液体电介质讲义的击穿
液体电绝缘介质及其击穿特性
绝缘油分类
1、矿物油。 矿物油是从石油中提炼精制旳液体绝缘材料。石油旳主要成份是烷烃、环 烷烃和芳香烃,这些组分旳电气性能和老化稳定性优良。应用最广泛旳矿 物油就是变压器油。
2、合成油。 由人工合成旳液体绝缘材料。因为矿物绝缘油是多种碳氢化合物旳混合物, 难以除净降低绝缘性能旳组分,且制取工艺复杂,易燃烧,耐热性低,因 而人们研究、开发了多种性能优良旳合成油。如有机硅油和十二烷基苯等。
❖1 变压器油
【学习任务】了解变压器油旳基本特征和用途, 熟悉变压器油旳运营要求。
▪ 表征绝缘材料性能旳几种基本电气参数:
▪ ε -介电常数 ---表征极化强弱 ▪ ρ -电阻率 ---表征导电性能 ▪ γ -电导率 ▪ tgδ -介质损耗角正切 ---表征介质损耗大小
▪ E0 -击穿场强 ---表征绝缘性能(耐电性能) ▪ U -耐受电压 ▪
影响液体电介质击穿电压旳原因
4、电压作用时间
油旳击穿电压与电压作用时间有关。因为油旳击穿需要一定旳时间,所以 油间隙击穿电压会随所加电压作用时间旳增长而下降。 当电压作用时间较长时,油中杂质有足够旳时间在间隙中形成“小桥”, 击穿电压下降。对一般不太脏旳油做一分钟击穿电压和长时间击穿电压旳试 验成果差不多. 所以做油耐压试验时,只做一分钟。
变压器油旳物理性质
5)油旳闪点:油加热时所发生旳蒸气与空气所形成旳混合物, 在火焰接近时而闪火,此时是以温度作为闪点。闪点是表征油 旳蒸发度,油旳闪点越低,其挥发性越高。挥发性越小越好或 者说闪点越高越好,新油原则应不低于135℃。
二、变压器油旳基本特征
变压器油旳化学性质
1)酸值:变压器油旳酸值是指油中有机酸旳数值,油旳中 和酸度是指氧化试验后来旳数值。酸度旳常用计量措施是中 和所需旳KOH旳质量(mg),用mgKOH/g表达。酸性大 旳油会腐蚀金属设备。当油中有水分时,腐蚀性质强,酸价 逐年增大,反应了油旳劣化。
液体电介质的击穿
图2-11 变压器油Eb与含水 重量浓度m的关系
2. 固体杂质的影响
当液体介质中有悬浮固体 杂质微粒时,也会使液体介质 击穿场强降低。一般固体悬浮 粒子的介电常数比液体的大, 在电场力作用下,这些粒子在 电极表面电场集中处逐渐积聚 起来。考克(Kok)根据这种 现象提出液体介质杂质小桥击 穿模型(见图2-13)并进行了 理论计算。
图2-13 杂质小桥击穿模型
小桥理论 • 气体桥击穿 工程用液体电介质中含有
水分和纤维、金属末等固体杂质。在电 场作用下,水滴、潮湿纤维等介电常数 比液体电介质大的杂质将被吸引到电场 强度较大的区域,并顺着电力线排列起 来,在电极间局部地区构成杂质小桥。 小桥的电导和介电常数都比液体电介质 的大,这就畸变了电场分布,使液体电 介质的击穿场强下降。如杂质足够多, 则还能构成贯通电极间隙的小桥。杂质 小桥的电导大,因而小桥将因流过较大 的泄漏电流而发热,使液体电介质及所 含水分局部气化,而击穿将沿此气体桥 发生。
上,触头切换时会产生电。
变压器油击穿过程和特点
就是之前说简述的击穿理论
变压器油击穿过程可用气泡击穿理论来解释,整个过程由气泡 的形成、发热膨胀、气泡通道扩大并聚成小桥,即:杂质、 气泡在电场作用下,在电极之间形成小桥,击穿沿小桥发 生。有热的过程,属于热击穿的范畴。有两种情况发生即 杂质小桥尚未接通电极和杂质小桥接通电极。
当液体介质中电场很强,致使有高能电子出现时, 也会发生上述类似的过程,液体放气,这就是电离化 气的观点。放电时产生的气体并不是蒸气,而是氢气。 对绝缘油击穿时的气体进行光谱分析,证明了不存在 残留的空气及油的蒸气,主要存在的是氢气。
三、工程纯液体电介质的杂质击穿
工程用液体介质或多或少含有一些杂质,在工 程纯液体介质的击穿中,这些杂质起决定性作用。 杂质大致主要有以下两种
5液体、固体介质的击穿教程
②80度以上: 温度↑→汽化↑→Ub↓
③-5度-0度:冰水、全部悬浮,Ub最低 ④-5度以下:粘度↑→小桥不易形成→Ub↑
3、电场均匀度
电场较均匀时,电场越均匀杂质小桥越易形成,油的品质 对工频Ub影响越大; 电场极不均匀时,电极附近电场很强,造成强烈电离,电 场力对带电质点的强烈作用使该处的油剧烈扰动,杂质和水 分很难形成“小桥”。
悬浮态的水易在电场下形成 “小桥”,对击穿电压影响很大;
变压器油中含水量超过溶解度 50ppm时,含水量↑→Ub迅速↓
(2)纤维越多,杂质小桥越易形 成,击穿电压越低
有纤维存在时,水分影响特别明显
(3)气体含量超过油中溶解度时, 将以自由态出现→Ub迅速↓
2、油温
①0-60度: 温度↑→水珠溶解度↑→Ub↑
2、热击穿理论
由于电导γ存在→损耗→发热→T↑→R↓→I↑↑→损耗 发热↑↑(Q发>Q散)→T↑↑→介质分解、劣化→击穿
热击穿的主要特点:
击穿与环境、电压作用时间、电源频率及介质本身有关。 击穿时间较长,击穿电压较低。
3、电化学击穿
固体介质在电、热、化学和机械力长期作用下,会逐渐 发生某些物理化学过程,使其绝缘性能逐渐劣化,这种 现象称为绝缘的老化。 由于绝缘的老化而最终导致的击穿称为电化学击穿。 最终可能是电击穿也可能是热击穿。 电化学击穿特点: 长时间;击穿电压低(工作电压下即可能发生)
2、工程用变压器油的击穿过程及其特点
可用气泡击穿理论解释其过程,依赖于气泡的形成、发热膨 胀、气泡通道扩大并形成小桥,有热过程,属于热击穿范畴。 由于水和纤维的εr很大,易沿电场方向极化定向,并排列成 杂质小桥。
油中受潮→水分(εr=81) 纸布脱落→纤维(εr=6-7) 有两种情况: (1)如果杂质小桥接通电 极,因小桥的电导大而导 致泄漏电流增大,发热会 促使汽化,气泡扩大,发 展下去会出现气体小桥, 使油隙发生击穿。
液体电介质击穿点压值测量实验报告
液体电介质击穿点压值测量实验报告
实验目的:
通过测量液体电介质的击穿点压值,探究液体电介质的绝缘特性,为实际应用提供参考。
实验原理:
当液体电介质置于高电压电场中时,当电场强度增大到一定程度时,液体电介质内部的绝缘被破坏,发生击穿和放电。
我们将液体电介质在不同电压下进行放电实验,根据实验结果,可以确定电介质的击穿点压值。
实验器材:
高压发生器、电容器、电阻、液体电介质、数字电压表、数字电流表、电极等。
实验步骤:
1.将液体电介质倒入电容器中,保证其填充至相同高度。
2.将电容器两端与高压发生器连接,并接上电阻限流,使电流控制在较小范围内。
3.调节高压发生器输出电压,逐步将电压提高到液体电介质弧光出现之前。
4.记录此时输出电压,作为液体电介质的击穿点压值,并反复进行测量,取多次数据求平均值。
实验结果:
1.液体电介质的击穿点压值为XXXV。
2.在电场强度相同的条件下,不同液体电介质的击穿点压值存在差异,其中XXX液体的击穿点压值最大,为XXXV,说明其具有较好的绝缘性能。
结论:
通过实验,我们测量了液体电介质的击穿点压值,进一步探究了液体电介质的绝缘性能,为实际应用提供了参考。
液体电介质
二、影响变压器油绝缘性能的因素
液体介质的击穿(变压器油)
影响变压器油绝缘性能的除了氧气和温度这两个主 要的因素外,还有日光照射、强电场、水分、纤维、金 属等这些因素都会加速变压器油的劣化。 1、 氧气的影响 变压器油的氧化程度,由可溶性酸、酸值等的含量 反映,而酸值的增加表示油已处于氧化阶段。对击穿电 压影响比较大的是杂质和油的污染程度,这种油污染情 况主要是指油中的含水量。 变压器油氧化后不仅酸值增加,tgδ 增大,而且粘度 也在增加,油色逐渐变为橙黄色、暗黄色以及深褐色, 透明度下降,当氧化严重时还能析出油泥和水分。
2. 液体电介质的气泡击穿理论热液体,分解出气体; 2)电子碰撞液体分子,使之解离产出气 体; 3)静电斥力,电极表面吸附的气泡表面 积累电荷,当静电斥力大于液体表面张力 时,气泡体积变大;
4)电极凸起处的电晕引起液体气化。 串联介质中,场强的分布与介质的介电常数 成反比气泡r=1,小于液体的r ,承担比液体 更高的场强,而气体耐电强度却低,因此, 气泡先行电离。当电离的气泡在电场中堆积 成气体通道,击穿在此通道内发生
4、强电场的影响 强电场附近的油发生强烈分解和老化,另外强 电场造成局部放电其产生的带电粒子撞击油分子并 使油发生裂解。
液体介质的击穿(变压器油)
液体电介质的电导
两种电导: 1、离子电导:液体本身(本证离子)或杂质的分 子解离的离子(杂质离子)决定, 2、电泳电导:也称电流电导,由固体或液体杂质 以高级分散状态悬浮于液体中形成的胶体质点吸附 离子而带点电造成的。
2、 温度影响 当油温低于60~700C时,油的氧化很微弱 。油温再高,氧化开始加快,大约温度每增高1 00C油的氧化速度增大一倍。而当油温超过115 ~1200C时,油将开始产生裂解。 3、水分的影响 水分在变压器油中以三种状态存在:溶解 于油中、悬浮在油中或沉积于设备的底部,其 中以悬浮在油中的水分对变压器油绝缘性能的 影响最大,而油中的极性杂质的存在也会助长 水分对绝缘性能的影响
液体电介质的击穿机理
任务1.3.1 变压器油
了解变压器油的基本特性和用途,熟悉ห้องสมุดไป่ตู้压器油的 运行要求
一
变压器油的作用
二
变压器油的基本特性
三
变压器油的运行要求
任务1.3.2 液体电介质的击穿
一、液体电介质的击穿机理
1.纯净液体电介质的击穿理论 在高 电场 下发 生击 穿的 机理
电击穿理论 以液体分子由电子碰撞而发生游离 为前提条件 气泡击穿理论
认为液体分子由电子碰撞或在电场作用 下因其他原因而产生气泡,由气泡内气 体放电而引起液体介质的热击穿。
2.非纯净液体电介质的小桥击穿理论
(a) (b)
图1-1 受潮纤维在电极间定向示意图 (a)形成“小桥”;(b)未形成“小 桥”
小桥理论:液体中的杂质在电场力的作用下,逐渐沿电 力线方向排列成杂质的“小桥”,(由于水和纤维的相对介电
1.3液体电绝缘介质及其击穿特性
小桥理论
极性分子
水分
纤维 被游离的气体 气泡小桥 气泡游离
在E作用下 在电极间
逐渐排列成小桥
将间隙接通
形成气泡
水分汽化
发热
泄漏电流
从而导致油间隙的击穿
杂质“小桥”形成带有统计性,因而工程液体电介质的击穿电压有较大的分散性。
2
液体电介质的击穿
液体电介质通常用标准试油杯按标准试验方法测得的工频击穿电压来 衡量其品质的优劣。
新油或良好的变压器油,介质损耗角常温时(20~30℃)一般在
0.1%以下,运行中油的介质损耗角一般不大于0.5%。
变压器油的电气性能 3)击穿电压
变压器油绝缘强度限值(kV) 设备额定电压 15及以下 20~35 63~220 330 500 击穿电压(kV) 运行中 ≥20 ≥30 ≥35 ≥45 ≥50 新油 ≥25 ≥35 ≥40 ≥50 ≥60
1
变压器油
一、变压器油的作用
(一)绝缘作用
在电气设备中,变压器油将不同电位的带电部分隔离开来,使不致 于形成短路。因为空气的介电常数为1.0,而变压器油的介电常数为 2.25。油的绝缘强度要比空气的大得多。变压器绕组之间充满了变 压器油,增加了耐电强度,绝缘就不会被击穿,并且随着油的质量 提高,设备的安全系数就越大。
1
变压器油
二、变压器油的基本特性
由于矿物绝缘油是由各种烃类组成,因此在运行中受温度、 空气、金属、电场等的影响,会逐渐劣化,如遇高温过热等设 备故障,则油质劣化加速,因此电力系统对油品的性能、质量 是有严格要求的。变压器油为了能很好地发挥它在绝缘、散热 以及灭弧等多方面的功能作用,其本身必须具备良好的化学、 物理和电气等方面的的基本特性。
液体电介质的击穿
(二)以电子崩发展至一定大小为击穿条件
定义α为液体介质上一个电子沿电场方向 行径单位距离平均发生的碰撞电离次数
类似气体放电 条件的处理
1
e Chv eE
电离几率 电极距离
单位距离 碰撞总数
Chv Eb e ln(d A )
设击穿条件为d A
其他参数一定时 Eb∝1/lnd
二、含气纯净液体电介质的气泡击穿理论
一次碰撞中,液体分子平均吸收的能量为一个振动能 量子hʋ。
当电子在相邻两次碰撞间得到的能量大于hʋ,电子就 能在运动过程中逐渐积累能量,至电子能量大到一定 值时,电子与液体相互作用时便导致碰撞电离。
2.定量分析 设电子电荷为e,电子平均自由程为λ,电场强度为E 则碰撞电离的临界条件为 eEλ=Chʋ 如果把这个条件作为击穿条件,则击穿场强可写为
Chv E e
b
C-大于1的整数
如何确定电子平均自由行程?
以直链型碳氢化合物液体为例
设液体分子浓度为N,分子由各种CH基团组成,Sj代 表第j个基团的碰撞截面,设一个分子主链由m个原子 构成,原子间有效距离为h0,线型分子的有效半径为a, 则一个分子的总碰撞截面为 S=ΣSj=2a(m-1)h0=s0(m-1)
(m-1)h0
2a
2h0 直链型碳氢化合物分子模型
已知电子平均自由程与碰撞截面的关系为
1 SN
液体分子浓度
M -液体分子量 ρ -密度 N0-阿佛伽德罗常数
N N0 M
代入上式,得
M M SN 0 N 0 S 0 (m 1)
从而根据击
穿场强的表达式得 固有振动频 率平均值 Chvi Chvi Eb S 0 (m 1) N 0 A(m 1) e e M M
液体电介质的击穿理论
液体电介质的击穿理论
液体电介质:耐电强度高于气体
还有作用:绝缘、冷却、天弧
广泛矿物油:变压器油、电容器油、电缆油等
击穿问题不及气体、提高完善理论,纯情净的和工程用的
1.纯洁液体电介质电击穿理论
认为:液体电强场放射产生电子在电场中被加速,与液体分子碰撞电离
相机观看冲击电压下极不匀称电场中变压器油的击穿过程
① 尖电极四周电离开头阶段
② 流注进展阶段
③ 贯穿间隙阶段
2.纯洁液体电会介质气泡击穿孔机理论
外加电场高,介质内产生气泡,气泡=1,小于液体
气泡担当比液体高的场强,耐电又低,所以先电离,然后气泡体积膨胀,温度长高,电离又进一步进展使油分解为气体
所泡积累成通道,击穿孔机在通道内发生。
纯洁液体耐电强度高于常态气体
3.非纯洁液体电介质的小桥击穿理论
工程用电介质汲取气体、水分、混入杂质(如纤维),液体本身老化、分解——杂质的击穿有新的特点
认为:杂质在电场力作用下,在电场方向定向,沿电力线方向排列成小桥,水纤维介电常数比油大,杂质易极化而在电场方向定向排列,使泄露电流增加,小桥发热,油水局部沸腾汽化,击穿。
油间隙长,小桥畸变电场,降低击穿电压
统计性,分散性
小桥形成与电极外形,电压种类相关。
液体电介质的击穿特性
一 液体电介质的击穿特性
5、压力
油中含有气体时,不论电场是否均匀,其 工频击穿电压都随油的压力增大提高。这是由 于压力增大时,气体在油中的溶解量增大,并 且气泡的局部放电起始电压也增高之故。电场 越均匀,这种关系也越显著。但在冲击电压下, 压力对油间隙的击穿电压基本无影响。
一 液体电介质的击穿特性
思考
液体介质和气体介质相比,谁的击穿场强高, 为什么?
❖答:液体的击穿场强高。由于液体介质的密度比 气体的大得多,分子间的距离比气体的小得多,故 电子在其中运动的平均自由行程比在气体中短得多, 要使电子在较短的自由行程内获得能产生碰撞游离 所需要的能量,要求有更高的电场强度。所以液体 介质的击穿场强比气体的要高得多。
气泡击穿过程(小桥理论)
出现气泡
足够强的 气泡内的 电场作用 气体电离
电离进一步 发展
气泡温度升高 气泡体积膨胀
带电粒子 撞击液体分子
液体分解出气体
扩大气体通道
电离的气泡或在电极间形成连续小桥,或畸变了液体电介质中的 电场分布,导致液体电介质击穿。
可用气泡击穿理论解释,依赖于气泡的形成、发热膨胀、气泡 通道扩大并形成小桥,有热过程,属于热击穿范畴.
一 液体电介质的击穿特性
纯净液体的电气强度 很高,其击穿机理主 纯净液体电击穿:
纯净的液体电介质中总会存在一些离子,它们或由液体分子 受自然界中射线的电离作用而产生,或由液体中微量杂质受 电场的解离作用而产生。当电场强度超过1MV/cm时,液体 电介质中的自由电子,在电场作用下运动、加速、积累能量、 碰撞液体分子,而且以一定的概率使液体电介质的分子游离。 因碰撞游离而产生的正离子移动至阴极附近,增强了阴极表 面的场强,促使阴极发生的电子数增多,这样,电流急剧增 加,液体电介质推动绝缘能力,发生击穿。
液体电介质的击穿
3、提高液体电介质击穿的发展 绝缘层-增大曲率半径 屏障-阻碍小桥的发展
思考题: (1)什么是小桥理论?工程上都有哪些常用的提 高液体介质绝缘强度的方法?其作用原理是什 么? (2)为什么在极不均匀电场中液体电介质的品质 对工频击穿电压的影响较小?
当外加电场较高时,液体介质内会由于各种原因产生气 泡;
场强的分布与介质的介电常数成反比,气泡r = 1,小于 液体的r ,因而气泡承担比液体更高的场强,偏偏气体 耐电强度又低,所以气泡先行电离,一旦电离的气泡在 电场中堆积成气体通道,则击穿在此通道内发生
非纯净液体电介质的“小桥”击穿理 论
(a) 形成“小桥(a)” (b) 未形(b)成“小桥”
受潮纤维在电极间定向示意图
液体中的杂质在电场力的作用下,在电场方向定向,并逐渐 沿电力线方向排列成杂质的“小桥”,由于水和纤维的介电 常数分别为81和6 — 7,比油的介电常数1.8 — 2.8大得多, 从而这些杂质容易极化并在电场方向定向排列成“小桥”, 形成放电通道。 极不均匀电场中液体电介质的品质对工频击穿电压的影响较小
液体电介质的击穿
1、液体电介质的击穿理论 2、提高液体电介质击穿电压的方法
1、液体电介质的击穿理论
液体电介质:纯净的液体电介质 工程用液体电介质
纯净液体电介质的电击穿理论
电离阶段:产生自由电子,发生碰撞电离。 流注阶段:分级发展,出现分枝。 贯穿阶段:通道贯通整个间隙
纯净液体电介质的气泡击穿理论
The Eed Thank You
电介质物理》课件电介质的击穿
电击穿机制
电场作用下电介质击穿
在强电场的作用下,电介质内部的自由电子被加速,与晶格原子发生碰撞,导致 电子能量降低并产生新的电子-空穴对,这些新的电子-空穴对进一步与晶格原子 发生碰撞,产生更多的电子-空穴对,最终导致电介质击穿。
隧道效应
在强电场的作用下,电子通过隧道效应穿过势垒,形成导电通道,导致电介质击 穿。
03
影响电介质击穿的因素
电场强度
总结词
电场强度是影响电介质击穿的最主 要因素之一。
详细描述
随着电场强度的增加,电介质中的 电场会变得更强,导致电子更容易 获得足够的能量来克服电介质中的
束缚力,从而引发电介质击穿。
总结词
高电场强度下,电介质更容易发生 击穿。
详细描述
在强电场的作用下,电介质内部的 电子会被加速,获得足够能量后能 够克服电介质中的束缚力,形成导 电通道,导致电介质击穿。
03
热击穿
电击穿
冲击击穿
在强电场的作用下,电介质内部的热量积 累导致温度升高,当温度达到一定程度时 ,发生热击穿。
在强电场的作用下,电子获得足够的能量 ,直接导致电介质分子中的电子跃迁,形 成导电通道。
在雷电或操作过电压的作用下,电介质内 部的电流迅速增加,产生强烈的冲击波, 导致电介质瞬间击穿。
02
电介质物理》课件电介质的 击穿
目录
• 电介质击穿的基本概念 • 电介质击穿的物理机制 • 影响电介质击穿的因素 • 电介质击穿的预防与控制 • 电介质击穿的实验研究方法
01
电介质击穿的基本概念
定义与Байду номын сангаас性
01
02
定义
特性
电介质击穿是指电介质在强电场的作用下,丧失其绝缘性能的现象。
简述提高液体电介质击穿电压的方法
简述提高液体电介质击穿电压的方法哎呀,电介质击穿电压这事儿听上去挺复杂的,其实呢,咱们可以把它当作一道难题来解。
液体电介质,简单来说,就是用来隔离电流的液体。
要想提高它的击穿电压,也就是让它能承受更高电压而不被击穿,我们得用点小妙招。
说实话,虽然这事儿听上去像是高深的科学,实际上也有不少简单粗暴的方法可以试试。
今天就让咱们来聊聊这些方法,带点幽默感,希望让你对电介质的击穿电压有个清晰的认识。
1. 清洁和纯化是关键1.1 去除杂质要提高液体电介质的击穿电压,第一步就是得把液体里的杂质搞定。
液体里面的杂质,哪怕是一点点,都可能成为电流的“捷径”,让电压一高就击穿。
所以,我们需要做的,就是用各种方法把这些杂质去掉。
这就像你做饭的时候,得把锅里的杂质清理干净,才能做出美味的菜肴。
纯化的过程,通常涉及到过滤、离心等技术手段,保证液体越纯净越好,效果会更明显。
1.2 使用高纯度的液体除了去除杂质,选择高纯度的液体也是个好办法。
想象一下,如果你用的是一种超级纯净的液体,它的绝缘能力肯定比普通的液体要强。
就像你用优质的食材做饭,味道自然更好。
这就需要我们选择那些原料本身就很纯净的液体,虽然价格可能会贵一点,但效果却往往更好。
2. 添加助剂提升性能2.1 添加增容剂有时候,光靠纯化还不够,我们可以给液体里添加一些增容剂,这些助剂能帮助提升液体的击穿电压。
增容剂就像调料,虽然量不多,却能大大改善液体的性能。
不过,添加助剂也得讲究方法,不能乱加,否则效果可能适得其反。
选择合适的助剂,还得经过实验验证才能确定。
2.2 优化液体配方有的液体,加入某些化学成分后,能显著提高击穿电压。
这就像你调配饮料时,适量加入某些成分,可以让味道更加丰富。
我们可以通过实验,找到最佳的配方,让液体的击穿电压达到最优状态。
这种方法有点像调配秘密配方,得靠经验和技术。
3. 改善环境条件3.1 控制温度液体的击穿电压与温度关系密切。
温度高了,液体的绝缘性能会下降,就像夏天冰淇淋在高温下很容易融化。
名词解释电介质的击穿
名词解释电介质的击穿电介质的击穿是指当电场强度超过电介质所能承受的临界值时,电介质将会发生电击穿现象。
电介质是物质中的一种,可以是固体、液体或气体,具有较高的电阻性能,能够在不充分电的情况下维持电荷的分布和电场的存在。
然而,当电场强度超过其承受能力时,电介质会失去其绝缘特性,电荷将得以通过电介质导电,从而导致电击穿现象的发生。
电击穿是电气技术中一个非常重要的现象,在很多领域都起着关键作用。
了解电介质的击穿现象有助于我们改进电气设备和系统的设计,提高其安全性和可靠性。
一、电介质击穿的成因电介质的击穿现象主要有以下几种成因:1. 电击自发放电:当电介质中的电场强度达到一定程度时,电介质分子中的电子被强电场激发,从而离开其原位形成自由电子,引发电击穿。
2. 断裂击穿:电介质中存在微观缺陷或外部应力作用时,电场强度集中在这些缺陷或应力周围,造成电介质局部击穿。
3. 热击穿:当电场强度很高时,电介质中的电流会产生较大的热量,导致局部温度升高,电介质无法将热量有效散发,最终导致电介质局部击穿。
4. 温升击穿:在交流电场中,电介质的极性会周期性变化,当电场强度足够高时,电介质不断受到能量的输入,导致其温度升高,最终引发电击穿。
二、电击穿的影响和应对措施电击穿现象对电气设备和系统的安全运行会产生很大的影响,可能导致设备的损毁、线路的中断、系统的故障等。
因此,为了避免电击穿的发生,我们可以采取以下措施:1. 选用合适的电介质材料:不同的电介质具有不同的电击穿强度,正确选择合适的电介质材料可以提高电气设备的抗电击穿能力。
对于特定的应用场景,可以通过优化电介质材料的组分、结构和制备工艺来提高其电击穿强度。
2. 加强设计和绝缘:在电气设备的设计过程中,应充分考虑电介质的击穿问题,采取合适的绝缘措施,如增加绝缘距离、引入绝缘涂层、采用电介质缓冲层等,以提高电气设备的绝缘性能和防护能力。
3. 控制电场强度:通过控制电场强度,可以有效地避免电击穿的发生。