由递推关系求通项公式的类型与方法

合集下载

数列求通项公式及求和种方法

数列求通项公式及求和种方法

数列专题 1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、 S n 是数列 { a n } 的前 n 项的和型一:a nS 1(n 1 )S nSn 1(n 2 )【方法】:“ S n S n 1 ”代入消元消 a n 。

【注意】 漏检验 n 的值 (如 n1的情况【例 1】 .(1)已知正数数列 { a n } 的前 n 项的和为 S n ,且对任意的正整数 n 满足 2 S n a n 1,求数列 { a n } 的通项公式。

( 2 )数 列 { a n } 中 , a 1 1 对 所有 的 正整数 n 都 有 a a a a 2 n { a } 的通项公式1 2 3 n ,求数列n 【作业一】a3a2n 1an*1- 1.数列an满足2 3 a3( nN )13n3,求数列 a n 的通项公式.(二) . 累加、累乘型如 a nan 1f (n) ,a nf (n)an 1型一: a n a n 1 f (n) ,用累加法求通项公式(推导等差数列通项公式的方法)【方法】a nan 1f (n) ,a n 1an 2f (n 1),⋯⋯,a 2 a 1 f (2) n 2 ,从而 a na 1 f (n) f (n 1)f (2) ,检验 n1的情况型二: a nf (n) ,用累乘法求通项公式(推导等比数列通an 1项公式的方法)a nan 1a 2 f (n) f (n 1)f (2)【方法】 n 2 , an 1aan 21即 a nf (n) f (n 1)f (2) ,检验 n 1的情况a1【小结】一般情况下,“累加法”(“累乘法”)里只有 n 1 个等式相加(相乘) .【例 2】. (1) 已知 a 11 a nan 11 (n 2)a2,n n 2 1 ,求 n.(2)已知数列an满足an 1a n ,且 a12,求 a n .n 23【 例 3】 . ( 2009广 东 高 考 文 数 ) 在 数 列 { a n }中 ,a 1 1,a n 1 (11)a n n1 b na n{ b }n n ,求数列的通项公式n 2.设n(三) . 待定系数法 ?acap( c , 为p 非零常数 ,c1 , p 1n 1n)【 方 法】 构 造 an 1 x c(a n x) , 即 an 1ca n (c 1)x ,故 (c 1)x p , 即 { a n p } 为等比数c 1列【例 4】. a 1 1, a n 1 2a n 3 ,求数列 { a n } 的通项公式。

由递推关系式求数列通项公式的常规方法

由递推关系式求数列通项公式的常规方法

思路探寻由递推关系式求数列的通项公式是数列中常见的题型之一.解答此类问题的关键是仔细分析已知的递推关系式,找出其中的规律,将问题转化为常规的等差、等比、常数数列的求通项公式或求和问题来求解.本文主要探讨了几种常见的题型及其解法.一、累加法对于形如a n +1=a n +f (n )的递推关系式,我们一般采用累加法来求数列的通项公式.首先把递推关系式转化为a n +1-a n =f (n )的形式,然后将各项f (1),f (2),f (3),…,f (n -1)逐项累加,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),通过正负相消便可求得数列的通项公式.例1.已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n .解:由已知可得a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=æèöø1-12+æèöø12-13+æèöø13-14+…+æèöø1n -1-1n ,所以a n -a 1=1-1n.因为a 1=12,所以a n =32-1n.累加法较为简单,但适用范围较窄,只适用于求解形如a n +1=a n +f (n )的递推关系式的通项公式.二、累积法对于形如a n +1=f (n )a n 的递推关系式,若要求其数列的通项公式,需把递推关系式转化为a n +1a n =f (n )的形式,然后利用累乘法求解.将各项a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),逐项累乘得到a na 1=f (1)f (2)…f (n -1),就可以求得a n .例2.已知数列{a n }满足a 1=23,a n +1=n n +1·a n ,求a n .解:由a n +1=n n +1·a n得a n +1a n =n n +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n.即a n =23n.在运用累积法解题时,要注意递推关系式a n =f (n )a n -1只适合n ≥2的情形,因此需将n =1的情况单独讨论.三、构造法构造法是由递推关系求数列通项公式的常用方法,该方法具有较强的灵活性.运用构造法解题的关键是通过对递推关系式进行灵活处理,将问题转化为常规的等差、等比数列问题,运用等差、等比数列的通项公式求得原数列的通项公式.例3.在数列{a n }中,a 1=1,a n +1=2a n +3,求a n .解:设a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3.对于a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型的递推关系式,我们一般采用构造法来求数列的通项公式.首先引入参数,将递推关系式构造成a n +1+t =p (a n +t )的形式,通过对应系数求得t 的值,进而将问题转化为求等比数列的通项公式来解答.例4.已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式.解:∵a n +1=3a n2a n +1,∴1a n +1=23+13a n ,∴1a n +1-1=13æèçöø÷1a n -1.又1a n-1=23,∴{}1a n -1是以23为首项、13为公比的等比数列,∴1a n -1=23×13n -1=23n ,∴a n =3n3n +2.对于a n +1=Aa nBa n +C(A ,B ,C 为常数)型的递推关系式,可通过在递推关系式两边同时取倒数,将递推关系式转化为a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型,再进行求解.累加法、累乘法、构造法都是由递推关系式求数列的通项公式的常规方法.由于数列问题中的递推关系式多种多样,所以求数列通项公式的方法也各不相同.同学们在解题的过程中要注意灵活选择与之相应的方法来解题.(作者单位:江苏省苏州市吴江开发区中学)51Copyright©博看网 . All Rights Reserved.。

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道]对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3;(2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =n n +1 2. 综上可知,{a n }的通项公式a n =n n +1 2.[题后悟道]对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道]对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

高中数学数列通项公式的求法技巧大全

高中数学数列通项公式的求法技巧大全

数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种办法办法总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法(罕用)不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等级差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-演习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n演习2.已知数列}{n a 知足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:裂项乞降n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21nn n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21nn n a na S +=得)(2111---+-=n n n n n S S nS S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a 2)1(2+=n n s n ,,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n na n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+nn na a , 即11+=+n na a nn ∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出na .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ所以有:)1(11-+=-+-c d a c c d a n n 是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c da 首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c da c d a 即:1)1(11--⋅-+=-c d c c d a a n n .纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:n n n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nn nn n q p p q a p a )(111⋅+=++,令n n n p a b =,则n nn q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即: q q a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列 设)(11n n n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式.解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略 演习.(2003天津理) 设a 为常数,且)(2311N n a a n n n ∈-=--.证实对随意率性n≥1,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-;3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法 经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-;解题根本步调: 1.肯定()f n =kn+b 2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法)解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令nn n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ② 再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为yn x a y xn a n n ++-+=++-)1()(21比较系数可得:x=-6,y=9,上式即为12-=n n b b所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b即:nn n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如cn b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a )根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n na x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列. 例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同) 则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案:nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型 例12 已知数列{}n a 知足3(1)2115nn n na aa ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n na a++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 例13.(2005江西卷)已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21,110,(1)证实12,;n n a a n N +<<∈ (2)求数列}{n a 的通项公式an.解:(1)略(2)],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a ann nn n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即.办法2:本题用归纳-猜测-证实,也很简捷,请试一试.解法3:设c n n b -=,则c2121-=n n c ,转化为上面类型(1)来解五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a例14. 设正项数列{}n a 知足11=a ,212-=n na a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n na a ,设1log 2+=n a n b ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n,∴1212--=n na演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nna --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n na -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=++=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -==首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n n n n a p a pk a q a q++--=⋅--,个中a pc k a qc -=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:,725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a , 公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求.例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19nn a -=+-. 演习1:已知{}n a 知足11122,(2)21n n n a a a n a --+==≥+,求{}n a 的通项n a答案:3(1)3(1)n nn nna --∴=+-演习2.已知数列{}n a 知足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a答案:135106n na n -∴=-演习3.(2009陕西卷文)已知数列{}n a 知足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证实:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式.答案:(1){}n b 是以1为首项,12-为公比的等比数列.(2)1*521()()332n n a n N -=--∈.十一:特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列 (已知 a1;a2)形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n nn a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,nn a c nc c c α=+是待定常数)再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n na a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n nn a c c =⋅+⋅, 由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25已知数列{}n a 知足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=演习1.已知数列{}n a 知足*12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项演习2.已知数列{}n a 知足*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项解释:(1)若方程2x px q =+有两不合的解s , t,则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1121)(-+-=-n n n t sa a sa a ,,s t ≠ 由上两式消去1+n a 可得()()()nn n t t s t sa a s t s s ta a a ..1212-----=.(2)若方程2x px q =+有两相等的解t s =,则()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+ ,21211s ta a s a s a n n n n -=-∴++,等于⎭⎬⎫⎩⎨⎧n n s a 等差数列, 由等差数列性质可知()2121.1ssa a n s a s a n n --+=, 所以nn s n s sa a s sa a s a a ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=.2122121. 例26.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}n a 的通项.解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n nn n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg 2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.四种根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.例27. 数列{n a }知足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 剖析 1:结构 转化为)(1n f a a n n =-+型解法1:令n nn a b )1(-=则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(111111⋅-=+-=---=-++++++.2≥n 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⨯⋅-=--⋅-=--⋅-=-----012)1()2(2)1()1(2)1(112121211a b b b n b b n b b n n n n n n各式相加:[]1)1(2)1()2()1()1()1(2231⋅-+⋅-++--+--=- n n b n n n当n 为偶数时,n n n b n =⎥⎦⎤⎢⎣⎡-⋅-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)21(2+-=--=n n b n 此时n n a b -=,所以1-=n a n .故 ⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n解法2: na a n n 21=++∴2≥n 时,)1(21-=+-n a a n n ,两式相减得:211=--+n n a a . ∴,,,,531 a a a 组成以1a ,为首项,以2为公役的等差数列; ,,,,642 a a a 组成以2a ,为首项,以2为公役的等差数列∴22)1(112-=-+=-k d k a a k k d k a a k 2)1(22=-+=.∴⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n 评注:成果要还原成n 的表达式.例28.(2005江西卷)已知数列{a n }的前n 项和S n 知足 S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式. 解:办法一:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以 以下同上例,略答案 ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n)(1n f a a n n =⋅+型(1)若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例29. 已知数列满足}{n a )(,)21(,3*11N n a a a nn n ∈=⋅=+,求此数列的通项公式.注:同上例相似,略.。

递推数列求通项公式的常见类型及方法

递推数列求通项公式的常见类型及方法

递推数列求通项公式的常见类型及方法递推数列求通项即依据给出数列中相邻两项或几项的关系式,n a 与n S 的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.1. )(1n f a a n n +=+.方法:叠加法. 令1,2,1-=n n,得21321(1)(2)(1)n n a a f a a f a a f n -=+=+=+-以上1-n 个式子相加,得111().n ni a a f i -==+∑ 例1.数列{}n a 中,)2(1,1211≥-+==-n n n a a a n n ,求数列{}n a 的通项. 解: 令n n ,,3,2 =,得212322121221331n n a a a a a a n n -=+-=+-=+-n n a a n -++-+-+=∴22211331221 11111223(1)111111(1)()()223112.a n n n n n =+++⨯⨯-=+-+-++--=- 2. )(1n f a a n n =+. 方法:累积法. 令1,2,1-=n n,得21321(1)(2)(1).n n a a f a a f a a f n -===-以上1-n 个式子求积,得)(111i f a a n i n-=∏+=. 例2. 数列{}n a 中,)2()11(,2121≥⋅-==-n a na a n n ,求数列{}n a 的通项.解: 由题1212)1)(1()11(--+-=-=n n n a nn n a n a ,令1,2,1-=n n ,得 21232212132243(1)(1)n n a a a a n n a a n -⨯=⨯=-+= 2221)1)(1(342231n n n a a n +-⋅⋅⨯⋅⨯⋅=∴ 11121.n a n n n +=⋅⋅+= 3. )0,1(1≠≠+=+q p q pa a n n . 方法一:配凑法.1().n n a p a λλ+-=-方法二:待定系数法.令)(1λλ-=-+n n a p a 比较已知得,.1q p q pλλλ-==- λ是方程q px x +=的根. q px x +=是特征方程.方程三: 两根同除以1+n p ,得111++++=n n n n n p q p a p a 转化为类型1. 例3(07.全国) 数列{}n a 中, ,3,2,1),2)(12(,21=+-==n a a a n n ,求数列{}n a 的通项. 解法一: )2)(12(1+-=+n n a a {}为公比的等比数列为首项,是以数列122222)2)(12(211--=--∴--=-∴+a a a a n n nn n na )12(2)12)(22(21-⨯=--=-∴- 故 2)12(2+-⨯=n n a解法二:令))(12(1λλ--=-+n n a a)12(2)12(-=--∴λλ 解得2=λ下同解法一.解法三:)12(2)12()2)(12(1-+-=+-=+n n n a a a两边同除以1)12(+-n ,得nn n n n a a )12(2)12()12(11-+-=-++ 令n n n n n a a b )12()12(+=-= 则n n n b b )12(21++=+.令.1,2,1-=n n 得11223112)12(2)12(2)12(2--++=++=++=n n n b b b b b b1211)12(2)12(2)12(2-+++++++=∴n n b b2)12(2)12(1])12(1)[12(2)12(21++=+-+-+⋅++=-n nn n n n b a )12(22)12(-⨯+=-=∴.4. )0,1(,1≠≠+=+q p q pa a n n n .方法一:两边同除以1+n p ,得111++++=n nn n n n p q p a p a 转化为类型一.方法二:待定系数法.令)(11-+-=-n n n n q a p q a λλ比较已知得p q q -=λ. 例4.数列{}n a 中,)1(,23,111≥+==+n a a a n n n ,求数列{}n a 的通项. 解法一:两边同除以13+n ,得1113233++++=n nn n n n a a . 令n n n a b 3=,则1132+++=n nn n b b . 令.1,2,1-=n n 得n n n n b b b b b b 323232113223212--+=+=+= n n n b b 32323213221-++++=∴ nn n n )32(1321])32(1[31323232311322-=--=++++=- n n n a 23-=∴.解法二:令)2(3211-+⋅-=-n n n n a a λλn n n 22321=-⋅∴-λλ解得2-=λ.即)2(3211n n n n a a +=+++,所以数列{}n n a2+是以321=+a 为首项,3为公比的等比数列. .23,32n n n n n n a a -==+∴故5. )1).((1≠+=+p n f pa a n n .方法:两边同除以1+n p ,得111)(++++=n n n n n pn f p a p a 转化为类型一. 例5. 数列{}n a 中,)1(,223,111≥-+==+n n a a a n n ,求数列{}n a 的通项.解: 两边同除以13+n ,得11132233+++-+=n n n n n n a a 令n nn a b 3=,得11322++-+=n n n n b b . 利用叠加法及错位相减法,以求得2123+-=n a n n . 6.)()(1n g a n f a n n +=+.方法: 两边同除以)()2()1(n f f f ,得)()2()1()()()2()1()()2()1(1n f f f n g n f f f a n f f f a n n +=+转化为类型一 例6. (2008年河南省普通高中毕业班教学质量调研考试)数列{}n a 中,)1(2)1(22,111≥++++==+n n n a n n a a n n ,求数列{}n a 的通项. 解: 令,2)(+=n n n f 则)2)(1(2211534231)()2()1(++=+⨯+-⨯⨯⨯⨯=n n n n n n n f f f 两边同除以)()2()1(n f f f ,得)2)(1(22)1(2)1(2)2)(1(21++++++=+++n n n n n n a n n a n n 即21)1(2)1()1)(2(+++=+++n na n a n n n n 令n n na n b )1(+=,则21)1(2++=+n b b n n令.1,2,1-=n n 得2122321223222n b b b b b b n n +=⨯+=⨯+=-)32(22221n b b n +++⨯+=∴3)12)(1(]16)12)(1([212++=-++⨯+⨯=n n n n n n 312+=∴n a n . 7. )(1n f a a n n =+. 方法: 由已知)1(12+=++n f a a n n ,两式相除,得)()1(2n f n f a a n n +=+. 例7. 数列{}n a 中,)1(,)31(,211≥==+n a a a n nn ,求数列{}n a 的通项. 解: 由题2,31121==a a a ,得612=a n n n a a )31(1=+ ………..① 112)31(+++=n n n a a ……...② ②÷①得 312=+n n a a k k a a a a a a 2421231,,,,,,和+∴都是以31为公比的等比数列 当n 为奇数时,21211)31(2--⋅==n n n q a a 当n 为偶数时,22222)31(61--⋅==n n n q a a ⎪⎪⎩⎪⎪⎨⎧⋅⋅=∴--为偶数,为奇数n n a n nn 2221)31(61,)31(2. 8.n n n qa pa a +=++12. 方法一: 配凑法.)(112n n n n a a a a αβα-=-+++方法二: 待定系数法. 令)(112n n n n a a a a αβα-=-+++,比较已知得 ⎩⎨⎧==+q p αββα 得出βα, 其中βα,是方程q px x +=2的两根,方程q px x +=2是特征方程.例8. 数列{}n a 中,)1(,65,5,11221≥-===++n a a a a a n n n ,求数列{}n a 的通项.解: 令)(112n n n n a a a a αβα-=-+++比较已知得⎩⎨⎧==+65αββα 得出2,3==βα )3(23112n n n n a a a a -=-∴+++数列{}n n a a 31-+是以2312=-a a 为首项,2为公比的等比数列.则n n n a a 231=-+,即n n n a a 231+=+.下同例4. 9.)0(,1≠++=+ac b aa d ca a n n n . 方法: 不动点法. 令bax d cx x ++=………(*) 若(*)有两重根,021x x x ==,则⎭⎬⎫⎩⎨⎧-01x a n为等差数列. 若(*)有两根,21x x ≠,则⎭⎬⎫⎩⎨⎧--21x a x a nn 为等比数列. 例9.(08,洛阳三练)数列{}n a 中,n n a a a -==+21,2111,求数列{}n a 的通项. 解:令xx -=21,得1=x . 111121111111-=----=---+n n n n a a a a , 为公差的等差数列为首项,是以1-2121111111-=-=-⎭⎬⎫⎩⎨⎧-∴a a n . 1)1()1(211--=-⨯-+-=-∴n n a n 1+=∴n n a n . 例10.(07.全国)数列{}n b 中,)1(3243,211≥++==+n b b b b n nn ,求数列{}n b 的通项. 解: 令3243++=x x x ,解得2,221=-=x x , 则411)12(2223243232432222+=-+-+++++=-+-+++n n n n n n n n n n b b b b b b b b b b 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22n n b b 是以22222211-+=-+b b 为首项,4)12(+为公比的等比数列. 24)1(4)12()12(222222--+=+⋅-+=-+∴n n n nb b故1)12(1)12(22424-+++⋅=--n n nb .10. n n S a 与的关系.方法: ⎩⎨⎧-=-,,1n nn n S S S a 21≥=n n 可以向n a 转化,也可以向n S 转化.例11. 数列{}n a 的前n 项和,)1(12≥+=n a a S nn n ,求数列{}n a 的通项公式. 解法一: 1=n 时,1111212a a a S =+=,解得11=a )2(,1212111≥+=∴+=---n a a S a a S n n n nn n 两式相减得 11112---+-=n n n n n a a a a a ,)1(111--+-=-n n n n a a a a . 平方得 4)1()1(212122=+-+--n n n n a a a a . 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+221n n a a 是以212121=+a a 为首项,4为公差的等差数列。

初中数学求数列通项公式的十种方法

初中数学求数列通项公式的十种方法
例4已知数列 满足 ,求数列 的通项公式。
解:因为 ,所以 ,则 ,故
所以数列 的通项公式为
例5.设 是首项为1的正项数列,且 ( =1,2,3,…),则它的通项公式是 =________.
解:已知等式可化为:
( ) (n+1) ,即
时,
= = .
评注:本题是关于 和 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到 与 的更为明显的关系式,从而求出 .
练习2.已知数列 满足
,求数列 的通项
说明:(1)若方程 有两不同的解s , t,
则 , ,
由等比数列性质可得 , ,
由上两式消去 可得 .
(2)若方程 有两相等的解 ,则

,即 是等差数列,
由等差数列性质可知 ,
所以 .
例26、数列 满足 ,且 求数列 的通项。
解: ……①
令 ,解得 ,将它们代回①得,
分析:把已知关系通过 转化为数列 或 的递推关系,然后采用相应的方法求解。
例19已知数列 的各项均为正数,且前n项和 满足 ,且 成等比数列,求数列 的通项公式。
解:∵对任意 有
∴当n=1时, ,解得 或
当n≥2时, ⑵
-⑵整理得:
∵ 各项均为正数,∴
当 时, ,此时 成立
当 时, ,此时 不成立,故 舍去
令 ,则可化为 .然后转化为类型5来解,
.待定系数法:目的是把所求数列构造成等差数列
设 .通过比较系数,求出 ,转化为等比数列求通项.
注意:应用待定系数法时,要求p q,否则待定系数法会失效。
例7已知数列 满足 ,求数列 的通项公式。
解法一(待定系数法):设 ,比较系数得 ,

高三数学教案: 由递推关系求通项公式的类型与方法

高三数学教案:  由递推关系求通项公式的类型与方法

由递推关系求通项公式的类型与方法递推公式是给出数列的基本方式之一,在近几年高考题中占着不小的比重。

2008年高考数学19份理科试卷,共19道数列部分的解答题,其中有17道涉及递推数列,(福建卷理科有两道题涉及数列问题,江苏卷、江西卷中数列题不涉及递推),说每卷都有数列问题,数列必出递推也不为过。

不能不感受到高考数学试题中“递推”之风的强劲。

为此本文主要以2008年试题为例重点研究由递推关系求数列通公式的类型与求解策略。

一、递推关系形如:1()n n a a f n +=+的数列利用迭加或迭代法得:1(1)(2)(1)n a a f f f n =++++-L ,(2n ≥)例1(08天津文20)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)略(Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ)211a a -=,32a a q -=,22121321()()()11n n n n a a a a a a a a q q q --=+-+-++-=+++++L L ,(2n ≥).所以当2n ≥时,11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩上式对1n =显然成立.二、递推关系形如:1()n n a a f n +=的数列利用迭乘或迭代法可得: 1(1)(2)(1)n a a f f f n =-L ,(2n ≥)例2 (2008天津理22)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈. (Ⅰ)求22,b a 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式; 解:(Ⅰ)易得23a =,29b =.(Ⅱ)由题设 1(3)n n nS n S +=+ ①(2n ≥)时 1(1)(2)n n n S n S --=+ ② ①式减去②式,整理得1(2)n n na n a +=+, 即12n n a n a n++=,2n ≥所以 3n ≥时, 132122114(1)312322n n n n n a a a n n n n n a a a a a n n n ---+-+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=--- 此式对1,2n =也成立. (1)2n n n a +∴=由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即1221(1)(2)n n b b n n +⋅=++,*n N ∈. 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以21(1)n b n =+,即2(1)n b n =+,1n ≥.三、递推关系形如:1n n a pa q +=+(p,q 为常数且1p ≠,0q ≠)的数列(线性递推关系) 利用不动点求出x px q =+的根1q x p =--,递推关系可化为1()11n n q qa p a p p ++=+--,利用等比数列求出1n qa p +-的表达式,进而求出n a 例3(2008安徽文21)设数列{}n a 满足*11,1,,n n a a a ca c c N +==+-∈其中,a c 为实数,且0c ≠(Ⅰ)求数列{}n a 的通项公式解 :*11,,n n a ca c c N +=+-∈Q 11(1)n n a c a +∴-=-∴当1a ≠时,{}1n a -是首项为1a -,公比为c 的等比数列。

数学(文)由递推公式求通项的7种方法及破解数列中的3类探索性问题

数学(文)由递推公式求通项的7种方法及破解数列中的3类探索性问题

由递推公式求通项的7种方法及破解数列中的3类探索性问题一、由递推公式求通项的7种方法1.a n +1=a n +f (n )型把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).[例1] 已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n,求a n . [解] 由条件,知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1,则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n , 所以a n -a 1=1-1n. 因为a 1=12,所以a n =12+1-1n =32-1n. 2.a n +1=f (n )a n 型把原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),累乘可得a n a 1=f (1)f (2)…f (n -1). [例2] 已知数列{a n }满足a 1=23,a n +1=n n +1·a n,求a n . [解] 由a n +1=n n +1·a n ,得a n +1a n =n n +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ×n -2n -1×…×12×23=23n .即a n =23n . 3.a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)型对于此类问题,通常采用换元法进行转化,假设将递推公式改写为a n +1+t =p (a n +t ),比较系数可知t =q p -1,可令a n +1+t =b n +1换元即可转化为等比数列来解决. [例3] 已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .[解] 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故递推公式为a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以b 1=4为首项,2为公比的等比数列.所以b n =4×2n -1=2n +1,即a n =2n +1-3. 4.a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0)型(1)一般地,要先在递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q ,引入辅助数列{b n }⎝⎛⎭⎫其中b n =a n q n ,得b n +1=p q ·b n +1q,再用待定系数法解决; (2)也可以在原递推公式两边同除以p n +1,得a n +1p n +1=a n p n +1p ·⎝⎛⎭⎫q p n ,引入辅助数列{b n }⎝⎛⎭⎫其中b n =a n p n ,得b n +1-b n =1p ⎝⎛⎭⎫q p n ,再利用叠加法(逐差相加法)求解. [例4] 已知数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . [解] 法一:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以2n +1,得2n +1·a n +1=23(2n ·a n )+1. 令b n =2n ·a n ,则b n +1=23b n +1, 根据待定系数法,得b n +1-3=23(b n -3). 所以数列{b n -3}是以b 1-3=2×56-3=-43为首项, 以23为公比的等比数列. 所以b n -3=-43·⎝⎛⎭⎫23n -1,即b n =3-2⎝⎛⎭⎫23n . 于是,a n =b n 2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 法二:在a n +1=13a n +⎝⎛⎭⎫12n +1两边乘以3n +1,得 3n +1a n +1=3n a n +⎝⎛⎭⎫32n +1.令b n =3n ·a n ,则b n +1=b n +⎝⎛⎭⎫32n +1.所以b n -b n -1=⎝⎛⎭⎫32n ,b n -1-b n -2=⎝⎛⎭⎫32n -1,…,b 2-b 1=⎝⎛⎭⎫322.将以上各式叠加,得b n -b 1=⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n . 又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝⎛⎭⎫322+…+⎝⎛⎭⎫32n -1+⎝⎛⎭⎫32n =1·⎣⎡⎦⎤1-⎝⎛⎭⎫32n +11-32=2⎝⎛⎭⎫32n +1-2, 即b n =2⎝⎛⎭⎫32n +1-2.故a n =b n 3n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n . 5.a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)型这种类型一般利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),与已知递推式比较,解出x ,y ,从而转化为{a n +xn +y }是公比为p 的等比数列.[例5] 设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求a n .[解] 设递推公式可以转化为a n +An +B =3[a n -1+A (n -1)+B ],化简后与原递推式比较,得⎩⎪⎨⎪⎧ 2A =2,2B -3A =-1, 解得⎩⎪⎨⎪⎧A =1,B =1. 令b n =a n +n +1.(*)则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*)式,得a n =2·3n -n -1.6.a n +1=pa r n (p >0,a n >0)型这种类型一般是等式两边取对数后转化为a n +1=pa n +q 型数列,再利用待定系数法求解.[例6] 已知数列{a n }中,a 1=1,a n +1=1a ·a 2n(a >0),求数列{a n }的通项公式. [解] 对a n +1=1a ·a 2n的两边取对数, 得lg a n +1=2lg a n +lg 1a. 令b n =lg a n ,则b n +1=2b n +lg 1a. 由此得b n +1+lg 1a =2⎝⎛⎭⎫b n +lg 1a ,记c n =b n +lg 1a,则c n +1=2c n , 所以数列{c n }是以c 1=b 1+lg 1a =lg 1a为首项,2为公比的等比数列. 所以c n =2n -1·lg 1a. 所以b n =c n -lg 1a =2n -1·lg 1a -lg 1a=lg ⎣⎡⎦⎤a ·⎝⎛⎭⎫1a 2n -1=lg a 1-2 n -1, 即lg a n =lg a 1-2 n -1,所以a n =a 1-2 n -1.7.a n +1=Aa n Ba n +C(A ,B ,C 为常数)型 对于此类递推数列,可通过两边同时取倒数的方法得出关系式[例7] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,3,…,求{a n }的通项公式. [解] ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n, ∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列, ∴1a n -1=23·13n -1=23n , ∴a n =3n3n +2. 二、破解数列中的4类探索性问题1.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.[例1] 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N *);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[解] (1)由已知得S n +2-S n +1-(S n +1-S n )=1,所以a n +2-a n +1=1(n ≥1).又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列.所以a n =n +1.因为b n +1=4b n +6,即b n +1+2=4(b n +2),又b 1+2=a 1+2=4,所以数列{b2+2}是以4为公比,4为首项的等比数列.所以b n=4n-2.(2)因为a n=n+1,b n=4n-2,所以c n=4n+(-1)n-1λ·2n+1.要使c n+1>c n成立,需c n+1-c n=4n+1-4n+(-1)nλ·2n+2-(-1)n-1λ·2n+1>0恒成立,化简得3·4n-3λ(-1)n-12n+1>0恒成立,即(-1)n-1λ<2n-1恒成立,①当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值1,所以λ<1;②当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,-2n-1有最大值-2,所以λ>-2,即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n∈N*,都有c n+1>c n成立.[点评]对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到S n要注意利用S n与a n的关系将其转化为a n,再研究其具体性质.遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题易忘掉对n的奇偶性的讨论而致误.2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.[例2]已知各项均为正数的数列{a n}满足:a2n+1=2a2n+a n a n+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足:b n=na n(2n+1)2n,是否存在正整数m,n(1<m<n),使得b1,b m,b n成等比数列?若存在,求出所有的m,n的值,若不存在,请说明理由;(3)令c n=1+na n,记数列{c n}的前n项积为T n,其中n∈N *,试比较Tn与9的大小,并加以证明.[解](1)因为a2n+1=2a2n+a n a n+1,即(a n+a n+1)(2a n-a n+1)=0.又a n>0,所以2a n-a n+1=0,即2a n=a n+1.所以数列{a n}是公比为2的等比数列.由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.故数列{a n}的通项公式为a n=2n(n∈N*).(2)因为b n =na nn +n =n 2n +1, 所以b 1=13,b m =m 2m +1,b n =n 2n +1. 若b 1,b m ,b n 成等比数列,则⎝⎛⎭⎫m 2m +12=13⎝⎛⎭⎫n 2n +1, 即m 24m 2+4m +1=n 6n +3. 由m 24m 2+4m +1=n 6n +3,可得3n =-2m 2+4m +1m 2, 所以-2m 2+4m +1>0,从而1-62<m <1+62. 又n ∈N *,且m >1,所以m =2,此时n =12.故当且仅当m =2,n =12时,b 1,b m ,b n 成等比数列.(3)构造函数f (x )=ln(1+x )-x (x ≥0),则f ′(x )=11+x -1=-x 1+x. 当x >0时,f ′(x )<0,即f (x )在[0,+∞)上单调递减,所以f (x )<f (0)=0.所以ln(1+x )-x <0.所以ln c n =ln ⎝⎛⎭⎫1+n a n =ln ⎝⎛⎭⎫1+n 2n <n 2n . 所以ln T n <12+222+323+…+n 2n . 记A n =12+222+323+…+n 2n ,则12A n =122+223+324+…+n -12n +n 2n +1, 所以A n -12A n =12+122+123+124+…+12n -n 2n +1=1-n +22n +1<1,即A n <2. 所以ln T n <2.所以T n <e 2<9,即T n <9.[点评] 对于结论探索性问题,需要先得出一个结论,再进行证明.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值.遇到数列中的比较大小问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法.3.存在探索性问题此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决此类问题的一般方法是:假定题中的数学对象存在或结论成立或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.[例3] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1a n,若S n <100,求最大正整数n ; (3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列,且a m -1,a s -1,a n -1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.[解] (1)因为1a n +1=23+13a n, 所以1 a n +1-1=13a n -13. 又因为1a 1-1≠0,所以1a n-1≠0(n ∈N *). 所以数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列. (2)由(1)可得1a n -1=23·⎝⎛⎭⎫13n -1, 所以1a n=2·⎝⎛⎭⎫13n +1. S n =1a 1+1a 2+…+1a n=n +2⎝⎛⎭⎫13+132+…+13n =n +2×13-13n +11-13=n +1-13n , 若S n <100,则n +1-13n <100, 所以最大正整数n 的值为99.(3)假设存在,则m +n =2s ,(a m -1)(a n -1)=(a s -1)2,因为a n =3n3n +2, 所以⎝⎛⎭⎫3n 3n +2-1⎝⎛⎭⎫3m 3m +2-1=⎝⎛⎭⎫3s3s +2-12, 化简得3m +3n =2×3s .因为3m +3n ≥2×3m +n =2×3s ,当且仅当m =n 时等号成立,又m ,s ,n 互不相等,所以不存在.[点评] 数列问题是以分式形式给出条件的,一般采用取倒数,再转化为等差数列或等比数列,通过等差数列与等比数列的桥梁作用求出通项.遇到多个变量的存在性问题,一般假设存在,求出满足的关系,再寻找满足的条件,一般可以利用重要不等式、值域或范围等判断是否存在.。

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法

利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

八种通项公式求解方法

八种通项公式求解方法

求数列通项公式的八种方法总述:一.利用递推关系式求数列通项的8种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

例2已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。

例3.已知数列中,且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,,则二、累乘法1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法之二。

2.若,则两边分别相乘得,∏=+=nk n k f a a 111)(例4已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.解:已知等式可化为:()(n+1),即时,==.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

由递推公式求通项公式的常见类型

由递推公式求通项公式的常见类型

由递推公式求通项公式的常见类型一、累差型例1 在数列{a n }中,a 1=1,a n+1=a n +2n , 求数列{a n }的通项公式。

解:当n ≥2时,由得a n+1-a n =2n ,得a n =(a n -a n-1)+( a n-1-a n-2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n-1+2n-2+…+22+2+1=2(1-2n-1)1-2 +1=2n -1当n=1时, a 1=1也合上式所以a n =2n -1(n ∈N*)二、累商型例2 在数列{a n }中,a 1=4, a n+1=n+2n an, 求数列{a n }的通项公式。

解:由a n+1=n+2n a n 得a n+1a n =n+2n ,于是有 a 2a 1 =3, a 3a 2 =42 ,a 4a 3 =53 ,…, 122n n a n a n--+=, a n a n-1 =n+1n-1 ,将这个式子相乘,得1(1)2n a n n a +=,所以当n ≥2时,a n = n(n+1)2 a 1=2n(n+1) .当n=1时,a 1=4符合上式,所以a n =2n(n+1) (n ∈N*)三、倒数型例3 已知数列{a n }满足a n+1=112n n n n a a a +++,a 1=2, 求数列{a n }的通项公式。

解:由已知递推式可得1a n+1 =11121122n n n n n n a a a ++++=+ ∴ 11n a +-1n a =112n + ∴2211112a a -=,3321112a a -=,4431112a a -=,…,11112n n n a a --= 将以上n-1个式子相加,得23411111112222n n a a -=++++∴1n a =11(1)12211212n n -=-- ∴a n =221n n -(n ∈N*)例4 已知数列{a n }满足a n+1=22nn aa +,a 2012=12012 求数列{an }的通项公式。

由数列递推公式求通项公式的常用方法

由数列递推公式求通项公式的常用方法

21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。

初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。

一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。

二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。

习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。

设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。

能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。

学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。

比如,初中“网络课件构件设计”导学案设计。

①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。

②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。

元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。

元数据设计时可参照SCORM。

定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。

)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an

求数列通项公式的十种方法-例题答案详解

求数列通项公式的十种方法-例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯- 评注:已知aa =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。

一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。

例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。

解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。

答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。

解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。

2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。

解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。

例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。

解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由递推关系求通项公式的类型与方法递推公式是给出数列的基本方式之一,在近几年高考题中占着不小的比重。

2008年高考数学19份理科试卷,共19道数列部分的解答题,其中有17道涉及递推数列,(福建卷理科有两道题涉及数列问题,江苏卷、江西卷中数列题不涉及递推),说每卷都有数列问题,数列必出递推也不为过。

不能不感受到高考数学试题中“递推”之风的强劲。

为此本文主要以2008年试题为例重点研究由递推关系求数列通公式的类型与求解策略。

一、递推关系形如:1()n n a a f n +=+的数列利用迭加或迭代法得:1(1)(2)(1)n a a f f f n =++++-L ,(2n ≥)例1(08天津文20)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)略(Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ)211a a -=,32a a q -=,22121321()()()11n n n n a a a a a a a a q q q --=+-+-++-=+++++L L ,(2n ≥).所以当2n ≥时,11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩上式对1n =显然成立.二、递推关系形如:1()n n a a f n +=的数列利用迭乘或迭代法可得: 1(1)(2)(1)n a a f f f n =-L ,(2n ≥)例2 (2008天津理22)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈.(Ⅰ)求22,b a 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式; 解:(Ⅰ)易得23a =,29b =.(Ⅱ)由题设 1(3)n n nS n S +=+ ① (2n ≥)时 1(1)(2)n n n S n S --=+ ② ①式减去②式,整理得1(2)n n na n a +=+, 即12n n a n a n++=,2n ≥所以 3n ≥时, 132122114(1)312322n n n n n a a a n n n n n a a a a a n n n ---+-+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=--- 此式对1,2n =也成立. (1)2n n n a +∴=由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即1221(1)(2)n n b b n n +⋅=++,*n N ∈. 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以21(1)n b n =+,即2(1)n b n =+,1n ≥.三、递推关系形如:1n n a pa q +=+(p,q 为常数且1p ≠,0q ≠)的数列(线性递推关系) 利用不动点求出x px q =+的根1qx p =--,递推关系可化为1()11n n q q a p a p p ++=+--,利用等比数列求出1n q a p +-的表达式,进而求出n a 例3(2008安徽文21)设数列{}n a 满足*11,1,,n n a a a ca c c N +==+-∈其中,a c 为实数,且0c ≠(Ⅰ)求数列{}n a 的通项公式解 :*11,,n n a ca c c N +=+-∈Q 11(1)n n a c a +∴-=-∴当1a ≠时,{}1n a -是首项为1a -,公比为c 的等比数列。

11(1)n n a a c --=-∴,即 1(1)1n n a a c -=-+。

当1a =时,1n a =仍满足上式。

∴数列}{n a 的通项公式为 1(1)1n n a a c -=-+*()n N ∈。

四、递推关系形如:1n n a pa an b +=++(p , a 为常数且10p p ≠≠,,0a ≠)的数列 令1(1)()n n a x n y p a xn y +-++=-+与1n n a pa an b +=++比较解出系数x ,y 构造等比数列 例4(08湖北理21)已知数列{}n a 和{}n b 满足1a λ=,124,(1)(321),3n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数,求数列{}n a 、{}n b 的通项公式(稍加改编)解:124,3n n a a n +=+-Q ① 令()12(1),3n n a x n y a xn y +-++=-+整理后与①式比较对应项系数得113143x x y ⎧=⎪⎪⎨⎪-=-⎪⎩3,21x y ∴==()123(1)21321,3n n a n a n +-++=-+()11122321321)1833n n n a n a λ--⎛⎫⎛⎫∴-+=-+⋅=+⋅ ⎪⎪⎝⎭⎝⎭(,()12321183n n a n λ-⎛⎫∴=-++⋅ ⎪⎝⎭,()12183n n b λ-⎛⎫∴=-+⋅- ⎪⎝⎭五、递推关系形如:1nn n a pa q +=+的数列(p q 、为常数且0q ≠)常化为111n n n n a a p q q q q ++=+ ,利用第三种类型求出nna q 后解出n a ; 例5 .(2008四川理20) 设数列{}n a 的前n 项和为n S ,已知()21nn n ba b S -=- (Ⅰ)证明:当2b =时,{}12n n a n --⋅是等比数列; (Ⅱ)求{}n a 的通项公式 解:由题意知12a =,且()21n n n ba b S -=- ()11121n n n ba b S +++-=-两式相减得()()1121nn n n b a a b a ++--=-即12nn n a ba +=+ ①(Ⅰ)略(Ⅱ)当2b =时,由(Ⅰ)知1122n n n a n ---⋅=,即()112n n a n -=+当2b ≠时,由①得1112222n n n n a a b ++=⋅+ 因此1111()22222n n n na ab b b +++=+-- 1111()2222n n n a b b b -+=+⋅--()得()1122212n n n a b b n b-⎡⎤=+-≥⎣⎦-六、递推关系形如:11n n n n a a pa a ---=(p 为常数且0p ≠)的数列可化为111n n a a --=p 求出1na 的表达式,再求n a 例6.(2008年山东理19)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10a……记表中的第一列数1247a a a a L ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)nn n nb n b S S =-≥. (Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;解:(Ⅰ)证明:由已知,当2n ≥时,221nn n nb b S S =-,又12n n S b b b =+++L , 所以1212()1()n n n n n n S S S S S S ---=--112()1n n n n S S S S ---⇒=-11112n n S S -⇒-=, 又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列. 由上可知1111(1)22n n n S +=+-=,21n S n ⇒=+. 所以当2n ≥时,12221(1)n n n b S S n n n n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ 七、递推关系形如:1n n n ma a pa q +=+或1()()()nn n f n a a g n a h n +=+的数列可采用取倒数方法转化成为111n n m ma q a p+=+形式利用前面的第三类方法解决。

例7 (2008年高考陕西理22)已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L ,,.(Ⅰ)求{}n a 的通项公式; 解:(Ⅰ)1321n n n a a a +=+Q ,112133n n a a +∴=+,1111113n n a a +⎛⎫∴-=- ⎪⎝⎭, 又11213a -=, 11n a ⎧⎫∴-⎨⎬⎩⎭是以23为首项,13为公比的等比数列. ∴112121333n n n a --=⋅=,332n n n a ∴=+. 八、S n 法 求与前n 项和S n 有关的数列通项时,通常用公式⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 作为桥梁,将S n 转化为n a 的关系式求n a 或将n a 转化为S n 的关系式先求S n 进而求得n a 。

例8、(2008年全国Ⅱ20)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123nn n S S +=+,由此得1132(3)n n n n S S ++-=-.因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .九:数学归纳法例9、(2008辽宁理21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列.⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论;解析:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=, 由此可得2233446912162025a b a b a b ======,,,,,. 猜测2(1)(1)n n a n n b n =+=+,.用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n =k +1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n =k +1时,结论也成立.由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

相关文档
最新文档