论谐振过电压产生原因及防治

合集下载

厂用电谐振过电压分析及预防(一)

厂用电谐振过电压分析及预防(一)

厂用电谐振过电压分析及预防(一)摘要:在中性点不接地电力系统中,由于电磁式电压互感器激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压,影响电气设备安全运行。

为此,从两起典型的6kV厂用电谐振过电压入手,分析计算产生谐振过电压的条件及其现象。

最后,阐述了解决谐振过电压问题所采取的措施。

关键词:厂用电;谐振;过电压;电压互感器;分析;措施1谐振过电压产生条件、特点和危害在中性点不接地电力系统中,由于电磁式电压互感器(TV)激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压。

特别是遇有激磁特性不好(易饱和)的TV及系统发生单相对地闪络或接地时,更容易引发谐振过电压。

轻者令到TV的熔断器熔断、匝间短路或爆炸;重者则发生避雷器爆炸、母线短路、厂用电失电等严重威胁电力系统和电气设备运行安全的事故。

2两起谐振过电压及其分析2.1铁心饱和过电压这种过电压最常见于投空母线时,由于系统电压偏高致使激磁特性差的TV饱和,当TV电抗降至和系统对地容抗相等时便引发谐振过电压。

现在由于采取一系列技术手段这一现象已很少发生,但其它形式谐振过电压却还时有发生,应引起我们注意,请看下面实例。

2.1.1事发经过1998年10月8日8时58分,6kVⅢ段工作电源开关632甲、632乙跳闸,3号炉甲、乙送风机和3号机循环水泵跳闸,备用电源开关630甲、乙联动,6kVⅢA和ⅢB段母线电压表无指示,3号炉甲、乙送风机强送未成功,发电机组与电网解列。

事后检查发现6kVⅢ段母线有电压,判断是TV保险熔断,使带有低压保护设备跳闸,恢复TV保险后,3号机组于当天9时55分重新并网。

2.1.2原因分析事故发生时,与6kVIIIA段相联的输煤I段上有停3号炉除渣泵电动机的操作,由于6kVⅢ段的2台TV的熔断器三相均熔断,因而初判发生了三相谐振过电压。

6kVⅢA、ⅢB和输煤Ⅰ段上三台TV均是JDZJ-6型干式电压互感器。

电力系统中谐振过电压的产生与解决对策

电力系统中谐振过电压的产生与解决对策

电力系统中谐振过电压的产生与解决对策摘要:除了家电之外,在日常生活中会因为电磁感应产生的振动导致一些细部用电仪器出现损坏以及运作时令的问题,与此同时在一些大型的电力供给、传输运作以及发电上都会有这种问题的出现,所有出现的这种问题都被称作谐振过电压。

本文对电力系统中谐振过电压的产生进行了分析和探讨,并且有针对性的将有效的解决问题的措施提了出来,希望能够对大家有所帮助。

关键词:谐振过电压问题策略引言电路当中如果有电流通过就会产生磁场,在生产电力上电与磁的互相转化使人类的生活得到了极大地帮助。

然而在我国的电力工作当中因为这类问题的出现从而造成了很多的损失,其不仅严重的危害到了国家的财产安全,甚至会经常性的造成人员伤亡状况的出现。

我国的电力专家为了促进过电压危害这一问题的有效解决,对其中的很多方法进行了总结,本文具体的介绍了谐振过电压的现象,并且将有效的解决措施提了出来,供大家参考。

一、谐振过电压概述造成电网过电压现象在电力系统中出现的原因有很多,如果过于频繁的出现谐振过电压等现象,就会产生很大的危害性。

一旦出现过电压现象,就会烧毁以及损坏电气设备,在严重的情况下还会导致停电事故的发生。

由于时间较长的谐振过电压作用。

但是却不可以采用避雷器的方式进行限制,所以在实施保护的这一方面具有相当大的困难。

由铁心电感元件,包括消弧线圈、电抗器、电压互感器、变压器以及发电器等,还有一些系统的电容元件,包括电容补偿器以及输电线路等共同促成了共谐条件的形成,导致谐振过电压在系统当中产生[1]。

二、产生谐振的原因以及将其激发出来的条件作为一个复杂的电力网络,电力系统具有十分重要的作用,有很多的电容元件以及电感元件,特别是铁磁谐振现象经常会出现在不接地系统当中,严重的威胁到了设备的安全运行。

有以下条件会将电压谐振激发出来:①突然投入的电压互感器;②发生单相接地的线路;③突然改变的系统运行方式以及投切的电气设备;④发生较大波动的系统负荷;⑤出现波动的电网频率;⑥不平衡变化的负荷[2]。

电力系统中谐振过电压的产生与解决对策

电力系统中谐振过电压的产生与解决对策
科技 论坛
・ 1 4 解决对策
朱建平 闰 峰 ( 鸡 东县 电业局 , 黑龙 江 鸡 东 1 5 8 2 0 0 )
摘 要 :在 日常的 电路 生产运作 中除 了家用电器外一些小细部用 电仪器常 因为 电磁感应产 生的振 动导致一起运作 时令或者损 坏的 问题 , 并且在一 些大型的发电 、 传输运作 、 电力供给等仪 器上也会 出现 此类问题 , 这种 问题被称为谐振 过电压 , 本 文将对此类 问题进 行 简 单 的介绍和提供几点有效 的解决 问题 的措施 。 关键词 : 谐振过 电压 ; 问题 ; 策略 在电流通过电路时会产生磁场,电与磁的相互转化在生产电力上 容) 3 C o中存储的电荷 , 对三相电压互感器高压绕组电感 L / 3 放 电, 相当 为我们提供了极大的助力 ,但是也是 由于这类问题我国电路工作中往 个直流源作用在带有铁芯的电感线圈上, 铁芯会深度饱和。 对于接地 往由于过电压问题产生很多巨大的经济损失甚至有些情况出现了人员 相来说 , 更是相当一个空载变压器突然合 闸, 叠加出更大 的暂态涌流。 伤亡 , 因此为 了解决过电压危害我 国电力专家总结 了很多方法 , 本文就 在高压绕组中J 性点安装电阻器 R o 后, 能够分担加在电压互感器两端的 针对于谐振过电压这一现象进行具体的介绍 ,并提供几点解决问题措 电压 , 从而能限制电压互感器中的电流 , 特别是 限制断续弧光接地时流 施 的意见 。 过电压互感器的高幅值 电流, 将高压绕组 中的涌流抑制在很小 的水平 , 1概 述 相当于改善电压互感器的伏安特l 生。 在电力系统中引起电网过电压的原因很多 ,其中谐振过 电压 出现 3 . 1 . 4电压互感器一次侧 中性点经零序 电压互感器接地 ,此类型接 相对频繁 , 其危害性较大 。 过电 压一旦发生, 往往会造成电气设备的损 线方式的的电压互感器称 为抗谐振电压互感器 ,这种措施在部分地区 坏、 烧毁, 甚至发生停电事故 。由于谐振过电压作用时间较长, 而且不能 有成功经验, 其原理是提高电压互感器的零序励磁特 陛, 从而提高电压 用避雷器限制 , 因此在选择保护措施方面有较大的困难。 谐振是 由铁 互感器的抗烧毁能力 , 已有很多厂家按此原理制造抗谐振电压互感器。 电感元件 , 如发电机、 变压器、 电压互感器、 电抗器 、 消弧线圈等和和系 但是应注意到 , 电压互感器中. f 生 点仍承受较高电压 , 且电压互感器在谐 统的电容元件 , 如输电线路 、 电容补偿器等形成共谐条件 , 激发持续的 振时虽可能不损坏, 但谐振依然存在。 铁磁{ 凿 振, 使系统产生谐振过电压。 3 . 1 . 5电压互感器二次侧开三角绕组接阻尼电阻,在三相电压互感 器一次侧中性 串接单相 电压互感器或在 电压互感器二次开 口三角处 2谐振产生的原 因及激发条件 力系统是—个复杂的电力网络 , 在这个复杂的电力网络中, 存在着 接人阻尼电阻 , 用 于消耗电源供给谐振的能量 , 能够抑制铁磁谐振过电 很多电感及电容元件 , 尤其在不接地系统中, 常常出现铁磁谐振现象 , 压, 其电阻值越小 , 越能抑制谐振的发生。 给设备的安全运行带来隐患 ,下面先从简单 的铁磁谐振电路 中进行分 3 . 1 . 6中. 点经消弧线 圈接地 , 中性点经消弧线圈接地有以下优点: 析。 瞬间单相接地故障可经消弧线圈动作消除, 保证系统不断电; 永久单相 接地故障时消弧线圈动作可维持系统运行一定时间,可以使运行部门 下列激发条件造成电压谐振 : ( 1 ) 电压互感器的突然投入; 有足够的时间启动备用电源或转移负荷 , 不至于造成被动; 系统单相接 ( 2 ) 线路发生单相接地; 地时消弧线圈动作可有效避免 电弧接地过电压 ,对全 网电力设备起保 护作用 ; 由于接地 电弧的时间缩短 , 使其危害受 到限制 , 因此也减少维 ( 3 ) 系统运行方式的突然改变或 电气设备的投切; 修工作量 ; 由于瞬时接地故障等可 由消弧线圈 自 动消除 , 因此减少 了 保 ( 4 ) 系统负荷发生较大的波动 ; 护错误动作的概率;系统 中 . 胜点经消弧线圈接地可有效抑制单相接地 ( 5 ) 电网频率的波动 ; ( 6 ) 负荷的不平衡变化等。 电流,因此可降低变电所和线路接地装置的要求 ,且可以减少人员伤 3常用的消谐方法及优缺点 亡, 对 电磁兼容性也有好处。 3 . 2中性点直接接地系统谐振消除方法及优缺点 3 . 1 中陛点不接地系统常见 的消谐措施 3 . 1 . 1 采用励磁特 性较好的电压互感器 3 . 2 . 1 尽量保证断路器三相同期 、 防止非全相运行。 目 前 ,在我单位新建变电 站电 压互感器选型时尽量采用采用励磁 3 . 2 . 2改用电容式 电压互感器( C V T ) , 从根本上消除了产生谐振的条 特f 生 较好的电压互感器。 电压互感器伏安特 l } 常好, 如每台电压互感 件 , 但是电容式电压互感器价格高 、 带负载能力差 、 且仍带有电感 , 二次 器起始饱和电压为 1 . 5 U e , 使电压互感器在一般的过电压下还不会进入 侧仍要采用消谐措施 。 增加对地电容 , 操作时让母线带上一段空线路或 饱和区, 从而不易构成参数匹配而出现谐振 。显然, 若电压互感器伏安 耦合 电容器。 3 . 2 . 3带空载线路可以很好地消谐 ,但有可能产生一个很大的冲击 特 陛非常好 ,电压互感器有可能在一般的过电压下还不会进入较深的 饱和区, 从而不易构成参数匹配而出现谐振。从某种意义上来说 , 这是 电流通过互感器线 圈, 对互感器不利 , 而耦合 电容器 十分昂贵 , 目前 尚 治本的措施 。 但电压互感器的励磁特性越好, 产生电压互 皆 振的电 无高压电容器。 3 . 2 . 4与高压绕组串接或并接一个阻尼绕组, 可消除基频谐振 , 在发 容参数范围就越小。 虽可降低谐振 发生的概率 , 但一旦发生 , 过 电压 、 过 生谐振的瞬间投A a t  ̄ , 阻尼电阻将会增加投切设备和复杂的控制机构。 电流更大。 3 . 1 . 2在母线上装设中性点接地的三相星形电容器组 ,增加对地电 3 . 2 - 5电容吸能消谐 , 对幅值较高的基频谐振比较有效 , 但对于幅值 容这种方法 , 当增大各相对地 电容, 可防止谐振。如果零序电容过大或 较低的分频谐振往往难以奏效 。 3 . 2 . 6 在开 口三角形回路中接入消谐装置,能 自动消除基频和分频 过小 , 就可以脱离谐振区域, 谐振就不会发生。 3 . 1 . 3 电流互感器高压侧中性点经电阻接地,由于系统中性点不接 谐振 , 需在压变开 口三角绕阻回路中 增加 1 根辅助边线 , 增大了投资。 3 . 2 . 7 采用光纤电压互感器, 可以有效地消除谐振 。 价格较高 , 但是 地, Y 0 接线的电磁式电压互感器的高压绕组 , 就成为系统三相对地的 容易受到腐蚀或者损坏 , 因此适应 I 生 比 较差。 唯—金属通道。系统单相接地有两个过渡过程, 一是接地时; 二是接地 其工作环境要求苛刻 ,

浅谈10kV系统产生谐振过电压原因及控制对策

浅谈10kV系统产生谐振过电压原因及控制对策

浅谈10kV系统产生谐振过电压原因及控制对策摘要在10kV配电网中,常常发生电磁式电压互感器烧毁的现象,其原因都是因为某些故障或者不正常运行致使电压互感器内的铁芯饱和,诱发铁磁谐振的产生,致使电压互感器内部产生过电压,过电流,严重威胁电力系统的安全运行。

本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象与机理,产生的条件,提出了控制谐振过电压的措施,与大家交流学习。

关键词铁磁谐振;过电压;防范措施引言长期以来,电力系统铁磁谐振过电压严重威胁着电网的安全运行,在10kV 系统中,电磁式电压互感器引发的铁磁谐振过电压导致的设备事故时有发生。

这种过电压持续时间长,对系统的安全运行构成很大威胁,轻者可导致电压互感器烧损,高压熔丝熔断及匝间短路或爆炸;重者发生避雷器爆炸、母线短路等事故。

本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象,产生的条件及防范措施,总结了针对此类故障采取防范措施的一些运行经验。

1 铁磁谐振过电压产生的机理[1-2]目前,我国企业在35kV或者是其以下的配电网,有许多都是采用中性点和不接地的方式进行运行的,因此其中的很大一部分选用的都是比较传统的消线圈完成接地。

因此在其具体进行运行的问题可以看出,中性点的不接地系统,会受到电压的互感器铁心饱和使得铁磁谐振过的电压相对多一些。

中性点不接地运行方式的电力系统单相接地后,两相电压瞬时升高,三相铁心受到不同的激励而呈现不同程度的饱和,电压互感器各相感抗发生变化(各相电感值不同),中性点位移,产生零序电压。

由于线路电流持续增大,导致电压互感器铁心逐渐磁饱和,其电感值迅速减小,当满足ωL=1/ωC时,产生谐振过电压。

在发生谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。

如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,可造成电压互感器烧损。

电力系统中存在着许多非线性感性元件,如发电机、变压器、电压互感器等,这些感性元件和系统中存在的分布电容组成复杂的LC振荡回路,有可能激发铁磁谐振产生过电压。

浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法

浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。

关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。

这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。

2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。

铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。

正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。

铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。

当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。

电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。

在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。

35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。

据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。

铁磁谐振过电压导致故障的严重性可见一般。

铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。

在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。

因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。

关键词:谐振过电压;预防;技术措施1.谐振的危害性在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。

多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。

由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。

为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。

目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。

从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。

2.产生谐振过电压的因素2.1互感器铁磁谐振过电压的因素电压互感器伏安特性的影响。

铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。

谐振过电压产生及防止措施

谐振过电压产生及防止措施

谐振过电压产生及防止措施一、释义35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。

过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。

谐振过电压指电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。

二、谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。

运维人员操作或事故处理方法不当亦会产生谐振过电压。

另外设备设计选型、参数不匹配也是谐振过电压产生原因。

谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等。

操作过电压和谐振过电压的区别:操作过电压和谐振过电压都属于内部过电压。

操作过电压,顾名思义,是操作高电压大电感-电容元件(比如合/分空载长线路、变压器、并联电容器、高压感应电动机等)以及故障线路跳闸/重合闸等产生的过度过程。

防止操作过电压的措施根据操作的对象不同而有所不同,一般采用重击穿概率低的断路器或设置金属氧化物避雷器限制操作过电压。

谐振过电压,因系统的电感、电容参数配合不当而引起的各类谐振现象及电压升高。

所以防止谐振过电压的措施即破坏谐振条件,使参数配合避开谐振区,需要对系统有整体的参数预测,从而调整电网参数。

三、分类(1) 线性谐振过电压:谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。

(2) 铁磁谐振过电压:谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。

因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。

论谐振过电压产生原因及防治

论谐振过电压产生原因及防治

论谐振过电压产生原因及防治作者:李成来源:《中国科技博览》2013年第20期[摘要]谐振过电压在电力系统中屡见不鲜,但在实际运行中,很多人员对谐振过电压的了解很片面。

谐振过电压对电网造成危害极大.诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加深对其认识,并加强防治措施非常必要。

[关键词]谐振过电压产生原因分类中图分类号:TM 文献标识码:A 文章编号:1009-914X(2013)20-265-01在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。

因此,应该了解各种不同类型谐振性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。

l.产生谐振过电压的原因目前,我国配电网,大部分仍采用中性点不接地方式运行,其中有少部分采用老式的消弧(消谐线圈接地。

从电网的运行实践证明.中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取不少限制谐振过电压的措施,如:消谐灯、消谐器、Tv高压中性点增设电阻或单只Tv等,但始终没有从根本上得到解决.Tv烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流易大幅度增加,单相接地时接地电弧不能自动熄火必然产生电弧电电压,一般为3~5倍相电压甚至更高.致使电同中绝缘薄弱的地方放电击穿,并会发展为相问短路造成设备损坏和停电事故。

而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。

并需要手动调节分接头.然而此时却不能随电网,对地电容电流的变化及时将电压调整到最佳的工作位置,影响功能发挥,也不适应电网无人值班变电所的需要。

电力系统谐振过电压产生的原因及防范措施

电力系统谐振过电压产生的原因及防范措施

电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。

分析原因,找出问题,提出防治措施很有必要。

关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。

过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。

1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。

运维人员操作或事故处理方法不当亦会产生谐振过电压。

另外设备设计选型、参数不匹配也是谐振过电压产生原因。

2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。

当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。

2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。

原因:图1 某水电站单串接线图1)故障时产生谐振过电压。

当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。

110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。

110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。

2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。

图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。

牵引变电所倒闸操作引起谐振过电压原因及对策

牵引变电所倒闸操作引起谐振过电压原因及对策

牵引变电所倒闸操作引起谐振过电压原因及对策摘要:电网运行过程中产生的谐振过电压,严重影响了电力系统的安全运行。

本文叙述了铁路牵引变电所在运行过程中出现的谐振过电压的产生及其危害性,对一例倒闸运行过程中出现的谐振过电压造成的设备故障进行了较详尽的分析,并对其产生的原因进行了阐述,同时还介绍了多种预防谐振过电压的方法。

关键词:变电所;谐振;操作谐振过电压;对策引言:在电力系统中,因开关负荷输入或移除、故障等因素,使系统内部状态或参数产生改变,从而使系统中的电磁能量发生传递或转化,从而产生电压升高,这就是所谓的内部谐振过电压,给设备带来了严重的损害。

铁路牵引变电所中的变压所、电压互感器、电抗器以及牵引变电所中的电力机车都是传感装置。

并联用于变电所的并联接有接地电容的空载线是一种电容装置,该电路由电感与电容构成一共振环,在正常运行时,其电感、电容均不产生共振,当倒闸开关运行时,部分线路将被拆分、重装,使传感器、电容式能量存储单元的工作状态改变,在一定的激发条件下,电磁波的能量振荡会出现共振现象,从而引起工作谐振过电压。

一、变电所操作谐振过电压的原因分析(一)分合空载线路引起的谐振过电压油田配电网中,以泵电机和泵井为主的三相负载为主,但因其负载特点,不能实现自动启动和关闭。

断电后,电动机的负荷需要人工起动,如果在起动前给配电网提供电源或者重合闸切断,将造成“空载断线”现象,从而引起系统的共振过压。

在排出并转入无负荷状态时,产生谐振过电压的原因是由于电弧的重复燃烧所致。

一是断路器的灭弧性与接点间的还原电压,二是接点上的剩余电压;由于系统中存在较高频率的振荡,会造成空载线路的谐振过电压。

(二)弧光接地谐振过电压在电网运行过程中,单相接地故障较为普遍。

在大部分单相接地情况下,均为弧线接地,流经弧线的IJD电流等于地电容正常值的总和。

通常情况下,由于导热系数过小,不能产生稳定的弧光,导致熄火与重燃弧交替运行的非稳定工况。

浅谈电压互感器铁磁谐振产生原因及消除措施

浅谈电压互感器铁磁谐振产生原因及消除措施

浅谈电压互感器铁磁谐振产生原因及消除措施发布时间:2023-03-08T04:25:05.108Z 来源:《福光技术》2023年3期作者:周家典[导读] 本文结合新疆金晖110KV变电站项目10KV二段PT柜由于发生三相铁磁谐振而烧毁电压互感器的案例分析其铁磁谐振特点并给出其相关的抑制措施。

福建中能电气有限公司摘要:根据电压互感器在现场运行发生铁磁谐振当时的内外部电网环境,从而对其产生原理及特点进行分析,提出了5条有效的抑制方案。

关键词:电压互感器、铁磁谐振引言:本文结合新疆金晖110KV变电站项目10KV二段PT柜由于发生三相铁磁谐振而烧毁电压互感器的案例分析其铁磁谐振特点并给出其相关的抑制措施。

在电力系统的输配电回路中,由于电磁式电压互感器是非线性的铁芯电感元件,如果系统出现电力参数的突然变动,则电压互感器的铁芯就有可能饱和,从而造成LC共振回路,激发起持续的、较高幅值的过电压,这就是铁磁谐振过电压。

根据这几十年来电网运行情况表明,在 10kV及以下的中性点不接地系统中,电压互感器引起的铁磁谐振现象是一种常见的故障,严重威胁到了电网的安全运行。

由于单相铁磁谐振的电路是电力系统中最常见的铁磁谐振,因此本文结合我公司客户新疆金晖110KV变电站项目10KV二段PT柜由于发生单相铁磁谐振而烧毁电压互感器的案例,分析其铁磁谐振特点并给出其相关的抑制措施。

案例:新疆金晖工业园区采用110/10KV的供电方式,10KV供电采用电缆敷设;另外10KV采用中性点不接地的供电方式(小电流接地)。

另外发生事故时,多数线路处于空载运行状态,用电负荷很小;整个工业园区正处于紧锣密鼓的安装施工中,由于管理混乱,施工中经常出现10KV电缆被挖断的事故;110KV变电所10KV二段电压互感器柜由于发生铁磁谐振,造成电压互感器烧毁,I段10KV进线柜和110KV 1号主变出线柜失电跳闸事故(2号主变未投运)。

本次故障就现场的情况分析跟10KV电缆经常被挖断有关,造成了单相接地或弧光接地,而后值班人员发现后切除该条线路(造成单相接地或弧光接地突然消失),为铁磁谐振的形成创造了条件,从而导致发生了较为严重的铁磁谐振故障,电压互感器击穿烧毁。

串联谐振过电压

串联谐振过电压

串联谐振过电压串联谐振过电压,简称串谐过电压,是一种特殊的过电压现象,通常会在电能传输和分配系统中出现。

串谐过电压在现代电力系统中是比较常见的,因此对于电力系统工程师来说,了解并掌握如何防止和减轻串谐过电压的影响是非常重要的。

一、什么是串联谐振过电压?串联谐振是指在交流电路中由于电容和电感或者馈线导纳达到共振而产生的一种过电压现象。

在电力系统中,电容和电感(馈线导纳)组成的LC谐振系统通常被称为化工可控及高压输电线路中的串联补偿电容器组。

二、为什么会产生串联谐振过电压?串联谐振过电压是由于系统中存在的高压输电线路与串联补偿电容器组共振导致的。

当系统在正常运行时,电源给负载供电,并从电源平衡运行时的振荡状态中分离出来,当线路不平衡时,线路不平衡会导致电压的扰动,这些扰动会沿着线路传播并且会通过补偿电容器组达到串谐过电压水平。

三、串联谐振过电压的危害串联谐振过电压在电力系统中的危害是很严重的,它可以导致系统中的开关设备受损或烧毁。

此外,如果串联谐振过电压持续时间较长,它可能会对电力系统的绝缘性能造成损坏,从而导致更严重的后果。

四、防止和减轻串联谐振过电压的方法1. 通过电容器的分布式电抗器分布式电抗器是一种分布在高压输电线路上的高压电容器。

它能够减少补偿电容器的谐振因子而防止串联谐振过电压的发生。

通过这种方法可以有效地减轻串联谐振过电压所引起的损害。

2. 通过智能监控装置现代电力系统中的智能监控装置可以在系统出现异常时及时响应并采取相应的措施。

通过使用智能监控装置,可以实时监控电压和电流,并诊断出系统中存在的问题并提供有效的解决方案。

3. 通过调节电容器的参数我们可以通过调整电容器的参数来减轻串联谐振过电压的影响。

调整电容器的参数有助于确保电容器与线路的谐振共振频率不同步,这可以防止序列谐波产生,并减轻串联谐振过电压的影响。

总之,了解串联谐振过电压的防止和减轻方法是保证电力系统安全稳定运行的重要一环。

谐振过电压产生的原因及特点、谐振过电压的分类、谐振过电压的危害、谐振过电压的主要限制方法

谐振过电压产生的原因及特点、谐振过电压的分类、谐振过电压的危害、谐振过电压的主要限制方法

三、谐振过电压的危害 谐振过电压的危害
基波与高次谐波谐振过电压,一般不超过3U。;而 1/2分次 谐波谐振电压一般不超过 2 U。 但过电流大,当铁心严重饱和时, 即使有不太大的ΔU增量,电流也高达额定励磁电流的百倍以上,在 强大的电流及电磁力的作用下,轻者造成TV的熔断器熔断、匝间短 路或爆炸;重者则发生避雷器爆炸、母线短路、厂用电失电等严重 威胁电力系统和电气设备谐振过电压的限制方法
1、提高开关动作的同期性 由于许多谐振过电压是在非全相运 行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以 有效防止谐振过电压的发生;
2、在并联高压电抗器中性点加装小电抗,用这个措施可以阻 断非全相运行时工频电压传递及串联谐振;
3、破坏发电机产生自励磁的条件,防止参数谐振过电压。
谐振过电压相关知识
目录 一、谐振过电压产生的原因及特点 二、谐振过电压的分类 三、谐振过电压的危害 三、谐振过电压的主要限制方法
一、谐振过电压产生的原因及特点 谐振过电压产生的原因
由于电力系统中一些电感、电容元件在系统进行操作或发生 故障时可形成的线性谐振和由于非线性设备的饱和、参数周期性变 化等引起的非线性谐振所产生的过电压
谐振过电压的特点
谐振过电压持续时间特别长,过电压倍数高
二、谐振过电压的分类 谐振过电压的分类
1、线性谐振过电压。谐振回路由不带铁芯的电感元件(如输电 线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感 元件(如消弧线圈)和系统中的电容元件所组成,在正弦电源作用 下,系统自振频率与电源频率相等或接近时,可能产生线性谐振 ;
2、铁磁谐振过电压。谐振回路由带铁芯的电感元件(如空载变 压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的 饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元 件的回路在满足一定的谐振条件时,会产生铁磁谐振;

浅析电力系统中谐振过电压的原因及防范措施

浅析电力系统中谐振过电压的原因及防范措施

浅析电力系统中谐振过电压的原因及防范措施发表时间:2018-03-23T14:29:03.593Z 来源:《防护工程》2017年第32期作者:宋子健[导读] 但往往不一定能准确及时判断出接地线路,以致延误消振时间,所以,工作中为及时消除谐振一般先考虑选择上述四种途径。

大唐长春第二热电有限责任公司吉林长春 130031摘要:对电力系统中谐振过电压的产生原因进行了分析和探讨,介绍了目前常用的消谐方法及优缺点,提出了防止谐振过电压的措施和谐振事故的处理方法,提高系统运行稳定性。

关键词:电力系统;谐振;过电压;稳定性电力系统中引起过电压的原因很多,其中谐振过电压出现相对频繁,危害性较大。

过电压一旦发生,往往会造成电气设备的损坏、烧毁,甚至发生停电事故。

由于谐振过电压作用时间较长,且不能用避雷器限制,在选择保护措施方面有较大的困难。

谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续铁磁谐振,使系统产生谐振过电压。

1 谐振产生的原因简单的R、C和铁芯电感L电路中,假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL>(1/ωC),此时不具备线性谐振条件,回路保持稳定状态。

但当电源电压有所升高时,或电感线圈中出现涌流时,有可能使铁芯饱和,其感抗值减小,当ωL=(1/ωC)时,即满足了串联谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象,谐振一旦形成,谐振状态可能“自保持”,维持很长时间而不衰减,直到遇到新的干扰改变了其谐振条件谐振才可能消除。

下列激发条件造成电压谐振:电压互感器的突然投入;线路发生单相接地;系统运行方式的突然改变或电气设备的投切;系统负荷发生较大的波动;负荷的不平衡变化等。

2 常用的消谐方法及优缺点2.1中性点不接地系统常见的消谐措施(1)采用励磁特性较好的电压互感器电压互感器选型时尽量采用采用励磁特性较好的电压互感器。

电压互感器谐振过电压分析及预防措施

电压互感器谐振过电压分析及预防措施

电压互感器谐振过电压分析及预防措施电压互感器是电力系统中常用的测量和保护装置,它将高电压侧的电压降低到低电压侧进行测量或传递。

然而,当电压互感器遭受到电力系统中的谐振过电压时,会引起互感器的谐振现象,从而影响电力系统的稳定性和互感器的工作性能。

本文将从谐振过电压的原因和机理、谐振过电压的预防措施等方面进行详细分析。

首先,谐振过电压的原因和机理主要有以下几点:1.系统谐振:当系统中存在谐振的无功电容或电感元件时,谐振过电压现象容易发生。

例如,当系统中存在高频电容器、线路电容或电抗器等无功元件时,谐振过电压现象可能因其与互感器的谐振频率接近而发生。

2.外部故障:外部故障引起的短路或开路等异常情况,会导致电力系统中电流的突然变化,从而引起电压互感器的谐振过电压。

例如,当发生系统短路时,系统中的电流突然增大,产生过大的谐振电压。

3.负荷电压突变:系统中负荷突然增加或减少,使得负荷电流突变,导致电力系统中的电压突变。

当这种电压突变与互感器的谐振频率接近时,会引起互感器的谐振。

为了预防电压互感器谐振过电压的发生,可以采取以下预防措施:1.减小互感器与系统的谐振频率接近:通过调整互感器的参数或改变系统中的无功元件,使得互感器的谐振频率与系统频率之间存在较大差异,从而减小谐振过电压的发生概率。

2.安装绕组电阻:在互感器的一次侧或二次侧绕组中,安装适当的绕组电阻,可以减小谐振过电压的幅值和持续时间。

绕组电阻可以提供额外的阻尼,抑制谐振现象的发生。

3.加大互感器的绝缘能力:选用具有较高绝缘强度的互感器,可以提高其抗击谐振过电压能力。

合理选择互感器的额定电压和绝缘等级,避免绝缘击穿。

4.加强对系统的监测和维护:定期对电力系统进行检测和维护,及时处理系统中的故障和隐患,防止电压互感器谐振过电压的发生。

综上所述,电压互感器谐振过电压是影响电力系统稳定性和互感器工作性能的一个重要问题。

了解谐振过电压的原因和机理,采取相应的预防措施,可以有效减小谐振过电压的发生概率,确保电力系统的正常运行和互感器的可靠工作。

电力系统产生铁磁谐振过电压的原因及消除方法

电力系统产生铁磁谐振过电压的原因及消除方法

电力系统产生铁磁谐振过电压的原因及消除方法目前,我国的经济发展十分迅速,在电力系统中容易出现铁磁谐振过电压事故,严重威胁着人们的生命财产安全,需要引起高度的重视,有针对性采取解决措施,避免出现铁磁谐振过电压现象。

本文将简述铁磁谐振的危害性,并分析了其产生的原因与条件,最后提出了具体可行的预防对策。

标签:电力系统;铁磁谐振;消除方法引言电力系统内设置有众多的储能元件,在系统操作与出现故障以后,变压器、互感器等含铁芯元件的非线性电感元件和系统内电容串联将造成铁磁谐振现象,将严重威胁着电力系统运行的安全性与稳定性。

在出现铁磁谐振过电压以后,会让电压互感器一次熔丝熔断,并将电压互感器烧毁,严重时还会炸毁瓷绝缘子和避雷器,从而以引起系统停运。

且受到电源的作用,还会引起串联谐振的情况,让系统内发生严重的谐振过电压。

对此我们需要引起高度重视,消除铁磁谐振过电压势在必行。

1 电压互感器发生铁磁谐振的机理谐振是交流电路当中独有的一种现象,通常情况下,交流电路当中出现了电感以及电容的串联现象,会出现感抗等于容抗,从而造成谐振。

一般来说,电力系统当中,受到电容、电感等元件故障影响或者误操作时,就会产生以谐振为代表的震荡回路。

谐振所具有的串谐特征,还会对某些系统元件产生不可逆的破坏性影响,其中电压互感器在谐振影响下的表现十分明显,这是由于电压互感器作为铁芯元件,而铁芯在参与到回路当中所形成的饱和电路会表现为非线性的电感参数,从而造成其严重破坏。

就目前的电力系统谐振问题影响特征来看,谐振问题一般可以依据电网结构分为并联谐振以及串联谐振两种谐振类型,前者表现在小接地单流系统内部,并联状态下的铁磁谐振会使得电容互感器与电压互感器在一次中性接地点的非线性电感之上,构成谐振回路;而后者则是在大接地电流系统当中产生。

电磁式电压互感器会通过非线性电感与断路器断口的电容共同构成谐振回路。

而在众多谐振回路当中,铁磁电压谐振出现最为频繁,同时影响力也最大。

电压互感器谐振原因分析及有效防止措施完整

电压互感器谐振原因分析及有效防止措施完整

电压互感器谐振原因分析及有效防止措施摘要:电力系统中的电容和电阻元件,一般可认为是线性参数,可是电感元件则不然。

由于振荡回路中包含不同特性的电感元件,谐振分为三种不同的类型:线性谐振、铁磁谐振、参数谐振,而铁磁谐振过电压现象是电力系统中一种比较常见的内部过电压现象,这种电压持续时间长,甚至能长时间自保持,它是导致电压互感器毁坏的主要原因之一,同时也是电力系统中某些重大事故的诱发原因之一,对电力系统的安全运行构成了极大的威胁,因而有必要对铁磁谐振进行详细分析,找出产生铁磁谐振的根源,并采取有效措施进行防止,保证电力系统的稳定安全运行。

关键词:电压互感器;铁磁谐振;防止措施1.电压互感器铁磁谐振的特点(1)产生铁磁谐振的必要条件是铁心电感的起始值和电感两端的等效电容组成的自振频率必须小于并接近于谐振频率。

(2)回路参数平滑地变化时,谐振电压、电流会产生跃变。

(3)谐振时产生反倾现象,即谐振后电感上的电压降由原来与电源电势相同变为相反,电容上的电压降由原来与电源电势反向变为同向。

(4)谐振频率必须是由电源频率基波和它的简单分数倍分率或整数倍高频。

(5)谐振后可自保持在一种稳定状态。

(6)谐振一般在经受到足够强烈的扰动时外激产生,在一定条件下也可以自激产生。

2.电压互感器铁磁谐振的危害电压互感器发生铁磁诣振的直接危害是:1)由于谐振时电压互感器一次绕组通过相当大的电流,在一次熔断器尚未熔断时可能使电压互感器绕组烧坏。

2)造成电压互感器一次熔断器熔断。

电压互感器发生铁磁谐振的间接危害是:当电压互感器一次熔断器熔断后,将造成部分继电保护和自动装置的误动作,从而扩大了事故。

3.电压互感器铁磁谐振的原因分析3.1产生电压互感器铁磁谐振的必要条件为了分析并联谐振产生的必要条件,把电力系统内如图1所示的三相交流系统一般的电压互感器回路简化为如图2所示的电阻R、电感L、电容C的并联回路。

图1 电压互感器(PT)在电力系统中的接线原理图图2 并联谐振回路图2中R为电感L本身的电阻,IL为感性电流,IC为容性电流,为系统角频率。

串联谐振过电压现象及过电压原因分析

串联谐振过电压现象及过电压原因分析

串联谐振过电压现象及过电压原因分析串联谐振过电压现象及过电压原因分析一、串联谐振过电压现象某220V变电所,2001年3月2日进行220KV西母停运的正常检修操作,在220KV倒母线的操作中,当220KV所有进出线倒至东母运行,断开母联断路器后,发生串联谐振过电压。

谐振时,220KV 西母PT最高电压达407KV,值班员汇报中调后,中调令220KV旁路断路器由东母倒西母,并对旁母充电后,谐振消失,时间持续40min。

由于谐振经过断路器断口并联电容器,能量不太大,仅损坏三台互感器未发生爆炸。

互感器装有波纹金属膨胀器,事故中膨胀器A、B两相全部顶出互感器。

后经试验发现,互感器内部绝缘三相均损坏,二次绕组烧毁。

事故时接线见图1。

图中TV为电压互感器,Q为母联断路器断口,CL为并联电容,CB为母线对地电容。

该互感器为油浸纸绝缘电磁式,由三只独立的单相互感器组成Yo,yo,d接线。

二、串联谐振过电压分析原理1、串联谐振过电压分析铁磁谐振铁磁谐振仅发生于含有铁芯电感的电路中。

铁芯电感的电感值随电压、电流的大小而变化,不是一个常数,所以铁磁谐振又称为非线性谐振。

图2为最简单的R、C和铁芯电感L的串联电路。

假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL>1/ωC,此时不具备线性谐振条件。

但当铁芯电感两端电压有所升高时,或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗随之减小,或者,容抗增大,使ωL=1/ωC(即ω=ωL>1/√LC),满足串联谐振条件时,发生谐振,且在电感和电容两端形成过电压,这种现象称为铁磁谐振现象。

因为谐振回路中电感不是常数,故回路没有固定的自振频率;即(ωo非定值)。

当谐振频率fo为工频(50Hz)时,回路的谐振称为基波谐振;当ωo为工频的整数倍;如3倍、5倍等)时,回路的谐振称为高次谐波谐振;同样的回路中也可能出现谐振频率为分次(如1/3次、1/5次等)的谐振,称为分次谐波谐振。

试论电网谐振过电压防治方法

试论电网谐振过电压防治方法

试论电网谐振过电压防治方法摘要:在电力系统的运行过程中,过电压是一种很常见的现象,如果不能找到科学有效的防治方法,随时都可能发生事故。

诱发电网过电压的原因有很多,主要的有操作过电压,雷电过电压,以及谐振过电压。

一旦发生了过电压,往往造成的是电气设备损或和大面积停电等严重事故。

本文针对谐振过电压的原理、产生原因、特点、危害性等方面做了简单的介绍,并对如何防治谐振过电压做了一些简单的介绍。

关键词:电网,谐振过电压,原因,特点,危害,防治办法一、谐振过电压产生的原理所谓谐振,是指振荡系统中的一种周期性或准周期性的运行状态。

在交流电路中通常含有电感和电容元件,并且均含有一系列自振频率,而且电源中也往往含有一系列不同的谐波,在一定条件下,当电路中呈现电压和电流同相时,电路为电阻性,这就是谐振。

而当电路自振频率与谐波道德频率接近时,这部分电路就会出现谐振现象。

二、电网谐振过电压产生的原因目前,我国大部分的中压配电网仍然采用中性点不接地的运行方式,其余则大多利用老式消弧线圈进行接地。

在中性点不接地系统中,一方面,电压互感器的铁芯饱和能够引发铁磁谐振过电压,虽然采取了一些措施,却无法从根本上解决问题;另一方面,对于中性点不接地的运行方式,其主要特点是在发生单相接地故障之后,系统仍然能够维持运行两个小时左右,而不是立即切断电源。

随着中低压电网的不断扩大,电网对地电容电流将随之大幅增加,单相接地时接地电弧不能自动熄灭而产生电弧过电压,一般会达到相电压的三至五倍,甚至更高,这将直接导致某些绝缘相对薄弱的点被击穿,极易发展成相间短路,进而造成设备损坏和停电事故。

而采用老式消弧线圈接地的电力系统则由于其自身结构限制,不允许在欠补偿或全补偿的状态下运行,所以,脱谐度通常整定的比较大,大约在百分之二十至三十之间,而对弧光过电压没有任何限制的效果。

由于需要手动对分接头进行调节,因而无法随着电网对地电容电流的变化,而及时、准确地找到最佳的工作位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论谐振过电压产生原因及防治
[摘要]谐振过电压在电力系统中屡见不鲜,但在实际运行中,很多人员对谐振过电压的了解很片面。

谐振过电压对电网造成危害极大.诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加深对其认识,并加强防治措施非常必要。

[关键词]谐振过电压产生原因分类
中图分类号:tm 文献标识码:a 文章编号:1009-914x(2013)20-265-01
在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。

因此,应该了解各种不同类型谐振性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。

l.产生谐振过电压的原因
目前,我国配电网,大部分仍采用中性点不接地方式运行,其中有少部分采用老式的消弧(消谐线圈接地。

从电网的运行实践证明.中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取不少限制谐振过电压的措施,如:消谐灯、消谐器、tv高压中性点增设电阻或单只tv等,但始终没有从根本上得到解决.tv烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,
出线回路数
增多、线路增长,中低压电网对地电容电流易大幅度增加,单相接地时接地电弧不能自动熄火必然产生电弧电电压,一般为3~5倍相电压甚至更高.致使电同中绝缘薄弱的地方放电击穿,并会发展为相问短路造成设备损坏和停电事故。

而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。

并需要手动调节分接头.然而此时却不能随电网,对地电容电流的变化及时将电压调整到最佳的工作位置,影响功能发挥,也不适应电网无人值班变电所的需要。

2.电力系统谐振过电压的分类
电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路_在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压这一现象叫电力系统谐振过电压。

谐振过电压分为以下几种:
2.1线性谐振过电压
谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。

2.2铁磁谐振过电压
谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。

因铁芯电感元件的饱和现象使回路的电感参
数是非线性的这种含有非线性电感元件的回路在满足一定的谐振
条时会产生铁磁谐振。

2.3参数谐振过电压
由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在kd—kq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化.不断向谐振系统输送造成参数谐振电压。

3.中压电网谐振过电压的抑制措施
中压电网(35kv、10kv,6kv)的中性点接地方式采用经消弧线圈小电流接地已运行多年,但近几年有部分区域采用中性点经小电阻接地方式。

前者的供电可靠性大大高于后者,但也存在以下问题:当系统发生接地时,由于接地点残流很小.零序过流、零序方向保护无法检测出已接地的故障线路。

在运行中不能根据电网电容电流的变化及时进进行调节,出现弧光不能自灭及过电压问题。

我国已研制生产出微机自动跟踪消弧装置,有效的解决了中性点经消弧线圈接地方式的电网长期难以解决的技术问题。

该装援的z 型结构接地变压器,具有零序阻抗小.损耗低,并可带二次负荷;微机控制单元是实现自动跟踪检测、调节、选线的核心;系统的响应时间9。

有载开关在预调方式下工作,消弧线圈调谐是由微机控制器自动控制的。

建议目前需要改造的老式消弧线圈采用新型自动调谐消弧线圈方式。

消弧线圈选用有载调匝式调节方式.正常运行采用过补偿方式,消弧线圈接地回路串接阻尼电阻,控制部分采用
微机控制自动消谐装置进行自动补偿:能自动检测电网对地电容参数的变化,自动和手动调整消弧线圈的分接头,使其运行在最佳的工作点,保证残流能降低到可靠熄弧的程度;并能远程遥控、遥信、遥测和遥调,以适应变电站无人值班的需要。

对由电压互感器铁芯饱和引起的铁磁谐振过电压的限制必须使
系统参数发生较大的变化才能将谐振过电压抑制住。

如果在系统的中性点上接人消弧线圈破坏它的谐振条件,pt的励磁感抗比较大(千欧至兆欧级).而消弧线圈的感抗(百欧级)比较小,这样谐振条件∞l=1∞c很难满足,谐振就不会发生。

有了消弧线圈后,电容对小感抗放电,pt中电流祝很小而不会烧毁了。

所以在中性点接人消弧线圈,对于由电压互感器铁芯饱和引起的铁磁谐振过电压具有很好的限制作用。

自动跟踪消弧线圈及接地选线装置的不断完善和推广应用,为中压电网中性点经消弧线圈接地提供了技术保障。

为此,在我国采用中性点经消弧线圈接地力式是我国中压电网的发展方向。

4.高压谐振过电压的防治措施
鉴于110kv及以上有效接地系统的pt饱和铁磁谐振过电压在各站已多次发生,其谐振过电压的激发是具有随机性的,严重时,母线pt损坏坏,甚至导致pt爆炸.危及二次保护没备。

因此.高压谐振过电压的防治应注意以下儿点:
4.1严格执行调度规程
在运行方式上和倒闸操作过程中,防止断路器断口电容器与空载
母线及母线胛构成串联谐振回路,以防止因谐振过电压损坏没备。

它包括两个方面:—是应避免用带断口电容器的断路器切带电磁式电压互感器的空载母线;二是避免用带断口电容器的回路的刀闸对带电磁式电压互感器的空载母线进行合闸操作。

具体可采用下述方式来实现:在切空母线时,先拉开电压互感器,对母线断电;在投空母线时,先断开被送电母线pt对母线送电.再合母线电压互感器。

4.2避免操作过电压
在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振时,应立即合上带断口电容器的断路器.切除回路电容,终止谐振,防止隐患发展形成事故。

4.3采取适当的中性接地点
增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由此而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用电容式电压互感器。

在进行变电站更换电压互感器时,也应尽量选取电容式电压互感器。

4.4加强继电保护措施
针对具体事故发生的情况,如在变电站母线发生单相接地,母差保护动作,母联开关跳闸后,如果主变开关先于线路开关动作,将不会引发谐振。

因此,建议将只带一条出线(线路开关动作抢在主变开关前动作的可能性较大),同时该出线为不带电源的负载线路
时.母线母差保护动作次序调整为:母联开关首先开断后.先跳主变开关.再跳出线开关。

4.5提高变电运行人员素质
加强对变电运行人员的培训,掌握了解一些系统过电压产生的条件及特征,在系统发生异常时,及时采取正确的措施,避免系统异常发展成为事故。

结语:电力供电系统或者说在电力供电电网上,过电压现象十分普遍。

如果没有防范措施.随时都可能发生。

引起电网过电压的原因很多.但以谐振过电压出现最为频繁,危害性也更大。

因此,有必要采取有效措施对谐振过电雎加以防治。

参考文献:
[1]刘长生.浅谈谐振过电压攀枝花学院学报(综合版)2005(6).
[2]冀东晨谐振过电压的分析及预防措施电力学学报 2007(3)
[3]孙增杰,王铁强,王海求.电力系统铁磁谐振分析电力设备2007(11)。

相关文档
最新文档