水电站的水锤及调节保证计算

合集下载

水电站的水锤

水电站的水锤

第十四章水电站的水锤第三节水锤计算的解析法一、直接水锤和间接水锤(一)直接水锤若水轮机开度的调节时间≤ 2L/c,则在水库反射波到达水管末端之前开度变化已经结束,水管末端只受因开度变化直接引起的水锤波的影响,这种现象习惯上称为直接水锤。

由于水管末端未受水库反射波的影响,故基本方程式(14-5)和式(14-6)中的函数f(t-x/c),用以上二式消去F(t+x/c)的直接水锤公式从式(14-13)可以看出,当开度关闭时,管内流速减小,括号内为负值,△H为正,发生正水锤,反之,当开启时,△H为负,发生负水锤。

直接水锤的压强界与流速变(V -Vo )和水管特性(反映在波速c中)有关,而与开度的变化速度、变化规律和水管长度无关。

若管道中的初始流速Vo=5m/s,波速c=1000m/s,在丢弃全负荷时若发生直接水锤,△H 将达510m,因此在水电站中直接水锤是应当绝对避免的。

(二)间接水锤若水轮机开度的调节时间>2L/c,则在开度变化终了之前水管进口的反射波已经到达水管末端,此反射波在水管末端将发生再反射,因此水管末端的水锤压强是由向上游传播的水锤波F和反回水管本端的水锤波f叠加的结果,这种水锤现象习惯上称为间接水锤。

显然,间接水锤的计算要比直接水锤复杂得多。

间接水锤是水电站中经常发生的水锤现象,也是我们要研究的主要对象。

二、水锤的连锁方程利用基本方程求解水锤问题,必须利用已知的初始条件和边界条件。

初始条件是水轮机开度未发生变化时的情况,此时管道中为恒定流,压强和流速都是已知的。

对于图14-1的简单管,边界条件是利用A、B两点。

B点的压强为常数,令ζ=△H/Ho,则=0,水锤波在B点发生异号等值反射。

A点的边界条件较为复杂,决定于节流机构的出流规律。

从《水力学》中我们知道水斗式水轮机喷嘴的边界条件可表达为式中v-管道中的相对流速,V=V/Vmax., V为管道中任意时刻的流速,Vmax为最大流速;τ-喷嘴的相对开度,, w为喷嘴任意时刻的过水面积,为最大面积;ζ-水锤相对压强,ζ=(H-Ho)/Ho,H为管末任意时刻的压力水头,Ho为初始水头。

青羊沟水电站水锤及调节保证计算精选全文

青羊沟水电站水锤及调节保证计算精选全文

可编辑修改精选全文完整版青羊沟水电站水锤及调节保证计算1概述青羊沟水电站工程位于甘肃省酒泉市肃北蒙古族自治县鱼儿红乡境内的疏勒河干流上,为甘肃省境内疏勒河干流昌马水库以上河段水电开发规划中的梯级电站之一。

电站厂房距玉门镇约109km,距玉门市昌马乡38km,距肃北县鱼儿红乡政府约52km,对外交通便利。

电站采用有压引水式开发方式,是以发电为主的日调节中型水电站工程,电站额定水头116m。

主厂房装设2台单机容量为23MW(以下称大机)和1台单机容量为10MW(以下称小机)共3台混流式水轮发电机组,并要求大、小机在运行水头介于116m至133.42m范围内能超额定出力运行,其超额定出力范围为10%(机组具有10%的超发能力),即大机为26.356 MW、小机为11.583MW。

电站保证出力为10.23MW,多年平均年发电量为2.131亿kW.h,装机年利用小时数为3805h。

电站引水发电系统由进水口、引水发电隧洞、调压井、压力管道主管、压力管道支管组成,水流通过水轮发电机组后由尾水渠流入河道。

引水发电隧洞长7177.59m,设计流量55.3m3/s,隧洞为圆形有压洞,纵坡1/265.837,洞径D=4.6m,设计流速3.33m/s。

调压井布置于副厂房上游侧,调压井型式为阻抗式调压井,竖井内径10.0m,阻抗孔直径1.98m,底部高程2286.00m,顶部高程2335.50m。

调压井底部垂直接压力管道主管,压力主管由垂直管、弯管和水平管组成,其中垂直管长85.5m,弯管长18.85m(R=12m,a=900),水平管长205.65m,主管总长310m,主管内径4.0m(暂定),设计流速4.40m/s。

压力主管末端3条支管为“卜”型布置,1#大机支管长31m,内径2.5m,2#大机支管长24m,内径2.5m,3#小机支管长30m,内径1.6m。

厂内安装2台23MW和1台10MW共3台混流式水轮发电机组,水轮机型号分别为HLA685-LJ-177和HLA685-LJ-122;单机引用流量22.65m3/s和10m3/s,额定水头116m。

水电站的水锤与调节保证计算

水电站的水锤与调节保证计算

水管进口
L 压
力 管
水轮机 Hg 主阀

水锤前稳定工况(恒定流):
平均流速: V 0
电站静水头: H g
管内水压力: P 0
讨论阀门关闭时的水锤
第一节 水锤现象及传播速度
Hg
Hg
二、水锤及其传播过程 ❖ 0~L/a: 升压波
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
❖ 应满足的前提条件:水管的材料、管壁厚度、直径 沿管长不变。
❖ 水击连锁方程用相对值来表示为:
tAtD t2(vtAvtD t)
tD tA t 2(v tD v tA t)
二、水锤的连锁方程
D
Lat
❖ 若已知断面A在时刻 t 的压力为HtA,流速为VtA ,两个通 解消去 f 后,得:
H tAH gc g(V tAV 0)2F(ta x)
❖ 同理可写出时刻Δt=L/a后D点的压力和流速的关系:
H tD t H g c g (V tD t V 0 ) 2 F (t tx aL )
D0 —管 道 内 径m, E —管 道 的 材 料 弹 性 (材不料同, 取 值 不 同 ) t —管 壁 厚 度m,
四、研究水锤的目的
(一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管空蚀,水轮机运行
时产生振动;出现严重的抬机现象 (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算的目的
水锤和机组转速变化的计算,一般称为调节保证 计算。

水电站调节保证计算

水电站调节保证计算

⽔电站调节保证计算第五章⽔电站调节保证计算5.1调节保证计算的⽬的、任务(1)调保计算⽬的、任务在⽔电站运⾏中,负荷与机组出⼒达到平衡使机组转速稳定。

但由于各种突发事故,造成机组突然与系统解列,机组甩掉部分,或者全部负荷。

在甩负荷时,由于导叶迅速的关闭,⽔轮机的流量急剧变化,因此在⽔轮机过⽔系统内产⽣⽔击。

调保计算就是在电站初步设计阶段计算出上述过程中的最⼤转速上升及最⼤压⼒上升值。

另外,调保计算的⽬的是使压⼒升⾼和转速升⾼不超过允许值,确保电站⽔机系统安全稳定运⾏。

调节保证计算⼀般应对两个⼯况进⾏,即计算设计⽔头和最⼤⽔头甩全负荷的压⼒上升和速率上升,并取其较⼤者。

⼀般在前者发⽣最⼤速率升⾼,在后者发⽣最⼤压⼒升⾼。

(2)灯泡贯流式机组过渡过程的特点灯泡⽔轮发电机组的调节过渡过程与常规机组相⽐有⼀些不同,⼀般轴流机组惯性⼒矩主要取决于发电机的飞轮⼒矩,对于灯泡机组来说,由于受灯泡⽐的限制,发电机直径约为⽴式机组的3/5,其惯性⼒矩仅相当于⽴式机组的1/10左右,因⽽,⽔轮机惯性和⽔体附加惯性⼒矩所占的⽐重应⼤⼤增加,⽽⽔体附加惯性⼒矩则随叶⽚安放⾓的增加⽽增加,所以对灯泡机组的过渡过程分析必须考虑其影响。

(3)调保计算标准根据/51862004DL T -《⽔⼒发电⼚机电设计规范》,⽔轮机在机组甩负荷时的最⼤转速升⾼率max β宜⼩于60%;导⽔叶前最⼤压⼒上升率宜为70%100%~。

根据有关已建电站试验证明,采⽤导叶分段关闭规律,8m 尾⽔管的真空度不⼤于⽔柱。

(4)已知计算参数装机容量:418.5?MW⽔头参数:max 6.8H =m , 5.82Hav =m , 5.3r H =m ,5.1min =H m ⽔轮机参数:⽔轮机型号:()1102730GZ WP --,68.2/min r n r =,3398.6/r Q m s =,尾⽔管参数:尾⽔管进⼝直径3==7.1D d (m)尾⽔管直锥段长度:211=2.0=2.07.3=14.6L D ?(m)尾⽔管直锥段直径:41=1.428=1.4287.3=10.42D D ?(m)尾⽔管混合过渡段长度:221=2.7=2.77.3=19.71L D ?(m)尾⽔管混合过渡段⾼度:1h=1.453=1.4537.3=10.61D ?(m) 尾⽔管混合过渡段宽度:1B=2.04=2.047.3=14.892D ?(m)机组转动部分飞轮⼒矩()3t m ?:查《灯泡贯流式⽔电站》155P :2222GD GD D D G G =++⽔体附加发电机⽔轮机发电机飞轮⼒矩23i t KD l GD =发电机式中:K -经验系数, 查《灯泡贯流式⽔电站》126P ,表6-10:68.2/min r n r =,=4.7~5.1K ,取=5K 。

第九章 水电站的水锤与调节保证计算

第九章 水电站的水锤与调节保证计算

水电站事故引起的负荷变化。水电站可能会各种各 样的事故,可能要求水电站丢弃全部或部分负荷。 这是水电站水锤计算的控制条件。
(二)水电站的不稳定工况表现形式
1. 引起机组转速的较大变化
丢弃负荷:剩余能量→机组转动部分动能→机组 转速升高 增加负荷:与丢弃负荷相反。 2.在有压引水管道中发生“水锤”现象
F 1 r f 1
根据水锤常数和任意时刻的开度,可利用上式确定 阀门在任意时刻的反射系数。 当阀门完全关闭时,τ=0,r=1,阀门处发生同号等值 反射。
上式对反击式水轮机是近似的。
3、水锤波在管径变化处的反射
根据水锤波的基本方 程,推导出管径变化 处的反射系数为:
到阀门之前开度变化已经结束,阀门处只受开
度变化直接引起的水锤波的影响——称为直接
水锤
计算直接水锤压力的公式: c
H H H 0 Biblioteka g(V V0 )
c H H H 0 (V V0 ) g
(1) 当阀门关闭时,管内流速减小,V-V0<0为负值,
△H为正,产生正水锤;反之当开启阀门时,即
A t
同理可写出时刻Δt=L/c后B点的压力和流速的关系:
H
B t t
c B xL H 0 (Vt t V0 ) 2 F (t t ) g c
由于F[(t+Δt)-(x+L)/c]=F[t-x/c],由上述二式得
H
同理:
B t t
c B H Vt t Vt A g
导时关闭时,在压力管道和蜗壳中将引起压力上 升,尾水管中则造成压力下降。 导叶开启时则相反。
3.在无压引水系统中产生水位波动现象。

水电站的水击及调节保证计算

水电站的水击及调节保证计算

第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水击压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。

第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

第九章-水电站的水锤及调节保证计算

第九章-水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水锤压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。

第二节 水锤现象及其传播速度一、 水锤现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。

水电站调节保证计算

水电站调节保证计算

水电站调节保证计算水电站是利用水能将水能转换成电能的发电设施,其主要特点是具备调节能力。

水电站的主要调节措施是通过水位、发电量、出水量等方式对电力系统的负荷需求进行调节。

水电站的调节保证措施不仅涉及到电力调度计划的合理性,还需要充分考虑潮汐、降雨等自然因素。

对于水电站调节保证计算方案,需要从以下几个方面进行考虑:调节保证能力计算水电站的调节保证能力是指水电站在一定的时段内,保证根据调度计划,满足各种突发情况和电力系统的电力负荷需求的能力。

水电站调节保证能力计算的主要任务是确定水位调节能力,发电量调节能力以及出水量调节能力等。

按照国家水电站调度管理规定,应定期对水电站的调节保证能力进行检验和评定,以确保其满足电力系统对其的需要。

调节保证方案审核调节保证方案是指,在确定水电站调节保证能力后,编制的针对具体水文条件及电力负荷的调节保证方案。

在编制调节保证方案时,需要充分考虑自然条件变化及电力负荷变化等影响因素,制定出全面、可操作性强的调节保证方案。

该方案需经过审核、调度验收后才可执行。

调节保证管理调节保证管理是指对水电站日常运行的调节保证计划的监督和管理。

在水电站日常运行中,管理人员需要密切关注河流水文变化以及电力负荷变化等信息,及时调整调节保证计划,保证水电站运行正常、稳定。

管理人员还需要对水电站的调度计划进行跟踪和分析,及时对调度计划进行调整和改型,确保在保证调节方案准确性的前提下,最大限度地提高水电站发电效率。

调节保证监测调节保证监测是指对水电站进行常态化的水文、气象、水位、发电量、出水量等运行指标的监测。

该监测能够及时发现水电站发电过程中出现的问题,以及独立检验水电站调节保证能力计算结果的准确性。

对于监测结果不良的问题,管理人员需要及时进行恰当的调整。

水电站是一个拥有调节能力的重要发电设施,是电力系统的重要组成部分。

水电站为了保证系统运行稳定和可靠,需要对其进行健全完善的调节保证管理。

在管理中,涉及到调节保证能力计算、调节保证方案审核、调节保证管理、调节保证监测等多个环节的组合,需要实现各环节的协调、衔接和协作,保证水电站的稳定运行。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低.(2) 在有压引水管道中发生“水锤"现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算.调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

论水电站引水系统中调节保证计算

论水电站引水系统中调节保证计算

论水电站中引水系统的调节保证计算对于水电站引水系统,利用美国垦务局等经验公式对引水管道经济直径进行分析使相应调保计算成果满足要求,为电站安全运行提供可靠的依据。

关键词:水电站引水系统设计调节保证计算5.水锤及调节保证计算5.1调节保证计算的任务和标准水锤及调节保证计算,是水电站设计的重要内容之一。

它不仅影响压力管道、机组、蜗壳等过流部件的强度,而且关系到电站运行的安全和机组运行的稳定性。

调节保证计算是机组负荷在较大范围内突然变化的情况下,考虑到调速器的影响以进行限制水锤压力和机组装机变化值的计算,解决水力惯性、机组惯性和调整性能三者之间的矛盾,以期达到电能质量最佳、机组运行经济合理、安全可靠的目的。

5.1.1水锤及调节保证计算的目的和任务1、水锤计算的目的决定管道内的最大内水压力,作为设计或校核压力管道、蜗壳和水轮机强度的依据;决定管道内最小内水压力,作为管线布置,防止压力管道中产生负压和校核尾水管内真空度的依据;研究水锤与机组运行的关系。

2、调节保证计算的目的通过调节保证计算和分析,正确合理地解决导叶启闭时间、水锤压力和机组转速上伸值三者之间的关系,最后选择适当的导叶启闭时间和方式,水锤压力和转速上伸值均在经济合理的允许范围内。

3、水锤及调节保证计算的任务根据水电站压力引水系统和水轮发电机组的特性,合理选择调速器的调节时间调节规律,进行水锤压力和机组转速变化值的计算,使二者均在允许内,并尽可能地降低水锤压力。

5.1.2 调节保证计算的标准调节保证计算标准,是指水锤压力和转速变化在技术经济上合理的允许值。

标准在规范中有所规定,但这是在一定时期和一定技术水平和经济条件下制定的,用时应结合具体情况加以确定。

1、水锤压力的计算标准甩全负荷时,允许的相对压力升高max ξ一般可按以下不同情况考虑:表5-1: max ξ取值表当设置减压阀或折流板时,max ξ=20%对于增加负荷时的负水锤,以压力水管顶部任何一点不出现负压并保持有2m 以上的余压为限。

第九章 水锤及调节保证计算的解析方法

第九章 水锤及调节保证计算的解析方法

(2)有效关闭时间 s:为简化计算,常取阀门的 有效关闭时间T 为简化计算, 有效关闭时间 关闭过程的直线段加以适当延长,即得到T 关闭过程的直线段加以适当延长,即得到 s。 Ts/Tz一般为 一般为0.6-0.95,缺乏资料时可取 。 ,缺乏资料时可取0.7。 Ts可用函数 i =f(t)表示。在直线规律关闭的情 可用函数τ 表示。 表示 况下,一个相t 况下,一个相 r=2L/a的开度变化为: 的开度变化为
aV0 管道特 ρ= 2gH 0 性系数
H0、V0为初始恒定流时水头 和流速; 为水锤波速 为水锤波速ห้องสมุดไป่ตู้ 和流速;a为水锤波速。 管道中相 对流速
∆H H − H 0 水锤压力 v = V ξt = = V0 H0 H0 相对值
(二)水锤压力计算公式 二 水锤压力计算公式 1、水轮机喷嘴孔口的相对开度,即阀门的相 、水轮机喷嘴孔口的相对开度, 对开度τ 对开度 i :
9.2简单管的水锤计算 9.2简单管的水锤计算
一、计算水锤压力的一般公式 水锤压力产生于阀门处, 水锤压力产生于阀门处,从上游反射回来的降 压波也是最后才达到阀门,因此最大水锤压力 压波也是最后才达到阀门,
总是发生在紧邻阀门的断面上。 总是发生在紧邻阀门的断面上。
(一)水锤连锁方程的相对值表达式 一 水锤连锁方程的相对值表达式 用相对值表示: 相对值表示: 表示 逆向波时 (9-5): A : B A B ξ t − ξ t + ∆t = 2 ρ (vt − vt + ∆t ) (向水库方向 向水库方向) 向水库方向 顺向波时 (9-6): B : A B A ξ t − ξ t + ∆t = −2 ρ (vt − vt + ∆t ) (向阀门方向 向阀门方向) 向阀门方向

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低.(2) 在有压引水管道中发生“水锤"现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算.调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水击及调保计算

水击及调保计算
态。该过程在水库处将降压波反射为升压波,
变WER ENGINEERING
水击波在管道中传播一个来回的时间tr=2L/a称为
“相”,两个相为一个周期T。
若阀门突然开启,则发生的情况与上述过程相反。 实际上水力摩阻损失总是存在的,水体与管壁也非完全
二、水击现象
水击现象
流速(流量)的突然变化,导致水流动量发生变
化,根据冲量定理将产生对水流的冲量,导致内 水压强急剧升高或降低。把该非恒定流现象称为 水击(水锤)。
水击所产生的压强升高(正水击)或降低(负水
击),都会对水电站运行带来不利影响。若发生 正水击,可能导致压力水管的爆裂;尾水管中压 降过大,会造成水轮机和尾水管的严重汽蚀,使 水轮机运转时产生巨大振动。压强的上下波动, 会影响机组的稳定运行。
水击波在水库处发生反射,入射波与反射波数 值相同,符号相反,升压波反射为降压波,水 流从阀门流向水库。
水电站
HYDROPOWER ENGINEERING
第三过程(
2L/a~3L/a):t=2L/a时刻水击
波传至阀门处,阀门关闭,流速由-v0变为0,
压强下降,由H0 降至H0-ΔH,水体密度减小,
机组实际运行时,电力系统负荷常发生较大范围的变
化,水轮机出力与负荷失去平衡,转速发生变化,而 电网频率要求基本保持恒定,则可通过调速器改变水 轮机流量,使水轮机出力适应负荷变化,来满足电网 频率恒定要求。
水 电 站
HYDROPOWER ENGINEERING
在历时很短的调节过程
中,机组转速与有压输 水系统中的内水压强会 引起急剧变化。减小或 增加负荷时,转速增大 或减小;调节使得流量 减小或增大,引起有压 输水系统中的内水压强 上升或下降,产生水击。

水锤压力计算

水锤压力计算

水锤压力计算
(1)根据小水电运行情况,水锤压力计算按以下两种工况计算:
a. 水库正常蓄水位 2180.0m 时,机组突然丢弃全部负荷。

b.小水电运行限制水位 2178.0m 时,机组由空转至满负荷运行。

(2)水锤计算基本公式:
a. 钢管中水锤波传播速度α值:
式中 1425—声波在水中的传播速度(m/s );
ε—水的弹性模量,ε=2.1×104(kg/cm 2);
E —管壁的弹性模量,E 钢=2.1×106(kg/cm 2);
D —压力管道的内径(mm );
δ—管壁厚度(mm )。

b. 水锤波在水管中传播来回一次所需时间:
式中 L —压力钢管总长度(m );
α—水锤波传播速度(m/s )。

c. 压力水管特性常数:
式中 ρ、σ—钢管特性常数;
H —水电站的静水头(m );
V —钢管中水流流速 (m/s );
Ts —导叶关闭时间 Ts=5s 。

(3) 经过计算判断得压力钢管内水锤为间接水锤,最大值为极限水锤,水锤压力沿程分布计算成果见表1.3.1。

gH
V
2αρ=gHTs
LV
=σδ
εαD
E +=11425
α
L
t r 2=
压力钢管水锤压力计算成果表
(4)水锤压力沿程分布曲线见附图1.1.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章水电站的水锤及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水锤压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。

第二节 水锤现象及其传播速度一、 水锤现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。

2.水锤特性(1) 水锤压力实际上是由于水流速度变化而产生的惯性力。

当突然启闭阀门时,由于启闭时间短、流量变化快,因而水锤压力往往较大,而且整个变化过程是较快的。

(2) 由于管壁具有弹性和水体的压缩性,水锤压力将以弹性波的形式沿管道传播。

注:水锤波在管中传播一个来回的时间t r =2L /a ,称之为“相”,两个相为一个周期2t r =T(3) 水锤波同其它弹性波一样,在波的传播过程中,在外部条件发生变化处(即边界处)均要发生波的反射。

其反射特性(指反射波的数值及方向)决定于边界处的物理特性。

二、水锤波的传播速度水锤波速与管壁材料、厚度、管径、管道的支承方式以及水的弹性模量等有关,其计算公式为:)/(114351s m E DK EDK gKa δδγ+=+=式中 K ——水的体积弹性模量,一般为2.06×103MPa ;E ——管壁材料的纵向弹性模数(钢村E =2.06×105MPa ,铸铁E =0.98×105MPa ,混凝土E =2.06×104MPa);γKg为声波在水中的传播速度,随温度和压力的升高而加大,一般取1435m/s 。

一般情况下,露天钢管的水锤波速可近似地取为1000m/s ,埋藏式钢管可近似地取为1200m/s 。

钢筋混凝土管可取900m/s~1200m/s 。

第三节 水锤基本方程及边界条件基本方程+相应的边界条件——用解析方法和数值计算方法求解水锤值及其变化过程。

一、水锤基本方程(一) 基本方程对有压管道而言,不论在何种情况下都应满足水流的运动方程及连续方程。

当水管材料、厚度及直径沿管度不变,且不计及水力摩阻损失时,其简化方程为(取阀门端为原点,x 向上游为正)t Vx H g∂∂=∂∂ x Vg a t H ∂∂=∂∂2上述方程为一组双曲线型偏微分方程, 其通解为:)()(0a x t f a x t F H H H ++-=-=∆ ⎥⎦⎤⎢⎣⎡+---=-=∆)()(0a x t f a x t F ag V V V 注:F 和f 为两个波函数,其量纲与水头H 量纲相同,故可视为压力波。

任何断面任何时刻的水锤压力值等于两个方向相反的压力波之和;而流速值为两个压力波之差再乘以-g/a 。

)(a x t F -为逆水流方向移动的压力波,称为逆流波;)(a xt f +为顺水流方向移动的压力波,称为顺流波。

(二) 水锤计算的连锁方程水锤连锁方程给出了水锤波在一段时间内通过两个断面的压力和流速的关系。

前提应满足水管的材料、管壁厚度、直径沿管长不变:()A t Bt t At B t t V V g a H H -=-∆+∆+ ()B t A t t Bt A t t V V g a H H --=-∆+∆+用相对值来表示为)(2B t t A t B t t A t v v ∆+∆+-=-ρξξ)(2A t t B t A t t B t v v ∆+∆+--=-ρξξ式中02gH aV =ρ为管道特性系数;0H H H H H i -=∆=ξ为水锤压力相对值;0V Vv =为管道相对流速。

二、水锤的边界条件应用水锤基本方程计算水电站压力管道中水锤时,首先要确定其起始条件和边界条件。

(一) 起始条件当管道中水流由恒定流变为非恒定流时,把恒定流的终了时刻看作为非恒定流的开始时刻。

即当t=0时,管道中任何断面的流速V =V 0;如不计水头损失,水头H=H 0。

(二) 边界条件1.管道进口管道进口处一般指水库或压力前池。

水库和压力前池水位变化比较慢,在水锤计算中不计风浪的影响,一般认为水库和前池水位为不变的常数是足够精确的。

即进口边界边界条件为: H p =H 0 2.分岔管分岔管的水头应该相同, H p1=H p2=H p3=…=H p 分岔处的流量应符合连续条件, ΣQ =0 3.分岔管的封闭端在不稳定流的过程中,当某一机组的导叶全部关闭,或某一机组尚未装机,而岔管端部用闷头封死,其边界条件为:Q p =04.调压室把调压室作为断面较大的分岔管,其边界条件为: 调压室内有自由水面,而隧洞、调压室与压力管道的交点和分岔管相同。

5.水轮机水电站压力管道出口边界为水轮机,水轮机分冲击式和反击式,两种型式的水轮机对水锤的影响不同。

(1) 冲击式水轮机冲击式水轮机的喷嘴是一个带针阀的孔口,符合孔口出流规律,水轮机转速变化对孔口出流没有影响。

阀门处A 点的边界条件:Ai i A i A i q v ξτ+==1式中:max ωωτi i =——称为相对开度;ωmax ——喷嘴全开时断面积0/H H i ∆=ξ ——为任意时刻水锤压力相对值。

Ai A i ii q v FV FV Q Q ===maxmax ——为任意时刻相对流速及相对流量。

(2) 反击式水轮机反击式水轮机的过水能力与水头H 、导叶开度a 和转速n 有关。

即 Q=Q(H,a,n) 反击式水轮机与冲击式水轮机的不同之处是要考虑水轮机转速变化的影响,因此增加了问题的复杂性。

为了简化计算,常假定压力管道出口边界条件为冲击式水轮机,然后再加以修正。

第四节 简单管水锤的解析计算简单管是指压力管道的管径、管壁材料和厚度沿管长不变。

解析法的要点是采用数学解析的方法,引入一些符合实际的假定,直接建立最大水锤压力的计算公式。

简单易行,物理概念清楚,可直接得出结果。

一、直接水锤和间接水锤水锤有两种类型:直接水锤和间接水锤。

(一) 直接水锤当水轮机开度的调节时间T S ≤2L /a 时,由水库处异号反射回来的水锤波尚未到达阀门之前,阀门开度变化已经终止,水管末端的水锤压力只受开度变化直接引起的水锤波的影响,这种水锤称为直接水锤。

)(00V V g aH H H --=-=∆注:水锤波在管道中传播一个来回的时间为2L /a ,称为“相”。

(1) 当阀门关闭时,管内流速减小,V -V 0<0为负值,△H 为正,产生正水锤;反之当开启阀门时,即V -V 0>0,△H 为负,产生负水锤。

(2) 直接水锤压力值的大小只与流速变化(V -V 0)的绝对值和水管的水锤波速a 有关,而与开度变化的速度、变化规律和水管长度无关。

当管道中起始流速V 0=4m/s ,a =1000m/s ,终了流速V =0时,压力升高值为:7.40781.9/)40(1000)(0=--=--=∆V V g aH m ,因此在水电站中应当避免发生直接水锤。

(二) 间接水锤若水轮机开度的调节时间T S >2L /a 时,当阀门关闭过程结束前,水库异号反射回来的降压波已经到达阀门处,因此水管末端的水锤压力是由向上游传播的水锤波F 和反射回来的水锤波f 叠加的结果,这种水锤称为间接水锤。

降压波对阀门处产生的升压波起着抵消作用,使此处的水锤值小于直接水锤值。

间接水锤是水电站中经常发生的水锤现象,也是要研究的主要对象。

二、 计算水管末端各相水锤压力的公式工程中最关心的是最大水锤压力。

由于水锤压力产生于阀门处,从上游反射回来的降压波也是最后才达到阀门,因此最大水锤压力总是发生在紧邻阀门的断面上。

应用前面的水锤连锁方程及管道边界条件,推求阀门处各相水锤压力计算公式 。

(一) 计算公式阀门关闭情况:ρξτξτ211011AA -=+ 第一相末的水锤压力ρξρξτξτ2121022AA A --=+ 第二相末的水锤压力…………………………..ρξξρτξτ2111110An n AA nn --=+∑- 第n 相末的水锤压力阀门或导叶开启:管道中压力降低,产生负水锤,其相对值用y 表示。

ρττ211011y y +=-……ρρττ211110nn i i i n n y y y ++=-∑-==利用上述公式,可以依次解出各相末的阀门处的水锤压力,得出水锤压力随时间的变化关系。

(二)计算公式的条件(1) 没有考虑管道摩阻的影响,因此只适用于不计摩阻的情况;(2) 采用了孔口出流的过流特性,只适用于冲击式水轮机,对反击式水轮机必须另作修改;(3) 这些公式在任意开关规律下都是正确的,可以用来分析非直线开关规律对水锤压力的影响。

三、开度依直线变化的水锤进行水锤计算,最重要的是求出最大值。

在开度依直线规律变化情况下,不必用连锁方程求出各相末水锤,再从中找出最大值,可用简化方法直接求出。

(一) 开度依直线变化的水锤类型当阀门开度依直线规律变化时,根据最大压强出现的时间可归纳为两种类型:第一类:当0ρτ<1时,最大水锤压力出现在第一相末, A A 1max ξξ=,称第一相水锤。

相关文档
最新文档