第八章超静定结构和弯矩分配法

合集下载

结构力学 力矩分配法计算超静定结构

结构力学 力矩分配法计算超静定结构
知识链接
力法和位移法是求解超静定结构的两种基本方法。两种方法的共同特点都是 要列方程和解联立方程,计算烦琐。而力矩分配法是建立在位移法基础上的一 种渐近解法,计算过程按照重复步骤进行,结果逐渐接近真实解答。它无须解 联立方程而直接计算出杆端弯矩,方法简便,适合手算。适用范围是连续梁和 无侧移刚架的内力计算。
情景二 用力矩分配法计算连续梁 学习能力目标
掌握力矩分配法计算连续梁并绘制弯矩图。
项目表述
运用力矩分配法计算多跨连续梁结构。
学习进程
情景二 用力矩分配法计算连续梁
项目实施
案例 3 – 17 图 3 – 62a 所示为两跨梁,试用力矩分配法求杆端弯矩,并作 M 图。
解答:(1)计算分配系数 同一结点各杆分配系数之和等于 1,把算好的μ 值填在表格 3 – 5中B结点处。 (2)计算固端弯矩(查表 3 – 4) (3)放松刚结点 B 进行力矩分配 (4)计算传递弯矩 (5)计算杆端弯矩 把同一杆端的固端弯矩、分配弯矩和传递弯矩相加(代数和),即得杆端弯
情景一 力矩分配法的基本原理和要素
知识链接
加于刚结点 1 的外力矩按分配系数分配给各杆的 1 端(近端),称 其 为分配弯矩。
3.传递系数 C 如图 3 – 60 所示,当外力矩 M 加于结点 1 时,该结点发生转角.1 , 于是各杆近端和远端都将产生杆端弯矩,这些杆端弯矩值如下
情景一 力矩分配法的基本原理和要素
解答:① 求分配系数。 ② 锁住结点 B、C,求各杆的固端 M。 ③ 先放松结点 C,按单结点直接把M=150kN.m进行分配、传递,此时 C
暂时平衡,将结果填入表中。求出此时结点B的不平衡力矩。 ④ 再放松结点 B,将( - MB )进行分配、传递,此时 B 暂时平衡,而由

(整理)力法求解超静定结构的步骤:.

(整理)力法求解超静定结构的步骤:.

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。

二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。

即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。

多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。

多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。

即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。

3、物理条件:即变形或位移与内力之间的物理关系。

精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。

力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。

五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。

8.2单节点力矩分配

8.2单节点力矩分配
填空题
图示结构用力矩分配法计算,结点B的不平衡力
矩(约束力矩)R =__4__kN·m。
R
B
ql 2 12
M
g BA
M
g BC
3Pl 16
8.2 单节点力矩分配法
应用1 用力矩分配法求解图示结构,并作M图。
解:
M图
171.4 100 kN/m 57.13
(kN m) A
ቤተ መጻሕፍቲ ባይዱEI
B EI
854.7m3
(二)放松节点,近端有分配弯矩,远端有传递 弯矩
(三)前两步中得到的同一横截面弯矩进行叠加
8.2 单节点力矩分配法
回顾:基本概念总结:
规律:
分配系数要计算; 计算围绕一个点; 传递系数凭观看; 观看只看杆远端。
转动刚度S与传递系数C:
8.2 单节点力矩分配法
力矩分配法的计算步骤:
(通常列表计算)
第八章 用力矩分配法计算超静定 结构
8.2 单节点力矩分配法
建筑工程系
8.2 单节点力矩分配法
用力矩分配法计算下列结构,并作M图。
P
A
B
C
EI
EI
P
A
B
C
l2 l2
l
(b)
(a)
(一)固定节点(在B节点增加附加刚臂),确定基本结构,
再加上原荷载,如图b。
R
此时:
R
M
g BA
M
g BC
M
g BC
B
R 等于固端弯矩之和,以顺时针
4m
力矩分配法 C 是直接计算
杆端弯矩。
1.计算分配系数:
μBA
S BA S
4i 4i 3i

材料力学第8章-能量法3-1

材料力学第8章-能量法3-1

d
FN dx d(l) = EA
0 N
Mdx d EI
0
Tdx d GI p
0 S 0
1 F d l M d F d T d
F FN T T M M dx dx dx EA EI GI p
0 N 0 0
2.力和位移应理解为广义力和广义位移。
能量法/虚功原理 单位力法 图乘法
上节回顾
1、可能内力,可能位移,虚位移 2、虚功原理
在外力作用下处于平衡的结构,任意给它一个虚位移, 则外力在虚位移上所做的虚功,等于结构内力在虚变形上所 作的功。
W Wi
* e
e

*
外力虚功
内力虚功

l
W
Fi
5 M a 3
0 1c
2 Fa a
M
0 2c
3 a 2
Fa a 3 2 2 0 M 3c a 3
能量法/虚功原理 单位力法 图乘法
A
EI1
a
C
EI 2
a
F B
1
2Fa Fa

1

2a 5a/3
2
3a/2
-

2a/3
3
根据图乘法,自由端的挠度为:
1 1 0 0 yB 1M1c 2 M 2c EI 3M 30c EI1 2 1 Fa a 5 3 1 Fa a 2a a Fa a a EI1 2 3 2 EI 2 2 3
能量法/超静定问题 力法 例 如图超静定梁, EI为常数,试求B点的约束反力。
第八章
一、杆件的应变能

第8章超静定结构的计算方法

第8章超静定结构的计算方法
约束。
三次超静定拱
X1
X2
X3
e)
上一页 下一页 返回
3)撤除一 个固定铰支 座或撤除一 个内部单铰, 相当于解除 两个多余约 束。
二次超静定刚架
X1 X2X2来自X1X1X2二次超静定刚架
上一页 下一页 返回
4)撤除一 个固定端支 座或切断一 个刚性连接, 相当于解除 三个多余约 束。
三次超静定刚架
F
超静定梁,画出内力图。已知梁的抗弯
刚度EI为常数。 解2 (1) 属于一次超静定梁,得 到基本结构如图所示。 (2)建立力法典型方程。 A
A
l/2
C l/2 F
B
C
X1 M1图
B
11 X1+1F=0
(3)求系数和自由项
1 l l 2 l3 11 l EI 2 3 3EI
l Fl/2 M F图
处沿Xi方向的位移。
上一页 下一页 返回
c)
C
X1
f) B
C
X1=1
21
11
A d) B
11
X1倍
d) B
A
C
C
22
12
A
X2
X2=1 X2倍
12
A
ij=ij Xj
22
上一页 下一页 返回
21
B
1=11+12+1F= 0 2=21+22+2F= 0
ij 为多余约束力Xj=1时,基本结构在Xj 单独作用
上一页 下一页
返回
1)撤除 一根支 承链杆 二次超静定梁
一次超静定桁架
X1
X1
a)
或切断
一根结 构内部

超静定结构计算方法分析

超静定结构计算方法分析

力矩分配法省去了建立方程和解算方程的工作, 直接计算杆端弯矩,故计算较为简便,用力矩分配 法适宜计算连续梁和无结点线位移的刚架;无剪力 分配法则只能用于计算各层柱为剪力静定的刚架。
建筑力学
谢谢观看!
Байду номын сангаас
几何条件——应变与位移之间要满足相应的 几何关系,结构的位移应与约束情况相符合。
任何一个静力分析问题都必须满足上述条件, 这是我们确定实际内力和位移的依据。对静定结构 来说,其内力和位移是可以分别计算的,即先用平 衡条件计算内力,然后考虑结构的物理和几何关系 计算位移;而超静定结构由于具有多余约束,必须 综合运用以上两方面的条件,才能确定出某些内力 或位移,然后再进一步计算其他内力和位移。
从典型方程建立的过程看,力法是以去掉多余 约束后的静定结构作为基本结构,根据基本结构在 外因和多余未知力共同作用下的位移与原结构相同 的条件建立力法方程,所以力法的基本方程乃是位 移协调方程。
位移法是将原结构转化为由单跨越静定梁组成 的组合体作为基本结构,以每个附加约束的总反力 为零的条件建立位移法方程,所以位移法方程实质 上是与附加约束相应的原结构的某一结点或一部分 的平衡方程。
力法和位移法,是以基本未知量的数目来衡量 工作量大小的,采用哪种方法的基本未知量的数目 少就选取哪种方法。
因此,凡是多余约束数多且结点位移数少的结 构,宜采用位移法;反之,凡是多余约束数少且结 点位移数多的结构,宜采用力法。此外,当两种方 法的未知量数目相差不多时,宜选用位移法,因为 它的系数和自由项计算较为简便。
建筑力学
超静定结构计算方 法分析
超静定结构计算方法分析
本章介绍了超静定结构的几种计算方法,为 便于加深理解和掌握,本节将对上述方法进行综 合比较,并加以分析。

混凝土结构设计原理 第八章

混凝土结构设计原理 第八章

第八章 受扭构件
2)部分超筋破坏(纵筋或箍筋过多)
3)完全超筋破坏(纵筋和箍筋均过多)
4)少筋破坏(纵筋和箍筋均太少)
第八章 受扭构件
1)适筋破坏(纵筋和箍筋合适) ①开裂前受扭钢筋混凝土构件 呈弹性特征。 ②随着扭矩增大,构件表面相
继出现多条大体连续或不连续
的与构件纵轴线成某一交角的 螺旋形裂缝,开裂后扭转角明 显增大,扭转刚度明显降低。
第八章 受扭构件
8.3 复合受扭构件承载力计算
在弯矩、剪力和扭矩的共同作用下,各项承载力是相互 关联的,其相互影响十分复杂。 为了简化,《混凝土结构设计规范》偏于安全地将受弯 所需的纵筋与受扭所需纵筋分别计算后进行叠加,而对剪 扭作用为避免混凝土部分的抗力被重复利用,考虑混凝土 项的相关作用,钢筋的贡献不考虑相关性,采用简单叠加 方法。
(1)协调扭转的概念 在超静定结构,扭矩是由相邻构件的变形受到约束而产 生的,不能仅由静力平衡条件求得,还应根据变形协调条 件来决定。 扭矩大小与受扭构件的抗扭刚度有关,且会产生内力重 分布。(扭矩大小与构件受力阶段的刚度比有关,不是定 值,需要考虑内力重分布进行扭矩计算)。 协调扭转通过受扭构造要求保证。
置过少。扭转裂缝一经出现,构件即告破坏,极限扭矩和 开裂扭矩非常接近,属脆性破坏(受扭承载力取决于混凝土 的抗拉强度)。工程设计时应避免出现这种情况。
第八章 受扭构件
第八章 受扭构件
8.2.2 纯扭构件的开裂扭矩
一、矩形截面纯扭构件
纯扭构件开裂前受扭钢筋的应力很小,因此在研究开裂扭
矩时,可忽略钢筋的影响,视为与素混凝土纯扭构件相似。 (1)按塑性理论计算 假定混凝土为理想塑性材料,开裂时, 截面上各点应力均达到 ft 45o

超静定结构的力矩分配法计算

超静定结构的力矩分配法计算

M
F B
)
M B D
BD(
M
F B
)
5、传递系数 远端为固定支座:
1 C= 2 远端为铰支座: C =0
远端为双滑动支座: C = -1
6、远端传递弯矩 近端杆端分配弯矩可通过固端弯矩按比例分配得到, 而远端传递弯矩则可通过近端分配弯矩得到。
M AB CBAM B A
M CB CBCM B C
BC
S BC SB
BD
S BD SB
一个杆件的杆端分配系数等于自身杆端转动刚度 除以杆端结点所连各杆的杆端转动刚度之和。
各结点分配系数之和等于1 BA BC BD 1
4、近端分配弯矩
将不平衡力矩变号后按比例分配得到各杆的近端分 配弯矩。
M B A
BA (
M
F B
)
M B C
BC (
M D B CBDM B D
建筑力学
力矩分配法中结点弯矩正负号规定: 结点弯矩使结点逆时针转为正 。
1.2 力矩分配法的要素
1、固端弯矩、固端剪力 固端弯矩是荷载引起的杆件在分配结点处固定时产 生的杆端弯矩 固端剪力是荷载引起的杆件在分配结点处固定时产 生的杆端剪力
固端弯矩、固端剪力可通过查表13.1获得 i称为线刚度: i EI
l
其中:EI是杆件的抗弯刚度;l 是杆长。
序 号
梁的简图
1
2
3
杆端弯矩
MAB
MBA
4i
i EI
2i
l
ql2
ql 2
12 12
杆端剪力
FQAB
FQBA
6i 6i
l
l
ql 2
ql 2

建筑力学-弯矩分配法

建筑力学-弯矩分配法

THANKS
感谢观看
简化假设
弯矩分配法基于一些简化假设,如各杆件的线刚度相等,实际情况 可能并非如此。
无法处理复杂边界条件
对于具有复杂边界条件的结构,弯矩分配法可能无法给出准确的结 果。
弯矩分配法的改进方法
1 2
扩展应用范围
研究如何将弯矩分配法应用于不同类型的梁和结 构。
考虑非线性因素
在弯矩分配法中考虑非线性因素,如材料非线性 和几何非线性,以提高计算精度。
与有限元法的比较
弯矩分配法适用于线性静力分析,而有限元法则更适用于复 杂的非线性问题和动力分析。在某些情况下,将弯矩分配法 和有限元法结合使用可以更好地解决复杂的结构问题。
04
弯矩分配法的局限性与改进方法
弯矩分配法的局限性
仅适用于连续梁
弯矩分配法最初是为连续梁设计的,对于其他类型的梁(如简支 梁、悬臂梁等)可能不适用。
高层建筑结构分析
高层建筑结构复杂,弯矩分配法可以 帮助设计者更好地分析各楼层之间的 相互作用,优化楼层布局和结构形式, 提高建筑的抗震性能。
弯矩分配法在结构设计中的优化作用
01 02
结构形式优化
弯矩分配法可以帮助设计者根据实际受力情况,优化结构形式,选择合 理的梁、柱等构件的截面尺寸和连接方式,提高结构的承载能力和稳定 性。
建筑力学-弯矩分配法
• 引言 • 弯矩分配法的基本原理 • 弯矩分配法的实际应用 • 弯矩分配法的局限性与改进方法 • 结论
01
引言
弯矩分配法的定义
01
弯矩分配法是一种计算超静定结 构内力的方法,通过将结构中的 弯矩进行分配,使结构达到静力 平衡状态。
02
弯矩分配法的基本原理是将结构 中的各个杆件按照其刚度进行弯 矩的分配,刚度越大,分配到的 弯矩越大。

8.3多节点力矩分配法

8.3多节点力矩分配法

-0.1 -0.2
-0.2 -0.1
17.3 -17.3 10.6 -10.6 0.4 -0.4 48
8.3 多结点力矩分配法—渐进运算
应用3:
48
17.3
10.6
0.4
31.3
34.5
M(kN·m)
重点小结
1)单结点力矩分配法得到精确解;多结点力矩分配法得到渐 近解。
2)首先从结点不平衡力矩绝对值较大的结点开始。 3)结点不平衡力矩要变号分配。 4)结点不平衡力矩的计算:R=附加刚臂上的约束力矩
0.429 0.571 0.5 0.5 0.571 0.429
40 0
0 -20
20 24
48
-17.2 -22.8 -11.4-12.6 -25.1-18.9 0
11 22 22 11
-4.7 -6.3 -3.2 -3.2 -6.3 -4.7 0 1.6 3.2 3.2 1.6
-0.7 -0.9 -0.5 -0.5 -0.9 -0.7 0 0.3 0.5 0.5 0.3
20kN m
M
g EF
40 1.2
48kN m
M
g DE
1 2
48
24kN
m
(3)列表计算
40kN 48kN·m
EF
8.3 多结点力矩分配法—渐进运算
应用3:
固端弯矩 0
B,D一次分,传 0 C一次分,传
B,D二次分,传 0 C二次分,传
B,D三次分,传 0 C三次分,传
B,D四次分配
弯矩叠加 0
133.1
M图(kN·m)
计算支座反力:
QAB
QA0B
M AB
M BA l

材料力学 第八章

材料力学 第八章

边界条件: x 0
xL
y1 0
y2 0
L
Fb 2 x C1 2L
x连Βιβλιοθήκη 条件:xay1 y2
Fb 3 x C1 x D1 6L
Fb 2 F x ( x a ) 2 C2 2L 2
1 2
Fb 2 C1 ( L b 2 ) C2 , 6L
yC , B
1、载荷分解
q
ql
ql2
2查表:单独载荷作用下
q
5ql yC1 384EI
yC 2
B2
4
ql3 B1 , 24EI
yC1
ql
B1
(ql)l 3 48EI
(ql) l 2 ql3 , 16EI 16EI
yC2
ql2
B2
yC 3
3ql 4 48EI
图所示。试求 ( x), y( x)

A 。
Fa L
FAy
FBy
1、求支座反力
FAy
Fb , L
FBy
2、分段列出梁的弯矩方程 AC段 (0 x a)
Fb M 1 ( x) FA x x, L
BC段 (a x L)
Fb M 2 ( x) x F ( x a), L

1 y
y '' ( x )
'2
( x)

3
2
M ( x) EI z
y ( x) ( x) 0
'
1 y ' 2 ( x) 1
故得挠曲线近似微分方程:
M ( x) y' ' EI

第八章超静定结构和弯矩分配法

第八章超静定结构和弯矩分配法

弯矩分配法优缺点分析
• 对于某些特定结构(如连续梁、无侧移刚架),计算效率 较高。
弯矩分配法优缺点分析
01
缺点
02
03
04
对于复杂结构或侧移刚架,计 算过程较为繁琐。
迭代计算可能收敛较慢,需要 较多计算步骤。
对于某些问题(如温度变化、 支座移动等),弯矩分配法可 能不适用或需要特殊处理。
03
超静定梁与刚架结构分 析
位移法
以结点位移作为基本未知量,通过 建立位移与内力的关系,求解超静 定结构的方法。
弯矩分配法
适用于连续梁和无侧移刚架等超静 定结构的简化分析方法,通过逐步 分配和传递弯矩来求解结构内力。
02
弯矩分配法基本原理
弯矩分配法概念及适用范围
概念
弯矩分配法是一种用于分析超静 定结构的方法,通过逐步分配节 点弯矩,使结构达到平衡状态。
根据结点平衡条件和截面法,可以求 解刚架结构的反力和内力。
考虑轴向变形时内力重分布问题探讨
轴向变形对超静定结构的影响
01
当超静定结构中存在轴向变形时,会引起结构内力的重分布,
进而影响结构的
02
通过引入轴向变形的影响因素,对超静定结构的内力进行修正
和重分布计算。
通过具体算例,展示超静定梁的求解过程 ,包括力法和位移法的应用。
刚架结构内力计算及实例解析
刚架结构的基本概念
刚架是由直杆组成的具有刚结点的结 构,其结点不能发生相对移动但可以 发生相对转动。
刚架结构的内力计算
刚架结构计算示例
通过具体算例,展示刚架结构的求解 过程,包括结点平衡条件和截面法的 应用。
刚度大
由于存在多余约束,超静定结 构的刚度通常比静定结构大。

第八章力矩分配法

第八章力矩分配法
第八章力矩分配法
1
§8-1 概述 计算超静定结构,不论采用力法或位移法,均要组成和解算典型方程,当未知量较多时,其工作量非常大。
为了寻求较简捷的计算方法,自上世纪三十年代以来,又陆续出现了各种渐进法,力矩分配法就是其一。 渐进法的共同特点是,避免了组成和解算典型方程,而以逐次渐进的方法来计算杆端弯矩,其结果的精度
A
i=2
B
i=3 C
6m
3m
3m
40kN/m D
i=4
6m
杆端
m
MF
B1次 C1次
AB C 1 2 BA BC C 1 2 CB CD C 0 DC
0.4 0.6
0.5 0.5
100
0
0 -300
300 -180
0
40
80 120
60
-45
-90 -90
集中力偶m
逆时针为正
讨论
A A
2、静定段处理
D
Δ1 =1 B
4m
i= 3
i= 6
基本系
C
D
r111FR1F 0
3)作M1、MF图
基本系为无侧移刚架
30kN /m
A
r 11
i= 4
M1、MF图运用 力矩分配法绘制
F R 1 F 4)求系数和自由项
i= 3
i= 6
△1作用
C
D
i= 3
i= 6
荷载作用
C
D
5)求未知量 6)叠加法作M图
MM11+MF
l
EI= C
位移法求解
(1)建立基本体系
如何分配?
B
l
l
FRK

教案 第八章 力矩分配法[18页]

教案 第八章 力矩分配法[18页]

第八章力矩分配法(4学时)1.主要内容8-1 力矩分配法的基本概念8-2 多结点的力矩分配8-3 连续梁影响线2.知识点8-1 力矩分配法的基本概念转动刚度、分配系数和传递系数;结点力矩、分配力矩、传递力矩;杆端弯矩、近端弯矩、远端弯矩。

8-2 多结点的力矩分配多结点力矩分配的基本思路;多结点的力矩分配解题的基本过程:结点力矩、非结点力矩。

8-3 连续梁影响线超静定力影响线的作法;连续梁弯矩、剪力影响线的绘制。

3.重点难点8-1 力矩分配法的基本概念重点:掌握单结点力矩分配法解题的基本过程。

难点:非结点荷载如何转变成结点荷载。

8-2 多结点的力矩分配重点:掌握多节点力矩分配法解题的基本过程。

难点:结点的锁住、放松。

8-3 连续梁影响线重点:掌握连续梁影响线的绘制。

8.1 分配法的基本概念1. 知识点转动刚度、分配系数和传递系数;结点力矩、分配力矩、传递力矩;杆端弯矩、近端弯矩、远端弯矩。

2. 重点难点重 点:掌握单结点力矩分配法解题的基本过程。

难 点:非结点荷载如何转变成结点荷载。

知识点:转动刚度、分配系数和传递系数(1)基本概念转动刚度S :杆件的近端发生单位转角时,在该端需要施加的力矩; 分配系数μ:。

BABA S S μ=∑,只与杆件的线刚度i 和约束条件有关。

传递系数C :远端弯矩与近端弯矩的比值。

(2)取值表8.1 等截面直杆的转动刚度和传递系数(3)实例例:计算图8.1结构的转动刚度、分配系数和传递系数,EI 为常数。

EAC 2aa2a aB D图8.1解:表8.2 转动刚度和传递系数杆件 远端 转动刚度S分配系数μ传递系数CAB 自由端 0 0 0 AC 固定 4EI /(2a) 4/9 0.5 AD 铰支 3EI /(2a) 1/3 -1 AE滑动EI /a2/9结点力矩下单结点力矩分配的解题步骤: 1. 确定结点力矩;2. 根据转动刚度求分配系数3. 根据分配系数求分配力矩(近端弯矩)4. 根据传递系数求传递力矩(远端弯矩) 实例:例1:图8.2a 梁线刚度 i 相同,用力矩分配法求梁各杆端弯矩,并绘制弯矩图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节力法(Force Method)
一.力法的基本概念
待解的未知问题
1
基本体系
1 0 变形条件
力法基本
X1
未知量
在变形条件成立条件下,基本体 系的内力和位移与原结构相同.
4.2 力法(Force Method)
ql2一/ 8.力法的基本概念 1 0
M
力1.确法定步基骤本:体系111X111
1P
11
0
力法 方程
2.写出位移条件,力11法 X方1程 1P 0
34..作 求单 出位系弯数1 矩和图自11 由,荷l项载3 /弯3E矩I 图;1P ql 4 / 8EI
5.解力法方程X1 3ql / 8() M M1 X1 M P
6.叠加法作弯矩图
ql2 / 2
l
MP
M1
ql 2一/ 8.力法的基本概念
SBA 4i SBC 3i
BA 4i /(3i 4i) 4 / 7 0.571 A
B
M
u B
B
C
BC 3i /(3i 4i) 3 / 7 0.429
M
d BA
BA
(
M
u B
)
57.1
M
d BC
BC
(
M
u B
)
42.9
M
d BA
M
u B
B
M
d BC
M
d BA
BA
(
M
u B
)
M
d BC
1P Pl 3 / 2EI
l
P
X1 3P / 8()
X1=1
M1
Pl
MP
3 Pl 8
M M1 X1 M P
P
EI
EI
l
5 Pl 8
M
l
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
P
EI
EI
l
l
P
第八章 超静定结构与弯矩分配法
第一节 超静定结构和静定结构的差别 一.超静定结构的静力特征和几何特征
几何特征:有多余约束的几何不变体系。 静力特征:仅由静力平衡方程不能求出
所有内力和反力.
超静定问题的求解要同时考虑结构的“变 形、本构、平衡”.
一.超静定结构的静力特征和几何特征 二.超静定结构的性质 1.内力与材料的物理性质、截面的几何形状和尺寸有关。 2.温度变化、支座移动一般会产生内力。
4.力矩分配法----近似计算方法. 5.矩阵位移法----结构矩阵分析法之一.
一.超静定结构的静力特征和几何特征 二.超静定结构的性质 三.超静定结构的计算方法
力法等方法的基本思想: 1.找出未知问题不能求解的原因, 2.将其化成会求解的问题, 3.找出改造后的问题与原问题的差别, 4.消除差别后,改造后的问题的解即为原问题的解
M
1 0 1 11 1P 0
11 X1 11
力法 方程
11 X1 1P 0
1 11 l 3 / 3EI
1P ql 4 / 8EI
X1 3ql / 8() M M1 X1 M P
ql 2 / 2 MP
l
M1
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
练习 P
EI
作弯矩图.
EI
l
l
力法步骤:
1.确定基本体系
4.求出系数和自由项
2.写出位移条件,力法方程 5.解力法方程
3.作单位弯矩图,荷载弯矩图; 6.叠加法作弯矩图
P
EI
P
EI
l
l
解: 1 0
X1
11 X1 1P 0
11 4l 3 / 3EI
从力法方程解得基本未知力,由叠加原理 获得结构内力。超静定结构分析通过转化为 静定结构获得了解决。
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。
这是科学研究的 基本方法之一。
第三节 力矩分配法
力矩分配法是基于位移法的逐步逼近精确解 的近似方法。
单独使用时只能用于无侧移(线位移)的结 构。
传递系数等概念求解
q 12kN / m B
A EI
B EI
C
10m
10m
q 12kN / m
M
u B
A
B
C
ql2 / 12
B
M
u B
C
A
B
M
F BA
M
u B
B
M
F BC
转动刚度:使AB杆的A端产生单位转动,在A端所需施加
的杆端弯矩称为AB杆A端的转动刚度,记作SAB。
1S AB
1
A i B 4i A i B
M
d BC
S BC SBA SBC
(
M
u B
)

BA
S BA SBA SBC
BC
S BC SBA SBC
A
B
M
u B
B
C
M
d BA
M
u B
B
M
d BC
M
d BA
BA
(
M
u B
)
M
d BC
BC
(
M
u B
)
M
d BA
M
d BC
---分配弯矩
BA BC ---分配系数
一个结点上的各杆端分配系
数总和恒等于1。
BC
(
M
u B
)

BA
S BA SBA SBC
BC
S BC SBA SBC
M
d BA
M
d BC
---分配弯矩
BA BC ---分配系数
一个结点上的各杆端分配系
与静定结构相比, 超静定结构的优点为: 1.内力分布均匀 2.抵抗破坏的能力强
一.超静定结构的静力特征和几何特征 二.超静定结构的性质 三.超静定结构的计算方法
1.力法----以多余约束力作为基本未知量。
2.位移法----以结点位移作为基本未知量.
3.混合法----以结点位移和多余约束力作为 基本未知量.
SAB 4i
AiB SAB 3i
对等直杆,SAB只与B端的
支撑条件有关。
A端一般称为近端(本端),
AiB
B端一般称为远端(它端)。
SAB i
M
d BA
SBA B
M
d BC
SBC B
M
u B
M
d BA
M
d BC
0
B
S BA
1 SBC
(
M
u B
)
M
d BA
S BA SBA SBC(Biblioteka Mu B)
4.4 力矩分配法
一.基本概念
固定状态:
M
u B
---不平衡力矩,顺时针为正
固端弯矩---荷载引起的单跨梁两 端的杆端弯矩,绕杆端顺时针为正.
M
F AB
ql 2
/ 12
100kN .m
M
F BA
100kN .m
M
F BC
M
F CB
0
M
u B
M
F BA
M
F BC
100kN.m
放松状态:需借助分配系数,
解: 1 0
X1
11 X1 1P 0
11 l 3 / 3EI
1P Pl 3 / 2EI
X1=1 Pl
P
X1 3P / 2()
M M1 X1 M P
l M1
Pl
MP
3 Pl M
2
力法基本思路小结
解除多余约束,转化为静定结构。多余约 束代以多余未知力——基本未知力。
分析基本结构在单位基本未知力和外界因 素作用下的位移,建立位移协调条件——力 法方程。
相关文档
最新文档