路基边坡稳定性
路基边坡稳定性(讲义)
(二)在进行边坡稳定性分析时,近似方法并假定 1、不考虑滑动主体本身内应力的分布 2、认为平衡状态只在滑动面上达到,滑动主体整体下滑 3、极限滑动面位置通过试算来确定 二、边坡稳定性分析的计算参数 路堑:天然土层中开挖,土类别、性质天然生成的 路堤:人工填筑物、填料性质和类别多为人为因素控制, 对于土的物理力学数据的选用以及可能出现的最不利情况, 力求能与路基将来实际情况一致 。
稳定系数K=R/T
W-滑块重量 β-结构面倾角 Φ-结构面内摩擦角 C-结构面黏聚力 L-滑面的长度
楔形滑动力学分析图
总抗滑力R=ROACE+ROABD
ROACE=WcosβOACEtgΦ+SOACEC
❖ 2、不利结构体:结构面组合线倾向与坡向的夹 角在15 °- 35°之间,且倾角大于坡角、小于 开挖角的外倾结构体,称为不利结构体。
❖ 3、危险结构体:结构面组合线倾向倾向与坡向 的夹角小于15 °,且倾角大于坡角、小于开挖 角的外倾结构体,称为危险结构体。
❖ 三、岩体的结构类型
❖ 按结构面和结构体组合形式,尤其是结构面性状,可将岩体划分五 种结构类型。
2、用不透水或透水极小的粘性土(黏土、粉质黏土) 填筑的路堤水位变化时,不发生动水压力D=0
3、用一般粘性土(粉土、黏土质砂)填筑的路堤水位 变化时,堤身产生动水压力,必须绘制浸润曲线(假定 为直线,坡度为降落曲线的平均坡度)用前式计算
4、河滩路堤的安全系数,一般规定不小于1.25,按最 大洪水位验算时,其安全系数可采用k≥1.15
❖ 结构面描述内容:包括类型、性质、产状、组合形式、发 育程度、延展情况、闭合程度、粗糙程度、充填情况和充 填物性质以及充水情况等。
❖ 一、结构面与边坡的关系分类
路基边坡稳定性分析课件
影响因素
应对措施
1. 排水措施
2. 削坡减载
3. 边坡加固
4. 监测预警
边坡稳定性受多种因素影响,包括地质条件、边坡高度和坡度、降雨和地震等自然因素,以及边坡防护措施等人为因素。
针对该边坡,可以采取以下措施提高稳定性
设置排水沟或排水管,将地表水引出路基范围。
对边坡进行削坡减载,减小边坡高度和坡度。
优点与局限性
人工智能可以处理复杂的非线性关系和非直观因素,具有较高的预测精度和效率。然而,人工智能方法需要大量的高质量数据和合适的训练方法,对数据质量和模型选择有一定的要求。同时,解释性不如基于极限平衡理论和数值分析的方法明确。
04
CHAPTER
工程实例分析
某高速公路修建,位于山地丘陵地区,边坡高度在5-10m之间,坡度在40-60度之间。
国内研究现状
国外研究现状
02
CHAPTER
路基边坡稳定性分析基本理论
稳定性概念
路基边坡稳定性是指边坡在各种因素作用下,不会发生破坏或失稳的情况。稳定性是路基安全性的重要指标之一。
分类
根据边坡土质、水文条件、高度、坡度等因素,可将路基边坡稳定性分为岩质边坡稳定和土质边坡稳定两类。
破坏形式
路基边坡破坏主要表现为滑坡、崩塌、剥落等形式。其中,滑坡是最常见的破坏形式,是指边坡上的土体或岩体在重力作用下沿一定滑动面整体下滑的现象。
采用锚杆、钢筋混凝土框架等加固措施提高边坡稳定性。
设置监测点,定期监测边坡位移和沉降,及时发现安全隐患并采取应对措施。
05
CHAPTER
结论与展望
路基边坡稳定性对确保道路的安全和正常使用至关重要。
本次研究通过理论分析和数值模拟,揭示了不同因素对路基边坡稳定性的影响。
道路工程 第07章 路基边坡稳定性设计
(3)滑动面假定
松散的砂性土和砾石内摩擦角较大,粘聚力较小,滑动
面近似平面,平面力学模型采用直线。 粘性土粘聚力较大,内摩擦角较小,破裂时滑动面近似 于圆曲面,平面力学模型采用圆弧。
———路基路面工程———
直线平面 :由松散的砂性土和砾石填筑。
曲面 :以粘性土填筑 。
1.25 (0.4663 a0 )0.5 2 a0 (0.4663 a0 )( 0.5 2 1)
———路基路面工程———
经整理得: 解得:
4a0 4.3655 a0 1.034 0
a0 0.2002
a0 2c H
2
由:
得:
H
2c 2 14.70 8.7m a0 16.90 0.2002
路基边坡稳定性设计
———路基路面工程———
图1 路堤边坡滑坡实况
———路基路面工程———
图2 路堑边坡滑坡实况
———路基路面工程———
———路基路面工程———
———路基路面工程———
———路基路面工程———
———路基路面工程———
———路基路面工程———
———路基路面工程———
———路基路面工程———
———路基路面工程———
第一节 边坡稳定性分析原理 与计算参数
———路基路面工程———
一、边坡稳定性分析原理
(1)岩石边坡 岩石路堑边坡稳定性取决于岩石的产状和地质构造特 征,岩体中存在的构造弱面,如层面,层理,断层, 节理等,是岩体中潜在的滑动面,一旦工程地质条件 向不利方向变化,岩体就会失稳形成滑坡。 (2)土质路基 令:T-土体的下滑力,F-抗滑力, K=F/T。 当K>1,稳定;K<1,滑动面形成,滑体下滑。考虑到 一些不确定性因素,为安全起见工程上常采用K= 1.2~1.5作为稳定的界限值。 滑动面有直线,曲线,折线三大类。
04 边坡稳定性
(2)抗震设计基本要求
设计原则:预防为主、保证重点、确保边坡安
全和经济性
设计等级:多遇地震、设计地震、罕遇地震
设计方法:静力学计算,设计地震演算稳定性
(3)计算方法 计算荷载:恒载、活载和水平地震作用 水平地震力:
FihE Ag mi FihE 第i条土块质心处的水平地 震力kN; 水平地震作用修正系数,通常取0.25; 2 Ag-地震动峰值加速度m / s ; mi 第i条土块的质量t。
En>0不稳定 6.3 稳定措施: ⑴改善基底状况,增加滑动面的摩擦力或减小滑动力 清除松软土层,夯实基底,使路堤位于坚实的硬层上 开挖台阶,放稳坡度,减小滑动力 路堤上方排水,阻止地面水浸湿基底 ⑵改变填料及断面形式: 采用大颗粒填料,嵌入地面 放缓坡脚处边坡,以增加抗滑力 ⑶在坡脚处设支挡结构物 石砌护脚、干砌或浆砌挡土墙
稳定安全系数计算:
中:ti 第i土条在滑弧切线方向产生的水平地震力 y ti FihE ; r r 滑弧半径m;y 土条质心至滑弧圆心垂直距离
tan i Ni cili K Ti ti
稳定系数K的取值范围: (1)在不考虑地震力作用时,铁路路基 首先满足自重和列车荷载作用下的安全性; (2)考虑地震力的作用时,I、II级铁路 边坡高度≤ 15m时,K≥1.10;边坡高度 >15m时,K≥1.15。
路基边坡稳定性设计
1 概述 1.1 影响路基边坡稳定性的因素 1.边破土质 2.水的活动 3.边坡的几何形状 4.活荷载增加 5.地震及其他震动荷载
1.2 边坡稳定性设计方法 路基边坡稳定性分析与验算的方法很多, 归纳起来有力学演算法和工程地质法两大类。 力学验算法又叫极限平衡法,假定边坡眼某一 形状滑动面破坏,按力学平衡原理进行计算。 因此,根据滑动面形状的不同,又分为直线法, 圆弧法和折线法三种。力学验算的基本假定是: 1.破裂面以上的不稳定土土体沿破裂面 作整体滑动,不考虑其内部的应力分布不均和 局部移动 2.土的极限平衡状态只在破裂面上达到
路基边坡稳定性设计
路基边坡稳定性设计路基边坡滑坍是公路上常见的破坏现象之一。
例如,在岩质或土质山坡上开挖路堑,有可能因自然平衡条件被破坏或边坡过陡,使坡体沿某一滑动面产生滑动。
对河滩路堤、高路堤或软弱地基上的路堤,也可能因水流冲刷、边坡过陡或地基承载力过低而出现填方土体(或连同原地面土体)沿某一剪切面产生坍塌。
路基边坡的稳定性涉及岩土性质与结构、边坡高度与坡度、工程质量与经济等因素。
一般情况下,对边坡不高的路基,如不超过8 m的土质边坡、不超过12 m 的石质边坡,可按一般路基设计,采用规定的坡度值,不作稳定性分析计算。
对地质和水文条件复杂、高填深挖或有特殊使用要求的路基,应进行稳定性分析,保证路基设计既满足稳定性要求,又满足经济性要求。
4.1 边坡稳定性分析概述4.1.1 影响路基边坡稳定性的因素根据土力学原理,路基边坡滑坍是因边坡土体中的剪应力超过其抗剪强度所产生的剪切破坏。
因此,凡是使土体剪应力增加或抗剪强度降低的因素,都可能引起边坡滑坍。
这些因素可归纳为以下5点:①边坡土质。
土的抗剪强度取决于土的性质,土质不同则抗剪强度也不同。
对于路堑边坡而言,除与土或岩石的性质有关外,还与岩石的风化破碎程度和形状有关。
②水的活动。
水是影响边坡稳定性的主要因素,边坡的破坏总是或多或少地与水的活动有关。
土体的含水率增加,既降低了土体的抗剪强度,又增加了土内的剪应力。
在浸水情况下,还有浮力和动水压力的作用,使边坡处于最不利状态。
③边坡的几何形状。
边坡的高度、坡度等直接关系土的稳定条件,高大、陡直的边坡,因重心高,稳定条件差,易发生滑坍或其他形式的破坏。
④活荷载增加。
坡脚因水流冲刷或其他不适当的开挖而使边坡失去支承等,均可能增大边坡土体的剪应力。
⑤地震及其他震动荷载。
4.1.2 边坡稳定性分析方法路基边坡稳定性分析与验算的方法很多,归纳起来有力学分析法、图解法和工程地质法(比拟法)。
力学分析法又称极限平衡法,假定边坡沿某一形状滑动面破坏,按力学平衡原理进行计算。
第三章--边坡稳定性分析
验算方法
⑴ 将土体按地面变
T1
坡点垂直分块后自 α1 W 1 N1
上而下分别计算各 E1
τ1
土块的剩余下滑力.
α1 α2
E2
T2
W2 N2
τ2
E1 α1
⑵自第二块开始, 均需计入上一条块剩余下滑力对本条块的作用 把其当作作用于本块的外力,方向平行于上一块土体滑动面。
⑶Ei计算的结果若出现负值,计算Ei+1时,公式中Ei以零值代入。
cL
N
A ω θ Ntgφ W
H
K f G cos cL G sin
10
二、解析法
D B
θ
K f G cos cL G sin
H
1:m T
cL
N
A ω θ Ntgφ W
因G HL sin( )则
K
f
2
ctg
sin
2c
H
sin(
sin ) sin
令 0
2c
H
K ( f 0 )ctg
②土的极限平衡状态只在破裂面上达到,破裂面的位置要 通过计算才能确定。
力学分析法主要包括:圆弧滑动面法、平面滑动面法、 传递系数法等。
8
§ 3.2 直线滑动面的边坡稳定性计算
K min K
一、试算法
T
KR T
θ ω
N W
K W cos tan cL W sin
纯净砂类土 c = 0,则
15
◆ 计算稳定系数
①切向力
o
Ti x Qi sin i
R
'
i
i'
10 1:m2
E
98
公路路基边坡稳定性的分析与防护措施
公路路基边坡稳定性的分析与防护措施本文在主要分析公路边坡稳定性破坏形式及原因以及介绍了边坡稳定性分析原理与方法,提出相对合理的公路路基边坡稳定性的防护措施。
标签:公路路基边坡;稳定性;破坏形式及原因;原理;防护措施1 公路路基边坡破坏形式及原因公路路基边坡受岩性、构造等地质条件和风化、水的渗入和冲刷等自然地质作用以及人工开挖等工程活动的影响,常出现坡面变形和整体失稳破坏两类工程灾害。
1.1 公路路基的坡面变形坡面变形是指路堑(或路堤)边坡坡面的局部破坏,包括风化剥落和碎落、冲刷以及表面滑塌等类型。
剥落是指路基边坡的表层岩体、土体在长期遭受风化、雨水冲刷以及自身重力作用下,部分岩块、土屑逐渐沿着边坡下跌、滚落,并最终沉积在坡底的现象。
坡面冲刷是雨水顺坡面流动时将松散的颗粒带走,而在坡面上冲刷出一条带状小纹沟。
一条条顺坡面排列的细长的沟槽,将坡面分割得支离破碎。
这些变形进一步发展,可以导致路堑或路堤更大规模的破坏。
表层滑塌是由于边坡上有地下水出露,形成点状或者带状湿地,产生的坡面表层滑塌的现象。
此类破坏由雨水浸湿、冲刷也能产生。
它往往还是路基边坡更大规模变形破坏的前奏。
1.2 公路路基的整体失稳公路路基的整体失稳是指边坡的整体溜方和滑坡。
溜方是由于少量土体沿土质边坡向下移动所形成,即边坡上薄的表层土下溜,通常是由于降水、降雨等流动水冲刷边坡或施工不当而引起的。
滑坡是指大量土体和岩体在重力作用下沿边坡的某一滑动面滑动,主要是因土体的稳定性不足引起的。
路堤边坡发生滑坡的主要原因是边坡坡度过陡或坡脚被挖空,或填土层次安排不合适等;路堑边坡发生滑坡的主要原因是边坡高度和坡度与天然岩土层次的性质不相适应。
2 路基稳定性的分析方法和边坡稳定性破坏机理2.1路基边坡稳定性分析方法可分为两类,即力学分析法和工程地质法。
2.1.1 力学分析法路基边坡稳定性力学分析方法主要有两种数解法和图解或表解法。
数解法是指假定几个不同的滑动面,按力学平衡原理对每个滑动面进行边坡稳定性分析,从中找出极限滑动面,按此极限滑动面的稳定程度来判断边坡的稳定性。
路基边坡稳定性分析
γ――路基填料的容重,kN/m3
B――荷载横向分布宽度,m B=Nb+(N-1)m+ d 其中:b-—后轮轮距,取1.8m
h0
NQ
LB
d-—轮胎着地宽度,取0.6m
m——相邻两辆车后轮的中心间距,取1.3m
关于荷载分布宽度,可以分布在行车道范围,实际情况亦可
认为路肩有可能停放车辆(最不利的情况),则分布在整修路基宽度
(包括路面、路肩的宽度)。
3、直线滑动面(Slip Surface)的验算法
1)填方边坡(试算法) 如下图,土楔体沿破裂面AD滑动,Q=G 下滑力:T=Gsinω 抗滑力:F=CL+Nf = CL+N tgφ=CL+ Gcosωtgφ
式中:G-土楔体重,包括换算成土柱高的车辆 荷载,kN ω-破裂面对于水平面的倾斜角 φ-土体内摩阻角 θ-边坡坡度角 C-边坡单位长度粘聚力 L-破裂面的长度 f——摩擦系数,f=tgφ 其中,c、φ、γ值均须通过试验确定。
为使土楔体稳定,在破裂面上需有一定的安全
系数k : k F G costg CL
T
G sin
通过坡脚点A,可有任意个滑动面,滑动面的位置 不同,k值亦不同,边坡稳定与否的判断依据,应 是稳定系数的最小值kmin,相应的最危险滑动面的 倾角为ω0。(b图)
(2)影响压实的因素
上式表明:k值是ω值的函数,为此可选择3~5个滑动面, 计算并绘制k与ω的关系曲线,如c图,即可确定kmin及 其相应ω0,不言而喻,当kmin值符合规定,路基边坡为 稳定,否则,路基断面另行设计与验算,直到符合要求 为止。
若 k=1时,极限平衡态
k>1时,稳定态 k<1时,不稳态 考虑到滑动面的近似假定,c、φ土工试验局限性及气候环 境因素,为保证边坡稳定性有足够安全储备。kmin≥1.201.25,但kmin不宜过大,以免造成工程不经济。
路基第四章路基边坡稳定性设计说明
BD
A 深路堑
沿直线形态 滑动面下滑
D
A
陡坡路堤
假定AD为直线滑动面,并通过坡脚点A,土质均匀,取 单位长度路段,不计纵向滑移时土基的作用力,可简化
成平面问题求解。
一、试算法
由图,按静力平衡得:
K= R N f cL Q cos tan cL
T
T
Q sin
ω——滑动面的倾角;
B
D
f——摩擦系数,f=tanφ;
L——滑动面AD的长度; H
R
N——滑动面的法向分力; T——滑动面的切向分力; c——滑动面上的粘结力; Q——滑动体的重力。
T αω
A
ω
N Q
直线滑动面上的力系示意图
K= R N f cL Q cos tan cL
T
T
Q sin
滑动面位置ω不同
力学分析法:数解方法 ★
似 解
图解法:图解简化
基本方法:
抗滑力
稳定系数 K= R T
<1:边坡不稳定
K =1:极限平衡状态 >1:边坡稳定,工程上一般规定K≥1.20~1.25
行车荷载是边坡稳定的主要作用力,换算方法:
行车荷载换算成相当于路基岩土层厚度,计入滑动体的 重力中;换算时按荷载的不利布置条件,取单位长度路段。
Kmin 2a f ctg 2 a f a csc
cotα=0.5,α=63026′ cscα=1.1181 f=tan250=0.4663, a=2c/γH=0.2778
Φ=250, c=14.7kpa, γ=17.64
H=6m
Kmin 2a f ctg 2 a f a csc
第四章 路基边坡稳定性设计
§4.1概述 一、边坡稳定系数 边坡高度:土质边坡高度超过18m,石质边坡高度超过20m,一般要 进行稳定性验算。 边坡稳定系数: K 式中:R—抗滑力; T—下滑力。 K=1,边坡处于平衡状态。 K>1,边坡稳定。 K<1,边坡不稳定。 一般要求:K≥1.20—1.25 直线滑动面:适用砂类土(砂土、砂性土)、碎(砾)石土等 圆弧滑动面:适用具有一定粘结力的粘性土、粉性土等
其稳定系数按下式计算(按纵向1m计,下同)为
R Nf cL Q cos tan cL K T T Q sin
式中:R——沿破裂面的抗滑力; T ——沿破裂面的下滑力; Q——土楔重量及路基顶面换算土柱的荷载之和; ω ——滑动面的倾角; φ——路堤土体的内摩擦角; c——路堤土体的单位黏聚力; L——破裂面的长度。 在关系曲线上找到最小稳定系数值Kmin及对应的极限破裂面倾斜角。 (P74 图4-4)
Φ=20 °,土的粘聚c=10kN/m2 求(1)当开挖坡度角θ=60°,土坡稳定时的 允许最大高度 (2)挖土高度为6.5m时的稳定坡度θ。
喷锚支护
喷锚支护
组合式支护结
组合式支护结构
边坡稳定系数:
K
M y M S
圆弧法的基本步骤如下:
①通过坡脚任意选定可能发生的圆弧滑动面AB,其半径为R,沿路线 纵向取单位长度1m。将滑动土体分成若干个一定宽度的垂直土条,
0.53
0.77 0.88 0.96 0.99 0.99 0.97 0.93
29.9
57.5 56 51 49.7 38.5 24 4.8
508
971 951 866 845 654 408 82
①4.5H法(图4-6)
路基边坡稳定性分析计算
4 路基边坡稳定性分析计算
一、适用条件
直线法
1. 砂类土的路堤和路堑; 2. 有近似直线的软弱夹层的路堑; 3. 单坡的陡坡路堤。
4 路基边坡稳定性分析计算
二、数学表达式
由于砂类土的粘结力C很小,若取C=0,则上式为:
4 路基边坡稳定性分析计算
三、稳定性分析步骤 1. 均质砂类土路堤边坡(试算法) ⑴ 先假设几个破裂面,按上式计算对应的稳定系数Ki;
>1,稳定
k
抗滑力(矩)= 下滑力(矩)
=1,临界
<1,不稳定
稳定系数:
4 路基边坡稳定性分析计算
第一节 边坡稳定性分析原理与方法
三、边坡稳定性分析的计算参数
1.土的计算参数
c、、,γ :填土-路堤一致,天然-路堑
多层土体:利用加权平均法
c 1
H
n
ci hi
i 1
tg 1
Hபைடு நூலகம்
n
h itgi
i 1
缺点:不能分析下滑体的中的真实内力和反力,不能得到其中 的应力和变形,只有一个安全系数。
4 路基边坡稳定性分析计算
第一节 边坡稳定性分析原理与方法
二、边坡稳定性分析原理
4.边坡稳定性计算方法
直线法 砂土、砂性土
土质:圆弧法 条分法 粘性土 极限平衡法(考虑了安全系
数)
表解法 石质:工程地质比拟法 5.评定指标
4 路基边坡稳定性分析计算
⑵ 绘制ωi-Ki曲线图
⑶ 在图中确定最小Kmin以及相应的极限破裂角ω0 ⑷ 稳定性判断:Kmin≥[K]=1.25~1.5
4 路基边坡稳定性分析计算
2. 均质砂类土路堑边坡(解析法)
其中:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路基边坡稳定性
路基是路面的基础,它和路面共同承受行车荷载的作用,没有坚固、稳定的路基就没有稳固的路面,路基的强度和稳定性是保证路面强度和稳定性的先决条件,路基的强度与稳定性,受水、温度、土质的影响,路基的常见病害就是沉陷,而由于路基土中含水量偏大造成压实度不足引起沉陷的事例最多,因为土中的水分过大,土粒被水膜包围而分散得过远,含水量越大,水膜越厚,水分不能排除,由于水的密度比土的密度小,因此土的密度反而下降了,因此,在压实工作中经常注意并检查土的含水量,并视需要采取相应措施,尽可能消除和减轻水对路基造成的危害。
影响路基边坡稳定性的因素:
1、路基的压实质量;路基的压实质量越高路基的边坡稳定性越好。
2、路基的填料;路基的填料宜选择透水性好,强度高的填料。
3、地下水位的高低;地下水位越高的地方、路基的水稳性影响就大,边坡稳定性就差。
4、路基边坡的坡比;坡度越缓的路基边坡稳定性越好。
5、临时排水及边坡防护工程的质量。
路基边坡稳定性相关延伸:
在路基施工过程中,为控制好路基压实质量,提高现场压实机械的工作效率,需要重点做好四方面工作:
1)通过试验准确确定不同种类填土的最大干密度和最佳含水量。
2)是现场控制填土的含水量。
实际施工中,填土的含水量是一个影响压实效果的关键指标,路基施工中当含水量过大时应翻松晾晒或掺灰处理,降低含水量;当含水量过低时,应翻松并洒水闷料,以达到较佳的含水量。
3)是分层填筑、分层碾压。
施工前,要先确定填土分层的压实厚度。
最大压实厚度一般不超过20厘米。
4)是加强现场检测控制。
填筑路基时,每层碾压完成后应及时对压实度、平整度、中线高程、路基宽度等指标进行质量检测,各项指标符合要求后方能允许填筑上一层填土。