5.压裂设计依据详解

合集下载

压裂工程方案

压裂工程方案

压裂工程方案一、前言随着我国石油天然气资源的逐渐枯竭,对新的油气资源的开发已成为当务之急。

而压裂技术作为一种重要的油气开采技术已经得到了广泛的应用。

本文将针对压裂工程进行详细的分析和探讨,力求为该工程提供可靠的技术支持和指导。

二、压裂工程概述压裂工程是通过高压液体将岩石层压裂,使原本不透水的岩石层形成一定规模的裂缝,以增加油气的渗透率,提高开采率的一种油气开采技术。

压裂工程的成功与否关键取决于压裂工艺、材料、设备和操作的全面配合。

压裂工程通常具有以下几个特点:1. 高压液体注入:对于高渗透率、低渗透率和硬质岩石等地层,通常需要采用高压液体进行注入。

2. 高效能液体:压裂液通常包含有助于增加压裂效率的助剂和添加剂,如助剂能够增加液体的黏度,从而减小压裂液的损失,添加剂可以增加压裂液的功能。

3. 复杂的开采环境:压裂作业通常需要在较复杂的地层条件下进行,如高温高压、高硫等。

4. 工艺精细化:压裂技术要求操作工艺流程精细化,保证操作过程稳定的运行。

三、压裂工程方案设计1. 压裂工艺设计压裂工艺设计是压裂工程实施的基础。

通过对地质构造、井筒地层、地质裂缝等情况的详细分析,并结合岩石的物理力学性质和岩石断裂机制,确定压裂设计参数。

一般来说,压裂设计需要考虑以下几个方面的因素:1) 岩石地层:地质构造、岩石物理力学性质、强度及地层性质等。

2) 裂缝模型:根据地质调查资料和井筒测试资料,确定裂缝的规模、位置和形状。

3) 压裂设计参数:确定压裂液的性质、注入量、压裂液性能的优化设计;确定压裂工艺的操作流程、排量、注入压力、压裂液的选择;确定压裂液的配方及使用方式等。

2. 压裂液设计压裂液是实施压裂作业的关键。

压裂液设计要考虑地层条件、地质构造、液压力、地温、地质压力等因素。

压裂液设计需要满足以下基本要求:1) 流变性要求:压裂液要有足够的流变性,能够承受高强度输送和高速排放的要求。

2) 稳定性要求:压裂液稳定性要好,能够适应不同地温地压的要求。

压裂设计

压裂设计

缝长恒定,优化CfD:
CfD的优化范围是10~30
定缝长,变导流能力
支撑剂优选
设计考虑
支撑剂优选主要是优化支撑剂渗透率或导流能力以及与此 有关的费用和效益。

渗透率最高的支撑剂并不总是优化的,还应考虑其数量、 费用及其导流能力。

支撑剂优选
设计考虑
支撑剂的相对Leabharlann 积表示获得一定导流能力所需的支撑剂 数量。表达式如下:

NPV的设计
简介
固定费用已定条件下的各种压裂用量与砂浓度的NPV值如下:
NPV的设计
简介
图中曲线说明:中强度支撑剂总是最优的。在130000lbm以下,最大砂浓度 10ppg最优;超过130000lbm,当砂浓度为14ppg时,经济效益最好。
压裂设计
设计考虑
经济优化
设计考虑
压裂施工费用包括各种可变费用和与施工规模无直接关系的 固定费用: (1)液体费用=美元/单位×单位液体。
裂缝导流能力
设计考虑
20/40目石英砂在裂缝中支撑剂铺置浓度与支撑裂缝宽度的关系
无量纲裂缝导流能力
设计考虑
不同无量纲裂缝导流能力CfD 下与产量倒数1/qD的关系曲 线,容易比较裂缝导流能力对产量的影响
无量纲裂缝导流能力
在特殊情况下导流能力的选择:
设计考虑
支撑剂量恒定,优化CfD:
渗透率大于1mD时,优化的CfD为1.26; 渗透率小于0.1mD时,优化的CfD为3。

支撑剂优选
设计考虑
RPV值、每种支撑剂的费用与闭合压力的关系如下:
压裂规模
设计考虑
通过考虑支撑剂输送、液体滤失、水马力与限压等因素, 压裂液与泵注排量已选定,那么设计中主要考虑的其它因素就是 施工规模、支撑剂类型和泵注程序。

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂工艺定义及重要性 (3)2. 压裂工艺发展历程 (3)3. 压裂工艺应用领域 (4)二、压裂原理与基本流程 (5)1. 压裂原理简介 (6)(1)岩石破裂理论 (7)(2)水力压裂基本原理 (8)2. 压裂基本流程 (9)(1)前期准备 (10)(2)压裂施工 (11)(3)后期评估 (13)三、压裂设备与技术参数 (14)1. 压裂设备组成 (15)(1)压裂泵 (15)(2)高压管汇 (17)(3)地面设备 (18)(4)井下工具 (19)2. 技术参数介绍 (20)(1)压力参数 (22)(2)流量参数 (23)(3)化学药剂参数 (24)四、压裂液与支撑剂 (25)1. 压裂液介绍 (27)(1)压裂液种类与特性 (28)(2)压裂液性能要求 (30)2. 支撑剂介绍 (31)(1)支撑剂种类与特性 (32)(2)支撑剂作用及选择要求 (33)五、压裂工艺优化与新技术发展 (34)一、压裂工艺概述压裂工艺是一种用于开采石油和天然气资源的地质工程技术,它通过在地层中注入高压水,使岩石发生裂缝和破碎,从而释放出地下的石油和天然气资源。

压裂工艺在全球范围内得到了广泛的应用,尤其是在美国、加拿大、中国等国家的油气田开发中发挥了重要作用。

压裂工艺的主要目的是提高油气井的产量,延长油气井的使用寿命,降低生产成本。

随着科技的发展,压裂工艺也在不断地改进和完善,以适应不同类型的油气藏和地层条件。

压裂工艺主要包括水力压裂、化学压裂和生物压裂等多种类型。

水力压裂是最早的一种压裂方法,主要利用高压水流产生的压力差来破碎岩石。

随着技术的进步,化学压裂逐渐成为主流技术,它通过向地层中注入特殊的化学剂,使岩石发生化学反应,从而产生裂缝和破碎。

生物压裂则是近年来发展起来的一种新型压裂技术,它利用微生物降解有机物的过程来产生裂缝和破碎。

压裂工艺作为一种重要的地质工程技术,为石油和天然气资源的开发提供了有效的手段。

采油工程第5章水力压裂技术

采油工程第5章水力压裂技术
第5章 水力压裂技术
5.1 造缝机理 5.2 压裂液
5.3 支撑剂
5.4 压裂设计
5.5 压裂设备及工艺方法
思考题
第5章 水力压裂技术
水力压裂是利用地面高压泵组,将高粘液体以大大超
过地层吸收能力的排量注入井中,在井底憋起高压,当此压 力大于井壁附近的地应力和地层岩石抗张强度时在井底附近 地层产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延 伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底 附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝, 使井达到增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地 层中流体的渗流阻力和改变了流体的渗流状态,使原来的径 向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒 间的单向流动,消除了径向节流损失,大大降低了能量消耗。 因而油气井产量或注水井注入量就会大幅度提高。
3.泡沫压裂液 泡沫压裂液是用于低压低渗油气层改造的新型压裂液。 其最大特点是易于返排滤失少以及摩阻低等。基液多用淡水、 盐水、聚合物水溶液;气相为二氧化碳、氮气、天然气;发泡 剂用非离子型活性剂。泡沫干度为65%~85%,低于65%则粘 度太低,超过92%则不稳定。 泡沫压裂液也具有不利因素 (1)由于井筒气一液柱的压降低,压裂过程中需要较高的 注入压力,因而对深度大于2000m以上的油气层,实施泡沫压 裂是困难的。 (2)使用泡沫压裂液的砂比不能过高,在需要注入高砂比 情况下,可先用泡沫压裂液将低砂比的支撑剂带人,然后再泵 人可携带高砂比支撑剂的常规压裂液。 泡沫压裂液的粘度稳定性取决于泡沫干度(泡沫质量),即 气体体积与泡沫液总体积之比,典型值为70%~80%。
z X y z y X
ቤተ መጻሕፍቲ ባይዱ
X
图5-4 人工裂缝方向示意图

压裂基础知识讲义(精品)

压裂基础知识讲义(精品)

5、替挤 加砂完成后,打开混砂车旁通替挤流程向井内注入 替挤液,将携砂液替挤到油层裂缝中;一般替挤量 小于地面管线和井下管柱容积的1.2倍;
6、关井扩散压力 压裂结束,关闭所有阀门,等待压裂液破胶滤失及 裂缝闭合,防止出砂,造成裂缝口铺砂浓度过低, 出现“包饺子”现象
7、活动管柱 符合不应超过管柱悬重200KN,上提速度控制在0.5 m/min,活动行程不小于5m,达到管柱提放自如, 悬重正常
❖ 1、填砂选压 ❖ 2、单封隔器选压 ❖ 3、双封隔器选压
1、填砂选压
用填砂方法将井内非 选压层封隔开,以免压裂 时压开非选压层。此法一 般适用于封隔下层、选压 上层的压裂井。
管柱结构图
2、单封隔器选压
管柱结构图
当选压层段处于油气
层组的最上部或最下部位
选压层
置时,可采用封隔器将非
选压层分隔开,压裂时只
2、为什么要压裂?
在一口井上进行压裂可能有以下三种原因: 1)穿透近井地带伤害区,使井恢复其自然产能; 2)在地层中延伸有导流的通道,使产量超过自然 水平; 3)改变在地层中的液体流动; 这三种原因常常是重叠的。
3、压裂增产原理?
压裂增产增注的原理主要是通过降低井底附近地层 中流体的渗流阻力和改变流体的渗流状态,使原来的径 向流动改变为油层与裂缝的近视单向流动和裂缝与井筒 间的单向流动,消除了径向节流损失,大大降低了能量 消耗,因而油气井产量或注水井注入量就会大幅度提高。 如果水力裂缝能连通油气层深处的产层(如透镜体)和 天然裂缝,则增产的效果会更明显。另外,水力压裂对 井底附近受损害的油气层有解除堵塞的作用。
压裂知识交流
压裂分公司 王振
目录
第一章 压裂基础知识 第二章 压裂液化学和支撑剂 第三章 压裂技术

压裂基础知识

压裂基础知识
压裂液:选择合适的压裂液以满足地层特性和施工要求 支撑剂:选择适当的支撑剂以保持压裂裂缝的导流能力 施工压力:根据地层和裂缝的特性确定合理的施工压力 裂缝长度:根据油藏特征和增产目标设计合理的裂缝长度
压裂材料选择
第四章
支撑剂类型与性能
石英砂:成本低适用于浅层压 裂
陶粒:强度高适用于深层压裂
树脂覆膜砂:耐高温适用于高 温地层压裂
制定安全操作 规程:确保员 工熟悉并遵守 压裂作业的安 全规定和操作
流程。
定期培训:对 员工进行压裂 作业安全培训 提高员工的安 全意识和操作
技能。
设备维护保养: 定期对压裂设 备进行维护保 养确保设备正 常运行防止事
故发生。
安全检查:对 压裂作业场所 进行定期安全 检查及时发现 并消除安全隐
患。
环保要求与合规性
压裂基础知识
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 压裂定义与目的 03 压裂技术原理 04 压裂材料选择 05 压裂效果评价
06 压裂安全与环保
单击添加章节标题
第一章
压裂定义与目的
第二章
压裂定义
压裂是利用地面高压泵组通过井口向油层挤注高压液体使油层产生裂缝或扩大裂缝将油层中原 始油流通道扩大达到增产增注的目的。
添加剂作用与选择
降低压裂液粘度提高携砂能力 稳定支撑剂防止破碎和沉降 降低摩擦阻力减少压裂液的滤失 调节压裂液的稠化剂和交联剂控制压裂液的流变性和稳定性
压裂材料成本分析
支撑剂:选择不同类型和规格的支撑剂其成本也不同
压裂液:根据不同的压裂工艺和地层条件需要选择不同类型的压裂液其成本也相应不 同
添加剂:为了提高压裂液的性能需要添加一些添加剂这些添加剂的成本也需要考虑

第十章压裂设计

第十章压裂设计

(10)环境安全;
(11)经济实惠。
不满足最后二项,该压裂液体系就不能应用。
压裂规模
设计考虑
压裂液粘度和滤失特性对于裂缝延伸和支撑剂铺置是 起作用的,当然也应当考虑其它特性。所选压裂液的选择原 则为:

液体滤失
设计考虑
液体滤失影响造缝长度与裂缝闭合时间;
液体滤失可使用砂、表面活性剂、液态碳氢化合物和气体来改善;
泵注排量
设计考虑
压裂施工排量的选择取决于多种因素。通常,提高裂缝宽
度、降低滤失时间、提高压裂效率需用高排量,高排量也直接 用来改善携砂能力。 压裂管柱的尺寸和相应的摩阻压力通常限制了泵注排量, 地面压力的提高增加了水马力和费用。

压裂设计

裂缝形态模拟
模型选择
裂缝形态模拟
模拟裂缝几何形态和支撑剂铺置的步骤如下:

支撑剂加入速度程序化,其目的在于防止灾难性的事件如脱砂的 发生。

在压裂过程中加砂程序由支撑剂浓度渐进增加的加入表组成,同 时加砂程序要依赖现场经验,加砂程序对避免脱砂是保守的。

经济敏感性
压裂与储层渗透率和表皮系数的经济敏感性
泵注程序
使用三年的 NPV值来确定不同渗透率和表皮系数下的 优化的裂缝长度。表中列出了优化的裂缝长度值,该例中表 皮系数保持不变。
投资回报率。 现值表示在一定的贴现率下相对于目前时间的未来现金流量的总 和(收入与支出)。

净现值(NPV)反映的是项目本来现金流量现值与投资现值的差 值。

投资回报率(DROI)是指项目的净现值与在一定的贴现率下总 投资的现值之比,DROI是投资项目有效性的一个重要衡量指标。

经济分析一般概念

压裂方案设计内容

压裂方案设计内容

压裂方案设计内容
压裂方案设计的内容主要包括以下几个方面:
1. 确定压裂施工方案,包括施工顺序、压裂层位选择、压裂工艺选择、裂缝优化设计等。

2. 压裂层位的优选:根据储层发育特征和井位部署条件,优选适合压
裂改造的层段。

3. 压裂工艺选择:根据储层物性、开发需要、施工条件和技术设备现状,优选适合的压裂工艺技术。

4. 优化设计裂缝方向、加砂规模与泵注压力等参数,确保优化设计合
理可行。

5. 确定地面设备和井下工具:根据所选压裂工艺,确定相应的地面设
备和井下工具。

6. 预测压后产能:对产能剖面进行预测,确定开发井的产能。

7. 优化排量、泵注压力和注入排量比等施工参数,以满足携砂、造缝、携砂及封堵滤失的要求。

8. 根据预计的裂缝形态,预测不同层的实际有效厚度,计算压后单层
产能和整个层段的产液能力。

通过以上内容,可以对压裂改造过程进行科学合理的设计,以期达到
最佳的增产效果。

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂的定义与目的 (2)2. 压裂技术的发展历程 (3)3. 压裂工艺的重要性 (5)二、压裂工艺基本原理 (6)1. 压裂液的组成及作用 (7)(1)主要成分 (8)(2)添加剂的功能 (9)2. 压裂液的流动性与黏度控制 (10)3. 岩石的破裂机理 (11)(1)应力与应变的关系 (12)(2)岩石的破裂条件 (13)三、压裂工艺操作流程 (14)1. 井场准备与设备配置 (16)(1)井场选址与布局 (17)(2)设备选择与配置 (18)2. 施工前的准备工作 (19)(1)井筒处理 (21)(2)压裂液的准备 (21)3. 压裂施工流程 (23)(1)压裂液的注入 (24)(2)压力控制 (25)(3)裂缝的扩展与控制 (26)4. 施工后的工作 (28)(1)井场清理 (29)(2)数据分析与评估 (30)四、压裂工艺的关键技术 (31)一、压裂工艺概述压裂技术是一种常用的油气藏开发技术,是指通过将高压介质注入油气藏缝中,以增加缝隙的有效面积,从而提高油气采收率的一种工艺。

压裂就是利用外力的强大冲击,使岩石裂缝变大或者新形成裂缝,从而扩大油气藏的产能。

评价及设计:对油气藏进行详细的测井、物理模型模拟等,确定压裂的适宜性及最佳工艺参数,例如压裂液种类、压裂泵送量、压裂压力等。

压裂泵送:通过压裂泵等设备,将压裂液以高压泵入油气藏中,使岩石裂开。

压裂液选择:压裂液种类多样,常见的有水基粉体系、水基酸体系、油基体系等,其选择要考虑油气藏特征和压裂目标。

控压处理:压裂完成后,需要通过控压处理,稳定油气藏,防止裂缝过早闭合。

压裂技术在油气田开发中得到广泛应用,特别是对低渗透或岩性和天然裂缝发育不良的油气藏,其效果显著,能够有效提高油气产能。

1. 压裂的定义与目的压裂技术是油气井增产及煤层气、页岩气等非常规油气资源高效开发的一种关键工艺。

在地下油气井实施过程之中,由于岩石的密实性和高渗透层间的限制,油气井的生产能力受到自然渗透率的束缚,进而导致产能低下。

第五章:水力压裂技术

第五章:水力压裂技术

2.压裂施工泵注程序设计
油管注入
1)注入方式选择 环空注入
油套混注和套管注入
2)加砂程序确定 (见下表)
原则:在满足泵注参数前 提下,在限压以下尽可能 选择最简单的注入方式。
采用线性加砂程序,即砂液比是以一条直线式增加,可实现较理想的支 撑剖面。采用线性加砂程序裂缝导流能力沿缝长分布更加合理。
3.其他参数确定 1)油层破裂压力的计算(理论计算、小型测试、经验估算)
说明最小周向应力发生在σx的方向上,而最大周向应力 却在σy的方向上。
(3)随着r的增加,周向应力迅速降低,如图4—2(b)所示。 大约在几个圆孔直径之外,即降为原地应力值。
结论:这种应力分布表明,由于圆孔的存在,产生了圆 孔周围的应力集中,孔壁上的应力比远处的大得多,这就是 地层破裂压力大于裂缝延伸压力的重要原因。
图4—7压裂前地层渗流示意图 1—地层,2—井眼,3—污染带
结论:
水力压裂前,由于各种阻力的影响,近井地带的渗透能力较差。
2.压裂后流体从地层流向井底的流动形态
1)拟径向流动阶段
2)地层线性流动阶段
3)双线性流动阶段
4)裂缝线性流动阶段
结论:水力压裂结果,改变了渗流区的渗流方式,获得了双线性流动
模式,提高了近井地带的渗透能力。
Δ P 破 ——破裂压力与压前地层压力之差,MPa。
B——原油体积系数,m3(地下)/m3(地面)。
o——地面原油的密度。
地面排量按 Q排 Q吸 来确定。
3)地面泵压的计算
目的是为了在满足裂缝需要的压力和排量的基础上,充分发挥设备的能 力,减少使用设备的台数。压裂时地面泵压可由下列公式估算:
P 泵 压 P 井 口 P 破 P 摩 阻 P 局 损 P 液 柱

压裂设计规范

压裂设计规范

中国石油天然气集团公司企业标准油水井压裂设计规范Specification for fracturing programor oil&water welll范围本标准规定了压裂井选井选层的依据、地质设计的编写、工艺设计的选择与编写、施工准备、压裂施工、压裂后排液、求产、资料录取、施工总结、压裂施工质量控制和安全与环保的技术要求。

本标准适用于油水井压裂设计。

探井、气井压裂设计亦可参照使用。

2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示标准均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

SY/T 5107-1995水基压裂液性能评价方法SY/T 5108-1997压裂支撑剂性能测试推荐方法SY/T 5289-2000油井压裂效果评价方法SY/T 5836-93 中深井压裂设计施工方法SY/T 6088-94深井压裂工艺作法SY/T 6362-1998石油天然气井下作业健康、安全与环境管理体系指南3选井、选层3.1选井、选层应具备的资料3.1.1地质情况:区块构造,井所处构造的位置,井与周围油、水井的连通情况,井控面积,距断层的距离。

3.1.2钻井资料:钻井液性能、浸泡油层的时间、钻井过程中事故处理、固井情况。

3.1.3井身结构:套管组合,各类套管规格、钢级、壁厚。

3.1.4储层参数和物性:储层岩性、物性、岩石力学参数、地应力剖面参数、地层破裂压力、含油水饱和度、地层天然裂缝的发育情况、储层敏感性分析、气测资料,组合测井资料。

3.1.5射孔资料:射孔方式、射孔井段、射孔弹类型、射孔方位角、孔数、孔密。

3.1.6试油资料:试油方式、油层厚度、地下流体物性、地层压力、地层测试计算的各种参数,油、气、水产量、油气比、含水比。

3.1.7本井历次作业概况:修井的内容和方法及对地层及套管造成的伤害。

3.1.8本井生产动态资料,低产原因分析。

压裂设计及施工工艺分析解析

压裂设计及施工工艺分析解析

xxx学院毕业论文题目压裂设计及施工工艺分析学生xxx指导教师xxx评阅人专业石油工程完毕日期2023年6月7日摘要: 压裂技术是低渗透油田增长单井产量保证油田稳产提高经济效益旳重要措施。

论文详细分析和研究了压裂旳造缝机理;提出了压裂旳选井选层原则、压裂旳工艺技术特点和对应措施;简介了压裂在国内外旳应用现实状况, 结合国内外压裂旳现场应用状况分析了压裂效果及存在旳难题, 从中明确了低渗透油田压裂技术旳发展趋势。

关键字: 压裂;分析;应用目录第一章绪论··························- 3 -1.1水利压裂技术发展现实状况················- 4 -1.2 水力压裂新工艺和新技术·················- 6 -第二章油气井压前分析诊断 ······································································ - 8 -2.1油气井压前分析诊断意义·················- 8 -2.2油气井压前分析诊断旳重要内容··············- 9 -第三章压裂设计技术·····················- 10 -3.1压裂酸化技术概况···················- 10 -3.2压裂酸化设计优化旳考虑················- 11 -3.3压裂酸化材料选择旳考虑················- 12 -3.4最理想旳压裂酸化作业·················- 12 -3.5最理想旳压裂酸化工作液················- 13 -3.6压裂酸化施工中旳参数优化···············- 13 - 第四章结论·························- 15 - 参照文献·····················错误!未定义书签。

压裂基础知识要点

压裂基础知识要点

压裂基础知识一、水力压裂原理(一)基本原理水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产增注的目的。

(二)增产原理1、形成的填砂裂缝的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力;2、由原来渗流阻力大的径向流渗流方式转变为单向流渗流方式,增大了渗流截面,减小了渗流阻力;3、可能沟通独立的透镜体或天然裂缝系统,增加新的油源;4、裂缝穿透井底附近地层的污染堵塞带,解除堵塞,因而可以显著增加产量。

二、压裂材料(一)压裂液在压裂过程中注入的液体统称为压裂液,根据压裂过程中注入井内的压裂液在不同施工阶段所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。

1、根据作用不同分类前置液:它的作用是破裂地层并造成一定几何尺寸的裂缝,以便后面的携砂液进人在温度较高的地层里,它还可起一定的降温作用。

有时为了提高前置液的工作效率,在前置液中还加入一定量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的微隙,减少液体的滤失。

携砂液:它起到将支撑剂带入裂缝中并将支撑剂填在裂缝内预定位置上的作用。

在压裂液的总量中,这部分比例很大。

携砂液和其他压裂液一样,有造缝及冷却地层的作用。

携砂液由于需要携带密度很高的支撑剂,必须使用交联的压裂液(如冻胶等)。

顶替液:顶替液是在加砂程序结束后,用来将携砂液全部替人裂缝中,以提高携砂液的效率和防止井筒沉砂。

2、根据类型不同分类根据压裂液类型不同,可以将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。

(1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。

压裂设计步骤

压裂设计步骤
12
4.设备参数 压裂车单车功率hp=530KW, 最大压力50.0MPa ,压裂车效率0.85,泵
压30.0-40.0MPa时,排量0.85-0.63m3/min.
试进行压裂施工设计分析 此例中既没有给定压裂要达到的增产倍数,也没有给定施工所需的压
裂液和支撑剂用量,因此,既不属于第一类,也不属于第二类,若按第 一类方法设计则应首先确定增产倍数, PC→通过实验或查图求出KfWf→由KfWf查图求出可能的增产增产倍数 。
已知某油井,基本参数如下:
1.油层参数:
(1) 油层深度2500m,
(2) 油层厚度15m,
(3) 每米射孔10孔,孔径10mm, (4) 油层压力26.2MPa, (5) 生产流压15.0MPa, (6)孔隙度 10%, (7) 渗透率2.5×10-3µm2, (8) 地层温度80°C
10
(9) 井径9¾”, (10) 油层套管5½”,油管 2½” , (11)流体压缩系数6×10-3 (MPa)-1, (12) 岩石弹性模量 2.5×104MPa, 泊松比值0.25 (13) 地层油粘度 2×10-3 Pa•S, (14) 井距 400×400 m2.
K f Wf K
40
50 10 2
2.47 10 4 A
2.5
40 2.47 10 4 200 2
0.4
14
取有效缝长为供油半径的50%能获得最理想的增产倍数和较好的经济 效益. 供油半径为井距之半,则缝长为:
La=200×50%=100m 5.确定填砂裂面积 另由测井资料知道,该油层上下无遮挡层,裂缝将在油层上下同时延伸(假 设上下各超越5m),取缝高为25m 缝面积:
4.求加砂量: 按每平方米含砂4.87Kg,每方砂重2650 Kg计算

压裂技术详解

压裂技术详解

压裂技术详解压裂技术详解第一节压裂设备1.压裂车:压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。

压裂车主要由运载、动力、传动、泵体等四大件组成。

压裂泵是压裂车的工作主机。

现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。

2.混砂车:混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车。

它的结构主要由传动、供液和输砂系统三部分组成。

3.平衡车:平衡车的作用是保持封隔器上下的压差在一定的范围内,保护封隔器和套管。

另外,当施工中出现砂堵、砂卡等事故时,平衡车还可以立即进行反洗或反压井,排除故障。

4.仪表车:仪表车的作用是在压裂施工远距离遥控压裂车和混砂车,采集和显示施工参数,进行实时数据采集、施工监测及裂缝模拟并对施工的全过程进行分析。

5.管汇车:管汇车的作用是运输管汇,如;高压三通、四通、单流阀、控制阀等。

第二节压裂施工基本程序1.循环:将压裂液由液罐车打到压裂车再返回液罐车。

循环路线是液罐车-混砂车-压裂泵-高压管汇-液罐车,旨在检查压裂泵上水情况以及管线连接情况。

循环时要逐车逐档进行,以出口排液正常为合格。

2.试压:关死井口总闸,对地面高压管线、井口、连接丝扣、油壬等憋压30-40Mpa,保持2-3min不刺不漏为合格。

3.试挤:试压合格后,打开总闸门,用1-2台压裂车将试剂液挤入油层,直到压力稳定为止。

目的是检查井下管柱及井下工具是否正常,掌握油水的吸水能力。

4.压裂:在试挤压力和排量稳定后,同时启动全部车辆向井内注入压裂液,使井底压力迅速升高,当井底压力超过地层破裂压力时,地层就会形成裂缝。

5.支撑剂:开始混砂比要小,当判断砂子已进入裂缝,相应提高混砂比。

6.替挤:预计加砂量完全加完后,就立即泵入顶替液,把地面管线及井筒中的携砂液全部顶替到裂缝中去,防止余砂乘积井底形成砂卡。

7.反洗或活动管柱顶替后立即反洗井或活动管柱防止余砂残存在井筒封隔器卡距之内,造成砂卡。

压裂设计应该包含的内容

压裂设计应该包含的内容

压裂设计应该包含的内容Hydraulic fracturing, also known as fracking, is a widely used method for extracting oil and gas from underground rock formations. The design of a hydraulic fracturing operation is crucial for its success and efficiency.压裂是一种广泛使用的从地下岩石层中提取石油和天然气的方法。

压裂设计对于操作的成功和效率至关重要。

One key factor to consider in hydraulic fracturing design is the selection of the fracturing fluid. The fluid used in the process must have the right viscosity, proppant suspension capabilities, and compatibility with the reservoir rock.在压裂设计中需要考虑的一个关键因素是压裂液的选择。

该过程中使用的液体必须具有适当的粘度、支撑剂悬浮能力,并且与储层岩石相容。

Another important aspect of hydraulic fracturing design is the determination of the fracturing parameters, such as the injection rate, pressure, and volume. These parameters need to be carefullycalculated based on the characteristics of the reservoir and the desired outcomes of the fracturing operation.压裂设计的另一个重要方面是确定压裂参数,如注入速率、压力和体积。

压裂设计步骤概要

压裂设计步骤概要

压裂设计步骤概要压裂设计是指在油气开发过程中,通过注入高压液体来创造裂缝,以增加裂缝面积和渗透率,从而提高油气的开采效率。

压裂设计步骤包括以下几个方面:1.资料收集与分析:首先需要收集并分析有关地质条件、储层特征、油藏压力、温度等相关资料。

这些资料对压裂设计非常重要,能够帮助工程师了解油气藏的情况,并根据需要制定合适的压裂方案。

2.设计目标确定:根据开采目标和油气田特点,确定压裂设计的主要技术指标,包括裂缝面积、渗透率、注入液体的流量、压力和黏度等。

这些指标会直接影响到裂缝的扩展程度和成效。

3.液体选择:根据地质条件和开采目标,选择合适的压裂液体。

常用的压裂液体有水基液体、油基液体和气体等。

液体的选择需要综合考虑液体的黏度、密度、替代性和环保性等因素。

4.压裂参数计算:根据油气藏的特征和液体性质,计算压裂液体的流量和压力等参数。

同时,还需要考虑液体的推送方式,如常规泵、鼠尾泵和螺杆泵等,以确保压裂液体可以顺利注入油气层中。

5.压裂技术选型:根据地质条件、液体性质和注入方式等因素,选择合适的压裂技术。

常用的压裂技术有水平井压裂、多级压裂和缝间压裂等。

技术的选型需要依据实际情况,并综合考虑其操作难度和成本等因素。

6.裂缝模拟:通过数值模拟或实验室试验等手段,模拟并预测压裂过程中裂缝的扩展和成形情况。

这可以帮助工程师了解压裂方案的有效性,并对裂缝的产生和扩展进行仿真和优化。

7.场地准备与设备调试:根据压裂方案,准备好施工现场,并进行设备的调试和检查。

这包括检查压裂设备的工作状态和保证设备的可靠性,确保其能够按照设计要求完成压裂作业。

8.压裂作业实施:根据压裂设计方案,准备好压裂液体,并按照规定的流量和压力进行注入。

在注入过程中,需要密切关注裂缝的扩展情况和液体的流动状态,并随时调整操作参数以达到设计要求。

9.压裂效果评估:在压裂作业结束后,需要对压裂效果进行评估和监测。

通过裂缝效果监测、产量测试和物资回收等手段,判断压裂的成功与否,并分析压裂过程中可能存在的问题和改进空间。

5.压裂设计依据讲解

5.压裂设计依据讲解

水力压裂优化设计2006年11月26日1压裂设计依据1.1井概况1.2测试解释结果1.3岩石学特征对整个区块进行系统的岩石学研究。

1 -4粘土矿物特征与储层敏感性粘土矿物成分及其分布方式研究,开展储层敏感性评价试验。

1.5储层参数评估压裂设计前,必须了解压裂侯选井的储层地质及构造情况、进行地层测试与评价、结合所在区块位置和井对应关系,以便设计出合理的、可靠的压裂施工参数。

1.5.1地应力地应力包括地应力的大小和方向,地应力在水力压裂设计中十分重要的位置。

剖而上的地应力影响水力裂缝高度,平面上的地应力场影响施工压力和与井网的最优裂缝几何尺寸匹配关系。

目前,所涉及到的区块并没有对地应力分布进行研究,依据我国地应力特点从整体估计地应力状况。

中国大陆板块受到外部两大板块的推挤,即印度板块每年以5cm的速度推挤和太平洋板块每年以数厘米的速度推挤,同时受到西伯利亚和菲律宾板块的约束。

在这样的边界条件下,板块发生变形。

据陈宗基预测,其最大水平主应力迹线将沿图示曲线延伸。

西伯利亚板块图1-1我国地应力分布概图据李方全研究,按行政区域划分:(1)中等构造应力区包折河北、山西、吉林延吉地区、辽宁南部、山东等;(2)低构造应力区包插:江苏、浙江、黑龙江、吉林及内蒙古大部分地区。

水力压裂设计中,没有地应力资料和其它测试资料以判定人工裂缝方位,并结合水平主应力方向与井网部署确定压裂改造规模。

但作为探井压裂,必须考虑到存在的附加风险,应将地应力适当高估。

1.5.2岩石力学性质岩石力学性质主要指储层、盖层和底层的杨氏模量、泊松比和断裂韧性值,它们对裂缝几何尺寸有很大的影响,它可能决定了压裂的成功或失败。

岩石力学性质可通过取心在实验室测试,由于储层岩石的非均质性、地面与储层条件的差异,测试结果与实际情况有一定出入。

现场常用长源距声波测井结合密度测井计算岩石弹性模量和泊松比。

但长源距声波测井得到的是动态值,而在压裂作业中使用静态值更合理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水力压裂优化设计2006年 11月 26日1 压裂设计依据1.1 井概况1.2测试解释结果1.3 岩石学特征对整个区块进行系统的岩石学研究。

1.4 粘土矿物特征与储层敏感性粘土矿物成分及其分布方式研究,开展储层敏感性评价试验。

1.5 储层参数评估压裂设计前,必须了解压裂侯选井的储层地质及构造情况、进行地层测试与评价、结合所在区块位置和井对应关系,以便设计出合理的、可靠的压裂施工参数。

1.5.1 地应力地应力包括地应力的大小和方向,地应力在水力压裂设计中十分重要的位置。

剖面上的地应力影响水力裂缝高度,平面上的地应力场影响施工压力和与井网的最优裂缝几何尺寸匹配关系。

目前,所涉及到的区块并没有对地应力分布进行研究,依据我国地应力特点从整体估计地应力状况。

中国大陆板块受到外部两大板块的推挤,即印度板块每年以5cm的速度推挤和太平洋板块每年以数厘米的速度推挤,同时受到西伯利亚和菲律宾板块的约束。

在这样的边界条件下,板块发生变形。

据陈宗基预测,其最大水平主应力迹线将沿图示曲线延伸。

图1-1 我国地应力分布概图据李方全研究,按行政区域划分:(1)中等构造应力区包括河北、山西、吉林延吉地区、辽宁南部、山东等;(2) 低构造应力区包括:江苏、浙江、黑龙江、吉林及内蒙古大部分地区。

水力压裂设计中,没有地应力资料和其它测试资料以判定人工裂缝方位,并结合水平主应力方向与井网部署确定压裂改造规模。

但作为探井压裂,必须考虑到存在的附加风险,应将地应力适当高估。

1.5.2 岩石力学性质岩石力学性质主要指储层、盖层和底层的杨氏模量、泊松比和断裂韧性值,它们对裂缝几何尺寸有很大的影响, 它可能决定了压裂的成功或失败。

岩石力学性质可通过取心在实验室测试,由于储层岩石的非均质性、地面与储层条件的差异,测试结果与实际情况有一定出入。

现场常用长源距声波测井结合密度测井计算岩石弹性模量和泊松比。

但长源距声波测井得到的是动态值,而在压裂作业中使用静态值更合理。

1.5.3 孔渗饱参数这是最基本的参数要求,可采用岩心常规分析技术或岩心特殊分析技术确定,后者可模拟就地条件,因而分析结果更可靠。

试井分析可以进一步评价地层,确定储层的渗透率、表皮系数、地层压力及其它性质。

1.6 压裂设计主要参数1.6.1 地层压力预测本井压力系数和压力。

1.6.2 地层温度1.6.3 孔渗饱参数1.6.4射孔参数1.6.5 地应力与破裂压力估计取上覆岩石密度,结合该地区地层压力和构造分析,估计井的主应力为:垂向应力,最小水平主应力,最大水平主应力。

水力压裂裂缝为垂直裂缝/水平缝。

Eaton法估计地层破裂压力只适于地层沉积较新、受构造影响较小的连续沉积。

对于地层年代较老、构造影响大的地层不适用。

1.6.6 闭合压力按上覆岩压计算:则Pc = 33MPa;按破裂压力估计作用于水力裂缝中的闭合压力:Pc = 22MPa;按最小水平主应力考虑,Pc = 25Mpa;综合考虑,取闭合压力Pc = 25Mpa。

1.6.7 套管强度采用φ139.7、壁厚9.17mm、N-80套管,抗内压64MPa,能够满足强度要求,考虑采用光油管压裂、且有利于进行压裂压力监测。

1.7 小结水力压裂的核心在于围绕降低对储层的伤害以充分发挥地层潜力。

2 压裂液性能压裂液是水力压裂改造油气层过程中的工作液,起着传递压力、形成和延伸裂缝、携带支撑剂的作用,压裂液性能的好坏直接影响到压裂作业的成败。

因此,压裂液必须满足:(1) 与地层岩石和地下流体的配伍性;(2) 有效地悬浮和输送支撑剂到裂缝深部;(3) 滤失少;(4) 低摩阻;(5) 低残渣、易返排;(6) 良好的热稳定性和抗剪切稳定性。

压裂液选择的基本依据是(1) 与油气藏的适应性;(2) 满足压裂工艺要求,减少油层伤害。

2.1 压裂液类型选择由于压裂地层的温度、渗透率、岩石成分和孔隙压力千差万别以及压裂工艺的不同要求,必须开发研究与之相适应的压裂液体系。

目前,约有70%的压裂采用胍胶和羟丙基胍胶为主的水基压裂液,5%为油基压裂液,25%采用增能气体。

水基压裂液水基压裂液成本低、水头高、风险小、易使用,是国内外目前使用最广泛的压裂液。

除少数低压、油湿、强水敏地层外,它适用于多数油气层和不同规模的压裂改造。

主要问题是在水敏地层引起粘土膨胀和迁移,在井眼附近引起油水乳化、未破胶聚合物、不相容残渣和添加剂引起支撑裂缝带渗透率损失。

油基压裂液矿场原油或炼厂粘性成品油均可用于配制油基压裂液,但性能较差,故多用稠化油,其基液为原油、汽油、柴油、煤油及凝析油。

目前主要采用的稠化剂是铝磷酸脂与碱的反应产物。

如铝酸钠、脂和碱的反应是一种络合反应,依次生成某种溶液,增加了柴油或中高比重原油体系的粘度,并提高了温度稳定性,可用于井底温度达127℃的油井。

油基压裂液的最大特点是避免水敏性地层由于水敏引起的水基压裂液伤害,而且稠化油压裂液遇地层水自动破乳。

但是油基压裂液易燃且成本高;流动摩阻一般高于延迟交联水基压裂液体系;而且高温条件下温度稳定性不及延迟交联水基体系;技术和质量控制要求高。

因此,油基压裂液主要用于不太深的水敏性油气藏改造。

乳化压裂液乳化压裂液是用表面活性剂稳定的两种非混相的高粘分散体系。

水相有水或盐水、聚合物稠化水、水冻胶和酸类及醇类,油相有现场原油、成品油和凝析油。

最常用的是聚乳状液,为水相连续,油相分散的单相体系。

水相加入聚合物(标准水基液1/3—1/6)稠化可降低摩阻,提高其稳定性。

典型组成是:1/3稠化盐水(外相)+2/3油(内相)+成胶剂、表面活性剂。

内相百分比越大,粘度越高,内相浓度低于50%则粘度太低,高于80%则乳化液不稳定或粘度太高。

乳化压裂液的主要特点是:乳化剂被岩石吸附而破乳,故排液快,对地层污染小;摩阻特性介于线性胶和交联液之间;温度增加,聚状乳化压裂液变稀,限制了在高温井的应用;而且成本高(除非油相能有效回收)。

泡沫压裂液泡沫压裂液是气体分散于液体的分散体系,典型组成是:水相(稠化水、水冻胶、酸液、醇或油)+气相(CO2、N2、空气) + 起泡剂(多为非离子型表面活性剂)。

泡沫压裂液的粘度稳定性取决于泡沫干度(泡沫质量),典型值为70—80%。

泡沫压裂液的主要特点是:泡沫液滤失系数低,液体滤失量小,浸入深度浅,返排速度快,对地层伤害小;摩阻损失小(比清水低40—60%);压裂液效率高,在相同液量下裂缝穿透深度大。

因此,泡沫压裂液尤其适于低渗低压水敏性油气藏。

但是泡沫压裂液温度稳定性差;而且粘度不够高,难以适应高砂比要求。

综合前面所述,选择压裂液要从地层条件出发,根据欲压生产层段及流体的物理、化学性质决定,压裂液的携砂能力和提供良好裂缝导流能力是选择压裂液的关键。

地层渗透性决定了支撑裂缝尺寸,也影响到压裂液用量与聚合物用量。

由于压裂液费用通常占压裂总成本的一半左右,使用恰当性能的压裂液是提高压裂经济性的重要途径。

选择压裂液时应考虑下述原则。

(1) 富含粘土的水敏地层,优先选用油基压裂液,或油水乳化压裂液,或泡沫压裂液(浅井),也可以结合粘土稳定剂使用水基压裂液。

(2) 低渗低压低孔隙地层,压裂液应有残渣低、滤失少、返排强的特点;采用粘土稳定剂抑制粘土水化和微粒运移;加入表面活性剂降低界面张力,加入破乳剂或/和破胶剂利于返排。

(3) 高温井的压裂液具有良好的热稳定性、抗剪切稳定性和延迟交联特性,保证压裂液的高粘度和携砂特性。

2.2 压裂液体系压裂液体系必须储层特点相适应性,储层压力系数低(0.92)、油藏温度较低(约59o C)、粘土含量主要为伊利石和蒙脱石、没有天然裂缝的低渗透油藏。

鉴于探井需偏高估计储层破裂压力,按0.025MPa/m计。

最好采用乳化压裂液,但限于目前时间关系,也采用(延迟)交联的胍胶水基冻胶压裂液,并根据地层条件需要而加入各种添加剂,如KCl 粘土稳定剂、杀菌剂、表面活性剂、催化剂、杀菌剂等。

并考察在压裂液体系中添加剂的性能指标变化和温度稳定性。

2.2.1稠化剂植物胶是水基压裂液的主要稠化剂,占使用量的90%以上。

目前国内广泛使用的植物胶稠化剂是瓜尔胶和香豆胶。

国产植物胶稠化剂和美国改性瓜尔胶性能对比还存在较大差距,但与其它植物胶相比,羟丙基瓜尔胶和香豆胶性能较好,优于田菁胶、皂仁胶及其改性产品等。

改性瓜尔胶和香豆胶均具有较低摩阻特性,是良好的减阻剂,通过延迟交联作用,可形成低摩阻的压裂流体。

国内目前生产羟丙基胍胶的厂家有山东东营、上海昆山和南充正达等三家公司。

分别对三家公司的羟丙基胍胶HPG进行了取样和检测。

通过实验寻找到残渣相对较低、粘度相对较高的羟丙基胍胶,以保证压裂液有足够的悬砂能力和低伤害特性。

表2-1是五种稠化剂在不同浓度下的粘度及水不溶残渣量比较,评价实验严格按标准SY/T5764-1995 、SY/T6074-94执行。

表2-1 不同植物胶稠化剂主要性能对比选择稠化剂的原则是增粘性能好、水不溶物低、降阻效果明显、用量少。

在考察稠化剂性能时,水不溶物残渣含量显得尤为重要,基于对国内几种常用植物胶稠化剂的水不溶物和增粘能力实验评估结果,南充正达的羟丙基胍胶在各种浓度下的粘度都相对高一些,而水不溶残渣相对也低一些。

故选用南充正达羟丙基胍胶为本压裂液配方的稠化剂。

2.2.2 交联剂交联剂是通过交联离子将植物胶分子链上的活性基团以化学键连结起来,形成具有粘弹性的三维网状冻胶。

不同的交联剂具有不同的延迟交联特性、耐温耐剪切性能和破胶降解性能,国内油田常用以有机硼为代表的交联剂。

室内实验表明,SW-3交联剂针对该储层可以克服对支撑裂缝导流能力伤害较重、对机械剪切较敏感和粘弹性难以恢复等缺点。

2.2.3 表面活性剂(助排剂)使用表面活性剂即助排剂,改善气藏储层的润湿性,降低毛细管阻力,消除“水锁”效应和油水乳化的“贾敏效应”是改善压裂液助排性能的重要内容,这也是大塔地区沙一储层成功改造的关键之一。

常规的助排剂是通过降低表面张力或油水界面张力和增大接触角而减少毛管力,达到助排效果的。

表2-给出了五种助排剂的表面张力测试结果,5种助排剂的表面张力都在25~33mN/m之间。

可见SW-5助排剂表现出良好的综合性能,即较低的表面张力和界面张力,较高的接触角,还具有良好的助排效果。

表4为几种助排剂的表面张力2.2.4 破胶剂破胶性能是影响压裂支撑裂缝导流能力的关键因素。

破胶剂的选择与使用是压裂液添加剂优选极其重要的环节。

保持压裂液一定的粘度,以满足压裂施工的需要,与压后彻底破胶,减少对储层的损害是一对尖锐的矛盾。

尤其对于低温井,压裂液破胶是较困难的问题,实验筛选采用过硫酸酸盐加催化剂较好地解决了该难题,不但破胶性能好,而且大大节约了成本。

其用量根据压裂施工过程中,温度场的变化进行优化加入。

相关文档
最新文档