铁路智能运输系统构成及作用
智能运输系统概论第1章
智能运输系统概论
1.1.5 ITS是解决交通问题的最佳途径
3)解决交通问题的方法
控制需求
控制车辆的 增加
改变车型, 使车辆数减少
增加供给
修建道路,加 强道路基础设 施建设,缓解 交通问题。
1885至
交通运输的发展18史89是年人类社戴会姆发勒展及史助的手一制个造重了要装组有成内部 燃机的4轮实验汽车,并配上变
分,是一部科技的发展史,速交器通。运是输世业界的上发第展一更辆是汽科车学,技
术发展的象征。 1866年
标志着汽车运输时代的开始。
奥托公司生产 “活塞式四冲程奥托
内燃机” 。内燃机车、汽车和飞机都
智能运输系统概论
第1章 绪论
1.1 智能运输系统(ITS)的产生与发展 1.2 智能运输系统的发展现状 1.3 智能运输系统的发展趋势 1.4 小结
智能运输系统概论
1.1 智能运输系统(ITS)的产生与发展
智能交通系统( Intelligent Transportation Systems,简 称ITS )起始于美欧,成熟于日本。
智能运输系统概论
1.1.5 ITS是解决交通问题的最佳途径
2)交通问题的现状
美国:主要城市每年由于交通拥挤造成的浪费超过475 亿美元,多达143.5亿升的燃料和27亿工作小时。
日本:人口密度比较大,每天昼夜行驶的汽车有7000 万辆,每年交通事故死伤人数达100余万人,大量交通需 求,在各地区交通拥挤,每年时间损失达53亿小时,经 济损失达12兆日元,给社会和经济带来沉重的负担,此 外还会导致沿路环境恶化、能源消耗增加等严重问题。
铁路运输业智能化调度系统升级
铁路运输业智能化调度系统升级第1章智能化调度系统概述 (3)1.1 背景与意义 (3)1.2 系统目标与功能 (4)1.3 系统架构设计 (4)第2章现有调度系统分析 (5)2.1 国内外铁路调度系统发展现状 (5)2.1.1 国外铁路调度系统发展概况 (5)2.1.2 我国铁路调度系统发展概况 (5)2.2 现有系统存在的问题 (5)2.2.1 系统集成度较低 (5)2.2.2 智能化水平有待提高 (5)2.2.3 人力资源依赖度高 (5)2.3 升级改造方向 (6)2.3.1 提高系统集成度 (6)2.3.2 提升智能化水平 (6)2.3.3 减少人力资源依赖 (6)2.3.4 加强安全风险防控 (6)第3章调度数据处理与分析 (6)3.1 数据采集与整合 (6)3.1.1 数据采集技术 (6)3.1.2 数据传输与存储 (6)3.1.3 数据整合方法 (6)3.2 数据预处理与清洗 (7)3.2.1 数据预处理 (7)3.2.2 数据清洗 (7)3.2.3 数据质量评估 (7)3.3 数据分析与挖掘 (7)3.3.1 数据分析方法 (7)3.3.2 数据挖掘算法 (7)3.3.3 应用案例 (7)第4章调度算法优化 (7)4.1 现有调度算法分析 (7)4.1.1 现有调度算法概述 (7)4.1.2 现有调度算法存在的问题 (8)4.2 调度算法优化策略 (8)4.2.1 改进晚点传播和恢复算法 (8)4.2.2 引入动态调度策略 (8)4.2.3 优化调度决策算法 (8)4.3 仿真实验与分析 (8)4.3.1 仿真实验设计 (8)4.3.2 仿真实验结果分析 (8)第5章智能化调度模型构建 (9)5.1 调度模型设计 (9)5.1.1 列车运行计划模块 (9)5.1.2 列车运行监控模块 (9)5.1.3 调度策略模块 (9)5.1.4 优化算法模块 (9)5.1.5 决策支持模块 (9)5.2 模型参数设置与优化 (10)5.2.1 模型参数设置 (10)5.2.2 模型参数优化 (10)5.3 模型验证与分析 (10)5.3.1 模型验证 (10)5.3.2 模型分析 (10)第6章机器学习与深度学习技术应用 (10)6.1 机器学习算法选择与实现 (10)6.1.1 算法选择原则 (10)6.1.2 算法实现 (11)6.2 深度学习网络结构设计 (11)6.2.1 神经网络结构 (11)6.2.2 残差网络结构 (11)6.2.3 循环神经网络结构 (11)6.3 模型训练与优化 (11)6.3.1 数据集划分 (11)6.3.2 损失函数与优化器 (11)6.3.3 模型正则化与超参数调优 (11)6.3.4 模型评估 (11)第7章系统集成与测试 (12)7.1 系统集成方案设计 (12)7.1.1 系统集成概述 (12)7.1.2 集成方案设计原则 (12)7.1.3 集成方案设计内容 (12)7.2 系统功能模块测试 (12)7.2.1 测试目的与意义 (12)7.2.2 测试方法与工具 (12)7.2.3 测试内容与步骤 (12)7.3 系统功能评估与优化 (13)7.3.1 功能评估指标 (13)7.3.2 功能优化策略 (13)7.3.3 功能测试与评估 (13)第8章系统安全与可靠性保障 (13)8.1 系统安全策略设计 (13)8.1.1 物理安全策略 (13)8.1.2 网络安全策略 (14)8.2 系统可靠性分析 (14)8.2.1 系统架构可靠性 (14)8.2.2 软件可靠性 (14)8.3 安全与可靠性测试 (14)8.3.1 安全测试 (14)8.3.2 可靠性测试 (15)第9章用户界面与交互设计 (15)9.1 用户界面设计 (15)9.1.1 界面布局 (15)9.1.2 界面风格 (15)9.1.3 信息呈现 (15)9.2 交互流程设计 (15)9.2.1 操作逻辑 (15)9.2.2 交互反馈 (15)9.2.3 异常处理 (16)9.3 系统操作与维护 (16)9.3.1 操作指南 (16)9.3.2 培训与支持 (16)9.3.3 系统维护 (16)第10章案例分析与展望 (16)10.1 案例介绍 (16)10.2 系统升级效果分析 (16)10.2.1 运输效率提升 (16)10.2.2 运营成本降低 (16)10.2.3 安全功能提高 (17)10.2.4 客户满意度提升 (17)10.3 铁路运输业智能化调度系统未来发展趋势与展望 (17)10.3.1 人工智能技术的深入应用 (17)10.3.2 大数据技术的融合与应用 (17)10.3.3 云计算技术的推广与应用 (17)10.3.4 物联网技术的融合与发展 (17)10.3.5 安全监控技术的创新与发展 (17)10.3.6 绿色环保理念的融入 (18)第1章智能化调度系统概述1.1 背景与意义我国铁路运输业的快速发展,列车运行密度不断加大,对调度系统的要求也日益提高。
铁路行业智能化铁路运输与管理方案
铁路行业智能化铁路运输与管理方案第一章智能化铁路运输与管理概述 (2)1.1 铁路运输与管理智能化的重要性 (2)1.2 智能化铁路运输与管理的发展趋势 (3)第二章智能化铁路运输基础设施 (3)2.1 智能化铁路信号系统 (4)2.1.1 系统构成 (4)2.1.2 应用特点 (4)2.2 铁路通信网络优化 (4)2.2.1 网络架构优化 (4)2.2.2 传输技术优化 (5)2.3 铁路基础设施监测与维护 (5)2.3.1 监测技术 (5)2.3.2 维护策略 (5)第三章铁路运输调度智能化 (5)3.1 铁路运输调度系统设计 (5)3.1.1 系统架构 (5)3.1.2 功能模块 (6)3.1.3 技术支撑 (6)3.2 实时运输调度策略 (6)3.2.1 列车运行调整策略 (6)3.2.2 车辆调度策略 (6)3.2.3 线路分配策略 (6)3.3 调度决策支持系统 (6)3.3.1 数据挖掘与分析 (7)3.3.2 人工智能算法 (7)3.3.3 云计算技术 (7)第四章货运管理智能化 (7)4.1 货运信息管理系统 (7)4.1.1 系统架构 (7)4.1.2 功能模块 (7)4.2 货运计划与调度智能化 (8)4.2.1 智能货运计划 (8)4.2.2 智能调度 (8)4.3 货运安全监控与预警 (8)4.3.1 安全监控 (8)4.3.2 预警与处置 (8)第五章客运服务智能化 (9)5.1 客票预订与售票系统 (9)5.2 客运服务智能化终端 (9)5.3 客流分析与预测 (10)第六章铁路运输安全监控 (10)6.1 列车运行监控 (10)6.1.1 监控系统概述 (10)6.1.2 监控系统组成 (10)6.1.3 监控系统功能 (10)6.2 铁路预防与处理 (11)6.2.1 预防措施 (11)6.2.2 处理流程 (11)6.3 安全信息管理与预警 (11)6.3.1 安全信息管理系统 (11)6.3.2 预警机制 (11)6.3.3 预警系统应用 (12)第七章铁路运输设备智能化 (12)7.1 车辆运行监测与故障诊断 (12)7.1.1 概述 (12)7.1.2 系统构成 (12)7.1.3 技术特点 (12)7.2 车辆维护与检修智能化 (12)7.2.1 概述 (12)7.2.2 系统构成 (13)7.2.3 技术特点 (13)7.3 车辆调度与优化 (13)7.3.1 概述 (13)7.3.2 系统构成 (13)7.3.3 技术特点 (13)第八章铁路物流与供应链管理 (14)8.1 铁路物流信息化建设 (14)8.2 供应链协同管理 (14)8.3 物流成本控制与优化 (14)第九章铁路行业大数据应用 (15)9.1 大数据技术在铁路运输中的应用 (15)9.2 数据分析与挖掘 (15)9.3 数据可视化与决策支持 (16)第十章智能化铁路运输与管理策略 (16)10.1 铁路行业智能化发展战略 (16)10.2 技术创新与人才培养 (16)10.3 政策法规与标准体系建设 (17)第一章智能化铁路运输与管理概述1.1 铁路运输与管理智能化的重要性铁路运输作为我国国民经济的重要组成部分,承担着大量的人员和货物运输任务。
智能运输系统
智能运输系统文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]1.G P S由三大子系统构成:空间卫星系统,地面监控系统,用户接受系统。
2.动态交通流有道系统主要由三部分组成:交通信息中心,通信系统,车载诱导单元。
3.先进的公共交通系统的关键技术:自动乘客计数器,公交运营软件,交通信号优先策略。
4.按控制范围,交通控制方式分为:点控,线控,面控。
5.电子收费系统可分为:计算机网络与软件子系统,音频子系统,视频子系统和电力支持子系统。
6.智能运输系统(ITS)就是通过关键基础理论模型的研究,从而将信息技术、通信技术、电子控制技术和系统集成技术等有效的应用于交通运输系统,从而建立起大范围内发挥作用的实时、准确、高效的交通运输管理系统。
智能运输系统也称智能交通系统。
7.[动态交分配,就是将时变的交通出行合理分配带不同的路径上,以降低个人的出行费用或系统总费用。
]它是在交通供给状况以及交通需求状况均为已知的条件下,分析其最优的交通流量分布模式,从而为交通流控制和管理、城市交通诱导管理提供依据。
8.动态系统最优(DSO)就是指在所研究的时段内,出行看各瞬间时通过所选择的出行路径,相互配合,使得系统的总费用最小。
9.地里信息系统(GIS)是一种采集、处理、传输、存储、管理、查询检索、分析、表达和应用地里信息的计算机系统,是分析、处理和挖掘海量地里数据的通用技术。
10.[电子收费方式(ETC)是指收取通过路费的全过程均由机器完成,操作人员不需要直接介入,只需要对设备进行管理、监督以及处理特别事件。
]它是指利用电子计算机与通信技术,使驾驶员不需要停在收费站付费,以缓解因收费而造成交通排队现象的技术,是收费方式的发展方向。
11.交通事件是指导致道路通行能力下降或交通需求不正常升高的非周期性发生的情况。
12.先进的公共交通系统(APTS),就是在公共网络分配,公交调度等关键基础理论研究的前提下,利用系统工程的理论和方法,将现代通信、信息、电子、控制、计算机、网络、GPS、GIS等高科技集成应用于公共交通系统,并通过建立公共交通系统智能化调度系统、公共交通信息服务系统、公共电子收费系统等,实现公共交通调度、运营、管理的信息化、现代化和智能化,为出行者提供更加安全、舒适、便捷的公共交通服务,从而吸引公交出行,缓解城市交通拥挤,有效的解决城市交通问题,创造更大的社会和经济效益。
铁路运输系统
提供小批量货物的运输服务,满足小规模货物运 输需求。
3
集装箱运输
提供集装箱装载的货物运输服务,提高货物运输 效率和安全性。
高速铁路
高速度运行
高速铁路列车以高速度 运行,缩短城市间旅行 时间。
舒适乘车环境
高速铁路列车提供舒适 的乘车环境,满足乘客 出行需求。
高技术设备
高速铁路采用先进的技 术设备,保障列车安全 、高效运行。
城市轨道交通
城市交通网络
01
城市轨道交通系统构成城市交通网络的重要组成部分,缓解城
市交通拥堵问题。
多模式交通
02
城市轨道交通系统包括地铁、轻轨、有轨电车等多种交通模式
,满足不同出行需求。
环保出行方式
03
城市轨道交通系统是一种环保出行方式,减少城市交通对环境
的污染。
04
铁路运输系统的挑战与解 决方案
THANKS
感谢观看
铁路运输系统
汇报人:可编辑 2024-01-06
contents
目录
• 铁路运输系统概述 • 铁路运输系统的构成 • 铁路运输系统的运行方式 • 铁路运输系统的挑战与解决方案 • 中国铁路运输系统的发展 • 国际铁路运输系统的合作与交流
01
铁路运输系统概述
定义与特点
定义
铁路运输系统是一种使用铁路轨道和 列车进行货物和人员运输的交通方式 。
技术交流与合作
先进技术的应用
国际铁路联盟积极推动各国铁路系统采用先 进技术,如自动驾驶、智能调度系统等,以 提高运输效率和安全性。
标准化工作
UIC致力于推动全球铁路标准化,制定和推广国际 铁路标准,以降低运营成本和提高互操作性。
智能高速铁路体系架构与标准体系
智能高速铁路体系架构与标准体系随着科技的不断发展和人们生活水平的提高,交通运输的方式也在不断向便捷、快速、安全、舒适的方向迈进。
高速铁路作为一种重要的交通运输方式,一直是人们关注的焦点之一。
在全球各国都在大力发展高速铁路的背景下,智能高速铁路正逐渐成为未来的趋势。
本文将探讨智能高速铁路体系架构与标准体系,并对其进行详细的分析和阐述。
一、智能高速铁路体系架构1.轨道交通物理层智能高速铁路的物理层主要包括铁路轨道、电气化设备、列车等。
在物理层中,轨道的设置、线路的规划、铁路设施以及列车的设计都将直接影响智能高速铁路的运行效率和安全性。
因此,智能高速铁路的物理层要求具备高强度、高承载能力、高安全性的铁路轨道和设施,同时列车的设计也要具备智能化的自动控制系统,以实现高速运行和安全运营。
2.通信网络层智能高速铁路的通信网络层是其架构中不可或缺的一部分,它涉及到列车与列车之间、列车与车站以及列车与控制中心之间的通信。
在这一层面上,智能高速铁路将借助先进的通信技术,包括卫星通信、移动通信、微波通信等,来实现列车间的信息交互和实时监控,从而保障铁路运输的高效、安全和稳定。
3.控制系统层智能高速铁路的控制系统层则是其智能化运行的关键所在。
在这一层面上,智能高速铁路将借助先进的控制系统技术,包括列车自动驾驶技术、智能调度技术、运行监控技术等,来实现列车的自动驾驶、智能化的运行调度和监控,从而实现铁路运输系统的智能化管理和运营。
4.信息系统层智能高速铁路的信息系统层是其信息化和智能化的重要支撑。
在这一层面上,智能高速铁路将借助先进的信息技术,包括物联网技术、云计算技术、大数据技术等,来实现铁路运输信息的集成和共享,从而为行车安全、运行调度、旅客服务等提供智能化的支持。
5.安全保障层智能高速铁路的安全保障层是其运行安全的重要保障。
在这一层面上,智能高速铁路将借助先进的安全技术,包括列车防护系统、信号控制系统、风险识别预警系统等,来保障铁路运输的安全稳定、防范安全风险的发生。
铁路电务智能运维系统技术浅谈
铁路电务智能运维系统技术浅谈一、智能运维系统的概念智能运维系统是指基于人工智能、大数据、云计算等现代信息技术手段,对设备、系统等进行智能化的监测、诊断、预警、分析和决策的系统。
其核心在于扩展了传统的设备监控功能,实现了数据的全方位分析和智能决策。
在铁路电务系统中,智能运维系统可以对信号设备、轨道设备、通信设备等进行实时监测,并通过数据分析和智能算法发现设备异常、预测故障,为运维人员提供决策参考。
1. 大数据技术支撑:智能运维系统可以对铁路电务系统产生的海量数据进行存储、管理和分析,从中挖掘有价值的信息,并为运维决策提供有力支撑。
2. 人工智能算法应用:通过人工智能算法对设备运行状态进行分析,可以实现设备故障的预测和诊断,提前采取措施,降低故障风险。
3. 实时监测与远程控制:智能运维系统具备对设备的实时监测能力,并可以通过远程控制设备,对设备进行调试和维修。
4. 信息共享与协同决策:智能运维系统可以实现各部门信息共享,协同决策,提高运维效率,降低问题处理周期。
5. 安全防护和隐私保护:智能运维系统在数据传输、数据存储、数据处理等环节都具备安全防护和隐私保护的能力,确保数据的完整性和机密性。
三、智能运维系统在铁路电务中的应用前景铁路电务系统是铁路运输的重要组成部分,具有极高的安全性和可靠性要求。
而智能运维系统的应用可以在以下方面为铁路电务系统带来改变:1. 故障预测和智能维护:通过对设备运行数据进行分析,可以预测设备故障的发生概率,提前进行维护,减少因故障带来的运输延误和安全风险。
2. 故障诊断和快速修复:智能运维系统可以对设备故障进行精准诊断,并为运维人员提供修复方案,缩短故障处理时间,提高设备可用率。
3. 运维决策优化:通过智能运维系统对设备运行情况进行全方位数据分析,可以为运维决策提供更为科学依据,降低人为主观因素的干扰,提高决策的准确性和及时性。
4. 安全监控和预警系统:智能运维系统可以实现对铁路电务设备的远程实时监控,并对设备状态异常进行智能预警,有助于制定针对性的安全预防措施。
铁道概论中的铁路运输智能化技术
铁道概论中的铁路运输智能化技术随着科技的不断进步和应用,智能化技术在各行各业都得到了广泛应用和发展。
铁路运输作为重要的交通方式之一,也不例外。
本文将探讨铁道概论中的铁路运输智能化技术,包括其定义、应用领域和未来发展趋势。
一、智能化技术在铁路运输中的定义智能化技术是指将计算机、信息、控制、传感、通信等新兴技术与传统工程技术相结合,实现系统的自动化、自主化、智能化的一种技术手段。
在铁路运输中,智能化技术主要用于提高运输系统的自动化程度、信息化程度和运输效率。
二、智能化技术在铁路运输中的应用领域1.列车调度系统智能化传统的列车调度主要依赖人工操作,容易出现人为差错和效率低下的情况。
而智能化技术可以将列车调度系统与车辆定位系统和交通控制系统相结合,实现列车运行时刻表的自动优化和调度。
通过运用智能算法和大数据分析,可以减少列车运行时间和能源消耗,提高路网运输能力。
2.车站智能化智能化技术可以在车站设置自助购票、自动检票和自动引导等设备,提高车站的运行效率和服务质量。
例如,旅客可以通过自助购票机自行购票、查询列车时刻表和座位信息,大大减少了排队等候的时间。
另外,智能安检设备和人脸识别技术也可以提高车站的安全性。
3.车辆智能化智能化技术可以应用于列车的自动控制和监测系统。
自动控制系统可以实现列车的自主驾驶,减少人为操作的风险。
监测系统可以实时监测列车的运行状态和设备状况,及时发现问题并进行维修和保养,提高列车的安全性和可靠性。
4.物流管理智能化铁路运输在物流领域发挥重要作用,智能化技术可以实现地面物流的数字化与自动化。
通过物联网技术,可以实时监测货物的运输情况和位置,并与物流管理系统相连接,实现货物的自动跟踪和管理。
这样可以提高物流的效率和准确性,降低物流成本。
三、铁路运输智能化技术的未来发展趋势1.人工智能技术的应用人工智能技术在铁路运输中的应用将更加广泛。
例如,通过人工智能算法,可以实现列车的智能调度和优化,预测运输需求,提高运输效率和安全性。
铁路运输智能调度系统设计与优化
铁路运输智能调度系统设计与优化随着社会和经济的不断发展,铁路运输在现代交通体系中扮演着重要的角色。
为了提高铁路运输的效率和安全性,设计一套智能调度系统成为当务之急。
本文将介绍铁路运输智能调度系统的设计要素和优化方法,以提高铁路运输的效率和服务质量。
1. 智能调度系统设计要素1.1 轨道布局规划良好的轨道布局规划是高效铁路运输的基础。
在设计智能调度系统时,需要考虑车站、交叉口和转轨设施的位置和数量。
合理的布局规划能最大限度地减少列车之间的冲突,提高铁路运输的效率。
1.2 列车调度算法列车调度算法是智能调度系统的核心。
通过优化列车的发车时间、速度和停靠站,可以最大程度地减少列车之间的碰撞概率和延误时间。
同时,该算法还需要考虑到车辆巡航控制、车载设备与基础设施的信息传递等关键因素,以确保列车运行的安全性和精确性。
1.3 信号系统设计合理的信号系统设计是铁路运输安全的基石。
智能调度系统应该包含先进的信号系统,能够准确判断列车的位置和速度,并及时传递相关信息。
通过信号控制技术,可以确保列车之间的安全距离,避免碰撞事故的发生。
2. 智能调度系统优化方法2.1 数据挖掘与分析智能调度系统的优化离不开大量的历史运行数据的挖掘与分析。
通过对过去的列车运行数据进行统计和分析,可以发现规律性的变化和潜在的问题。
基于这些分析结果,可以对调度策略进行优化,提高列车运行的效率和安全性。
2.2 优化模型与算法优化模型与算法的应用能有效提高铁路运输的效率。
例如,可以建立列车调度的数学模型,并应用优化算法求解最优调度方案。
同时,还可以采用优化算法对列车停车时间和速度进行调整,以降低整体运行时间和能源消耗。
2.3 人机协同人机协同是智能调度系统优化的重要手段。
在系统设计中,应该充分考虑到人员的意见和决策,与智能算法进行对接。
合理的人机协同可以平衡自动化和人为干预的权衡,实现最佳的调度策略。
3. 智能调度系统在铁路运输中的应用3.1 提高运输效率智能调度系统的应用能够提高铁路运输的效率。
简述智能运输系统的构成
简述智能运输系统的构成智能运输系统是指将先进的信息技术、通信技术、控制技术和传感器技术应用于运输领域,实现运输过程的自动化、智能化和高效化。
智能运输系统由多个子系统组成,包括车辆控制系统、通信系统、地面控制系统、监测与诊断系统等。
下面将从不同角度详细介绍智能运输系统的构成。
一、车辆控制系统车辆控制系统是智能运输系统的核心部分,主要负责对车辆进行控制和管理。
具体来说,车辆控制系统包括以下几个方面:1. 车载计算机:用于处理车辆传感器采集到的数据,并通过算法进行分析和决策。
2. 智能驾驶辅助系统:包括自动驾驶功能、自适应巡航功能、自动泊车功能等,可以大大提高行驶安全性和舒适度。
3. 车载传感器:如雷达、摄像头等,用于实时监测周围环境变化,并将数据传输给车载计算机进行分析。
4. 电力管理系统:用于管理电池充电和放电状态,保证电池寿命和安全性。
二、通信系统通信系统是智能运输系统的重要组成部分,主要用于车辆之间、车辆与基础设施之间的信息交换和传输。
具体来说,通信系统包括以下几个方面:1. 车辆间通信:通过车载通信模块实现车辆之间的信息交换和协同行驶。
2. 车路协同:通过与基础设施的信息交互,实现车辆与道路基础设施之间的协同。
3. 互联网连接:通过4G、5G等无线网络技术,将智能运输系统连接到互联网上,实现远程监控和管理。
三、地面控制系统地面控制系统是智能运输系统的重要组成部分,主要用于对车辆进行远程监控和管理。
具体来说,地面控制系统包括以下几个方面:1. 远程监控中心:用于对整个智能运输系统进行远程监控和管理。
2. 调度中心:用于对车辆进行调度和指挥,保证整个运输过程的高效性。
3. 路况监测中心:用于对道路交通状况进行实时监测,并及时提供路况信息给车辆。
四、监测与诊断系统监测与诊断系统是智能运输系统的重要组成部分,主要用于对车辆进行状态监测和故障诊断。
具体来说,监测与诊断系统包括以下几个方面:1. 车辆状态监测:通过车载传感器对车辆的各项参数进行实时监测,并及时发现异常情况。
简单描述智能运输系统的意义和作用
简单描述智能运输系统的意义和作用
智能运输系统是指通过应用先进的信息技术与智能化设备,对运输行业进行智能化改造和优化,以提高运输效率、降低运输成本,并改善交通安全和环境保护的一种系统。
它可以集成各种传感器、通信设备和数据处理技术,实现对运输过程的实时监测、优化调度和智能决策。
智能运输系统在多个方面发挥着重要的作用。
首先,它可以提高运输效率和服务质量。
通过运用实时监测技术,智能运输系统可以实时获取运输车辆的位置、运载量和运输速度等数据,从而实现对货物运输过程的全程监控。
这有助于优化运输路线、减少货物滞留时间和提高运输效率,提供更加可靠、高效的运输服务。
其次,智能运输系统可以降低运输成本。
通过对运输车辆的实时监测和调度,智能运输系统可以合理分配运载空间和减少运输车辆的空驶率,从而降低能源消耗和运输成本。
此外,智能运输系统可以帮助企业进行合理的运输资源规划,减少物流环节中的浪费,进一步降低运输成本。
同时,智能运输系统对于交通安全和环境保护也具有重要意义。
运用智能运输系统,可以实现对运输车辆行驶过程中的速度、路线和驾驶行为等进行实时监测和评估,及时预警和纠正交通违法行为和事故风险,提升道路交通安全。
此外,智能运输系统还可以帮助优化运输路线,减少车辆拥堵,降低尾气排放,减少对环境的污染,推动可持续发展。
总之,智能运输系统在提高运输效率、降低运输成本、改善交通安全和环境保护等方面发挥着重要的作用。
它不仅可以提供更加高效可靠的运输服务,还可以促进相关产业的创新发展,推动经济社会的可持续发展。
因此,智能运输系统的建设和应用具有重要的意义。
铁路智能运输系统ITS-R学习提纲
铁路智能运输系统ITS-R》课程学习提纲(2011-2012学年第1 学期
1、智能运输系统的产生与发展•智能运输系统的概念、地位和作用•智能运输系统(ITS 研究的内容及相关标准
2、智能运输系统的技术基础
•定位系统
•交通地理信息系统
•交通通信技术
•智能控制技术
3、铁路智能运输系统ITS-R
•ITS-R 的内涵及本质特征
•ITS-R 的结构模型
•ITS-R 的发展框架及核心技术
4、CBTC 与移动闭塞
•CBTC系统定义及相关标准
•移动闭塞系统原理
•移动闭塞关键技术5、铁路运输调度集中
系统CTC
•调度集中CTC 的发展现状
•分散自律原理及应用
•新一代分散自律调度集中系统组成原理6、铁路运输调度指挥系统TDCS •DCS系统发展目标
•TDCS系统网络结构
•TDCS系统功能及实现原理
7、欧洲列车运行控制系统ERTMS/ETCS •ERTMS/ETCS产生与发展
•ERTMS/ETCS各级功能
•ERTMS/ETCS的应用
8、中国的列车控制系统CTCS
•CTCS的定义及分级结构
•CTCS-2级系统工作原理及主要设备•CTCS-3级系统工作原理及主要设备9、ITS-R 的几种工程应用。
智能运输系统
先进的车辆控制系统(Advanced Vehicle Control System,AVCS)是指借助车载设备及路侧、路表的电 子设备来监测周围行驶环境的变化情况,进行部分或完全的自动驾驶控制,以达到行车安全和提高道路 通行能力的目的。其本质就是在车辆与道路系统中,将现代通信技术、控制技术和交通流理论加以集成, 为司机和相关人员提供一个良好的辅助驾驶环境,以及实现在特定条件下车辆的自动控制安全行驶。
ITS的组成
先进的公共运输系统(Advanced Public Transportation System,APTS)作为智能运输系统的子系统,负责 保证对各种可选交通方式有足够的考虑。该系统采用先进的公共汽车、车辆GPS和先进的电子技术等来 达到不需要新建另外的公路却运送更多的出行者的目的。该系统利用计算机技术对公交车辆及公交设施 的技术状况和服务水平进行实时分析,实现公交系统计划、运营和管理功能的自动化,为出行者提供实 时的换乘信息。它具备完备的安全监测、预警和防范设施。
通信与网络技术,在现代运输网络中,数据越来越多地需要被远程输送与交换。采用标准化 EDI信息网,可使数据具有较好的兼容性与适用性,有利于加速信息流程,降低手工输入错 误率,减少纸张需求,使数据易于检验等。远程数据通信可利用专门的数据交换网,也可借 用互联网铀于互联网具有低通信成本、高联通率的特点,越来越多的货运企业把互联网作为 数据交换平台,进行数据通信。
智能运输系统
智能运输系统将道路管理者、用户、交通 工具和设施,以及环境等有机地结合在系 统中,实现各种运输方式的现代化,提高 了交通运输网络这个大系统的运行效率。 ITS涉及公路、铁路、水运、航空和管道等 多种运输方式。
铁路货物智能化管理系统的研究
铁路货物智能化管理系统的研究随着经济的发展和社会的进步,物流行业变得日益重要,而货运运输是物流行业中不可或缺的环节之一。
铁路货物运输是我国主要的货物运输方式之一,它的安全高效是重要的保障。
而铁路货物运输管理也逐渐发生了深刻的变化,传统的手工作业已经无法满足现代化的管理要求。
因此,铁路货物智能化管理系统的研究变得尤其重要。
一、铁路货物智能化管理系统的定义铁路货物智能化管理系统(Railway Freight Intelligent Management System,RFIMS)是指将现代信息技术与铁路货物运输管理结合起来,建立起一个高度自动化、高度信息化、智能化的货运管理系统。
铁路货物智能化管理系统是在IT技术支持下开展的一项工程,它通过对运输流程进行全面控制,提高了方案设计、物流配送、计量计价、收付结算等方面的管理水平,提升了货物运输过程中的操作效率、安全和保障能力。
二、铁路货物智能化管理系统的特点铁路货物智能化管理系统的特点包括以下几个方面:1. 高度自动化铁路货物智能化管理系统的实现离不开信息技术的支持,它大量采用自动化设备和自动化控制技术,优化了运输流程,增强了处理效率。
这种“机器代替人力”的方式,不仅能够减少人工操作的错误率,而且还可以节省人力成本。
2. 高度信息化铁路货物智能化管理系统能够实现对于铁路货物运输过程的全面监控,通过即时的信息采集、传输、处理和分析,管理人员可以随时了解到货运运输的实时状况,做出相应决策。
3. 智能化铁路货物智能化管理系统能够自动判断和分析、处理复杂条件下的信息,也能自动进行预测和决策,实现了管理的自适应性和智能化,为货运管理提供了全方位的保障。
三、铁路货物智能化管理系统的优点铁路货物智能化管理系统的实施,可以为铁路货物运输带来许多优点,下面分别进行讨论。
1. 提高了运输效率铁路货物智能化管理系统可以通过优化运输流程、合理调度车次、合理安排时间等手段,提高了货物运输效率,缩短了货物在铁路上的停留时间和耗时,确保了货物更加快捷、稳定的运输。
智能运输系统
智能停车系统
智能停车系统可以利用传感器、摄像头等技术监测车位使用情况和车辆进出情况,为车主 提供实时的停车位信息和停车指引。它还可以自动计算停车费用和提供便捷的支付方式, 提高停车效率和便利性
3
智能运输系统作为一 种先进的交通解决方 案,其发展趋势主要 体现在以下几个方面
多元化和个性化服务
未来智能运输系统将 更加注重多元化和个 性化服务,以满足不 同人群和不同类型交 通工具的需求。例如 ,针对不同区域的交 通特点,可以推出不 同类型的智能运输服 务,如城市智能交通 系统、高速公路智能 监控系统等
4.ITS工程和服务这主要包括:系统工程设计、ITS系 统集成、运输市场分析、系统计划/测试/评估、外场 测试、培训/技术支持、运行/维护、培训/鉴定、交 通环境模拟等
主要技术和功能
发展ITS所需的主要技术有:微电子技术、计算机网络及软件技术、移动通信技术、系统 控制和集成技术等
具体包括:互联网技术、GPS技术、GIS(地理信息系统)技术、GSM(全球移动通信系统)技术 、光纤网络技术、IC(集成电路)卡技术、电子标签技术、信息自动采集技术、航位推算技 术、大屏幕显示技术、智能信号控制技术、信息系统集成技术和网络软件技术等。这些技 术中的核心部分是GPS技术
ITS系统的功能主要包括信息提供、安全服 务、计收使用费和减少交通堵塞等。系统向 道路管理者和用户主要提供道路交通情况的 实时信息及相关的其他信息,如天气等;而 安全服务的内容有危险警告、人车事故预防 、行车辅助等,它们通过不同的方式来减少 交通事故;费用收取主要是以电子方式自动 地向用户收取道路使用费或车辆停放费等。 当然,系统还可以根据人们的需要提供更多 的服务
ITS的组成
1.先进的交通管理系 统
交通工程中的智能运输系统
交通工程中的智能运输系统随着科技的不断进步,智能化已经成为了网络时代的一个重要发展趋势。
特别是在城市交通领域,智能运输系统为城市的交通运输带来了新的解决方法。
交通工程中的智能运输系统是指将各种高技术和高新技术集成运用于城市交通管理中,以提升城市交通的运行效率、安全性和普适性。
其不仅能够实现车辆与路边设施之间信息通信,同时也有助于实现交通事故的减少和交通拥堵的控制。
一、智能运输系统的构成与特点交通工程中的智能运输系统主要包括交通信息处理系统、交通控制系统、环境监测系统、车辆监测系统和路面监测系统等子系统。
这些系统共同构成了一套完整的交通管理系统,可用于适应不同城市的交通状况和交通需求。
1.交通信息处理系统交通信息处理系统是智能运输系统中最核心的部分,它的作用主要是收集、处理、传输、存储和分析城市交通信息。
当道路上发生堵塞或意外事故等情况时,交通信息处理系统能够通过网络实时传输信息给交通控制中心,交通控制中心据此可以快速作出决策并对交通灯信号进行控制,使车辆分流,尽早缓解拥堵情况。
2.交通控制系统交通控制系统是智能运输系统中的另一个重要组成部分,通过对车辆、行人和环境等进行监控,对信号灯进行智能控制,降低城市道路的交通繁忙程度,缩短行车时间,减少交通排放量和事故的发生。
3.环境监测系统环境监测系统是指监测城市道路环境中的状况,包括雾、大风、积雪、雨雪天气等,帮助交通控制中心及时采取措施,确保车辆和行人的安全通行。
4.车辆监测系统车辆监测系统是智能运输系统中对车辆运行状况的监测系统,它能够实现对车速、车辆类型、车辆数量以及车道使用率等信息的追踪和统计,通过收集的数据对城市道路进行科学的规划,从而满足大众交通需求。
5.路面监测系统路面监测系统主要用于监测和检测城市道路的状况,帮助交通控制中心及时发现道路的问题,并作出相应的处理。
该系统通过对雨、雪、霜、冰的监测,能够在道路恶劣气候时为车辆和行人提供更为安全的行车环境。
智能运输系统智能运输系统(ITS)概述
详细描述
随着技术进步和需求增长,各国政府开始大力投资于智能运输系统的基础设施建设,包括交通控制中心、 交通监控系统、紧急救援系统等,以提高交通系统的运行效率和安全性。
应用阶段
01
21世纪初至今
这一阶段主要是智能运输系统在各个领域的应用,如公共 交通、物流、车辆导航等。
02
总结词
广泛应用与深化
降低运营成本
智能运输系统能够实现自动化调度、减少人力成本,从而降低运营成 本。
促进就业结构调整
随着智能运输系统的发展,传统运输行业的就业需求将逐渐减少,同 时新兴领域和技术岗位的就业需求将增加。
推动产业转型升级
智能运输系统的普及和应用将推动交通运输行业向智能化、绿色化、 服务化方向转型升级。
谢谢观看
03
详细描述
进入21世纪,智能运输系统在各个领域得到了广泛应用, 如公共交通的智能化调度、物流运输的实时跟踪、车辆导 航的路线规划等。这些应用不仅提高了交通效率,也改善 了人们的出行体验。
集成阶段
要点一
目前至未来
这一阶段主要是实现智能运输系统的 全面集成,包括各种交通方式、各个 地区、各种服务的集成。
航空运输系统
航班调度与追踪
智能运输系统能够实现航班的自动调度和追踪,确保航班的安全和 准时。
机场管理
通过智能机场管理系统,提供航班信息、旅客安检、行李托运等服 务,提高机场的运行效率。
空中交通管制
智能运输系统能够支持空中交通管制的自动化和智能化,提高空中交 通的安全性和效率。
05
ITS未来发展趋势与挑战
03
详细描述
这一时期,各国政府和学术界开始关注智能运输系统的发展,开展了一
智能运输系统
智能运输系统信息技术的高速发展,给整个世界带来了翻天覆地的变化,智能信息技术在各个领域的发展也十分快,对于交通运输来讲,中国智能运输系统的运用只是刚刚起步,但是,智能运输系统对中国未来交通运输的影响是十分巨大的,本文从发展的角度对智能运输系统的概念何积极作用进行了阐述,分析的当前智能运输系统在我国的运用情况,并对智能运输系统对中国未来交通运输的影响和发展方向进行了预判和解读。
标签:智能运输系统;作用;发展方向1 智能运输系统的概念智能运输系统是交通运输系统信息化的一种更加智能、更加人性化的新型交通管理运营系统,简称ITS。
它将信息收集和处理,即时通讯和控制,以及各种高科技电子产品和技术的深入运管用为一身,主要是为了解决在交通运输过程中出现的交通拥堵,信息传递的和共享,保证道路行驶安全等问题。
智能运输系统的在运行过程中,更加注重考虑人的因素,通过智能运输系统将道路的管理者、道路使用者、交通工具以及交通设施进行有机结合,形成一个整体的交通系统网络,并通过强大的后台运算,再将信息直接反馈给道路管理者和使用者,在准确性和有效性上就越强,因此在推动交通运输合理化、规范化、人性化方面作用巨大,并将在未来的交通榆树管理工作中将起到深远的影响。
2 智能运输系统的积极作用随经济的高速发展,交通运输事业得到了极大的发展,但是,车辆的急剧增加,特别是随着人们生活水平的不断提高,汽车产业的快速发展,使私家车开始出现在越来越多的老百姓家中,汽车也不在是奢侈品,在享受着私家车给人们生活带来便利的同时,交通拥堵,道路安全等问题给老百姓的生活带来的极大的困扰。
因此,智能运输系统的出现能够很好的解决直接问题。
2.1 有效缓解叫交通拥堵压力车辆在道路上行驶是通过车辆驾驶人的主观意识所决定的,人们对于去往目的地道路的选择也相对较为随意,可这种方式就造成了一些主要道路的拥堵,不仅影响到人们出行的效率,同时,也给道路安全问题带来了很大的隐患。
智能运输系统体系框架研究
智能运输系统体系框架研究王笑京国家智能交通系统工程技术研究中心(北京西土城路8号,100088)摘要智能运输系统体系框架研究是智能运输系统开发和实施过程中首先进行的一步,本文从系统科学的发展过程和知识表达出发,根据智能运输系统的层次结构,分析了如何建立智能运输系统的体系框架及其作用。
最后对我国智能运输系统体系框架研究的初步成果做一简要介绍。
智能运输系统的出发点是充分利用现有交通基础设施资源和信息基础设施资源,提高交通基础设施的应用效率和交通运输的效率。
为实现这一目的,智能运输系统的规划和设计就必须使用新的方法,也就是系统在集成时必须考虑智能运输系统本身的特点,使用与其特点相适应的方法,智能运输系统的体系框架研究就是实现这一点的根本方法。
1.控制系统和智能系统的发展交通以及交通运输管理与控制系统的不断变化和进步,反映了人类社会和经济的进步,也反映了人类认识世界的不断深化和运用工具(包括硬件、软件和数学工具)的改进。
运输系统发展到智能运输系统,除原有运输科学中应用的技术外,大量应用的技术学科有:通信、控制、信息科学,所以我们是这样定义智能运输系统的:在较完善的基础设施(包括道路、港口、机场和通信等)之上,将先进的信息技术、通信技术、控制技术、传感器技术和系统综合技术有效地集成,并应用于地面运输系统,从而建立起大范围内发挥作用的,实时、准确、高效的运输系统。
既然智能运输系统强调了智能二字,那么作为系统,我们应该从智能系统发展的历史角度看看智能运输系统。
综观控制科学的发展历史,将各个发展阶段有代表性的理论工作和研究对象的复杂性(含不确定性)联系起来,可用图1 [1]给出直观的表示和解释。
从图中可以看出控制科学发展的方向,当然,从中也可以领悟到智能运输系统应用控制技术的发展方向。
图1在控制系统向智能化发展的过程中,根据不同智能水平和不同复杂程度将智能系统表述成不同的层次,如图2 [2]所示。
从图中我们可以看出,智能化的发展是由数值计算向符号计算发展,处理的内容,由数值、数据向知识发展。
铁路智能运输系统构成及作用
铁路智能运输系统构成及作用北京交通大学交通运输学院摘要:本文总结了国内外铁路智能运输系统的研究进展,介绍了我国铁路智能运输系统的主要构成及其作用,通过对铁路智能运输系统构成及主要研究内容的分析,总结出了ITS的实际意义。
关键词:智能交通;铁路智能运输系统;构成;作用中图分类号:U29-39文献标志码:AComposition and Function of Railway IntelligentTransportation SystemSchool of Traffic and Transportation,Beijing JiaotongUniversity,Beijing,100044,ChinaAbstract: This paper summarizes the research progress of railway intelligent transportation systems, introduces the main components and their role in China's railway intelligent transportation systems, intelligent transportation system through the railway structure and main content of the analysis, summed up the practical significance of ITS.Keywords:Intelligent Transportation;RITS; Composition ; Function铁路作为服务于社会的一种公共运输形式,其始终不变的目的是安全、迅速、可靠、准确和经济地运送旅客和货物。
铁路作为社会的主导产业和新兴科学技术的推动者和体现者,在各国社会和经济发展中起着不可替代的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁路智能运输系统构成及作用铁路智能运输系统构成及作用北京交通大学交通运输学院摘要:本文总结了国内外铁路智能运输系统的研究进展,介绍了我国铁路智能运输系统的主要构成及其作用,通过对铁路智能运输系统构成及主要研究内容的分析,总结出了ITS的实际意义。
关键词:智能交通;铁路智能运输系统;构成;作用中图分类号:U29-39 文献标志码:AComposition and Function of Railway IntelligentTransportation SystemSchool of Traffic and Transportation,Beijing JiaotongUniversity,Beijing,100044,ChinaAbstract: This paper summarizes the research progress of railway intelligent transportation systems, introduces the main components and their role in China's railway intelligent transportation systems, intelligent transportation system through the railway structure and main content of the analysis, summed up the practical significance of ITS.Keywords: Intelligent Transportation; RITS; Composition ; Function铁路作为服务于社会的一种公共运输形式,其始终不变的目的是安全、迅速、可靠、准确和经济地运送旅客和货物。
铁路作为社会的主导产业和新兴科学技术的推动者和体现者,在各国社会和经济发展中起着不可替代的作用。
以货物重载化和客运高速化为典型特征和发展方向的中国铁路不仅是国民经济发展水平和国家综合科技水平的重要标志,而且是相关产业和技术发展的巨大推动力。
20世纪80年代以后,社会对铁路运输业的“更高、更快、更多”的要求以及其他运输形式的固有缺陷为铁路运输带来了前所未有的机遇和挑战。
既有的按业务划分的彼此孤立、无法共享信息与资源的各业务系统已经无法适应这些新的挑战,通过信息化建设进而实现智能化已成为中国铁路运输系统发展的历史必然。
要迎接新的挑战和需求,铁路运输系统必须将许多最新的科学技术成果有机地融合为一体,从而成为新一代现代铁路运输业的大脑和神经系统。
已有的技术积累和近年来涌现的新兴技术,如:车载电子信息技术、现代电子学、数据及图像处理技术、分布式计算机测控技术、信息处理技术、现在通信技术、智能控制与决策技术、网络技术、AI及DAI技术、海量数据传输技术、地理信息系统技术、存储与挖掘技术等,为在已有业务系统基础上以集成为手段构造新一代铁路运输系统提供了可能性。
而这种将使整个铁路运输业发生革命性变化的系统即为铁路智能运输系统(Railway Intelligent Transportation System------RITS)。
1.铁路智能运输系统(RITS)简介1.1 RITS的定义铁路智能运输系统(RITS)是集成了电子技术、计算机技术、现代通信技术、现代信息处理技术、控制与系统技术、管理与决策支持技术和智能自动化技术等技术的,以实现信息采集、传输、处理和共享为基础的,通过高效利用与铁路运输相关的所有移动、固定、空间、时间和人力资源的,以较低的成本达到保障安全,提高运输效率,改善经营管理和提高服务质量为目的的新一代铁路运输系统。
1.2 RITS的目标铁路智能运输系统(RITS)的目标是增强铁路运输产品市场竞争能力,提高铁路运输的效率和能力,增强个人的流动性、便利性以及舒适性。
减少能源消耗和环境污染,提高现有基础设施的利用率,创造与旅行相关的商机,提供集成的、统一的、标准化的信息,提高铁路运输系统的安全性和可靠性。
1.3 RITS的功能铁路智能运输系统具有确认、定位、检测、控制、监视、通信、信息处理、宏观与微观决策支持等诸多功能。
1.4 RITS研究现状20世纪80年代末以来,各国为了满足社会对铁路越来越高的要求,纷纷投入了将智能技术、信息技术、通信技术等现代先进技术与铁路运营管理、调度指挥、行车控制、安全监控等相结合以全面提高铁路综合竞争力的研究,并取得了令人瞩目的成果。
由于现有的智能交通系统过多地强调公路运输,缺乏从铁路角度来考虑问题。
日本的CyberRail体系框架应运而生。
该体系框架主要包含四个领域:面向需求的运输规划和调度、多式联运信息和个人导航、智能列车控制、通用信息平台。
美国的智能铁路系统(Intelligent Railway System-IRS)包括的系统有:数字数据通信系统、国家差分GPS系统、主动列车控制系统、乘务员登记和计时系统、乘务员监视系统、机车完好性监督系统、能源管理系统、智能平交道口系统、智能气象系统、战术规划系统、战略规划系统、调车场管理系统、工作顺序报告系统、机车调度系统、车辆预订和调度系统、乘务员调度系统、生产管理系统、紧急情况报警系统、旅行者咨询系统。
中国铁路在RITS领域已进行了大量的研发和探索性应用,自2001年开始,国家铁路智能运输系统工程技术研究中心(The Center of Nation Railway Intelligent Transportation System Engineering and Technology-RITSC)主持完成了《铁路智能运输系统体系框架》、《铁路智能运输系统标准体系》、《铁路智能运输系统发展战略》等基础研究项目,首次对铁路智能运输系统的服务框架、逻辑框架、物理框架、通用技术平台、标准体系、示范环境等进行了详细描述。
以下,我们将对国内铁路智能运输系统进行详细描述。
2.铁路智能交通系统的构成2.1铁路运输管理信息系统(TMIS)铁路运输管理信息系统(Transportation Management Information System-TMIS),以提高运输生产,特别是货运管理水平为目标,是通过建立全路计算机网络,将所有的设备联成整体,从而实现为铁路运输调度部门实时提供全路货车、机车、列车、集装箱及所运货物的位置、状态变化的信息,为领导和计划、统计、财务等部门进行宏观决策和科学管理提供可靠依据。
TMIS系统还可以将货物运输的动态信息提供给货主,可作为企业组织生产和适应市场变化的重要依据。
铁路运输管理系统主要包括:货运营销和生产管理系统、货运制票系统、确保信息系统、集装箱追踪管理信息系统、车站综合管理系统、货车追踪系统。
2.1.1货运营销和生产管理系统货运营销和生产管理系统包括货运计划和技术计划两大部分。
货运计划部分主要是在联网货运站和车务段受理货主提报的货运计划。
通过计算机网络将受理的货运计划实时上报铁路分局、铁路局和铁道部。
铁路分局、铁路局和铁道部分别按照各级规定权限对提报的货运计划进行审批并将审批信息自动下达。
技术计划部分利用货运计划确定的货源信息,编制车辆运用计划,通过合理安排各区段车辆的运用,提高车辆运用效率和铁路运输能力,压缩铁路运输成本。
2.1.2货运制票系统货运制票系统即:在货运站办理货物运输时,利用计算技术如货物运输基本信息,自动计算计费径路,按照不同的货物和经过的区段所对应的费率计算货物运费及其他各项杂费并打印货票,完成相关统计报告。
2.1.3确报信息系统确报信息系统是以主要生产列车信息的车站和确报站及分局、路局、铁道部为节点,利用计算机网络实时发送、接收、转发列车确报。
以彻底解决确报不及时、不准确、不完整的问题。
2.1.4集装箱追踪管理信息系统主要通过铁路通信网络,从全路600多个集装箱办理站实时收集集装箱装车清单、卸车清单、空箱回送清单和集装箱运输日况表等信息。
在铁道部建立集装箱动态库,并通过与ATIS相结合掌握集装箱运行位置,为运输指挥人员和货主提供集装箱运输轨迹和动态信息,实现集装箱全程节点式追踪管理,满足集装箱运输管理和客户信息查询的需要。
2.1.5车站综合管理系统车站综合管理系统是整个TIMS系统的建设基础和重要的原始信息来源。
车站综合管理系统主要包括现车管理和货运管理两部分,现车管理通过对列车到发作业、解编作业、装卸作业、运用变更等,对站内现在车的分布和运用状态进行动态追踪。
货运管理通过计划管理、货物受理、仓库管理、装卸车中转配装、到达交付、进出门管理、货运安全等,对发送货物和到达货物进行站内全过程的管理,并完成相关统计分析,生成运输生产情况的各种上报信息。
2.1.6货车追踪系统铁道部、铁路局、铁路分局按照统一的数据结构,建立三级车辆、列车、机车集装箱动态库。
通过对车辆、列车、机车、集装箱、货物进行大节点式的动态追踪管理,并与调度系统结合,为铁道部、铁路局和铁路分局运输调度指挥中心提供运输生产的各种实时、可靠的信息。
系统使调度员能够及时准确的掌握列车运行状态、现在车保有量和车辆使用情况等信息,更加有效地组织运输生产、进行车辆的调度和管理,充分发挥调度指挥在铁路运输组织中的作用。
同时,可面向社会,为货主提供实时的信息服务,提高铁路行业在运输市场中的竞争力。
2.2 调度指挥管理信息系统(DMIS)铁路运输调度指挥管理信息系统(Dispatching Management Information System-DMIS)是综合通信、信号、计算机网络、多媒体等多门学科技术的系统工程。
DMIS 把传统的以车站为单位的分散信号系统逐步改造成一个全国统一的网络信号系统,构成一个覆盖全国铁路的大型计算机网络,实现全国铁路系统内有关列车运行、数据统计、运行调整及数据资料的数据共享、自动处理与查询。
DMIS的目标是提高运输效率、保证行车安全、挖潜提效、减轻调度人员的劳动强度、提高行车指挥技术水平和实现铁路运输调度指挥现代化。
DIMS按照现行铁路运输调度管理体制设计为四层体系结构:铁道部调度指挥中心、铁路局调度指挥中心、铁路分局调度指挥中心、基层信息采集系统。
2.2.1 铁道部调度指挥中心作为DMIS系统的核心与14个铁路局调度中心远程连接,接收全国铁路系统的各种实时信息与运输数据和资料,监视全路主要干线、分界口、重要枢纽等的运输状况、信号设备显示状态、列车早晚点、计划运行图、实际运行图、施工、气象、事故及灾害等信息,为铁道部各专业调度提供实时监视和统计查询功能,为各级领导的决策提供真实可靠的信息。
2.2.2 铁路局调度指挥中心铁路局调度指挥中心设在各铁路局所在地,建有路局调度指挥中心局域网,通过专线与铁道部及其所属各分局调度中心远程连接,进行信息交换。