde t22t dt e te tt+-=⎰C t e te tt ++-=22,所以 C x e xe x f xx++-=2)(2.例23 求不定积分5432x x dx x x+--⎰. 解 将分子凑成23332()()2x x x x x x x x x x -+-+-++-,把分式化为多项式与真分式的和542233221x x x x x x x x x x+-+-=+++--; 再将真分式232x x x x+--化为最简分式的和,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++, 于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰ 322ln ln 132x x x x x C =+++-++.. 10 .例24 求不定积分⎰+-dx x x x )1(188.解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x ⎰+-=du u u u )1(181 (换元,令8x u =) ⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81 ()C x x ++-=81ln 41||ln . 例25 求不定积分⎰+dx xsin 11. 解⎰⎰--=+dx x x dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan . 例26 求不定积分⎰+++++dx x x x)11()1(11365.解 为同时去掉三个根式,设t x =+61,则16-=t x ,dt t dx 56=,dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t+-+=+⎰ ⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116 ()Ct t t +++-=arctan 61ln 3322()3311ln 313x x ++-+=C x +++61arctan 6.。

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。

2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。

4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。

二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dxf??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。

(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x)+c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。

(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。

?(x)?f(x),f(x) 为可导函数,且f(0)=1,又F(x)?xf(x)?x2,则f(x)=______.(A) ?2x?1 (B)?x?1 (C)?2x?1(D)?x?1 5.设f?(sin2x)?cos2x,则f(x)=________.1(A)sinx?sin2x?c; (B)x?1x2?c; (C)sin2x?1sin4x?c;(D)x2?1x4?c;2222226.设a是正数,函数f(x)?ax,?(x)?axlogae,则______.(A)f(x)是?(x)的导数; (B)?(x)是f(x)的导数;(C)f(x)是?(x)的原函数;(D)?(x)是f(x)的不定积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C--==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C---=-=-=-+⎰⎰⎰⎰★(3)22x x dx+⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰() ★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰ 思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰ 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x xx x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰ 思路:分项积分。

解:2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++⎰⎰★★(9)思路=11172488x x++==,直接积分。

解:715888.15x dx x C ==+⎰★★(10)221(1)dx x x +⎰思路:裂项分项积分。

解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++⎰⎰⎰⎰ ★(11)211x x e dx e --⎰解:21(1)(1)(1).11x x x x x x xe e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x x e dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。

显然33x x xe e =()。

解:333.ln(3)xxxxe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cot csc 1x x =-”。

解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)23523x xxdx ⋅-⋅⎰ 思路:被积函数235222533x x xx ⋅-⋅=-(),积分没困难。

解:2()2352232525.33ln 2ln 3xxxx x dx dx x C ⋅-⋅=-=-+-⎰⎰(())★★(15)2cos 2x dx ⎰思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。

解:21cos 11cos sin .2222x x d dx x x C +==++⎰⎰★★(16)11cos 2dx x+⎰思路:应用弦函数的升降幂公式,先升幂再积分。

解:221111sec tan .1cos 2222cos dx dx xdx x C x x===++⎰⎰⎰ ★(17)cos 2cos sin x dx x x-⎰思路:不难,关键知道“22cos 2cos sin (cos sin )(cos sin )x x x x x x x =-=+-”。

解:cos 2(cos sin )sin cos .cos sin xdx x x dx x x C x x=+=-+-⎰⎰★(18)22cos 2cos sin xdx x x⋅⎰ 思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。

解:22222222cos 2cos sin 11cos sin cos sin sin cos x x x dx dx dx x x x x x x x-==-⋅⋅⎰⎰⎰⎰ 22csc sec cot tan .xdx xdx x x C =-=--+⎰⎰★★(19)dx +⎰思路:注意到被积函数==,应用公式(5)即可。

解:22arcsin .dx x C +==+⎰ ★★(20)21cos 1cos 2xdx x++⎰思路:注意到被积函数 22221cos 1cos 11sec 1cos 2222cos x x x x x ++==++,则积分易得。

解:221cos 11tan sec .1cos 2222x x xdx xdx dx C x ++=+=++⎰⎰⎰ ★2、设()arccos xf x dx x C =+⎰,求()f x 。

知识点:考查不定积分(原函数)与被积函数的关系。

思路分析:直接利用不定积分的性质1:[()]()df x dx f x dx =⎰即可。

解:等式两边对x 求导数得:()()xf x f x =∴=★3、设()f x 的导函数为sin x ,求()f x 的原函数全体。

知识点:仍为考查不定积分(原函数)与被积函数的关系。

思路分析:连续两次求不定积分即可。

解:由题意可知,1()sin cos f x xdx x C ==-+⎰所以()f x 的原函数全体为:112cos sin x C dx x C x C -+=-++⎰()。

★4、证明函数21,2x x e e shx 和xe chx 都是s x e chx hx -的原函数知识点:考查原函数(不定积分)与被积函数的关系。

思路分析:只需验证即可。

解:2x x e e chx shx =-Q,而22[][][]x x x x d d de e shx e chx e dx dx dx===1()2 ★5、一曲线通过点2(,3)e ,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。

知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。

解:设曲线方程为()y f x =,由题意可知:1[()]d f x dx x=,()ln ||f x x C ∴=+; 又点2(,3)e 在曲线上,适合方程,有23ln(),1e C C =+∴=, 所以曲线的方程为()ln || 1.f x x =+★★6、一物体由静止开始运动,经t 秒后的速度是23(/)t m s ,问: (1) 在3秒后物体离开出发点的距离是多少? (2)物体走完360米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。

解:设物体的位移方程为:()y f t =,则由速度和位移的关系可得:23[()]3()f t t f t t C =⇒=+ddt, 又因为物体是由静止开始运动的,3(0)0,0,()f C f t t ∴=∴=∴=。

(1) 3秒后物体离开出发点的距离为:3(3)327f ==米; (2)令3360t t =⇒=秒。

习题4-2★1、填空是下列等式成立。

知识点:练习简单的凑微分。

思路分析:根据微分运算凑齐系数即可。

解:234111(1)(73);(2)(1);(3)(32);7212dx d x xdx d x x dx d x =-=--=-2222111(4)();(5)(5ln||);(6)(35ln||);255112(tan2);(9)(arctan3).23cos219x xdx dxe dx d e d x d xx xdx dxd d x d xx x===--===+2、求下列不定积分。

知识点:(凑微分)第一换元积分法的练习。

思路分析:审题看看是否需要凑微分。

直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。

此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!★(1)3t e dt⎰思路:凑微分。

解:33311(3)33t t te dt e d t e C==+⎰⎰★(2)3(35)x dx-⎰思路:凑微分。

解:33411(35)(35)(35)(35)520x dx x x x C-=---=--+⎰⎰d★(3)132dxx-⎰思路:凑微分。

解:1111(32)ln|32|.322322dx d x x Cx x=--=--+--⎰⎰★(4)思路:凑微分。

解:1233111(53)(53)(53)(53).332x x d x x C-=--=---=--+⎰★(5)(sin)x bax e dx-⎰思路:凑微分。

解:11(sin)sin()()cosx x xb b bxax e dx axd ax b e d ax be Ca b a-=-=--+⎰⎰⎰★★(6)思路:如果你能看到td=,凑出d易解。

解:2C ==⎰★(7)102tan sec x xdx ⎰ 思路:凑微分。

解:10210111tan sec tan (tan )tan .11x xdx xd x x C ==+⎰⎰ ★★(8)ln ln ln dxx x x⎰思路:连续三次应用公式(3)凑微分即可。

解:(ln ||)(ln |ln |)ln |ln ln |ln ln ln ln ln ln ln ln dx d x d x x C x x x x x x===+⎰⎰⎰★★(9)⎰思路:是什么,是什么呢?就是度!解:tantan ln |C ==-+⎰⎰★★(10)sin cos dxx x⎰思路:凑微分。

相关文档
最新文档