第4章弯曲应力

合集下载

材料力学刘鸿文第六版最新课件第四章 弯曲内力

材料力学刘鸿文第六版最新课件第四章 弯曲内力

回顾
第三章 扭 转
§3.1 扭转的概念和实例 §3.2 外力偶矩的计算 扭矩和扭矩图 §3.3 纯剪切(薄壁圆筒扭转问题) §3.4 圆轴扭转时的应力 §3.5 圆轴扭转时的变形 §3.6 圆柱形密圈螺旋弹簧的应力和变形 §3.7 非圆截面扭转的概念 §3.8 薄壁杆件的自由扭转
第四章 弯曲内力
M l
e
(l
x2 )
FA
Me
a
b
A
C
x1
x2
l
FS
+
FB
B
Me lx
(3)根据方程画内力图
FS
(
x1
)
M l
e
FS (x2 )
Me l
M x
FA
Me
a
b
A
C
x1
x2
l
FS
+
M
a l
M
e
+

b l
M
e
FB
B
Me
lx
(3)根据方程画内力图
FS
(
x1
)
M l
e
FS (x2 )
M
(x1)
M l
Me
l e x1
a l F(lx2 )
FA a F
b
A x1
C
x2
l
FS
bF
+l

M
FB (3)根据方程画内力图
B
b
FS (x1) l F
FS
( x2
)
a l
F
x
a l
F
x
FA a F
b

《材料力学》第四章 弯曲内力

《材料力学》第四章 弯曲内力
ql FS = R A-qx= -qx 2 x qlx qx 2 M = R A x-qx ⋅ = - 2 2 2
M FS
F S
(3)画出FS图与M图。 画出F 图与M 剪力图为一斜直线, 剪力图为一斜直线, x=0,FS=ql/2;x=l,FS=-ql/2; ; 弯矩图为一抛物线, 弯矩图为一抛物线, 由三点来确定: 由三点来确定: x=0及x=l时,M=0; x=l/2, M=ql2/8。 。
M x = a, M = O a AC段 x=0, AC段:x=0,M=0 ; l
CB段 CB段:x=a, x=l, M= x= , M=0
MO M =- b l
试作轴的简力图和弯矩图
补例1 补例1

(1)求支反力。 求支反力。
1 ql 2
R A = RB =
(2)用截面法求剪力和弯矩方程。 用截面法求剪力和弯矩方程。
∑ mA = 0 ∑m
B
=0
l -m-P ⋅ + YB ⋅ l = 0 2 l -YA ⋅ l-m+P ⋅ = 0 2
YA-FSC=0 , 3 FSC=- P 2
5 P B 2 3 Y A =- P 2 Y =
m
(2)计算C截面的内力。 计算C截面的内力。
∑Y = 0 ,
P
l 13 mC=0 , YA ⋅ -m+M C=0 , M C= Pl ∑ 4 8
求反力: 解 (1)求反力:
∑ X = 0, X = 0 ∑ Y = 0, P - Y =0 ∑ m =0, m - Pa =0
C C C C
YC= P m C= Pa
(2)列弯矩和轴力方程。 列弯矩和轴力方程。 AB段 AB段:M(x)= Px, N(x)=0 , BC段 BC段:M(y)=mC=Pa, N(y)=P ,

材料力学习题

材料力学习题

材料力学作业册学院:专业:年级:班级:学号:姓名:前言本作业题册是为适应当前我校教学特色而统一筛选出来的题集,入选题目共计72个,教师可根据学时情况有选择性的布置作业。

本题册中列出的题目仅是学习课程的最基本的作业要求,老师根据情况可适当增加部分作业,部分学生如果有考研或者其他方面更高的学习要求,请继续训练其他题目。

本题册仅用于学生课程训练之练习,任何人不得将其用于商业目的,违者将追究其法律责任。

由于时间仓促,并限于编者水平有限,缺点和错误在所难免,恳请大家提出修改建议。

王钦亭wangqt@ 2013年2月27日目录第一章绪论 (1)第二章拉伸与压缩 (2)第三章扭转 (7)第四章弯曲应力 (11)第五章弯曲变形 (18)第六章简单超静定问题 (20)第七章应力状态与强度理论 (25)第八章组合变形与连接件计算 (32)第九章压杆稳定 (36)第十章能量法 (41)第十一章动荷载.交变应力 (49)附录I 截面的几何性质 (53)第一章绪论1-1 材料力学的中所讲的构件失效是指哪三方面的失效?1-2 可变形固体的基本假设有哪些?1-3 材料力学中研究的“杆”,有什么样的几何特征?1-4 材料力学中,杆件的基本变形有哪些?第二章 拉伸与压缩2-1(SXFV5-2-1)试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

2-2(SXFV5-2-2)一打入地基内的木桩如图所示,沿杆轴单位长度的摩擦力为2f kx (k 为常数),试作木桩的轴力图。

A2-3(SXFV5-2-3)石砌桥墩的墩身高=10 m l ,其横截面尺寸如图所示。

荷载 1 000 kN F =,材料的密度33=2.3510 kg/m ρ⨯。

试求墩身底部横截面上的压应力。

2-4(SXFV5-2-6)一木桩受力如图所示。

柱的横截面为边长200 mm 的正方形,材料可认为符合胡克定律,其纵向弹性模量10 GPa E =。

如不计柱的自重,试求: (1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱端A 的位移。

建筑力学_结构第四章_应力和强度

建筑力学_结构第四章_应力和强度

o1o2 = dx = ρdθ
)dθ −ρdθ = ydθ
ab的线应变: ab的线应变 的线应变:
∆S ydθ y ε= = = dx ρdθ ρ
§4-2 弯曲时的正应力
• 物理方面 弹性) 物理方面(弹性 弹性
σ = Eε =
Ey
ρ
静力平衡关系 (合力矩定理、合力定理 合力矩定理、 合力矩定理 合力定理)
§4-2 弯曲时的正应力
正应力公式的使用条件及推广
正应力公式只能用于发生平面弯曲的梁; 正应力公式只能用于发生平面弯曲的梁 材料处于线弹性范围内; 材料处于线弹性范围内 对于具有一个纵向对称面的梁均适用; 对于具有一个纵向对称面的梁均适用 可推广应用于横力弯曲时梁的正应力计算. 可推广应用于横力弯曲时梁的正应力计算
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。 2. 应力的表示: 应力的表示: ①平均应力: 平均应力: ∆P M ∆A
ΔP pM = ΔA
②应力: 应力:
p = lim
∆A → 0
∆ P dP = ∆ A dA
③应力分解为: 应力分解为: 垂直于截面的应力称为“正应力” 垂直于截面的应力称为“正应力” (Normal Stress); )
提高梁弯曲强度的措施 采用合理截面形状
原则:当面积 一定时 一定时,尽可能 原则:当面积A一定时 尽可能 增大截面的高度,并将较多的材 增大截面的高度 并将较多的材 料布置在远离中性轴的地方,以 料布置在远离中性轴的地方 以 得到较大的抗弯截面模量。 得到较大的抗弯截面模量。
Mmax ≤ Wz ⋅[σ ]
q=3.6kN/m 矩形(b×h=0.12m×0.18m)截面木梁 A L=3m

材料力学第04章 杆件变形分析

材料力学第04章 杆件变形分析
桁架的变形通常用节点的位移(displacement)表示,现以 下图所示桁架为例,说明桁架节点位移的分析方法。
例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。

材料力学第四章平面弯曲

材料力学第四章平面弯曲


∫ A ydA =0
M
dA
z
y z ζdA
My
横截面对中性轴 zdA 的面积矩为零, A 中性轴过形心。 E yzdA 0

A
y
Iyz =0——梁发生平面弯曲的条件
E I E 2 ∫ AσdA· z ∫ A y dA = Mz= y = ρ ρ 1 Mz = EIz —— 梁的弯曲刚度 中性层曲率公式 EI ρ z
y
m MB=-40kN· m MD=22.5kN· B M y B截面 上部受拉、下部受压 tBmax B t max 21.4MPa Iz B yt max 100mm B M y I z 186.6 106 m 4 B B c max 38.6MPa B c max yc max 180mm Iz
max
FQ S
* z max
Izd
d FQ 4 FQ 12 4 d 3 A d 64
3
d/2
z
max
四、薄壁圆环截面梁 中性轴处:
r0
z
max 2
FQ A
max
例 如图所示一T形截面。某截面上的剪力FQ=50kN,与y 轴重合。试求腹板的最大切应力,并画出腹板上的切应力分布图。
1
* FQ S z 1
I zd
4.13MPa
例 一矩形截面外伸梁,如图所示。现自梁中1、2、 3、4点处分别取四个单元体,试画出单元体上的应力,并 写出应力的表达式。
q
1 2 h/4 4 3
z l/4 b
l/4
l
解: (1)求支座反力:
FRA
FRB
1 l/4

材料力学 第四章_5

材料力学 第四章_5
3 6 3 8 4 3
于是有:
6
Pa 8.6 MPa
和最大切应力相差不大。
第四章 弯曲应力
3. 薄壁环形截面梁 薄壁环形截面梁在竖直平面 内弯曲时,其横截面上切应力 的特征如图a所示: (1) 由于d <<r0,故认为切应 力 的大小和方向沿壁厚 无变 化; (2) 由于梁的内、外壁上无切 应力,故根据切应力互等定理 知,横截面上切应力的方向与 圆周相切;
梁的正应力强度条件
对于中性轴为横截面对称轴的梁,上述强度条件 可写作 M max Wz
由拉、压许用应力[t]和[c]不相等的铸铁等脆 性材料制成的梁 t,max ≤[t] c,max ≤[c] 。
第四章 弯曲应力
例题 4-11
图a所示为槽形截面铸铁梁,横截面尺寸和形心 C的位置,如图b所示。已知横截面对于中性轴z 的 惯性矩Iz=5493×104 mm4,b=2 m。铸铁的许用拉 应力[t]=30 MPa,许用压应力[c]=90 MPa 。试求 梁的许用荷载[F]。
例题 4-13
第四章 弯曲应力
解: 1. 求max 梁的剪力图如图c所示,由图可见FS,max=75kN。 由型钢表查得56a号工字钢截面的尺寸如图b所示, Iz=65 586 cm4和Iz/S * z,max=47.73cm。d=12.5mm
第四章 弯曲应力
max
* FS ,max S z ,max FS ,max 75 103 N 47.73 102 m 12.5 103 m I zd Iz * d S z ,max
第四章 弯曲应力
d FS b d x

* * d M S z FS S z d x I zb I zb

弯曲4-1、2

弯曲4-1、2

第四章 弯曲
第一节 弯曲变形过程及变形特点
弯曲成形典型零件
第四章 弯曲
第一节 弯曲变形过程及变形特点
滚弯 模具压弯
折弯
拉弯
弯曲件的弯曲方法
第四章 弯曲
第一节 弯曲变形过程及变形特点
1-下模板 2、5-圆柱销 3-弯曲凹模 4-弯曲凸模 6-模柄 7-顶杆 8、9-螺钉 10-定位板
V 形 件 弯 曲 模
开槽后弯曲。
第四章 弯曲
作 业:
1.板料弯曲的变形特点?何谓最小弯曲半径? 2.表示弯曲变形程度的参数是什么?表示 弯曲时成形极限的参数是什么? 3.提高弯曲极限变形程度的方法?
第四章 弯曲
第二节
最小弯曲半径
弯曲中心角 实际上由于板料纤维之间的相互牵制作 用,圆角附近的直边部分材料也参与了弯曲 变形,分散了圆角部分的弯曲应变;中心角 越小,分散效应越好, rmin越小。
应力状态: 切向和厚度方向的应力状态与窄板相同; 宽度方向,由于材料不能自由变形,外层为 拉应力,内层为压应力。
第四章 弯曲
第一节 弯曲变形过程及变形特点
三、板料弯曲的变形特点 1.变形区板料变薄和增长; 2.中性层内移; 3.剖面发生畸变、翘曲和破裂。
窄板
宽板
第四章 弯曲
第一节 弯曲变形过程及变形特点
第四章 弯曲
第一节 弯曲变形过程及变形特点
第一节 弯曲变形过程及变形特点 一、弯曲变形过程 二、弯曲变形区的应力、应变分析
三、变形程度及其表示方法
四、板料弯曲的变形特点
第四章 弯曲
第一节 弯曲变形过程及变形特点
一、弯曲变形过程 1.弯曲变形时板材变形区受力情况分析
凸模
M=PL

理论力学 第四章_07.8.28_

理论力学 第四章_07.8.28_

第四章 弯曲应力4-1 试求图示各梁中指定横截面上的剪力和弯矩。

解:(a )m kN M kN F m kN M F s s ⋅−=−=⋅−==12 ,5 ,2 ,02211 (b )m kN M kN F m kN M kN F s s ⋅=−=⋅==6 ,3 ,6 ,22211 (c )m kN M kN F m kN M kN F s s ⋅−==⋅==6 ,4 ,4 ,42211 (d ) ,5 ,67.111m kN M kN F s ⋅==(e )e e s e e s M M aMF M M a M F −=−=−=−=2211 ,4 ,4 ,4, e s M M F −==33 ,0 (f )m kN M kN F m kN M kN F s s ⋅−=−=⋅−==25.15 ,81.11 ,25.15 ,5.122211 (g )m kN M F m kN M kN F s s ⋅−==⋅−==40 ,0 ,45 ,302211(h )34 ,0 ,1211 ,4302220101aq M F a q M a q F s s ====4-3 试利用载荷集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。

解:(a)(b)(c)(g)(d)(e)(f)4-4 试作下列具有中间铰的梁的剪力图和弯矩图。

解:有中间铰的梁的内力图画法与普通梁无异,关键是求出约束反力。

4-6 已知简支梁的剪力图如图所示。

试作梁的弯矩图和载荷图。

已知梁上没有集中力偶作用。

解:(a )A 、B 、D 截面剪力突变,说明截面上有集中力作用,集中力的值等于该截面剪力的突变值。

CD 段剪力图为下斜直线,说明该段上有向下的均布载荷作用,载荷集度等于该段剪力图的斜率。

(b )A 、C 、D 截面剪力突变,说明截面上有集中力作用,集中力的值等于相应截面上剪力的突变值。

AC 段剪力图为下斜直线,说明该段上有向下的均布载荷作用,载荷集度等于该段剪力图的斜率。

材料力学第4章第5章

材料力学第4章第5章
200
100
q 2 kN m
200
4m
100
qL2 8
竖放
max
M max WZ
M max WZ
qL2 82 bh 6
6MPa
横放
max
qL2 8 2 12MPa hb 6
例5-3:图示T形截面简支梁在中点承受集中力F= 32kN,梁的长度L=2m。T形截面的形心坐标yc= 96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。 y 求弯矩最大截面上的最大拉应力和最大压应力。
B
F
Fa
纯弯曲:梁受力弯曲 后,如其横截面上只有弯 矩而无剪力,这种弯曲称 为纯弯曲。
F
AC段: 剪力弯曲 CB段: 纯弯曲 pure bending
实验现象:
F F
1、变形前互相平行的纵向
m n
m
n
直线、变形后变成弧线,且 凹边纤维缩短、凸边纤维伸 长。 2、变形前垂直于纵向线的 横向线,变形后仍为直线,且 仍与弯曲了的纵向线正交, 但两条横向线间相对转动了 一个角度。
d

y

M
M
中性轴
m
n o
dA
z
y
d


o
y
dx
m
dx
n
z
y
1)几何方程
2)物理方程
3)静力平衡方程
中性轴 z 是形心轴
纯弯曲梁横截面正应力公式 1)几何方程 2)物理方程 2)静力平衡方程 对应力公式的讨论
抗弯截面系数
M
M
中性轴
MZ:横截面上的弯矩
m
n o
dA
z

材料力学考研复习资料第4章弯曲内力

材料力学考研复习资料第4章弯曲内力

M eb l
发生在C截面右侧
思考:对称性与反对称性
FA
F
FB
A
B C
l/2
l/2
Fs
F/2
x
F/2
x
M
Fl/4
FA
Me
FB
A
B C
l/2
l/2
Fs
Me l
x
Me/2
M
Me/2
x
结论:
• 结构对称、外力对称时,弯矩图为正对称, 剪力图为反对称
• 结构对称、外力反对称时,弯矩图为反对称, 剪力图为正对称
34
A1 2
34
Bx
内力
FS M
1—1 -P -Pa
2—2 2P -Pa
3—3 2P Pa
4—4 2P -2Pa
3、在集中力作用处,剪力值发生突变,突变值= 集中力大小;
在集中力偶作用处,弯矩值发生突变,突变值= 集中力偶矩大小。
例 图示简支梁受到三角形分布荷载的作用,最大荷
载集度为q0,试求截面C上的内力。
1 FS1
M1 Fa ( 顺 )
截面2—2
Fy 0 FS2 FA F 0
F
C2 2 M2
FA 2 FS2
FS2 FA F 2F MC2 0 M2 F a 0
M 2 Fa ( 顺 )
y
Me =3Fa
F
1A2 3 4
B
1 2 34
x
a
a
FA
2a
FB
截面3—3 F
C33 M3
1 8
ql
FSB左
1 ql 8
剪力方程为常数,剪力图为
水平线。
M图:

材料力学内部习题集及答案

材料力学内部习题集及答案

第二章 轴向拉伸和压缩2-1一圆截面直杆,其直径d =20mm,长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3,杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。

解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Addσππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。

已知杆横截面面积为A ,长度为L ,材料的容重为γ。

解:距离A 为x 处的轴力为 所以总伸长2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。

在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。

解:由胡克定律得 相应杆上的轴力为取A 节点为研究对象,由力的平衡方程得解上述方程组得2-4图示杆受轴向荷载F 1、F 2作用,且F 1=F 2=F ,已知杆的横截面面积为A ,材料的应力-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。

材料力学习题及答案4-6

材料力学习题及答案4-6

第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。

()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。

()简支梁上向下的集中力对任意横截面均产生负弯矩。

()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。

()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。

()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。

()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。

()梁纯弯曲时中性轴一定通过截面的形心。

()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。

()图示梁弯矩图的B点是二次抛物线的顶点。

()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。

()(M图)下列三种斜梁A截面的剪力均相同。

()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。

()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。

()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。

()一端(或两端)向支座外伸出的简支梁叫做外伸梁。

()##√悬臂梁的一端固定,另一端为自由端。

()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。

()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。

()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。

()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。

()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。

()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。

弯曲变形区的应力与应变状态分析

弯曲变形区的应力与应变状态分析

r
邻部分材料的制约,材
料不易流动,因此其横
断面形状变化较小,仅
在两端会出现少量变形,
横断面形状基本保持为
矩形。BBρa)b)
图4-7 窄板、宽板的变形 a)窄板 b)宽板
第四章 弯曲
二、弯曲变形时材料的流动情况
5、弯曲后的畸变、翘曲 细而长的板料弯曲件,由于沿折弯 线方向工件的刚度小,塑性弯曲时,外区宽度方向的压应变和 内区的拉应变将得以实现,结果使折弯线翘曲。当板料弯曲件 短而粗时,沿工件纵向刚度大,宽度方向应变被抑制,翘曲则 不明显。对于管材、型材弯曲后的剖面畸变如图4-8b所示,这 种现象是因为径向压应力所引起的。另外,在薄壁管的弯曲中, 还会出现内侧面因受切向压应力的作用而失稳起皱的现象。
的减薄量大于内侧的增厚量,因
此使弯曲变形区的材料总厚度变 薄。变形程度愈大,变薄现象愈 严重。
图4-6 弯曲前后坐标网格的变化 a)弯曲前 b)弯曲后
接下页
第四章 弯曲
二、弯曲变形时材料的流动情况
4、变形区横断面的变形。 板料的相对宽度 B/t(B是 板料的宽度,t是板料的厚 度)对弯曲变形区的材料变 形有很大影响。一般将相对 宽度B /t>3 的板料称为宽 板 ,相对宽度B /t≤ 3 的 称为窄板。
简述如下:弯曲开始前,先将 平板毛坯放入模具定位板中 定位,然后凸模下行,实施 弯曲,直至板材与凸模、凹 模完全贴紧(此时冲床下行至 下死点),然后开模(此时冲 床上行至上死点),再从模具 里取出V形件。
V
图4-3 V形弯曲模
第四章 弯曲
一、弯曲过程与特点 (续)
在板材A处,凸模施加外力2F,M
R
3、校正弯曲阶段:到行程终了时,凸凹模对弯曲件进行校正, 使其直边、圆角与凸模全部靠紧。整个变形区的材料完全处于 塑性变形较稳定的状态。

材料力学(土木类)第四章 弯曲应力(4)

材料力学(土木类)第四章 弯曲应力(4)
dM * Sz −F = Iz
* N1
′ d FS = F
* FS S z τ 1′ = I zδ
FS h δ FS τ 1 = τ 1′ = × δη − = × η (h − δ ) I z δ 2 2 2 I z
δ
τ1max τmax O
τmax
FS τ1 = × η (h − δ ) 2I z
* FS S z FS τ= = I zb 2I z
h2 2 −y 4
τmax
O
(1) τ沿截面高度按二次抛物 线规律变化; 线规律变化; (2) 同一横截面上的最大切应 在中性轴处( 力τmax在中性轴处 y=0 ); ; (3)上下边缘处(y=±h/2), 上下边缘处( ± 上下边缘处 , 切应力为零。 切应力为零。
σ max ≤ [σ ]
G
τ τ
σ σ
H
梁上任意点G 平面应力状态, 梁上任意点 和H →平面应力状态, 平面应力状态 若这种应力状态的点需校核强度时不 能分别按正应力和切应力进行, 能分别按正应力和切应力进行,而必 须考虑两者的共同作用(强度理论)。 须考虑两者的共同作用(强度理论)。
ql2/8
横力弯曲梁的强度条件: 横力弯曲梁的强度条件:
Ⅱ、梁的切应力强度条件 发生在F 所在截面的中性轴处, 一般τmax发生在 S ,max所在截面的中性轴处,该位置 σ=0。不计挤压,则τmax所在点处于纯剪切应力状态。 所在点处于纯剪切应力 纯剪切应力状态 。不计挤压,
q E m G mH l/2 C D l F E
τmax
F
τmax
梁的切应力强度条件为
τ
y b
FS1 = ∫ τ d A ≥ 0.9 FS

材料力学弯曲应力

材料力学弯曲应力

材料力学弯曲应力材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而弯曲应力是材料在受到弯曲载荷时所产生的应力。

弯曲应力的研究对于工程结构设计和材料选用具有重要意义。

本文将从弯曲应力的概念、计算公式、影响因素等方面进行详细介绍。

弯曲应力是指在材料受到弯曲载荷作用下,横截面上的应力分布情况。

在弯曲过程中,材料上部受到压应力,下部受到拉应力,而中性面则不受应力影响。

根据梁的理论,弯曲应力与弯矩、截面形状以及材料性质有关。

在工程实践中,我们通常使用梁的弯曲应力公式来计算弯曲应力的大小。

梁的弯曲应力公式可以表示为:\[ \sigma = \frac{M \cdot c}{I} \]其中,σ为弯曲应力,M为弯矩,c为截面中性轴到受拉或受压纤维的距离,I为截面的惯性矩。

从公式中可以看出,弯曲应力与弯矩成正比,与截面形状和材料性质有关,截面越大,惯性矩越大,弯曲应力越小。

影响弯曲应力的因素有很多,主要包括载荷大小、截面形状、材料性质等。

首先是载荷大小,当外力作用在梁上时,产生的弯矩大小将直接影响弯曲应力的大小。

其次是截面形状,截面形状不同将导致截面惯性矩不同,进而影响弯曲应力的大小。

最后是材料性质,材料的弹性模量、屈服强度等参数也会对弯曲应力产生影响。

在工程实践中,我们需要根据具体的工程要求和材料性质来选择合适的截面形状和材料类型,以使得结构在受到弯曲载荷时能够满足强度和刚度的要求。

同时,还需要合理设计结构,减小弯曲应力集中的区域,避免出现应力集中而导致的破坏。

综上所述,弯曲应力是材料在受到弯曲载荷时产生的应力,其大小与弯矩、截面形状和材料性质有关。

在工程实践中,我们需要根据具体的工程要求和材料性质来计算和分析弯曲应力,以保证结构的安全可靠。

同时,合理设计结构和选择合适的材料也是降低弯曲应力的重要手段。

希望本文对于弯曲应力的理解和应用能够有所帮助。

材料力学第五版课后习题答案

材料力学第五版课后习题答案

材料⼒学第五版课后习题答案⼆、轴向拉伸和压缩2-1试求图⽰各杆1-1和2-2横截⾯上的轴⼒,并作轴⼒图。

(a)解:;;(b)解:;;(c)解:;。

(d)解:。

2-2 试求图⽰等直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。

若横截⾯⾯积,试求各横截⾯上的应⼒。

解:2-3试求图⽰阶梯状直杆横截⾯1-1,2-2和3-3上的轴⼒,并作轴⼒图。

若横截⾯⾯积,,,并求各横截⾯上的应⼒。

解:2-4 图⽰⼀混合屋架结构的计算简图。

屋架的上弦⽤钢筋混凝⼟制成。

下⾯的拉杆和中间竖向撑杆⽤⾓钢构成,其截⾯均为两个75mm×8mm的等边⾓钢。

已知屋⾯承受集度为的竖直均布荷载。

试求拉杆AE和EG横截⾯上的应⼒。

解:=1)求内⼒取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应⼒75×8等边⾓钢的⾯积A=11.5 cm2(拉)(拉)2-5(2-6)图⽰拉杆承受轴向拉⼒,杆的横截⾯⾯积。

如以表⽰斜截⾯与横截⾯的夹⾓,试求当,30,45,60,90时各斜截⾯上的正应⼒和切应⼒,并⽤图表⽰其⽅向。

解:2-6(2-8) ⼀⽊桩柱受⼒如图所⽰。

柱的横截⾯为边长200mm的正⽅形,材料可认为符合胡克定律,其弹性模量E=10 GPa。

如不计柱的⾃重,试求:(1)作轴⼒图;(2)各段柱横截⾯上的应⼒;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)2-7(2-9)⼀根直径、长的圆截⾯杆,承受轴向拉⼒,其伸长为。

试求杆横截⾯上的应⼒与材料的弹性模量E。

解:2-8(2-11)受轴向拉⼒F作⽤的箱形薄壁杆如图所⽰。

已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。

解:横截⾯上的线应变相同因此2-9(2-12) 图⽰结构中,AB为⽔平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。

试求C点的⽔平位移和铅垂位移。

解:(1)受⼒图(a),。

(2)变形协调图(b)因,故=(向下)(向下)为保证,点A移⾄,由图中⼏何关系知;第三章扭转3-1 ⼀传动轴作匀速转动,转速,轴上装有五个轮⼦,主动轮Ⅱ输⼊的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。

第四章 弯曲应力

第四章 弯曲应力

③静力学关系 设中性轴为z
FN dA 0
M y z dA 0
A
A
M
y
z
dA
M z y dA M
A
FN dA 0 E dA 0
A
y
E
A
z

ydA 0
A
ydA S
FS ( x ) ql qx 2
(0 x l )
FS ql / 2
ql / 2
M


ql x M ( x) x qx 2 2
q l ql 2 x 2 2 8
2
ql 2 / 8
(0 x l )
3.剪力、弯矩和载荷集度间的关系 ●剪力和弯矩与载荷集度间的微分关系
●剪力和弯矩与载荷集度间的微分关系
FS x q x dx FS x dFS x 0
dFS x q x dx
1 M x dM x qx dx 2 M x FS x dx 0 2
dM x FS x dx
FAy 3kN
2、作内力图 1)轴力图
DC杆 : FN 2 1kN AD杆 : FN 3 3kN
D E 5kN C 1kN
D
8kN 1m 2m C E 3m
4m
BC杆 : FN 1 5kN
q=1kN/m
B
1kN
A
FAx
FB
FAy FAx=-3kN FAy=3kN FB=5kN
弯矩图斜率为常量cont,M (x)为斜直线。
②梁上作用均布荷载:q(x)=cont
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解得
QE FRA M E FRAc
FRA
QE
ME
A
E
c
FRA
QE
ME
A
E
c
取右段为研究对象
F1
QE
ME
EC
F2
FRB
D
B
a-c b-c l-c
Fy 0 QE FRB F1 F2 0
ME 0 FRB (l c) F1(a c) F2(b c) ME 0
解得
QE FRA
+
M E FRAc
+
FRA
a
F1
F2
FRB
A
CD
B
E
F
c
d
b
l
QF MF
F d
FRB
B
计算F点横截面处的剪力QF 和弯矩MF .
Fy 0, QF FRB 0
- 解得: QF FRB
MF 0, MF FRBd 0
M F FRBd +
三、计算规律
1、剪力 梁的任意横截面的剪力在数值上等于该截面一侧(左 侧或右侧)所有的竖向外力(包括斜向外力的竖直分量、 支座反力)的代数和;其中与该剪力同方向的外力取负号 ,反之取正号;亦左侧向上的外力引起的剪力为正,右侧 向下的外力引起的剪力为正。(左上右下为正)
E
F
c
d
FRAl F1(l a) F2(l b) 0
b l
FRA
F1 ( l
a)
l
F2 ( l
b)
FRB
F1a
l
F2b
设 E 截面处的剪力QE 和弯矩ME 的指向和转向均 FRA a F1
F2
FRB
为正值.
A
Fy 0,FRA Q E 0
E
c b
CD
B
F
d
l
M E 0, M E FRA c 0
(2)固定铰支座
A
2个约束,1个自由度。 如:桥梁下的固定支座,止 A
推滚珠轴承等。
A
(3)固定端
3个约束,0个自由度。
如:游泳池的跳水板支座、车刀架、
木桩下端的支座等。
FRAy FRAx A
FRy
FRx M
(4)静定梁的基本形式 简支梁 外伸梁
悬臂梁
梁的力学模型的简化
§4-2 剪力方程和弯矩方程·剪力图和弯矩图
F (l a) l
M FRAy x
FRAx A
m
剪力 弯曲构件内力
FRAy
m
x
1.弯矩M
弯矩
构件受弯时,横截面上其作用面
Q M
垂直于截面的内力偶矩.
FRAy
2. 剪力Q 构件受弯时,横截面上其作用线
平行于截面的内力.
C
M C
Q
F
B FRB
F FRB
二、内力的符号规定 1.剪力符号
+m Q
使dx 微段有左端向上而右端向下的相对 错动时,横截面m-m上的剪力为正.或使dx微段 有顺时针转动趋势的剪力为正.
m 受拉
m
m 受压
例4.2 图示梁的计算简图.已知 F1、F2,且 F2 > F1 ,尺寸a、b、c 和 l 亦均为已知.试求梁在 E 、 F 点处横截面处的剪力和弯矩.
解: (1)求梁的支反力 FRA 和 FRB
MA 0
FRA
a
F1
F2
FRB
FRBl F1a F2b 0
MB 0
A
CD
B
例4.3 轴的计例算简图如图所示,已知 F1 = F2 = F = 60kN,
a = 230mm,b = 100 mm 和c = 1000 mm. 求 C 、D 点处横截面
上的剪力和弯矩.
F1=F
FRA
FRB F2=F
C
A
D
B
b
a c
解: (1)求支座反力
FRA FRB F 60kN
(2)计算C 横截面上的剪力QC和弯矩 MC
Q m
dx
-m
使dx微段有左端向下而右端向上的相对错 动时,横截面m-m上的剪力为负.或使dx微段有 Q
逆时针转动趋势的剪力为负.
m dx
2.弯矩符号
+ Mm
M
当dx 微段的弯曲下凸(即该段的下半部 受拉 )时,横截面m-m上的弯矩为正;
当dx 微段的弯曲上凸(即该段的下半
- 部受压)时,横截面m-m上的弯矩为负.
第四章 弯曲应力
§4.1 弯曲的概念及计算简图
一、受力变形特点
车削工件
火车轮轴
1、 受力特点 外力(包括力偶)的作用线垂直于杆轴线.
2、 变形特征 变形前为直线的轴线,变形后成为曲线.
3、平面弯曲 作用于梁上的所有外力都在纵向对称面内,弯曲变形
后的轴线是一条在该纵向对称面内的平面曲线,这种弯曲 称为平面弯曲.
1、剪力方程
2.弯矩方程
Q= Q(x) M= M(x)
五、剪力图和弯矩图
以平行于梁轴的横坐标x表示横截面的位置,以纵坐 标表示相应截面上的剪力和弯矩.这种图线分别称为剪力 图和弯矩图
剪力图为正值画在 x 轴上侧,负值画在x 轴下侧
弯矩图为正值画在 x 轴下侧,负值画在x 轴上侧
例4.4 图a所示悬臂梁受集度为q的满布均布荷载作用。 试作梁的剪力图和弯矩图。
(a)
解:1. 列剪力方程和弯矩方程
根据截面右侧梁段上的载荷有
Q x qx 0 x l M x qx x qx2
22
Q(x)
M x
0 x l
2. 作剪力图和弯矩图 (b)
取左侧
QC F1 60kN MC F1b 6.0kN m
(3)计算D横截面上的剪力QD 和弯矩 MD
取左侧 QD FRA F1 60 60 0
MD FRA(c a) F1c Fa 13.8kN m
F1=F
FRA
FRB F2=F
C
A
D
B
b
a c
四、剪力方程和弯矩方程
用函数关系表示沿梁轴线各横截面上剪力和弯矩的变化规律, 分别称作剪力方程和弯矩方程.
4、梁 以弯曲变形为主的杆件
纵向对称面
平面弯曲
梁变形后的轴线与
FRA
外力在同一平面内
二、静定梁的三种基本形式
1、 梁的简化 通常取梁的轴线来代替梁。
集中力
2、载荷类型
集中力偶
分布载荷
3、支座的类型
A
(1)可动铰支座
A
1个约束,2个自由度。
A
如:桥梁下的辊轴支座,
FRA
A
滚珠轴承等。
2、弯矩 梁的任意横截面上的弯矩在数值上等于该截面一
侧(左侧或右侧)所有的外力(包括外力偶)对该截 面形心的力矩的代数和。其中与该弯矩同方向的外力 偶取负号,反之取正号;亦不论是左侧还是右侧向上 的外力引起的弯矩为正。左侧力偶顺时针引起的弯矩 为正,右侧力偶逆时针引起的弯矩为正。(左顺右逆 为正)
一、内力计算 例4.1 已知 如图,F,a,l. 求距A端x处截面上内力.
解: 求支座反力
a
A
Fx 0 , FRAx 0
l
MA 0 ,
FRB
Fa l
Fy 0 ,
FRAy
F (l a) l
FRAx A
FRAy
F B
F B
FRB
求内力——截面法
Fy 0 , MC 0 ,
Q
FRAy
相关文档
最新文档