安徽省安庆市2020年中考数学一模试卷含答案
安徽省安庆市2020年中考数学一模试卷
![安徽省安庆市2020年中考数学一模试卷](https://img.taocdn.com/s3/m/449510785ef7ba0d4a733b98.png)
2020年安徽省安庆市中考数学一模试卷一、选择题1.(3分)﹣的相反数等于()A.B.﹣ C.4 D.﹣42.(3分)下列式子计算的结果等于a6的是()A.a3+a3 B.a3•a2 C.a12÷a2D.(a2)33.(3分)2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×1024.(3分)如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.(3分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2 C.D.m2﹣4n26.(3分)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=167.(3分)如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°8.(3分)弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2 3 4 1分数885995A.90和87.5 B.95和85 C.90和85 D.85和87.59.(3分)如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C.D.10.(3分)如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6二、填空题11.(3分)的立方根是.12.(3分)方程+x=1的解为.13.(3分)在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.14.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是.(把所有正确结论的序号都选上)三、解答题15.(6分)计算:﹣|1﹣|+(﹣)0.16.(8分)解不等式组:,并把它的解集在数轴上表示出来.17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C (1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.18.(8分)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(10分)如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)20.(10分)如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.21.(12分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.(12分)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.23.(14分)如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O 是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN ∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.2020年安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)(2008•青岛)﹣的相反数等于()A.B.﹣ C.4 D.﹣4【分析】根据相反数的概念即可解答.【解答】解:﹣的相反数等于.故选A.【点评】主要考查相反数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•安庆一模)下列式子计算的结果等于a6的是()A.a3+a3 B.a3•a2 C.a12÷a2D.(a2)3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a12÷a2=a12﹣2=a10,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2017•安庆一模)2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:把334亿用科学记数法可表示为3.34×1010,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•农安县模拟)如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)(2017•安庆一模)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2 C.D.m2﹣4n2【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练利用公式法分解因式是解题关键.6.(3分)(2017•安庆一模)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每次下调的百分率为x,根据“由原来每斤16元下调到每斤9元”,即可得出方程.【解答】解:设平均每次下调的百分率为x,则第一次每斤的价格为:25(1﹣x),第二次每斤的价格为25(1﹣x)2=16;所以,可列方程:25(1﹣x)2=16.故选C.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)(2017•安庆一模)如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°【分析】根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.【解答】解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠ENC=∠D=50°.由将△CMN沿MN翻折得△EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°﹣∠NMC﹣∠MNC=125°,故选:D.【点评】本题考查了平行线的性质、翻折的性质,利用平行线的性质、翻折的性质是解题关键.8.(3分)(2017•安庆一模)弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2 3 4 1分数885995A.90和87.5 B.95和85 C.90和85 D.85和87.5【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:∵得分为90分的人数为4人,人数最多,∴众数为90,∵总人数为10人,∴中位数为第5和6人的得分的平均值,∴中位数为(85+90)÷2=87.5,故选:A.【点评】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)(2017•安庆一模)如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O 的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C.D.【分析】先证明△OAE为等边三角形得到∠1=60°,则∠2=60°,再根据切线的性质得∠ODC=90°,然后利用正切的定义计算CD的长.【解答】解:如图,∵OA=OB,∠E=60°,∴△OAE为等边三角形,∴∠1=60°,∴∠2=60°,∵CD切⊙O于点D,∴OD⊥CD,∴∠ODC=90°,在Rt△ODC中,tan∠2=,∴CD=2tan60°=2.故选C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等边三角形的判定与性质.10.(3分)(2017•安庆一模)如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin ∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=4,OM=3,OB=OA=5.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=S菱形OBCA=OB•AM=10.故选A.【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.二、填空题11.(3分)(2013•泉州)的立方根是.【分析】根据立方根的定义即可得出答案.【解答】解:的立方根是;故答案为:.【点评】此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.(3分)(2017•安庆一模)方程+x=1的解为x=1 .【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:x﹣1+3x=3,移项合并得:4x=4,解得:x=1,故答案为:x=1【点评】此题考查了解一元一次方程,解方程去分母时各项都要乘以各分母的最小公倍数.13.(3分)(2017•安庆一模)在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为(﹣,).【分析】根据“影子点”的定义先求出P′,再求出P″即可.【解答】解:点P(a,b)的“影子点”是点P’为(,﹣),∵=﹣,﹣=,∴点P’的“影子点”P''的坐标为(﹣,).故答案为:(﹣,).【点评】本题考查了点的坐标,读懂题目信息,理解“影子点”的定义是解题的关键.14.(3分)(2017•安庆一模)如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是①②③④.(把所有正确结论的序号都选上)【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故③正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,AE=BE,于是得到;②S△AOE=S△OBE;OE:AC=:6;故②④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故③正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6,故③正确;∵AE=BE,∴S△AOE=S△OBE,故②正确;故选:①②③④.【点评】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△ABE是等边三角形,OE是△ABC的中位线是关键.三、解答题15.(6分)(2017•安庆一模)计算:﹣|1﹣|+(﹣)0.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式﹣|1﹣|+(﹣)0的值是多少即可.【解答】解:﹣|1﹣|+(﹣)0=3﹣+1+1=2+2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.(8分)(2017•安庆一模)解不等式组:,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,在数轴上表示其解集为:所以,原不等式组的解集为﹣3<x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(8分)(2017•安庆一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.【分析】(1)利用点平移的规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A2、B2、C2,从而得到△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.18.(8分)(2017•瑶海区三模)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30 +1= 312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n﹣2)+1=(2n﹣1)2,∵左边=22n﹣2n+1+1,右边=22n﹣2n+1+1,∴左边=右边.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.19.(10分)(2017•安庆一模)如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)【分析】过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,在Rt△GEH中利用锐角三角函数的定义可得出GH的长,再由BD=BF+FD=GH+FD即可得出结论.【解答】解:过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,由题意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,又∵∠BAD=∠ADB=45°,∴FD=EF=x米,AB=BD=20米,在Rt△GEH中,∠EGH=30°,∵tan∠EGH=,即=,∴GH=(x﹣1)米,∵BD=BF+FD=GH+FD,∴(x﹣1)+x=20,解得,x≈8米,答:旗杆EF的高度约为8米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)(2017•安庆一模)如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c 过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.【分析】(1)由直线解析式求得点B、C的坐标,代入抛物线解析式即可得;(2)设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+),由DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+可得答案.【解答】解:(1)对于直线,当x=0时,y=;当y=0时,x=.把(0,)和(,0)代入y=x2+bx+c,得:,解得:b=﹣5,c=;(2)由(1)知,抛物线的解析式为y=x2﹣5x+,当y=0时,有x2﹣5x+=0,解得:x=或x=,即A(,0)、B(,0),设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+).∴DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+,∵﹣1<0,∴当时,线段DE的长度最大.将x=m=代入y=x2﹣5x+,得y=﹣.而<m<,∴点D的坐标为.【点评】本题主要考查待定系数法求函数解析式及抛物线与x轴的交点问题,设出点D坐标,表示出线段DE的长并熟练掌握二次函数的性质是解题的关键21.(12分)(2017•安庆一模)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.【分析】(1)由A的人数和其所占的百分比即可求出总人数;(2)由总人数求出B等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷8%=50(人);(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2017•安庆一模)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得图中线段PQ的解析式;(3)根据函数图象中的数据可以求得乙车对应的函数解析式,然后根据题意即可求得甲车返回到C 地取货的过程中,当x为何值时,两车相距25千米的路程.【解答】解:(1)解:由图象可知,乙车从A地到B地所用的时间是5小时;(2)由题意可得,甲车的速度为:180÷2=90km/h,∴甲车到点Q时,离A地的距离是105km,用的时间为:(180+75)÷90=(h),∴点Q的坐标为(,105),设图中线段PQ的解析式为y=kx+b,,得,即图中线段PQ的解析式为:y=﹣90x+360;(3)设乙车对应的函数解析式为y=ax,则5a=300,得a=60,∴乙车对应的函数解析式为y=60x,∴|60x﹣(﹣90x+360)|=25,(2≤x≤)解得,x1=,x2=,即甲车返回到C地取货的过程中,当x=或时,两车相距25千米的路程.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(14分)(2017•安庆一模)如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN ∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.【分析】(1)利用AAS即可证得;(2)证明△ABF是等腰直角三角形,四边形AFGK是平行四边形即可证得;(3)过点G作GI⊥KD于点I,首先求得△DGK的面积,然后根据△DKG∽△PKM∽△DPN,利用相似三角形的面积的比等于相似比的平方,用x表示出△PKM和△DPN的面积,则函数解析式即可求得.【解答】解:(1)∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴在△DCK和△BOG中,,∴△DOK≌△BOG(AAS),(2)∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK;(3)如图,过点G作GI⊥KD于点I,由(2)知,四边形AFGK是平行四边形,△ABF为等腰直角三角形.∴AF=KG=2,AB=AF=,∵四边形ABCD是矩形,∴GI=AB=,S△DNG=KD•GI=×2×=.∵PD=x∴PK=2﹣x∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN,∴=()2=,即S△DPN=S△DKG=x2.同理,S△KPM=,S平行四边形PMGN=S△DKG﹣S△DPN﹣S△KPM=﹣x2﹣,则S△PMN=S平行四边形PMGN=﹣x2+x.(0<x<2).【点评】本题考查了平行四边形的判定与性质以及相似三角形的判定与性质,正确表示出△DNP和△PMK的面积是关键.。
安庆市2020届中考一模数学答案
![安庆市2020届中考一模数学答案](https://img.taocdn.com/s3/m/5b1a3d43360cba1aa911da07.png)
2020年安庆市中考模拟考试数学试题答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ABBDBADC C B二、填空题(本大题共4小题,每小题5分,共20分)11. -3 12. 3(a +3)(a -3) 13. 75° 14. 3434-8或 三、解答题(本大题共2小题,每小题8分,共16分)15.解:原式=32)3(313---++ …………4分 =4 …………8分 16. 解:设共有x 辆车.则可列方程3(x -2)=2x +9 …………4分 解得 x =15 …………6分 所以2x +9=39(人)答:共有39人,15辆车. …………8分四、(本大题共2小题,每小题8分,共16分) 17.解:(1)如图所示,△A 1B 1C 1即为所求;B 1(-1,2). …………4分 (2)如图所示,△A 2B 2C 2即为所求;B 2(2,-4).…………8分18.(1);80151163-= …………2分(2)猜想:();n n n n 1311133+-=+ …………4分证明:()()()nn nn n n n n 1331311313+=+-++=等式右边左边133=+=n故猜想成立. …………8分五、(本大题共2小题,每小题10分,共20分) 19. 解(1)过E 作EF⊥AB ,垂足为F .AE=AC+CE=58cm在Rt⊥AEF 中,⊥CAB=60°,AE=58cm , ∴EF=AE ·sin ⊥CAB=58sin60°=329cm.答:车座点E 到车架档AB 的距离为cm 329 …………5分 (2)过C 作CG⊥AB ,垂足为G ,在Rt⊥ACG 中,⊥CAB=60°,AC=40cm , 则⊥ACG=30°,⊥BCG=⊥ACB -⊥ACG=45° AG=AC·cos⊥CAB=40cos60°=20cm CG=AC·sin⊥CAB=40sin60°=320cm在Rt⊥BCG 中,⊥BCG=45°,CG=320cm则BG=CG=320cm⊥AB=AG+BG=(32020+)cm答:车架档AB 的长为cm 32020)(+. …………10分 20. 解:⊥1)连接OC,交BD 于点F ∵直线MN 与⊙O 相切于点C, ∴OC ⊥ MN, ∵BD ∥ MN,∴OC ⊥ BD,∴ ¶BC=¶CD , ∴∠CAB=∠CBD …………5分 (2)连接OB由(1)知OC ⊥ BD,BD=8 ∴BF=DF=4∴在Rt △BCF 中得CF=3设半径为r,在Rt △BOF 中,OF=r-3根据勾股定理可得 ()22243-r r =+ 解得625=r …………10分六、(本大题满分12分) 21. 解:(1) 40÷40%=100(人) 100-40-20-10=30(人)…………3分(2)450 …………6分 (3)一共有16种等可能情况,其中抽取同一人的情况有4种.∴41164P ==…………12分七.(本题满分12分)22.解:(1) q=-x +40 …………2分 (2) ①401021+-≤+≤x x q p 时,当,20≤x 解得,20103010≤≤∴≤≤x x ∵当2010≤≤x 时,100521)1021)(10()10(2-+=+-=-=x x x x p x y 401021+->+>x x q p 时,当,20>x 解得,30203010≤<∴≤≤x x ∵当3020≤<x 时,10035)1021(10)40(2-+-=+-+-=x x x x x y综上所述:⎪⎩⎪⎨⎧≤<-+-≤≤-+=)3020(10035)2010(10052122x x x x x x y …………8分②要确保海鲜全部售出,所以p ≤q∴222552110052122-+=-+=)(x x x y ∵2010≤≤x ,a>0,对称轴5-=x ∴当x =20时,y 取最大值2002225520212=-+=)(y (元)答:销售价格为20元时,每天获得的利润最大值是200元. …………12分八、(本大题满分14分)23.证明:(1)∵四边形 ABCD 为正方形 ∴AB=AD,∠ABC=∠ADC ∵BE=DF∴△ABE ≌△ADF(SAS) ∴∠BAE=∠DAF ∵AB=AD ∴∠ABD=∠ADB ∴△ABG ≌△ADH(ASA)∴BG=DH ………… 5分 (2)连接GF. ∵BC=DC,BE=DF , ∴CE=CF ∵∠C=90°∴∠DBC =∠FE C=45° ∴EF ∥BD ∵EF=BG∴四边形EBGF 是平行四边形 ∴BE ∥GF ∥AD ∵AD=CD ∴==CD DF AD DF AEAG∵EF ∥BD ∴AFAHAE AG =∴AFAHAD DF =,即DF AF AH AD ⋅=⋅. …………11分 (3)21-5 …………14分。
2020年安徽省中考数学一模试卷(含答案解析)
![2020年安徽省中考数学一模试卷(含答案解析)](https://img.taocdn.com/s3/m/667aca90a8956bec0875e353.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
2020届初三中考数学一诊联考试卷含参考答案 (安徽)
![2020届初三中考数学一诊联考试卷含参考答案 (安徽)](https://img.taocdn.com/s3/m/c89dc299b8f67c1cfad6b8ed.png)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( )A.1 B.2 C.3 D.42.若等腰三角形的三边长均满足方程x2﹣7x+10=0,则此三角形的周长为()A.9 B.12 C.9或12 D.不能确定3.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.204.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D 在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣45.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC 边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A .B .C .D .6.若关于x 的不等式组27412x x x k ++⎧⎨-⎩<<的解集为x <3,则k 的取值范围为( )A .k >1B .k <1C .k ≥1D .k ≤1 7.如图是三个反比例函数y =1k x ,y =2k x ,y =3k x在x 轴上方的图象,由此观察k 1、k 2、k 3得到的大小关系为( )A .k 1>k 2>k 3B .k 2>k 3>k 1C .k 3>k 2>k 1D .k 3>k 1>k 28.如图,正方形ABCD 的边长为2,点O 为其中心.将其绕点O 顺时针旋转45°后得到正方形A 'B 'C 'D ',则旋转前后两正方形重叠部分构成的多边形的周长为( 212-== )A .16﹣B .﹣16C .12﹣D .﹣129.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发, 沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小10.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有( )A .12个B .10个C .8个D .6个二、填空题(共4题,每题4分,共16分)11.如图,已知A (4,0),B (3,3),以OA 、AB 为边作▱OABC ,则若一个反比例函数的图象经过C 点,则这个反比例函数的表达式为_____.12.ABC 中,DF 是AB 的垂直平分线,交BC 于D ,EG 是AC 的垂直平分线,交BC 于E ,若∠DAE=30°,则∠BAC 等于____________.13.如图,在矩形ABCD 中,AB=6,BC=4,点E 是边BC 上一动点,把△DCE 沿DE 折叠得△DFE ,射线DF 交直线CB 于点P ,当△AFD 为等腰三角形时,DP 的长为_____.14.不等式组3(1)7{243x x x x --≤+>, 的解集是_______________ 三、解答题(共6题,总分54分)15.如图,一次函数11y k x b =+,与反比例函数22k y x=交于点A (3,1)、B (-1,n ),y 1交y 轴于点C ,交x 轴于点D .(1)求反比例函数及一次函数的解析式;(2)求△OBD 的面积;(3)根据图象直接写出1k x b +>2k x的解集. 16.如图,△ACB 和△DCE 均为等腰三角形,点A 、D 、E 在同一条直线上,BC 和AE 相交于点O ,连接BE ,若∠CAB=∠CBA=∠CDE=∠CED=50°。
2020年安徽省中考数学一模试卷 (含解析)
![2020年安徽省中考数学一模试卷 (含解析)](https://img.taocdn.com/s3/m/8c084bdd844769eae109eda8.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。
2020年安徽省安庆市中考数学一模试卷(附解析)
![2020年安徽省安庆市中考数学一模试卷(附解析)](https://img.taocdn.com/s3/m/64a0d9229e314332386893a3.png)
2020年安徽省安庆市中考数学一模试卷1.−2020的相反数是()A. −2020B. 2020C. −12020D. 120202.大数据显示,2019年9月30日至10月6日,与新中国成立70周年阅兵相关信息全网传播总量约1.3亿条.用科学记数法表示1.3亿为()A. 1.3×107B. 1.3×108C. 0.13×109D. 13×1073.下列运算正确的是()A. a4+a2=a6B. 4a2−2a2=2a2C. (a4)2=a6D. a4⋅a2=a84.如图所示的零件,其主视图正确的是()A.B.C.D.5.为了调查某校学生课后参加体育锻炼的时间,学校体育组随机抽样调查了若干名学生的每天锻炼时间,统计如表:每天锻炼时间(分钟)20406080学生数(人)2341下列说法错误的是()A. 众数是60分钟B. 平均数是52.5分钟C. 样本容量是10D. 中位数是50分钟6.已知在平面直角坐标系中,P(1,a)是一次函数y=−2x+1的图象与反比例函数y=kx图象的交点,则实数k的值为()A. −1B. 1C. 2D. 37.某企业今年2月份产值为a万元,3月份比2月份增加了15%,4月份比3月份减少了5%,则4月份的产值为()A. (a +15%)(a −15%)万元B. a(1+85%)(1−95%)万元C. a(1+15%)(1−5%)万元D. a(1+15%−5%)万元8. 我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =3,BC =13,则正方形ADOF 的面积是( )A. 6B. 5C. 4D. 39. 对x ,y 定义一种新运算,规定:T(x,y)=ax+by 2x+y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a×0+b×12×0+1=b.已知T(0,1)=3,T(1,0)=12,若m 满足不等式组{T(2m,5−4m)≤4T(m,3−2m)≥1,则整数m 的值为( ) A. −2和−1 B. −1和0 C. 0和1 D. 1和210. 如图,在边长为2√3的等边△ABC 中,点D 、E 分别是边BC 、AC 上两个动点,且满足AE =CD ,连接BE 、AD 相交于点P ,则线段CP 的最小值为( )A. 1B. 2C. √3D. 2√3−111. −27的立方根是______. 12. 因式分解:3a 2−27=______.13. 如图,点A 、B 、C 、D 在⊙O 上,满足AB//CD ,且AB =AC ,若∠B =110°,则∠DAC 的度数为______ .14. 如图,矩形ABCD 中,AB =4,AD =8,点E 为AD 上一点,将△ABE 沿BE 折叠得到△FBE ,点G 为CD 上一点,将△DEG 沿EG 折叠得到△HEG ,且E 、F 、H 三点共线,当△CGH 为直角三角形时,AE 的长为______ .)−1−√12.15.计算:|−√3|+√2sin45°+tan60°−(−1316.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?17.如图,在平面直角坐标系中,给出了格点△ABC(顶点是网格线的交点),已知点B的坐标为(1,2).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B1的坐标;(2)在给定的网格中,以点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2,画出△A2B2C2;并写出点B2的坐标.18.有下列等式:第1个等式:34=1−14;第2个等式:37=12−114;第3个等式:310=13−130;第4个等式:313=14−152;…请你按照上面的规律解答下列问题:(1)第5个等式是______ ;(2)写出你猜想的第n个等式:______ (用含n的等式表示),并证明其正确性.19.为倡导“绿色出行,低碳生活”的号召,今年春天,安庆市的街头出现了一道道绿色的风景线−“共享单车”.图(1)所示的是一辆共享单车的实物图,图(2)是这辆共享单车的部分几何示意图,其中车架档AC长为40cm,座杆CE的长为18cm.点A、C、E在同一条直线上,且∠CAB=60°,∠ACB=75°.(1)求车座点E到车架档AB的距离;(2)求车架档AB的长.20.如图,ʘO为△ABC的外接圆,直线MN与⊙O相切于点C,弦BD//MN,AC与BD相交于点E.(1)求证:∠CAB=∠CBD;(2)若BC=5,BD=8,求⊙O的半径.21.受疫情影响,很多学校都纷纷响应了“停课不停学”的号召,开展线上教学活动.为了解学生上网课使用的设备类型,某校从“电脑、手机、电视、其它”四种类型的设备对学生做了一次抽样调查.调查结果显示,每个学生只选择了以上四种设备类型中的一种,现将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)若该校共有1500名学生,估计全校用手机上网课的学生共有______ 名;(3)在上网课时,老师在A、B、C、D四位同学中随机抽取一名学生回答问题,求两次都抽取到同一名学生回答问题的概率.22.海鲜门市的某种海鲜食材,成本为10元/千克,每天的进货量p(千克)与销售价格x(x+10,从市场反馈的信息发现,该海鲜食材每天元/千克)满足函数关系式p=12的市场需求量q(千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:(已知按物价部门规定销售价格x不低于10元/千克且不高于30元/千克)(1)请写出q与x的函数关系式:______ ;(2)当每天的进货量小于或等于市场需求量时,这种海鲜食材能全部售出,而当每天的进货量大于市场需求量时,只能售出符合市场需求量的海鲜食材,剩余的海鲜食材由于保质期短而只能废弃.①求出每天获得的利润y(元)与销售价格x的函数关系式;②为了避免浪费,每天要确保这种海鲜食材能全部售出,求销售价格为多少元时,每天获得的利润(元)最大值是多少?23.如图(1),已知正方形ABCD中,点E、F分别在边BC、CD上,BE=DF,AE、AF分别交BD于点G、H.(1)求证:BG=DH;(2)连接FE,如图(2),当EF=BG时.①求证:AD⋅AH=AF⋅DF;②直接写出HF的比值.AH答案和解析1.【答案】B【解析】解:−2020的相反数是:2020.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】B【解析】解:将1.3亿=130000000用科学记数法表示为:1.3×108.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A.a4与a2不是同类项,所以不能合并,故本选项不合题意;B.4a2−2a2=2a2,故本选项符合题意;C.(a4)2=a8,故本选项不合题意;D.a4⋅a2=a6,故本选项不合题意.故选:B.分别根据合并同类项的法则,幂的乘方运算法则以及同底数幂的乘法法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.4.【答案】D【解析】解:从正面看底层是一个有缺陷的矩形,缺陷部分上面的一个五边形,故选:D.主视图是从物体正面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【答案】B【解析】解:这组数据的众数为60分钟,A选项正确;=48(分钟),B选项错误;平均数为20×2+40×3+60×4+80×12+3+4+1样本容量为2+3+4+1=10,C选项正确;=50(分钟),D选项正确;中位数为40+602故选:B.分别根据众数、加权平均数、样本容量及中位数的定义求解可得.本题主要考查众数,解题的关键是掌握众数、加权平均数、样本容量及中位数的定义.6.【答案】A【解析】解:将点P的坐标代入一次函数表达式得:a=−2+1=−1,故点P(1,−1),,解得:k=−1,将点P的坐标代入反比例函数表达式得:−1=k1故选:A.将点P的坐标分别代入一次函数和反比例函数表达式即可求解.本题考查反比例函数与一次函数的交点问题,解题的关键是将点P的坐标代入两个函数表达式,进而求解.7.【答案】C【解析】【分析】本题考查了列代数式,正确理解增长率以及降低率的定义是关键.首先利用增长率的意义表示出3月份的产值,然后利用减小率的意义表示出4月份的产值.【解答】解:由题意得3月份的产值为a(1+15%),4月份的产值为a(1+15%)(1−5%).故选:C.8.【答案】C【解析】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =3,CE =CF =BC −BE =10, 在Rt △ABC 中,AC 2+AB 2=BC 2, 即(3+x)2+(x +10)2=132, 解得:x =2或x =−15(舍去), ∴x =2,即正方形ADOF 的边长是2, ∴正方形ADOF 的面积是4; 故选:C .设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,解方程即可.本题考查了正方形的性质、全等三角形的性质、一元二次方程的解法、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.9.【答案】C【解析】解:∵T(x,y)=ax+by 2x+y (其中a ,b 均为非零常数),T(0,1)=3,T(1,0)=12,∴a×0+b×12×0+1=3,a×1+b×02×1+0=12,∴b =3,a =1, ∴T(x,y)=x+3y2x+y , ∴T(2m,5−4m)=2m+3(5−4m)4m+5−4m=−2m +3≤4,解得m ≥−12,T(m,3−2m)=m+3(3−2m)2m+3−2m=9−5m3≥1,解得m ≤65,∴不等式组{T(2m,5−4m)≤4T(m,3−2m)≥1的解集为−12≤m ≤65,∴整数m 的值为0,1. 故选:C .先根据新定义,由T(0,1)=3,T(1,0)=12,求出b =3,a =1,则T(x,y)=x+3y2x+y ,然后解不等式组{T(2m,5−4m)≤4T(m,3−2m)≥1,求出m 的解集,即可确定整数m 的值.本题考查了一元一次不等式组的整数解,解二元一次方程组,新定义,根据新运算的规定正确求出a 与b 的值是解题的关键.10.【答案】B【解析】解:∵CD=AE,BC=AC,∴BD=CE,在△ABD和△BCE中,{AB=BC∠ABD=∠BCE BD=CE,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠APE=∠BPD,∠ABE+∠CBE=60°,∴∠BPD=∠APE=∠ABC=60°,∴∠APB=120°,∴点P的运动轨迹是AB⏜,∠AOB=120°,连接CO,∵OA=OB,CA=CB,OC=OC,∴△AOC≌△BOC(SSS),∴∠OAC=∠OBC,∠ACO=∠BCO=30°,∵∠AOB+∠ACB=180°,∴∠OAC+∠OBC=180°,∴∠OAC=∠OBC=90°,∴OC=AC÷cos30°=4,OA=12OC=2,∴OP=2,∵PC≥OC−OP,∴PC≥2,∴PC的最小值为2.故选:B.易证△ABD≌△BCE,可得∠BAD=∠CBE,根据∠APE=∠ABE+∠BAD,∠APE=∠BPD,∠ABE+∠CBE=60°,即可求得∠APE=∠ABC,推出∠APB=120°,推出点P的运动轨迹是AB⏜,∠AOB=120°,连接CO,求出OC,OA,再利用三角形的三边关系即可解决问题.本题考查等边三角形的性质、全等三角形的判定和性质、三角形的三边关系、圆等知识,解题的关键是发现点P的运动轨迹,学会利用三角形的三边关系解决最值问题,属于中考填空题中的压轴题.11.【答案】−3【解析】解:∵(−3)3=−27,3=−3∴√−27故答案为:−3.根据立方根的定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.12.【答案】3(a+3)(a−3)【解析】解:3a2−27=3(a2−9)=3(a+3)(a−3).故答案为:3(a+3)(a−3).直接提取公因式3,进而利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确掌握公式法分解因式是解题关键.13.【答案】75°【解析】解:连接BC,∵AB//CD,∴∠ABD+∠BDC=180°,∵四边形ABCD是圆内接四边形,∴∠BAC+∠BDC=180°,∴∠BAC=∠ABD=110°,∵AB=AC,∴∠ABC=180°−110°=35°,2∴∠CBD=110°−35°=75°,∴∠DAC=∠CBD=75°,故答案为75°.连接BC,先根据平行线的性质、圆内接四边形的性质求得∠BAC=∠ABD=110°,根据等腰三角形的性质求得∠ABC=35°,即可求得∠DAC=∠CBD=75°.本题考查了点与圆的位置关系,平行线的性质,圆内接四边形的性质,等腰三角形的性质以及圆周角定理,熟练掌握性质定理是解题的关键.14.【答案】8−4√3或43【解析】解:如图1中,当∠CHG=90°时,由翻折可知,∠D=∠EHG=90°,∴∠EHG+∠CHG=180°,∴E,H,C共线,∵四边形ABCD是矩形,∴BC=AD=8,BC//AD,∠D=90°,∴∠CBE=∠AEB,∵∠AEB=∠BEF,∴∠CBE=∠CEB,∴CB=CE=8,∴DE=√EC2−CD2=4√3,∴AE=8−4√3.如图2中,当∠GCH=90°时,过点H作HJ⊥AD于J,设AE=x,DE=EH=8−x.同法可证BH=EH=8−x,∵∠C=∠D=∠HJD=90°,∴四边形CDJH是矩形,∴HJ=CD=4,HC=DJ=8−(8−x)=x,∴EJ=8−2x,在Rt△EHJ中,EH2=HJ2+EJ2,∴(8−x)2=42+(8−2x)2,解得x=43或4(舍弃),∴AE=43,当∠CGH=90°,△GCH不存在.综上所述,满足条件的AE的值为8−4√3或43.故答案为:8−4√3或43.分三种情形:如图1中,当∠CHG=90°时,如图2中,当∠GCH=90°时,过点H作HJ⊥AD 于J,设AE=x,DE=EH=8−x.当∠CGH=90°,分别求解即可.本题考查翻折变换,矩形的性质,勾股定理,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.15.【答案】解:原式=√3+√2×√22+√3+3−2√3=√3+1+√3+3−2√3=4.【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.【答案】解:设共有x人,根据题意得:x3+2=x−92,去分母得:2x+12=3x−27,解得:x=39,∴39−92=15,答:共有39人,15辆车.【解析】本题考查了一元一次方程的应用,弄清题意是解决本题的关键.设共有x人,根据题意列出方程,求出方程的解即可得到结果.17.【答案】解:(1)如图,△A1B1C1即为所求,点B1的坐标为(−1,2);(2)如图,△A2B2C2即为所求,点B2的坐标为(2,−4).【解析】(1)根据网格即可画出△ABC关于y轴对称的△A1B1C1,并写出点B1的坐标;(2)根据网格,以点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2,即可画出△A2B2C2;并写出点B2的坐标.本题考查了作图−位似变换、作图轴对称变换,解决本题的关键是掌握位似变换.18.【答案】316=15−18033n+1=1n−1n(3n+1)【解析】解:(1)第1个等式:34=1−14,即33×1+1=11−11×4;第2个等式:37=12−114,即33×2+1=12−12×(3×2+1);第3个等式:310=13−130,即33×3+1=13−13×(3×3+1);第4个等式:313=14−152,即33×4+1=14−14×(3×4+1);…由上规律可知,第5个等式是33×5+1=15−15×(3×5+1),即316=15−180,故答案为:316=15−180;(2)根据题意得,第n个等式为:33n+1=1n−1n(3n+1).证明:右边=3n+1−1n(3n+1)=3nn(3n+1)=33n+1=左边,∴33n+1=1n−1n(3n+1).故答案为:33n+1=1n−1n(3n+1).(1)观察算式得出规律:分子为3,分母比序号数的3倍大1,这样的分数等于序号数的倒数减去序号数与比序号数的倍大1的数的积的倒数.按此规律写出第5个等式便可;(2)用n表示上面的规律,并运用分式的减法运算进行验证.此题考查数字的变化规律,通过观察,分析、归纳找到规律,并能利用规律计算,并能证明结论是正确.19.【答案】解:(1)作EF⊥AB于点F,∵车架档AC长为40cm,座杆CE的长为18cm,∠CAB=60°,∴AE=58cm,∴EF=AE⋅sin60°=58×√32=29√3cm,即车座点E到车架档AB的距离是29√3cm;(2)作CG⊥AB于点G,∵AC=40cm,∠CAB=60°,∠ACB=75°,∴∠B=45°,CG=AC⋅sin60°=40×√32=20√3cm,AG=20cm,∵∠B=45°,∠CGB=90°,∴CG=GB=20√3cm,∴AB=AG+GB=(20+20√3)cm,即车架档AB的长是(20+20√3)cm.【解析】(1)作EF⊥AB于点F,然后锐角三角函数即可得到EF的长,从而可以得到车座点E到车架档AB的距离;(2)作CG⊥AB,然后根据锐角三角函数,可以得到CG和AG的长,然后根据等腰三角形的性质,可以得到GB的长,从而可以得到AB的长.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.20.【答案】证明:(1)连接OC,交BD于H,连接BO,∵直线MN与⊙O相切于点C,∴OC⊥MN,∵BD//MN,∴OC⊥BD,∴BC⏜=CD⏜,∴∠BAC=∠CBD;(2)∵OC⊥BD,BD=4,∴BH=HD=12∴CH=√BC2−BH2=√25−16=3,∵OB2=OH2+BH2,∴OB2=(OB−3)2+16,∴OB=25,6∴⊙O的半径为25.6【解析】(1)由切线的性质可得OC⊥MN,由垂径定理可得BC⏜=CD⏜,可得结论;(2)由垂径定理可得BH=4,由勾股定理可求CH,OB的长,即可求解.本题考查了圆的有关知识,勾股定理,灵活运用这些性质解决问题是本题的关键.21.【答案】450【解析】解:(1)抽取的总人数是:40÷40%=100(人),手机的人数是:100−40−20−10=30(人),补全统计图如下:(2)全校用手机上网课的学生共有:1500×30100=450(名); 故答案为:450;(3)根据题意画树状图如下:共有16种等情况数,其中两次都抽取到同一名学生回答问题的有4种, 则两次都抽取到同一名学生回答问题的概率是416=14.(1)根据电脑的人数和所占的百分比求出总人数,再用总人数减去其它选项的人数求出手机的人数,从而补全统计图;(2)用该校的总人数乘以用手机上网课的学生所占的百分比即可;(3)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.本题考查概率公式、扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.【答案】q =−x +40(10≤x ≤30)【解析】解:(1)设q =kx +b(k ≠0),根据表中数据可得: {10k +b =3012k +b =28, 解得:{k =−1b =40,∴q =−x +40(10≤x ≤30).故答案为:q =−x +40(10≤x ≤30). (2)①当p ≤q 时,12x +10≤−x +40, 解得x ≤20, ∵10≤x ≤30, ∴10≤x ≤20, 当10≤x ≤20时,y =(x −10)⋅p =(x −10)(12x +10)=12x 2+5x −100;当p >q 时,12x +10>−x +40, 解得:x >20, ∵10≤x ≤30, ∴20x ≤30, 当20<x ≤30时,y =x(−x +40)−10(12x +10)=−x 2+35x −100; 综上所述,y ={ 12x 2+5x −100(10≤x ≤20)−x 2+35x −100(20<x ≤30);②要确保这种海鲜食材能全部售出,必须使p ≤q ,∴y =1x 2+5x −100=12(x +5)2−2252,∵抛物线开口向上,对称轴为直线x =−5, ∴当x >−5时,y 随x 的增大而增大, ∵10≤x ≤20,∴当x =20时,y 有最大值, 此时y =12(20+5)2−2252=200,∴当销售价格为20元时,每天获得的利润最大,最大利润为200元. (1)设q =kx +b(k ≠0),由待定系数法求解即可;(2)①分两种情况:当p≤q时,12x+10≤−x+40;当p>q时,12x+10>−x+40,分别得出x的取值范围,再根据(售价−成本)×进货量,或者售价×需求量−成本×进货量得出y关于x的函数关系式即可;②要确保这种海鲜食材能全部售出,必须使p≤q,从而函数关系式符合y=12x2+5x−100,将其配方,写成顶点式,按照二次函数的性质及自变量的取值范围可得答案.本题考查了二次函数在销售问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.23.【答案】(1)证明:如图(1)中,∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,∵∠ABG=∠ADH=45°,AB=AD,∠BAG=∠DAH,∴△ABG≌△ADH(ASA),∴BG=DH.(2)①证明:如图(2)中,过点H作HM⊥AD于M,HN⊥CD于N,连接GF.∵∠ADH=∠CDH=45°,HM⊥AD,HN⊥DC,∴HM=HN,∴S△ADHS△DHF =12⋅AD⋅HM12⋅DF⋅HN=AHFH,∴ADDF =AHHF,∵CE=CF,∠C=90°,∴∠CEF=∠CBD=45°,∴EF//BD,∵BG=EF,∴四边形EFGB是平行四边形,∴FG//BC,∵AD//BC,∴FG//AD,∴AHHF =DHGH=EFGH,∵GH//EF,∴△AEF∽△AGH,∴EFGH =AFAH,∴AHFH =AFAH,∴ADFD =AFAH.∴AD⋅AH=AF⋅DF.②设DF=a,FC=b,则AD=CD=a+b,BE=DF=a.CE=CF=b,由①可知,△DFG是等腰直角三角形,∴DG=√2a,∵△EFC是等腰直角三角形,∴BG=EF=√2b,∵BE//AD,∴BEAD =BGDG,∴aa+b =√2b√2a,∴a2−ab−b2=0,∴a=1+√52⋅b或a=1−√52⋅b(舍弃),∴ab =1+√52,∴HFAH =DFAD=aa+b=√5−12.【解析】(1)证明△ABG≌△ADH(ASA)即可解决问题.(2)①如图(2)中,过点H作HM⊥AD于M,HN⊥CD于N,连接GF.利用面积法证明ADDF=AH HF ,再利用相似三角形的性质证明AHFH=AFAH可得结论.②设DF=a,FC=b,则AD=CD=a+b,BE=DF=a.CE=CF=b,由BE//AD,推出BEAD =BGDG,推出aa+b=√2b√2a,推出a2−ab−b2=0,推出a=1+√52⋅b可得结论.本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2020年春学期安徽省安庆市中考第一次模拟考试数学试题(含答案)
![2020年春学期安徽省安庆市中考第一次模拟考试数学试题(含答案)](https://img.taocdn.com/s3/m/dfa8a3e9168884868662d647.png)
全心 全数学试题第 3页(共 6 页)
航 启 心 全
全
18.有下列等式:
第 1 个等式:1 1 1 1 ; 1 2 2
航 第 2 个等式: 1 1 1 1; 2 34 3 4
航 启 第 3 个等式: 1 1 1 1; 3 56 5 6 启……
心 请你按照上面的规律解答下列问题:
B. (a2 )3 a6
C. a8 a2 a6
D. 1 2
D. (a b)2 a2 b2
3.党的十八大以来,中央提出开展脱贫攻坚,经过五年来的努力,近 6000 万贫困人口实
现脱贫,6000 万用科学记数法表示为
A.6000×104
B.60×106
C.0.6×108
D.6×107
航 4.下图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是
心(1)第 4 个等式是
;
全 全 (2)用含 n(n 为正整数)的代数式表示第 n 个等式,并证明其正确性.
全心启航 助你成长
启 心 全
五、(本大题共 2 小题,每小题 10 分,满分 20 分) 19.近年来,全民运动在加强,除了室外的篮球场,也出现了室内的篮球机,下图是篮球
航 机的侧面图.已知 BF∥B1F1,A1D⊥B1F1,CB1⊥B1F1,EE1⊥B1F1,在 E 处测得点 D 的 航 启 启 仰角为 53°,在 A 处测得篮筐 C 的仰角为 37°,BB1=EE1=80cm, B1E1=203cm,A1D=236cm, 启 心 求篮框 C 距地面 B1F1 的高度. 全心 全心 全 (参考数据:sin53°≈0.8, cos53°≈0.6, sin37°≈0.6, cos37°≈0.8,tan37°≈0.75)
安徽省安庆市2019-2020学年中考数学一模试卷含解析
![安徽省安庆市2019-2020学年中考数学一模试卷含解析](https://img.taocdn.com/s3/m/af6f5954ad51f01dc281f192.png)
安徽省安庆市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书2.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.83.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)4.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5 320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元5.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=66.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.5B.C.D.77.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.8.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开.若不考虑接缝,它是一个半径为12cm,圆心角为60o 的扇形,则()A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为235cmD.圆锥形冰淇淋纸套的高为63cm米折返跑.在整个过程中,跑步者距起跑线的距离y(单9.小苏和小林在如图①所示的跑道上进行450位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分11.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是()A.B.C.D.12.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3 的倍数的概率为()A.14B.13C.12D.34二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.14.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.15.若代数式5x x 有意义,则实数x 的取值范围是____. 16.关于x 的一元二次方程(k-1)x 2+6x+k 2-k=0的一个根是0,则k 的值是______.17.一组数据:1,2,a ,4,5的平均数为3,则a=_____.18.因式分解:9a 2﹣12a+4=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润: 方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p 倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!20.(6分)如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).21.(68﹣4cos45°+(12)﹣1+|﹣2|. 22.(8分) 如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .求证:BE =2CF ;试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明.23.(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OAB C中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=43,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.24.(10分)解方程组:222232() x yx y x y ⎧-=⎨-=+⎩.25.(10分)先化简,再计算:22444332x x x xx x x++--÷++-其中322x=-+.26.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[求出y 与x 的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.27.(12分)先化简,再求值:(1a ﹣a )÷(1+212a a ),其中a <a 的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:找到一定发生或一定不发生的事件即可.A 、阴天一定会下雨,是随机事件;B 、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C 、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D 、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选D .考点:随机事件.2.D【解析】【分析】连接OA ,构建直角三角形AOD ;利用垂径定理求得AB=2AD ;然后在直角三角形AOD 中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得22OA OD-=4,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.3.C【解析】【详解】根据题意知小李所对应的坐标是(7,4).故选C.4.C【解析】【分析】由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5 320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了2800025669100%9.08%25669-⨯=,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33 880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据. 5.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.6.A【解析】【分析】连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,,再证明Rt△ABE∽Rt△ADC,得到,即2R==.【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC =90°,∴AD =, ∴在Rt △ABE 与Rt △ADC 中,∠ABE =∠ADC =90°,∠AEB =∠ACB ,∴Rt △ABE ∽Rt △ADC , ∴,即2R = = ;∴⊙O 的直径等于.故答案选:A.【点睛】 本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.7.A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,故选A .8.C【解析】【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm ,圆心角为60o 的扇形弧长是:()60π124πcm 180⨯=, 设圆锥的底面半径是rcm ,则2πr4π=,解得:r2=.即这个圆锥形冰淇淋纸套的底面半径是2cm.)cm=.故选:C.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:()1圆锥的母线长等于侧面展开图的扇形半径;()2圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.D【解析】【详解】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.10.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.12.C【解析】【分析】根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【详解】解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9,∴是 3 的倍数的概率21 42 =,故答案为:C.【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 3【解析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.14.5或1.【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.综上所述,BD的长为5或1.【解析】【分析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.16.2.【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2. 所以k 的值是2.故答案为2.17.1【解析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1. 18.(3a ﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a 1-11a+4=(3a-1)1.故答案是:(3a ﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.方案二能获得更大的利润;理由见解析【解析】【分析】方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润;方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润. 【详解】解:设涨价x 元,利润为y 元,则方案一:涨价x 元时,该商品每一件利润为:50+x−40,销售量为:500−10x ,∴22(5040)(50010)10400500010(20)9000y x x x x x =+--=-++=--+,∵当x=20时,y 最大=9000,∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50−40)×500p ,广告费用为:1000m 元,∴()2250405001000200090002000( 2.25)10125y p m m m m =-⨯-=-+=--+, ∴方案二的最大利润为10125元;∴选择方案二能获得更大的利润.【点睛】本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值.20.(1)y=x 2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E 点坐标为(,)时,△CBE 的面积最大.【解析】试题分析:(1)由直线解析式可求得B 、C 坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P 点坐标及对称轴,可设出M 点坐标,表示出MC 、MP 和PC 的长,分MC=MP 、MC=PC 和MP=PC 三种情况,可分别得到关于M 点坐标的方程,可求得M 点的坐标;(3)过E 作EF ⊥x 轴,交直线BC 于点F ,交x 轴于点D ,可设出E 点坐标,表示出F 点的坐标,表示出EF 的长,进一步可表示出△CBE 的面积,利用二次函数的性质可求得其取得最大值时E 点的坐标. 试题解析:(1)∵直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,∴B (3,0),C (0,3),把B 、C 坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x 2﹣4x+3;(2)∵y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线对称轴为x=2,P (2,﹣1),设M (2,t ),且C (0,3),∴MC=,MP=|t+1|,PC=, ∵△CPM 为等腰三角形,∴有MC=MP 、MC=PC 和MP=PC 三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.21.4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=2224224+=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1ppaa-=(0a p≠,为正整数)”是正确解答本题的关键.22.(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】【分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN 为菱形.【详解】(1)证明:过F作FH⊥BE于H点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.23.(1)①(2,0),(1),(﹣1);②x;③x,y=﹣2;(2)①半径为4,M)1<r+1.【解析】【分析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M 的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为(2,0),(1,2),(﹣1,2);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,∴21y x=,∴y=2x;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x=,∴y=﹣222故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴MN=43,ON=2MN=83,∴M(833,433);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴3当FN=1时,1,当EN=1时,,观察图象可知当⊙M 的半径r1<r.﹣1<r.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.24.111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.25.23x -+;2- 【解析】【分析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.【详解】 解:22444332x x x x x x x ++--÷++- =2(2)(2)(2)332x x x x x x x ++--÷++- =2(2)233(2)(2)x x x x x x x +--⋅+++- =233x x x x +-++ =23x -+当3x =-+时,原式=2=-. 【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.26.(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.27.()211a a -+,1.【解析】【分析】 首先化简(1a ﹣a )÷(1+212a a +),然后根据a<a的整数解,求出a 的值,再把求出的a 的值代入化简后的算式,求出算式的值是多少即可.【详解】解:(1a ﹣a )÷(1+212a a +)=21a a -×()221a a +=()211a a -+, ∵a<a的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式=()21111⨯-+=1.。
安徽省安庆市2020年数学中考一模试卷(I)卷
![安徽省安庆市2020年数学中考一模试卷(I)卷](https://img.taocdn.com/s3/m/73a9091ff705cc175427095d.png)
安徽省安庆市2020年数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020九下·沈阳月考) 的绝对值是()A .B .C .D .2. (2分)(2018·兰州) 下列二次根式中,是最简二次根式的是()A .B .C .D .3. (2分)(2018·山西) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A . 6.06×104立方米/时B . 3.136×106立方米/时C . 3.636×106立方米/时D . 36.36×105立方米/时4. (2分) (2019九下·桐乡月考) 下列计算正确的是()A . (-2)0=0B . (-2)-1=2C . 6a-5a=1D . (2a)3=8a35. (2分) (2017八下·宜兴期中) 平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A . 8和14B . 10和14C . 18和20D . 10和346. (2分)在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是().A . 79B . 82C . 83D . 807. (2分) (2020七上·临颍期末) 下列图形,折叠后不能围成正方体的是()A .B .C .D .8. (2分)如图,在△ABC中,已知MN∥BC,DN∥MC.以下四个结论:① ;② ;③;④ . 其中正确结论的个数为()A . 1B . 2C . 3D . 49. (2分)如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为()米.(不计宣传栏的厚度)A . 4B . 5C . 6D . 810. (2分)太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是10cm,则皮球的直径是()A . 5B . 15C . 10D . 811. (2分)这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中为120°,OC长为8cm,AO长为20cm,则图中阴影部分面积为是()A . 64πcm2B . 112πcm2C . 144πcm2D . 152πcm212. (2分) (2019九上·新蔡期中) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共7分)13. (2分) (2017八下·江苏期中) 如果分式有意义,那么x的取值范围是 ________.分式的最简公分母是________.14. (1分)(2020·西安模拟) 如图,点在正五边形的边的延长线上,连接,则________.15. (1分) (2019九上·嘉定期末) 在△ABC中,∠ACB=90°,点D、E分别在边BC、AC上,AC=3AE ,∠CDE =45°(如图),△DCE沿直线DE翻折,翻折后的点C落在△ABC内部的点F ,直线AF与边BC相交于点G ,如果BG=AE ,那么tanB=________.16. (1分)(2019·海州模拟) 如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是________.17. (1分) (2019九下·佛山模拟) 如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确结论的个数是________.18. (1分)(2018·正阳模拟) 如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC 的面积为________.三、解答题 (共8题;共87分)19. (5分)已知a2+10a+25=-|b-3|,求· ÷ 的值.20. (10分) (2019九上·长白期中) 已知关于的一元二次方程.(1)若方程有实数根,求实数的取值范围;(2)若方程的两个实数根分别为,且满足,求实数的值.21. (10分)(2017·兰州) 甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.22. (15分)(2017·兴化模拟) 某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?23. (7分)(2018·方城模拟) 如图,已知⊙O与等腰△ABD的两腰AB、AD分别相切于点E、F,连接AO并延长到点C,使OC=AO,连接CD、CB.(1)试判断四边形ABCD的形状,并说明理由;(2)若AB=4cm,填空:①当⊙O的半径为________cm时,△ABD为等边三角形;②当⊙O的半径为________cm时,四边形ABCD为正方形.24. (15分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走:(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数表达式;(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?25. (10分)(2020·湛江模拟) 如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD= OC,连接BD,(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+ AM的最小值(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R 翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.26. (15分)(2018·重庆) 如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为(1)求线段的长;(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到 ,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使得点为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共87分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
2020年安徽省中考数学一模试卷(有答案解析)
![2020年安徽省中考数学一模试卷(有答案解析)](https://img.taocdn.com/s3/m/df65854e4028915f804dc2ee.png)
2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。
2020届初三中考数学一诊联考试卷含答案解析 (安徽)
![2020届初三中考数学一诊联考试卷含答案解析 (安徽)](https://img.taocdn.com/s3/m/e3373e69964bcf84b9d57be9.png)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.在如图的数轴上,A,B两点表示的数分别是a,b,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定2.丹东地区人口约为245万,245万用科学记数法表示正确的是()A.245×104B.2.45×106C.24.5×105D.2.45×107 3.2018的倒数是()A.2018 B.12018 C.12018D.﹣20184.如图,将△ABC 绕点C 顺时针旋转36°,点B 的对应点为点E ,点A 的对应点为点D ,此时点E 恰好落在边AC 上时,连接AD ,若AB =BC ,AC =2,则AB 的长度是( )A 1B .1CD .325.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )A .116B .12C .38 D .9166.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x ,那么x 满足的方程为( )A .210(1)36.4x +=B .21010(1)36.4x ++=C .10+10(1+x )+10(1+2x )="36.4"D .21010(1)10(1)36.4x x ++++=7.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为( )A .16B .15C .14D .138.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是( )A .4个B .5个C .6个D .7个9.若关于x 的分式方程21133x m x x--=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( ) A .﹣7 B .﹣9 C .﹣12 D .﹣1410.下列多项式中,能因式分解的是( )A .22m n +B .21m m -+C .221m m -+D .221m m +-二、填空题(共4题,每题4分,共16分)11.已知关于x 的一元二次方程x 2+kx ﹣6=0有一个根为12-,则方程的另一个根为_____.12.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.13.如图,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,连接AE .如果2tan 3DFC ∠=,那么BD AE 的值是_____.14.如图,矩形ABCD 中,AB =2,AD =4,以A 为圆心AD 为半径作弧与BC 交于点E ,再以C 为圆心,CD 为半径作弧交BC 于点F ,则图中阴影部分的面积为_____.三、解答题(共6题,总分54分)15.已知二次函数24y ax bx =+-(a >0)的图象与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA=1:2,直线BD 与y 轴交于点E ,连接BC ,①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.16.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A 地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B 地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.17.先化简代数式211aa aa a+⎛⎫⎛⎫+÷-⎪ ⎪⎝⎭⎝⎭,再从﹣1,0,3中选择一个合适的a的值代入求值.18.先化简,再求值:2221322442x x x x x x x x --⎛⎫⎛⎫-÷- ⎪ ⎪++++⎝⎭⎝⎭,其中x 满足方程x 2﹣6x +8=0.19.“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:(1)求本次调查中共抽取的学生人数;(2)补全条形统计图;(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是 ; (4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?20.已知:抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =﹣1,与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (﹣3,0)、C (0.﹣2).求这条抛物线的函数表达式.。
安徽省安庆市2020年数学中考一模试卷A卷
![安徽省安庆市2020年数学中考一模试卷A卷](https://img.taocdn.com/s3/m/1d9d5ab39b6648d7c0c74621.png)
安徽省安庆市2020年数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·南丹月考) 计算的结果是()A . -3B .C .D . 32. (2分)图中几何体的左视图是()A .B .C .D .3. (2分) (2020七下·余杭期末) 下列计算正确的是()A . a2+a2=2a4B . a5·a2=a10C . (a5)2=a7D . a6÷a3=a34. (2分) (2019七下·上饶期末) 下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③计算( + )=5;④如果点P(3﹣2n,1)到两坐标轴的距离相等,则n=1.其中是假命题的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分)如图,下列各坐标对应点正好在图中直线l上的是().A . (0,2)B . (0,4)C . (1,2)D . (2,0)6. (2分)如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′ 的位置,使得BB′∥AO,则旋转角的度数为()A . 125°B . 70°C . 55°D . 15°7. (2分) (2020九下·镇平月考) 无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2018九上·浦东期中) 已知线段a、b、c,求作线段x,使,以下做法正确的是…()A .B .C .D .9. (2分)(2011·义乌) 如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A . 2cmB . 1.5cmC . 1.2cmD . 1cm10. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中①a<0 b>0 c>0;②4a+2b+c=3;③−>2;④b2-4ac>0;⑤当x<2时,y随x的增大而增大.正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共3题;共4分)11. (1分)一元一次不等式的特殊解问题分两步解答:一是________;二是根据问题的条件,在求出的范围内确定满足条件的解.12. (1分)(2019·山西模拟) 如图,已知tanα=,如果F(4,y)是射线OA上的点,那么F点的坐标是________.13. (2分) (2020八下·泰兴期末) 如图,已知一次函数与反比例函数()图象在第二象限相交于A(﹣4,),B(n,2)两点,当x满足条件:________时,一次函数大于反比例函数的值.三、解答题 (共11题;共48分)14. (5分)计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.15. (5分) (2017八上·平邑期末) 计算题(1)计算:(x+3y)2+(2x+y)(x-y);(2)计算:(3)分解因式:x3-2x2y+xy2.(4)解方程:16. (5分) (2019九上·西安月考) 尺规作图:如图所示,ΔABC 中∠A=36°,AB=AC,请用尺规过点B做一条直线,使其将ΔABC分成两个小三角形,且其中一个小三角形与ΔABC相似.17. (7分) (2019七下·濮阳期末) 随着我国经济社会的发展,人民对于美好生活的追求越来越高,某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成如下两幅不完整的统计图表.级别家庭的文化教育消费金额(元)户数A36B mC27D15E30请你根据统计图表提供的信息,解答下列问题:(1)本次被调查的家庭有________户,表中 ________;(2)在扇形统计图中,组所在扇形的圆心角为多少度?(3)这个社区有户家庭,请你估计年文化教育消费在元以上的家庭有多少户.18. (2分) (2020八下·汽开区期末) 如图,在平面直角坐标系中,四边形ABCD的顶点A、B在函数的图象上,顶点C、D在函数的图象上,其中,对角线轴,且于点P.已知点B的横坐标为4.(1)当,时,①点B的坐标为________,点D的坐标为________,BD的长为________.②若点P的纵坐标为2,求四边形ABCD的面积.③若点P是BD的中点,请说明四边形ABCD是菱形.(2)当四边形ABCD为正方形时,直接写出m、n之间的数量关系.19. (2分) (2018九上·建平期末) 直线y=kx+b与反比例函数y= (x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.20. (10分) (2019八上·南山期中) 某校八年级学生外出社会实验活动,为了提前做好准备工作,学校安排小车送义工队前往,同时其余学生乘坐客车去目的地,小车到达目的地后立即返回,客车在目的地等候,如图是两车距学校的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)填空:目的地距离学校________千米,小车出发去目的地的行驶速度是________千米/时;(2)当两车行驶3小时后在途中相遇,求点P的坐标;(3)在第(2)题的条件下,求客车到达目的地所用时间.21. (6分)(2016·昆明) 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.22. (2分)(2017·满洲里模拟) 某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)23. (2分) (2019九上·信丰期中) 如图:已知抛物线y=ax2+bx(a≠0)经过A(3,0),B(4,4)两点.(1)求抛物线解析式.(2)将直线OB向下平移m个单位后,得到的直线与抛物线只有一个公共点D,求m值及交点D的坐标.24. (2分)(2018·日照) 如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共3题;共4分)11-1、12-1、13-1、三、解答题 (共11题;共48分)14-1、15-1、15-2、15-3、15-4、16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、。
2020年安徽省中考数学一模试卷
![2020年安徽省中考数学一模试卷](https://img.taocdn.com/s3/m/2f8be886ba1aa8114431d9ec.png)
2020年安徽省中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.(4分)a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,a -,b ,b -按照从小到大的顺序排列( )A .b a a b -<-<<B .a b a b -<-<<C .b a a b -<<-<D .b b a a -<<-<3.(4分)2020年新冠状病毒全球感染人数约33万,科学记数法如何表示( )A .53310⨯B .53.310⨯C .50.3310⨯D .5310⨯4.(4分)若2x =是关于x 的一元一次方程2ax b -=的解,则362b a -+的值是( )A .8-B .4-C .8D .45.(4分)如图,//DE GF ,A 在DE 上,C 在GF 上ABC ∆为等边三角形,其中80EAC ∠=︒,则BCG ∠度数为( )A .20︒B .10︒C .25︒D .30︒6.(4分)二次函数2(0)y ax bx c a =++≠的图象如图所示,现有以下结论:①0a <;②0abc >;③0a b c -+<;④240b ac -<;其中正确的结论有( )A .1个B .2个C .3个D .4个7.(4分)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( )A .10%B .20%C .25%D .40%8.(4分)如图,ABC ∆中,BD 是ABC ∠的平分线,//DE AB 交BC 于E ,6EC =,4BE =,则AB 长为( )A .6B .8C .203D .2459.(4分)如图,在锐角ABC ∆中,4AB =,5BC =,45ACB ∠=︒,将ABC ∆绕点B 按逆时针方向旋转,得到111A B C ∆.点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC ∆绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,线段1EP 长度的最小值是 .10.(4分)如图,在等腰ABC ∆中,4AB AC cm ==,30B ∠=︒,点P 从点B 出发,以3/cm s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1/cm s 的速度沿BA AC -方向运动到点C 停止,若BPQ ∆的面积为2()y cm ,运动时间为()x s ,则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .二.填空题(共4小题,满分20分,每小题5分)11.(5分)把多项式36mx my -分解因式的结果是 .12.(5分)不等式组35112502x x +⎧⎪⎨-⎪⎩…„的所有整数解的积为 . 13.(5分)设抛物线2:(0)l y ax bx c a =++≠的顶点为D ,与y 轴的交点是C ,我们称以C 为顶点,且过点D 的抛物线为抛物线l 的“伴随抛物线”,请写出抛物线241y x x =-+的伴随抛物线的解析式 .14.(5分)如图,在等腰ABC ∆中,4AB AC ==,6BC =,点D 在底边BC 上,且DAC ACD ∠=∠,将ACD ∆沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .三.解答题(共2小题,满分16分,每小题8分)15.(8分)计算:101tan 4522|22( 3.14)2π-︒--+- 16.(8分)《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.四.解答题(共2小题,满分16分,每小题8分)17.(8分)如图,已知平面直角坐标内有三点,分别为(1,1)A -,(2,4)B -,(3,2)C -.(1)请画出ABC ∆关于原点O 对称的△111A B C ;(2)直接写出把ABC ∆绕点O 顺时针旋转90︒后,点C 旋转后对应点2C 的坐标.18.(8分)用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有134+=个小正方形;第(3)个图形有1359++=个小正方形;第(4)个图形有135725+++=小正方形;⋯⋯(1)根据上面的发现我们可以猜想:1357(21)n ++++⋯+-= (用含n 的代数式表示);(2)请根据你的发现计算:①135799++++⋯+;②101103105199+++⋯+.五.解答题(共3小题,满分30分,每小题10分)19.(10分)如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30︒角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离(结果保留根号).。
2020年安徽省安庆市中考一模数学试卷含答案
![2020年安徽省安庆市中考一模数学试卷含答案](https://img.taocdn.com/s3/m/2d73b9dac850ad02df804167.png)
正面↗ 第5题图安庆市2020年中考一模数学试卷命题:安庆市中考命题研究课题组一、选择题(本大题共10小题,每小题4分,满分40分)在每小题给出的A 、B 、C 、D 四个选项中,只有一项是正确的,把正确选项的代号填在答题卡上。
1. ﹣3的倒数是 A .13B .13C .3D .﹣32.下列图形中既是轴对称又是中心对称的图形是A .B .C .D .3.2020年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为 A .13.09×108 B .1.309×1010 C .1.309×109 D .1309×106 4.反比例函数1-k y =x图象的每条曲线上y 都随x 增大而增大,则k 的取值范围是A .k >1B .k >0C .k <1D .k <05.由6个大小相同的正方体搭成的几何体如图所示,关于它的三视图, 说法正确的是 A .俯视图的面积最大 B .主视图的面积最大C .左视图的面积最大D .三个视图的面积一样大6.某地4月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A . 19,19B . 19,19.5C . 19,20D . 20,207.不等式组⎩⎨⎧x +1≤0,2x +3<5的解集在数轴上表示为8.平面直角坐标系中,正六边形ABCDEF 的起始位置如左图所示,边AB 在x 轴上,现将正六边形沿x 轴正方向无滑动滚动,第一次滚动后,边BC 落在x 轴上(如右图);第二次滚动后,边CD 落在x 轴上,如此继续下去.则第2020次滚动后,落在x 轴上的是天数气温/℃A.边DE B.边EF C.边F A D.边AB9.如图,Rt△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE︰DE等于A.7︰2 B.5︰2 C.4︰1 D.3︰110.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x=t(0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y关于t 函数的图象大致如右图,那么平面图形的形状不可能...是二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:x3﹣4x =.12.如图,一束平行太阳光照射到正方形上,若∠α= 28°,则∠β=________.13.据统计,2020年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2020年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是.14.如图,O是正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG、OC,OC交BG于点H.下列四个结论:①△BCE≌△DCF;②OG∥AD;③BH=GH;④CH=CE.其中正确的结论有(把你认为正确结论的序号都填上).三、(本大题共2小题,每小题8分,满分16分) 第14题Hαβ第12题图第8题图第9题图第10题图15.计算: 31)21(272---+-.16.先化简,再求值:121112-÷⎪⎭⎫⎝⎛--x x x ,其中x =3.四、(本大题共2小题,每小题8分,满分16分) 17.在同一平面直角坐标系中有5个点:A (1,1),B (﹣3,﹣1),C (﹣3,1),D (﹣2,﹣2),E (0,﹣3).(1)画出△ABC 的外接圆⊙P ,写出圆心P 的坐标,并指出点D 与⊙P 的位置关系;(2)若直线l 经过点D (﹣2,﹣2),E (0,﹣3), 判断直线l 与⊙P 的位置关系,并说明理由.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了如下的统计图表:类别 成绩频数 甲 6070m ≤< 5乙 7080m ≤<a丙 8090m ≤< 10丁90100m ≤≤5(1)该班共有学生 人;表中a = ;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.五、(本大题共2小题,每小题10分,满分20分) 19.已知抛物线C :342+-=x x y .(1)求该抛物线关于y 轴对称的抛物线C 1的解析式.(2)将抛物线C 平移至C 2,使其经过点(1,4).若顶点在x 轴上,求C 2的解析式.第18题图甲 乙 丙 丁 50%25%20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A 、B 、C 三点的坐标数据如下表:ABC北纬(度) 31°00′ 33°11′ 25°38′ 东经(度)128°20′125°00′125°00′(1)A 点与B 或C 两点的经度差为 (单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A 所在的纬度)处两条相差1°的经.线.之间的实际距离为96km .我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min ,求飞机沿东经125°经线方向从B 点飞往C 点大约需要多少时间.(已知tan35°=0.7 ,o10tan557=, 结果保留整数)六、(本题满分12分)21.如图,在等腰直角△ABC 中,︒=∠90ACB ,2==BC AC ,点D 是边AC 的中点,点E 是斜边AB 上的动点,将△ADE 沿DE 所在的直线折叠得到△A 1DE .(1)当点A 1落在边BC (含边BC 的端点)上时,折痕DE 的长是多少?(可在备用图上作图)(2)连接A 1B ,当点E 在边AB 上移动时,求A 1B 长的最小值.BCA第20题图BACEA 1 D第21题图ADBC第21题备用图七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A 、B 、C 三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B 类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x ,分别写出购买B 、C 两类年票的游客全年的进园购票费用y 与x 的函数关系;当x ≥10时,购买B 、C 两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A 类门票进园的费用最少. 八、(本题满分14分)23.如图①,平行四边形ABCD 中,AB=AC ,CE ⊥AB 于点E ,CF ⊥AC 交AD 的延长线于点F . (1)求证△BCE ∽△AFC ;(2)连接BF ,分别交CE 、CD 于G 、H (如图②),求证:EG=CG ;(3)在图②中,若∠ABC=60°,求GFBG.2020年安庆市中考模拟考试(一模)数学试题参考答案第23题图①FABCDE第23题图②FABCDEGH一、选择题(本大题共10小题,每小题4分,满分40分)题号 1 2 3 4 5 6 7 8 9 10 答案BBCAACCDDC二、填空题(本大题共4小题,每小题5分,满分20分)11.(2)(2)+-x x x 12.62° 13.(124.1%)254.6+=x 14.①②④ 三、(本大题共2小题,每小题各8分,满分共16分) 15.解:2271132()33431 …………………6分235. ……………………………………8分16.解:121112-÷⎪⎭⎫ ⎝⎛--x x x =21)1(12-⨯-x x x …………………3分=2)1)(1()1(1-+⨯-x x x x =xx 21+, ……………5分把x =3代入,得:原式=x x 21+=32. …………………………8分 四、(本大题共2小题,每小题各8分,满分共16分)17.解:(1)画出△ABC 外接圆⊙P 如图, …………………2分圆心P 的坐标为(﹣1,0),点D 在⊙P 上. ……………………4分(2)连接PE ,PD .∵直线 l 过点 D (﹣2,﹣2 ),E (0,﹣3 ), ∴PE 2=12+32=10,PD 2=5,DE 2=5,∴PE 2=PD 2+DE 2. ∴△PDE 是直角三角形,且∠PDE =90°.∵点D 在⊙P 上,∴直线l 与⊙P 相切.……………8分 (其它证明方法,只要步骤正确均可).数学试题参考答案(共4页)第1页18.解:(1)40,20.…………………………………4分(2)用A 1、A 2表示2名女生,B 1、B 2、B 3表示3名男生,则随机挑选的两名学生可能是:A 1 A 2、A 1 B 1、A 1 B 2、A 1 B 3、A 2 B 1、A 2 B 2、A 2 B 3、B 1 B 2、B 1 B 3、B 2 B 3,共10种情况,其中,一男、一女的情况有:A 1 B 1、A 1 B 2、A 1 B 3 、A 2 B 1、A 2 B 2、A 2 B 3,共6种情况.所以,参加决赛的两名学生是一男、一女的概率为:53106=.…8分 五、(本大题共2小题,每小题各10分,满分共20分)19.(1)解:配方,2243(2)1=-+=--y x x x .…………………2分∴抛物线C :顶点(2,-1),与y 轴交点(0,3)∵C 1与C 关于y 轴对称,∴C 1顶点坐标是(-2,-1),且与y 轴交点(0,3). 设C 1的解析式为2(2)1=+-y a x 、把(0,3)代入,解得:1=a(亦可由C 1与C 关于y 轴对称,故开口大小及开口方向均相同,直接得出1=a ) ∴C 1的解析式为243=++y x x .…………………………………………………5分 (2)解:由题意,可设平移后的解析式为:2)(h x y -=,…………………6分 ∵抛物线C 2经过点(1,4),∴4)1(2=-h ,解得:1-=h 或3=h ,∴C 2的解析式为:2)1(+=x y 或2)3(-=x y ,即221=++y x x 或269=-+y x x . ……………………………10分(写一种扣2分)20.(1)103. ……………………………………………3分 (2)解:过点A 作AD ⊥BC 于D .则AD= 196=320(km)3⨯0…………………5分在△ABD 中,∠B=180°-95°-30°=55°, ∴BD=AD÷tan ∠B=320×0.7=224(km)在△ACD 中,CD=AD÷tan ∠C=()≈km 554……… 8分∴BC=BD+CD=778(km), ∴778÷30≈26(min) ……………10分数学试题参考答案(共4页)第2页 六、(本大题满分12分)21.(1)∵点D 到边BC 的距离是DC =DA =1,∴点A 1落在边BC 上时,点A 1与点C 重合,如图所示. 此时,DE 为AC 的垂直平分线,即DE 为△ABC 的中位线, ∴121==BC DE ………………………………6分 (2)连接BD ,在Rt △BCD 中,522=+=CD BC BD ,由△A 1DE ≌△ADE ,可得:A 1D =AD =1.……………8分由A 1B +A 1D ≥BD ,得:A 1B ≥BD -A 1D =15-,∴A 1B 长的最小值是15-.……………………………12分ADBC 第21题备用图(A 1)EBACEA 1 D第21题图B CAD第20题图七、(本大题满分12分)22.解:(1)若不购买年票,则能够进入该园林=8(次);因为80<120,所以不可能选择A 类年票; 若只选择购买B 类年票,则能够进入该园林=10(次); 若只选择购买C 类年票,则能够进入该园林≈13(次).所以,一年中用80元购买门票,进园次数最多的购票方式是购买C 类年票.………4分 (2)解:260=+B y x ;340=+C y x 由260340+>+x x ,解得20<x , 又∵10≥x∴一年中进园次数1020≤<x 时,选择C 类年票花费较少; 当20=x 时,选择B 、C 两种方式花费一样多;当20>x 时,选择B 类年票花费较少.…………………………………………………8分(3)解:设一年中进入该园林x 次,根据题意,得:26012034012010120+>⎧⎪+>⎨⎪>⎩x x x ,解得,x >30.答:一年中进入该园林至少超过30次时,购买A 类年票比较合算. ………………12分数学试题参考答案(共4页)第3页八、(本大题满分14分)23.(1)证明:∵CE ⊥AB ,CF ⊥AC , ∴∠BEC=∠ACF=90°,∵四边形ABCD 是平行四边形,∴AB ∥CD , 又∵AB=AC ,∴∠EBC=∠ACB=∠CAF ,∴△BCE ∽△AFC .…………………………………………………………6分 (2)证明:∵△BCE ∽△AFC ,∴==BE AC AB BC AF AF,∵AD ∥BC ,AB ∥CD , ∴==CH DH AB BC DF AF,∴BE=CH .∵AB ∥CD ,∴∠BEG=∠HCG ,∠EBG=∠CHG ,∴△BGE ≌△HGC ,∴ EG=CG .……………………………………………10分 (3) 解: ∵∠ABC=60°,∴△ABC 是等边三角形,∵CE ⊥AB ,∴BE=AE ,∵△BGE ≌△HGC ,∴BE=CH ,∴CH=DH , ∵AD ∥BC ,∴BH=FH ,∵BG=GH ,∴BG :GF=1:3. ………………………………………………………………14分(以上各题用其它方法证明或解答,只要步骤正确均可得分).。
2020年安徽省安庆市中考数学一模试卷
![2020年安徽省安庆市中考数学一模试卷](https://img.taocdn.com/s3/m/6b5f50b108a1284ac85043fb.png)
2020年安徽省安庆市中考数学一模试卷一、选择题1.(3分)﹣的相反数等于()A.B.﹣ C.4 D.﹣42.(3分)下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)33.(3分)2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×1024.(3分)如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.(3分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.(3分)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16 7.(3分)如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A .110°B .115°C .120°D .125°8.(3分)弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是( )A .90和87.5B .95和85 C.90和85 D .85和87.59.(3分)如图,点c 是⊙O 的直径AB 延长线上一点,CD 切⊙O 于点D ,DE 为⊙O 的弦,若∠AED=60°,⊙O 的半径是2.则CD 的长( )A .4B .3C .D .10.(3分)如图,O 为坐标原点,四边彤OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数y=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .10B .9C .8D .6二、填空题11.(3分)的立方根是.12.(3分)方程+x=1的解为.13.(3分)在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.14.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD 交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结①∠ACD=30°;②S△AOE论正确的序号是.(把所有正确结论的序号都选上)三、解答题15.(6分)计算:﹣|1﹣|+(﹣)0.16.(8分)解不等式组:,并把它的解集在数轴上表示出来.17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.18.(8分)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(10分)如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)20.(10分)如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c 过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.21.(12分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.(12分)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km 的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.23.(14分)如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC 分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM ∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S=y,求出y与x的函△PMN数关系式.2020年安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)(2008•青岛)﹣的相反数等于()A.B.﹣ C.4 D.﹣4【分析】根据相反数的概念即可解答.【解答】解:﹣的相反数等于.故选A.【点评】主要考查相反数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2020•安庆一模)下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a12÷a2=a12﹣2=a10,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2020•安庆一模)2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:把334亿用科学记数法可表示为3.34×1010,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2020•农安县模拟)如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)(2020•安庆一模)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练利用公式法分解因式是解题关键.6.(3分)(2020•安庆一模)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每次下调的百分率为x,根据“由原来每斤16元下调到每斤9元”,即可得出方程.【解答】解:设平均每次下调的百分率为x,则第一次每斤的价格为:25(1﹣x),第二次每斤的价格为25(1﹣x)2=16;所以,可列方程:25(1﹣x)2=16.故选C.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)(2020•安庆一模)如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120° D.125°【分析】根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.【解答】解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠ENC=∠D=50°.由将△CMN沿MN翻折得△EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°﹣∠NMC﹣∠MNC=125°,故选:D.【点评】本题考查了平行线的性质、翻折的性质,利用平行线的性质、翻折的性质是解题关键.8.(3分)(2020•安庆一模)弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.5【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:∵得分为90分的人数为4人,人数最多,∴众数为90,∵总人数为10人,∴中位数为第5和6人的得分的平均值,∴中位数为(85+90)÷2=87.5,故选:A.【点评】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)(2020•安庆一模)如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C.D.【分析】先证明△OAE为等边三角形得到∠1=60°,则∠2=60°,再根据切线的性质得∠ODC=90°,然后利用正切的定义计算CD的长.【解答】解:如图,∵OA=OB,∠E=60°,∴△OAE为等边三角形,∴∠1=60°,∴∠2=60°,∵CD切⊙O于点D,∴OD⊥CD,∴∠ODC=90°,在Rt△ODC中,tan∠2=,∴CD=2tan60°=2.故选C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等边三角形的判定与性质.10.(3分)(2020•安庆一模)如图,O为坐标原点,四边彤OACB是菱形,OB 在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB=S菱形OBCA,结合菱形的面积公式即可是菱形、点F在边BC上,即可得出S△AOF得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=4,OM=3,OB=OA=5.∵四边形OACB是菱形,点F在边BC上,∴S=S菱形OBCA=OB•AM=10.△AOF故选A.【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标=S菱形OBCA.特征,解题的关键是找出S△AOF二、填空题11.(3分)(2013•泉州)的立方根是.【分析】根据立方根的定义即可得出答案.【解答】解:的立方根是;故答案为:.【点评】此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.(3分)(2020•安庆一模)方程+x=1的解为x=1.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:x﹣1+3x=3,移项合并得:4x=4,解得:x=1,故答案为:x=1【点评】此题考查了解一元一次方程,解方程去分母时各项都要乘以各分母的最小公倍数.13.(3分)(2020•安庆一模)在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为(﹣,).【分析】根据“影子点”的定义先求出P′,再求出P″即可.【解答】解:点P(a,b)的“影子点”是点P’为(,﹣),∵=﹣,﹣=,∴点P’的“影子点”P''的坐标为(﹣,).故答案为:(﹣,).【点评】本题考查了点的坐标,读懂题目信息,理解“影子点”的定义是解题的关键.14.(3分)(2020•安庆一模)如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:列四个结论:①∠ACD=30°;②S△AOE,其中结论正确的序号是①②③④.(把所有正确结论的序号都选上)【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故③正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质=S△OBE;OE:AC=:6;故②④正确.得到OE=BC,AE=BE,于是得到;②S△AOE【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故③正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6,故③正确;∵AE=BE,=S△OBE,故②正确;∴S△AOE故选:①②③④.【点评】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△ABE是等边三角形,OE是△ABC的中位线是关键.三、解答题15.(6分)(2020•安庆一模)计算:﹣|1﹣|+(﹣)0.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式﹣|1﹣|+(﹣)0的值是多少即可.【解答】解:﹣|1﹣|+(﹣)0=3﹣+1+1=2+2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.(8分)(2020•安庆一模)解不等式组:,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,在数轴上表示其解集为:所以,原不等式组的解集为﹣3<x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(8分)(2020•安庆一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.【分析】(1)利用点平移的规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A2、B2、C2,从而得到△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.18.(8分)(2020•瑶海区三模)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30+1=312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n﹣2)+1=(2n﹣1)2,∵左边=22n﹣2n+1+1,右边=22n﹣2n+1+1,∴左边=右边.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.19.(10分)(2020•安庆一模)如图,在楼AB与楼CD之间有一旗杆EF,从AB 顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)【分析】过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,在Rt △GEH中利用锐角三角函数的定义可得出GH的长,再由BD=BF+FD=GH+FD即可得出结论.【解答】解:过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,由题意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,又∵∠BAD=∠ADB=45°,∴FD=EF=x米,AB=BD=20米,在Rt△GEH中,∠EGH=30°,∵tan∠EGH=,即=,∴GH=(x﹣1)米,∵BD=BF+FD=GH+FD,∴(x﹣1)+x=20,解得,x≈8米,答:旗杆EF的高度约为8米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)(2020•安庆一模)如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.【分析】(1)由直线解析式求得点B、C的坐标,代入抛物线解析式即可得;(2)设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+),由DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+可得答案.【解答】解:(1)对于直线,当x=0时,y=;当y=0时,x=.把(0,)和(,0)代入y=x2+bx+c,得:,解得:b=﹣5,c=;(2)由(1)知,抛物线的解析式为y=x2﹣5x+,当y=0时,有x2﹣5x+=0,解得:x=或x=,即A(,0)、B(,0),设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+).∴DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+,∵﹣1<0,∴当时,线段DE的长度最大.将x=m=代入y=x2﹣5x+,得y=﹣.而<m<,∴点D的坐标为.【点评】本题主要考查待定系数法求函数解析式及抛物线与x轴的交点问题,设出点D坐标,表示出线段DE的长并熟练掌握二次函数的性质是解题的关键21.(12分)(2020•安庆一模)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.【分析】(1)由A的人数和其所占的百分比即可求出总人数;(2)由总人数求出B等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷8%=50(人);(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2020•安庆一模)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得图中线段PQ的解析式;(3)根据函数图象中的数据可以求得乙车对应的函数解析式,然后根据题意即可求得甲车返回到C地取货的过程中,当x为何值时,两车相距25千米的路程.【解答】解:(1)解:由图象可知,乙车从A地到B地所用的时间是5小时;(2)由题意可得,甲车的速度为:180÷2=90km/h,∴甲车到点Q时,离A地的距离是105km,用的时间为:(180+75)÷90=(h),∴点Q的坐标为(,105),设图中线段PQ的解析式为y=kx+b,,得,即图中线段PQ的解析式为:y=﹣90x+360;(3)设乙车对应的函数解析式为y=ax,则5a=300,得a=60,∴乙车对应的函数解析式为y=60x,∴|60x﹣(﹣90x+360)|=25,(2≤x≤)解得,x1=,x2=,即甲车返回到C地取货的过程中,当x=或时,两车相距25千米的路程.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(14分)(2020•安庆一模)如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD 于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM=y,求出y与x的函∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN数关系式.【分析】(1)利用AAS即可证得;(2)证明△ABF是等腰直角三角形,四边形AFGK是平行四边形即可证得;(3)过点G作GI⊥KD于点I,首先求得△DGK的面积,然后根据△DKG∽△PKM ∽△DPN,利用相似三角形的面积的比等于相似比的平方,用x表示出△PKM和△DPN的面积,则函数解析式即可求得.【解答】解:(1)∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴在△DCK和△BOG中,,∴△DOK≌△BOG(AAS),(2)∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK;(3)如图,过点G作GI⊥KD于点I,由(2)知,四边形AFGK是平行四边形,△ABF为等腰直角三角形.∴AF=KG=2,AB=AF=,∵四边形ABCD是矩形,=KD•GI=×2×=.∴GI=AB=,S△DNG∵PD=x∴PK=2﹣x∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN,∴=()2=,即S△DPN=S△DKG=x2.=,S平行四边形PMGN=S△DKG﹣S△DPN﹣S△KPM=﹣x2﹣同理,S△KPM,=S平行四边形PMGN=﹣x2+x.(0<x<2).则S△PMN【点评】本题考查了平行四边形的判定与性质以及相似三角形的判定与性质,正确表示出△DNP和△PMK的面积是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省安庆市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)在每小题给出的A、B、C、D四个选项中,只有一项是正确的,把正确选项的代号填在答题卡上.1.﹣3的倒数是()A.B.﹣C.3 D.﹣32.下列图形中既是轴对称又是中心对称的图形是()A. B.C.D.3.3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108 B.1.309×1010C.1.309×109 D.1309×1064.反比例函数y=图象的每条曲线上y都随x增大而增大,则k的取值范围是()A.k>1 B.k>0 C.k<1 D.k<05.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是()A.主视图的面积最大 B.左视图的面积最大C.俯视图的面积最大 D.三个视图的面积一样大6.某地4月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.19,19 B.19,19.5 C.21,22 D.20,207.不等式组:的解集在数轴上表示为()A.B.C.D.8.平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD 落在x轴上,如此继续下去.则第次滚动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB9.如图,Rt△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.7:2 B.5:2 C.4:1 D.3:110.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x=t (0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y 关于t函数的图象大致如图,那么平面图形的形状不可能是()A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:x3﹣4x=.12.如图,一束平行太阳光照射到正方形上,若∠α=28°,则∠β=.13.据统计,年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是.14.如图,O为正方形ABCD的重心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG、OC,OC交BG于点H.下面四个结论:①△BCE≌△DCF;②OG∥AD;③BH=GH;④以BG为直径的圆与DF相切于点G.其中正确的结论有.(把你认为正确结论的序号都填上)三、(本大题共2小题,每小题8分,满分16分)15.计算:+(﹣)﹣2﹣|1﹣|16.先化简,再求值:(﹣)÷,其中x=3.四、(本大题共2小题,每小题8分,满分16分)17.在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了所示的统计图表:类别成绩频数甲60≤m<70 5乙70≤m<80 a丙80≤m<90 10丁90≤m≤100 5根据图表信息,回答下列问题:(1)该班共有学生人;表中a=;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线C:y=x2﹣4x+3.(1)求该抛物线关于y轴对称的抛物线C1的解析式.(2)将抛物线C平移至C2,使其经过点(1,4).若顶点在x轴上,求C2的解析式.20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A、B、C三点的坐标数据如表:A B C北纬(度)31°00′33°11′25°38′东经(度)128°20′125°00′125°00′(1)A点与B或C两点的经度差为(单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A所在的纬度)处两条相差1°的经线之间的实际距离为96km.我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min,求飞机沿东经125°经线方向从B点飞往C点大约需要多少时间.(已知tan35°=0.7,tan55°=,结果保留整数)六、(本题满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB 上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A、B、C三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x,分别写出购买B、C两类年票的游客全年的进园购票费用y与x的函数关系;当x≥10时,购买B、C两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A类门票进园的费用最少.八、(本题满分14分)23.如图①,平行四边形ABCD中,AB=AC,CE⊥AB于点E,CF⊥AC交AD的延长线于点F.(1)求证:△BCE∽△AFC;(2)连接BF,分别交CE、CD于G、H(如图②),求证:EG=CG;(3)在图②中,若∠ABC=60°,求.安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)在每小题给出的A、B、C、D四个选项中,只有一项是正确的,把正确选项的代号填在答题卡上.1.﹣3的倒数是()A.B.﹣C.3 D.﹣3【考点】倒数.【分析】根据倒数的概念:乘积是1的两数互为倒数可得答案.【解答】解:﹣3的倒数是﹣,故选:B.【点评】此题主要考查了倒数,关键是掌握倒数的定义.2.下列图形中既是轴对称又是中心对称的图形是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108 B.1.309×1010C.1.309×109 D.1309×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.反比例函数y=图象的每条曲线上y都随x增大而增大,则k的取值范围是()A.k>1 B.k>0 C.k<1 D.k<0【考点】反比例函数的性质.【分析】对于函数y=来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.【解答】解:∵反比例函数y=的图象上的每一条曲线上,y随x的增大而增大,∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式y=中k的意义不理解,直接认为k<0,造成错误.5.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是()A.主视图的面积最大 B.左视图的面积最大C.俯视图的面积最大 D.三个视图的面积一样大【考点】简单组合体的三视图.【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有4个小正方形,左视图有4个小正方形,俯视图有5个小正方形,因此俯视图的面积最大,故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.某地4月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.19,19 B.19,19.5 C.21,22 D.20,20【考点】众数;条形统计图;中位数.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.【点评】本题考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.也考查了条形统计图.7.不等式组:的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【解答】解:解不等式组得,再分别表示在数轴上为.故选C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD 落在x轴上,如此继续下去.则第次滚动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB【考点】正多边形和圆;坐标与图形性质;旋转的性质.【专题】规律型.【分析】由正六边形ABCDEF一共有6条边,即6次一循环;易得第次滚动后,与第六次滚动后的结果一样,继而求得答案.【解答】解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴÷6=336,∵第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去,第六次滚动后,边AB落在x轴上,∴第次滚动后,落在x轴上的是:边AB.故选D.【点评】此题属于规律题,考查了正多边形与圆的知识.注意得到6次一循环,第次滚动后,与第六次滚动后的结果一样是关键.9.如图,Rt△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.7:2 B.5:2 C.4:1 D.3:1【考点】相似三角形的判定与性质;圆周角定理.【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【解答】解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=5=10,FO=AC=3,∴DO=5,∴DF=5﹣3=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴=3.故选:D.【点评】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.10.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x=t (0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y 关于t函数的图象大致如图,那么平面图形的形状不可能是()A. B.C. D.【考点】动点问题的函数图象.【专题】探究型.【分析】根据题干图象和函数的图象,可以判断出平面图形的形状不可能是哪一个,本题得以解决.【解答】解:由函数图象可知,阴影部分的面积随t的增大而增大,图象都是曲线,故选项A、B、D符合函数的图象,而C中刚开始的图象符合,到t到梯形上底边时图象符合一次函数的图象,故选C.【点评】本题考查动点问题的函数图象,解题的关键是利用数形结合的思想解答问题.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.如图,一束平行太阳光照射到正方形上,若∠α=28°,则∠β=62°.【考点】平行线的性质.【分析】如图,根据平行线的性质可以求出∠1的大小,再根据三角形内角和定理即可解决问题.【解答】解:如图,∵a∥b,∴∠α=∠1=28°,∵∠3=90°,∴∠1+∠2=90°,∴∠2=90°﹣∠1=62°,∵∠β=∠2,∴∠β=62°.故答案为62°.【点评】本题考查平行线的性质、正方形的性质、三角形内角和定理、对顶角相等等知识,解题的关键是利用两直线平行同位角相等解决问题,记住正方形的性质以及内角和定理,属于中考常考题型.13.据统计,年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是(1+24.1%)x=254.6.【考点】由实际问题抽象出一元一次方程.【分析】2014年末我省私人轿车拥有量×(1+增长率)= 年末我省私人轿车拥有量,把相关数值代入即可.【解答】解:设2014年末我省私人轿车拥有量为x万辆,根据题意得(1+24.1%)x=254.6.故答案为(1+24.1%)x=254.6.【点评】此题主要考查了由实问题抽象出一元一次方程;得到年末我省私人轿车拥有量的等量关系是解决本题的关键.14.如图,O为正方形ABCD的重心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG、OC,OC交BG于点H.下面四个结论:①△BCE≌△DCF;②OG∥AD;③BH=GH;④以BG为直径的圆与DF相切于点G.其中正确的结论有①,②,④.(把你认为正确结论的序号都填上)【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据SAS可知△BCE≌△DCF,①正确;则∠CDF=∠DBG,从而可得∠BGD=∠CDG+∠F=90°,则BG垂直平分DF,OG为△BDF的中位线,②正确;根据切线的判定可知④正确.【解答】解:①∵在△BCE与△DCF中,BC=DC,∠BCE=∠DCF,CE=CF,∴△BCE≌△DCF,正确;②∵△BCE≌△DCF,∴∠F=∠BEC,又∵∠BEC+∠CBE=90°,∴∠F+∠CBE=90°,∴BG⊥DF,又∵BE平分∠DBC,∴BG垂直平分DF,∴所以G为中点.∵O为正方形中心即为重心,∴OG为△BDF的中位线,∴OG∥BC∥AD,正确;③∵C不是BF中点,∴OC与DF不平行,而O为BD中点,∴BH≠GH,错误;④∵BG⊥DF,∴以BG为直径的圆与DF相切于点G,正确.故正确的结论有①,②,④.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、(本大题共2小题,每小题8分,满分16分)15.计算:+(﹣)﹣2﹣|1﹣|【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=3+4﹣+1=2+5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、(本大题共2小题,每小题8分,满分16分)17.在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.【考点】直线与圆的位置关系;点与圆的位置关系;作图—复杂作图.【专题】压轴题;探究型.【分析】(1)在直角坐标系内描出各点,画出△ABC的外接圆,并指出点D与⊙P的位置关系即可;(2)连接PE,用待定系数法求出直线PD与PE的位置关系即可.【解答】解:(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;精品资料(2)方法一:连接PD,设过点P、D的直线解析式为y=kx+b,∵P(﹣1,0)、D(﹣2,﹣2),∴,解得,∴此直线的解析式为y=2x+2;设过点D、E的直线解析式为y=ax+c,∵D(﹣2,﹣2),E(0,﹣3),∴,解得,∴此直线的解析式为y=﹣x﹣3,∵2×(﹣)=﹣1,∴PD⊥DE,∵点D在⊙P上,∴直线l与⊙P相切.方法二:连接PE,PD,∵直线l过点D(﹣2,﹣2 ),E (0,﹣3 ),∴PE2=12+32=10,PD2=5,DE2=5,..∴PE2=PD2+DE2.∴△PDE是直角三角形,且∠PDE=90°.∴PD⊥DE.∵点D在⊙P上,∴直线l与⊙P相切.【点评】本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了所示的统计图表:类别成绩频数甲60≤m<70 5乙70≤m<80 a丙80≤m<90 10丁90≤m≤100 5根据图表信息,回答下列问题:(1)该班共有学生40人;表中a=20;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由两个统计图可求得该班学生数与a的值;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与参加决赛的两名学生是一男、一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班共有学生:10÷25%=40(人),a=40×50%=20(人);故答案为:40,20;(2)画树状图得:∵共有20种等可能的结果,参加决赛的两名学生是一男、一女的有12种情况,∴参加决赛的两名学生是一男、一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线C:y=x2﹣4x+3.(1)求该抛物线关于y轴对称的抛物线C1的解析式.(2)将抛物线C平移至C2,使其经过点(1,4).若顶点在x轴上,求C2的解析式.【考点】二次函数图象与几何变换.【分析】(1)利用原抛物线上的关于y轴对称的点的特点:纵坐标相同,横坐标互为相反数就可以解答.(2)设平移后的解析式为:y=(x﹣h)2,代入点(1,4)求得h的值即可.【解答】解:(1)配方,y=x2﹣4x+3=(x﹣2)2﹣1.∴抛物线C:顶点(2,﹣1),与y 轴交点(0,3)∵C1与C关于y轴对称,∴C1顶点坐标是(﹣2,﹣1),且与y轴交点(0,3).设C1的解析式为y=a(x+2)2﹣1、把(0,3)代入,解得:a=1,∴C1的解析式为y=x2+4x+3.(2)由题意,可设平移后的解析式为:y=(x﹣h)2,∵抛物线C2经过点(1,4),∴(1﹣h)2=4,解得:h=﹣1或h=3,∴C2的解析式为:y=(x+1)2或y=(x﹣3)2,即y=x2+2x+1或y=x2﹣6x+9.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是抓住关于y轴对称的坐标特点和平移的规律.20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A、B、C三点的坐标数据如表:A B C北纬(度)31°00′33°11′25°38′东经(度)128°20′125°00′125°00′(1)A点与B或C两点的经度差为(单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A所在的纬度)处两条相差1°的经线之间的实际距离为96km.我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min,求飞机沿东经125°经线方向从B点飞往C点大约需要多少时间.(已知tan35°=0.7,tan55°=,结果保留整数)【考点】解直角三角形的应用-方向角问题.【分析】(1)用A点的经度值减去B点的经度值即可;(2)过点A作AD⊥BC于D,则AD=×96=320(km),解直角△ABD,求出BD,解直角△ACD,求出CD,那么BC=BD+CD,再根据时间=路程÷速度即可求解.【解答】解:(1)128°20′﹣125°=3°20′=()°.故答案为;(2)过点A作AD⊥BC于D.则AD=×96=320(km).∵在△ABD中,∠B=180°﹣95°﹣30°=55°,∴BD=AD÷tan∠B=320×0.7=224(km),∵在△ACD中,CD=AD÷tan∠C==320≈554(km),∴BC=BD+CD≈778(km),∴778÷30≈26(min).【点评】此题考查了解直角三角形的应用﹣方向角问题,路程、速度与时间的关系,三角函数定义.对于解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.六、(本题满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB 上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;三角形中位线定理.【分析】(1)点A1落在边BC即点A1与点C重合,可知此时DE为△ABC的中位线,得DE=BC;(2)Rt△BCD中求出BD的长,由折叠可得A1D=AD=1,根据A1B+A1D≥BD可得A1B长的最小值.【解答】解:(1)∵点D到边BC的距离是DC=DA=1,∴点A1落在边BC上时,点A1与点C重合,如图1所示.此时,DE为AC的垂直平分线,即DE为△ABC的中位线,∴DE=BC=1;(2)连接BD,DE,在Rt△BCD中,BD==,由折叠知△A1DE≌△ADE,∴A1D=AD=1,由A1B+A1D≥BD,得:A1B≥BD﹣A1D=﹣1,∴A 1B长的最小值是﹣1.【点评】本题考查了折叠的性质、勾股定理及三角形全等的判定与性质,关键是熟练掌握折叠变换的性质.七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A、B、C三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x,分别写出购买B、C两类年票的游客全年的进园购票费用y与x的函数关系;当x≥10时,购买B、C两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A类门票进园的费用最少.【考点】一次函数的应用.【分析】(1)根据题意分别求出不购年票和购买年票一年进入园林的次数,再进行比较就可以求出结论;(2)设一年去园林的次数为x次,购买年票的一年的费用为y B元,不购卖年票的一年的费用为y C 元,由W B>W C建立不等式求出其解即可;(3)设一年中进入该园林x次,根据题意列出不等式组解答即可.【解答】解:(1)若不购买年票,则能够进入该园林80÷10=8(次);因为80<120,所以不可能选择A类年票;若只选择购买B类年票,则能够进入该园林(80﹣60)÷2=10(次);若只选择购买C类年票,则能够进入该园林(80﹣40)÷3≈13(次).所以,一年中用80元购买门票,进园次数最多的购票方式是购买C类年票.(2)由题意得y B=2x+60;y C=3x+40;由2x+60>3x+40,解得x<20,又∵x≥10,∴一年中进园次数10≤x<20时,选择C类年票花费较少;当x=20时,选择B、C两种方式花费一样多;当x>20时,选择B类年票花费较少.(3)设一年中进入该园林x次,根据题意,得:,解得x>30.答:一年中进入该园林至少超过30次时,购买A类年票比较合算.【点评】此题主要考查了一次函数的实际运用,一元一次不等式组的应用,关键是正确理解题意,找出题目中的数量关系,列出函数解析式与不等式组解决问题.八、(本题满分14分)23.如图①,平行四边形ABCD中,AB=AC,CE⊥AB于点E,CF⊥AC交AD的延长线于点F.(1)求证:△BCE∽△AFC;(2)连接BF,分别交CE、CD于G、H(如图②),求证:EG=CG;(3)在图②中,若∠ABC=60°,求.【考点】相似形综合题.【分析】(1)根据垂直的定义得到∠BEC=∠ACF=90°,由四边形ABCD是平行四边形,得到AB∥CD,根据等腰三角形的性质即可得到结论;(2)根据相似三角形的性质得到,根据平行线分线段成比例定理得到,推出△BGE≌△HGC,根据全等三角形的性质即可得到结论;(3)根据等边三角形的判定定理得到△ABC是等边三角形,由全等三角形的性质得到BE=CH,等量代换得到CH=DH,于是得到结论.【解答】(1)证明:∵CE⊥AB,CF⊥AC,∴∠BEC=∠ACF=90°,∵四边形ABCD是平行四边形,∴AB∥CD,又∵AB=AC,∴∠EBC=∠ACB=∠CAF,。