信息论基础1答案
信息论基础各章参考答案
各章参考答案2.1. (1)4.17比特 ;(2)5.17比特 ; (3)1.17比特 ;(4)3.17比特2.2. 1.42比特2.3. (1)225.6比特 ;(2)13.2比特2.4. (1)24.07比特; (2)31.02比特2.5. (1)根据熵的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。
如果我们使每次实验所获得的信息量最大。
那么所需要的总实验次数就最少。
用无砝码天平的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3。
从12个硬币中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。
因为3log3=log27>log24。
所以在理论上用3次称重能够鉴别硬币并判断其轻或重。
每次实验应使结果具有最大的熵。
其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ②左倾 ③右倾。
ⅰ)若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出盘中没有假币;若有,还能判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可判断出假币。
ⅱ)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未称的3枚放到右盘中,观察称重砝码,若平衡,说明取下的3枚中含假币,只能判出轻重,若倾斜方向不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说明从右盘取过的3枚中有假币,便可判出轻重。
(2)第三次称重 类似ⅰ)的情况,但当两个硬币知其中一个为假,不知为哪个时,第三步用一个真币与其中一个称重比较即可。
对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在五个硬币的组里,则鉴别所需信息量为log10>log9=2log3,所以剩下的2次称重不能获得所需的信息.2.6. (1)215log =15比特; (2) 1比特;(3)15个问题2. 7. 证明: (略) 2.8. 证明: (略)2.9.31)(11=b a p ,121)(21=b a p ,121)(31=b a p ,61)()(1312==b a b a p p ,241)()()()(33233222====b a b a b a b a p p p p。
信息论试卷含答案资料讲解
《信息论基础》参考答案一、填空题(共15分,每空1分)1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为32log bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。
6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正态分布或()222x f x σ-=时,信源具有最大熵,其值为值21log 22e πσ。
9、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈”(1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)=H(Y)+H(X)。
(2)()()1222H X X H X =≥()()12333H X X X H X = (3)假设信道输入用X 表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、(6分)若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。
()1,2640,x f x ⎧≤≤⎪=⎨⎪⎩Q 其它()()()62log f x f x dx ∴=-⎰相对熵h x=2bit/自由度该信源的绝对熵为无穷大。
三、(16分)已知信源1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长L ;(4分)(3)计算编码信息率R ';(2分)(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。
第一章 第二章课后作业答案
信息论基础(于秀兰 陈前斌 王永)课后作业答案注:X 为随机变量,概率P(X =x)是x 的函数,所以P(X)仍为关于X 的随机变量,文中如无特别说明,则以此类推。
第一章1.6[P (xy )]=[P(b 1a 1)P(b 2a 1)P(b 1a 2)P(b 2a 2)]=[0.360.040.120.48] [P (y )]=[P(b 1)P(b 2)]=[0.480.52] [P (x|y )]=[P(a 1|b 1)P(a 2|b 1)P(a 1|b 2)P(a 2|b 2)]=[0.750.250.0770.923]第二章2.1(1)I (B )=−log P (B )=−log 18=3(bit) 注:此处P (B )表示事件B 的概率。
(2)设信源为X ,H (X )=E [−logP (X )]=−14log 14−2∙18log 18−12log 12=1.75(bit/symbol) (3)ξ=1−η=1−1.75log4=12.5%2.2(1)P(3和5同时出现)=1/18I =−log118≈4.17(bit) (2)P(两个2同时出现)=1/36I =−log 136≈5.17(bit) (3)向上点数和为5时(14,23,41,32)有4种,概率为1/9,I =−log 19≈3.17(bit) (4)(5)P(两个点数至少有一个1)=1−5∙5=11 I =−log 1136≈1.71(bit) (6)相同点数有6种,概率分别为1/36;不同点数出现有15种,概率分别为1/18;H =6∙136∙log36+15∙118∙log18≈4.34(bit/symbol)2.9(1)H (X,Y )=E [−logP (X,Y )]=−∑∑P(x i ,y j )logP(x i ,y j )3j=13i=1≈2.3(bit/sequence)(2)H (Y )=E [−logP (Y )]≈1.59(bit/symbol)(3)H (X |Y )=H (X,Y )−H (Y )=0.71(bit/symbol)2.12(1)H (X )=E [−logP (X )]=−2log 2−1log 1≈0.92(bit/symbol) Y 的分布律为:1/2,1/3,1/6;H (Y )=E [−logP (Y )]≈1.46(bit/symbol)(2)H (Y |a 1)=E [−logP (Y|X )|X =a 1]=−∑P (b i |a 1)logP (b i |a 1)i=−34log 34−14log 14≈0.81(bit/symbol) H (Y |a 2)=E [−logP (Y|X )|X =a 2]=−∑P (b i |a 2)logP (b i |a 2)i=−12log 12−12log 12=1(bit/symbol) (3)H (Y |X )=∑P (a i )H (Y |a i )i =23∙0.81+13∙1≈0.87(bit/symbol)2.13(1)H (X )=H (0.3,0.7)≈0.88(bit/symbol)二次扩展信源的数学模型为随机矢量X 2=(X 1X 2),其中X 1、X 2和X 同分布,且相互独立,则H (X 2)=2H (X )=1.76(bit/sequence)平均符号熵H 2(X 2)=H (X )≈0.88(bit/symbol)(2)二次扩展信源的数学模型为随机矢量X 2=(X 1X 2),其中X 1、X 2和X 同分布,且X 1、X 2相关,H (X 2|X 1)=E [−logP (X 2|X 1)]=−∑∑P (x 1,x 2)logP (x 2|x 1)x 2x 1=−110log 13−210log 23−2140log 34−740log 14≈0.84(bit/symbol) H (X 2)= H (X 1,X 2)=H (X 2|X 1)+H (X 1)=0.84+0.88=1.72(bit/sequence)H 2(X 2)=H (X 2)/2=0.86(bit/symbol)2.14(1)令无记忆信源为X ,H (X )=H (14,34)=14×2+34×0.415≈0.81(bit/symbol ) (2)I (X 100)=−logP (X 100=x 1x 2…x 100)=−log [(14)m (34)100−m]=2m +(2−log3)(100−m )=200−(100−m )log3 (bit)(3)H (X 100)=100H (X )=81(bit/sequence)2.15(1)因为信源序列符号间相互独立,且同分布,所以信源为一维离散平稳信源。
信息论基础1答案
信息论基础1答案LT计算信息量:1.当点数和为3时,该消息包含的信息量是多少?2.当点数和为7是,该消息包含的信息量是多少?3.两个点数中没有一个是1的自信息是多少?解:1.P(“点数和为3”)=P(1,2)+ P(1,2)=1/36+1/36=1/18则该消息包含的信息量是:I=-logP(“点数和为3”)=log18=4.17bit2.P(“点数和为7”)=P(1,6)+ P(6,1)+ P(5,2)+ P(2,5)+ P(3,4)+ P(4,3)=1/36 6=1/6则该消息包含的信息量是:I=-logP(“点数和为7”)=log6=2.585bit3.P(“两个点数没有一个是1”)=1-P (“两个点数中至少有一个是1”)=1-P(1,1or1,jori,1)=1-(1/36+5/36+5/36)=25/36则该消息包含的信息量是:I=-logP (“两个点数中没有一个是1”)=log25/36=0.53bit三、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z ,取Z=YX (一般乘积)。
试计算: 1.H (Y )、H (Z ); 2.H (XY )、H (YZ ); 3.I (X;Y )、I (Y;Z ); 解: 1.2i 11111H Y P y logP y log log 2222i i =⎡⎤=-+⎢⎥⎣⎦∑()=-()()=1bit/符号Z=YX 而且X 和Y 相互独立∴1(1)(1)(1)P P X P Y P X ⋅=+=-⋅=-(Z =1)=P(Y=1)= 11122222⨯+⨯=2(1)(1)(1)P P X P Y P X ⋅=-+=-⋅=(Z =-1)=P(Y=1)=11122222⨯+⨯=故H(Z)= i2i1(z )log (z )i P P =-∑=1bit/符号2.从上式可以看出:Y 与X 的联合概率分布为:H(YZ)=H(X)+H(Y)=1+1=2bit/符号 3.X与Y相互独立,故H(X|Y)=H(X)=1bit/符号∴I (X;Y )=H(X)-H(X|Y)=1-1=0bit/符号I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/符号四、如图所示为一个三状态马尔科夫信源的转移概率矩阵P=1102211022111424⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭1. 绘制状态转移图;P(Y,Z) Y=1 Y=-1Z=1 0.25 0.25 Z=-1 0.25 0.252. 求该马尔科夫信源的稳态分布;3. 求极限熵;解:1.状态转移图如右图 2.由公式31()()(|)jiji i p E P E P EE ==∑,可得其三个状态的稳态概率为:1123223313123111()()()()22411()()()2211()()()24()()()1P E P E P E P E P E P E P E P E P E P E P E P E P E ⎧=++⎪⎪⎪=+⎪⎨⎪=+⎪⎪⎪++=⎩1233()72()72()7P E P E P E ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩3.其极限熵:3i i 13112112111H = -|E =0+0+72272274243228=1+1+ 1.5=bit/7777i P H H H H ∞=⨯⨯⨯⨯⨯⨯∑(E )(X )(,,)(,,)(,,)符号五、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:1. 该信道的转移概率矩阵P2. 信道疑义度H (X|Y )3. 该信道的信道容量以及其输入概率分布 解:1.该转移概率矩阵为P=0.90.10.10.9⎡⎤⎢⎥⎣⎦2.根据P (XY )=P (Y|X )⋅P (X ),可得联合概率P (XY ) Y Y X=0 9/40 1/40 X=13/4027/401 0.0.0.0.1P(Y=i) 12/40 28/40 由P (X|Y )=P(X|Y)/P(Y)可得P(X|Y) Y=0 Y=1 X=0 3/4 1/28 X=1 1/427/28H(X|Y)=-i jiji j(x y )log x |y =0.09+0.12+0.15+0.035=0.4bit/P P∑,()符号 3.该信道是对称信道,其容量为: C=logs-H=log2-H(0.9,0.1)=1-0.469=0.531bit/符号这时,输入符号服从等概率分布,即0111()22X P X ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦六、某信道的转移矩阵⎥⎦⎤⎢⎣⎡=1.006.03.001.03.06.0P试求:该信道的信道容量及其最佳输入概率分布。
信息论基础教程(一)
信息论基础教程(一)
信息论基础教程
一、引言
1.什么是信息论?
2.由来和应用领域
二、信息的定义
1.信息的测量单位
2.信息的数学表示
三、信息的熵
1.熵的概念
2.熵的计算公式
3.熵的性质
四、信息的压缩与编码
1.无损压缩与编码
2.哈夫曼编码
3.香农编码
五、信道容量
1.信道模型
2.信道容量的计算
3.极限定理
六、误差检测和纠正
1.奇偶校验
2.海明码
七、信息论在通信领域的应用
1.数据压缩
2.信道编码
3.无线传输
八、信息论的未来发展
1.量子信息论
2.生物信息学
以上是详细的信息论基础教程大纲,通过Markdown格式的标题副标题形式来展现。
文章采用列点的方式生成,遵守规则的前提下准确
描述了信息论的基础知识,包括信息的定义和测量、熵的概念和计算、
信息的压缩与编码、信道容量、误差检测和纠正等内容。
同时,还介绍了信息论在通信领域的应用以及未来的发展方向。
信息理论基础智慧树知到课后章节答案2023年下浙江大学
信息理论基础智慧树知到课后章节答案2023年下浙江大学浙江大学第一章测试1.随机事件的互信息可小于0,随机变量的互信息也可小于0。
()答案:错2.对于连续随机变量,其微分熵越大,说明不确定性越大。
()答案:错3.必然事件和不可能事件的自信息量都是0。
()答案:错4.自信息量是P(xi)的单调递减函数。
()答案:对5.若离散变量X是离散变量Y的函数,则条件熵H(X|Y)恒为0。
()答案:对第二章测试1. A 村有一半人说真话,3/10人总说假话,2/10人拒绝回答;B村有3/10人诚实,一半人说谎,2/10人拒绝回答。
现随机地从A村和B村抽取人,p为抽到A村人的概率,1–p为抽到B村人的概率,问通过测试某人说话的状态平均能获得多少关于该人属于哪个村的信息?通过改变p,求出该信息的最大值。
答案:null2.一个无偏骰子,抛掷一次,如果出现1,2,3,4 点,则把一枚均匀硬币投掷一次,如果骰子出现5,6 点,则硬币投掷二次,求硬币投掷中正面出现次数对于骰子出现点数所提供的信息?答案:null3.在某中学有3/4学生通过了考试,1/4学生没有通过。
在通过考试的同学中10%有自行车,而没有通过的学生中50%有自行车,所有有自行车的同学都加入了联谊会,无自行车的同学中仅有40%加入联谊会。
a. 通过询问是否有自行车,能获得多少关于学生考试成绩的信息?b. 通过询问是否参加联谊会,能获得多少关于学生成绩的信息?c. 如果把学生成绩情况,自行车拥有情况和是否参加联谊会用三位二进数字传输,问每位数字携带多少信息?答案:null4.随机掷三颗骰子,以X 表示第一颗骰子抛掷的结果,以Y 表示第一颗和第二颗骰子抛掷之和,以Z 表示三颗骰子的点数之和,试求H(X|Y),H(Y|X),H(Z|X,Y),H(X,Z|Y)和H(Z|X)。
答案:null5.设一个系统传送10个数字:0,1,2,⋯,9,奇数在传送时以0.5概率等可能地错成另外的奇数,而其他数字总能正确接收。
信息论第一章答案
《信息论基础》习题答案第一章信息与信息的度量-1 解:根据题意,“没有不及格”或“pass”的概率为因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A),“良”(B),“中”(C)和“及格”(D)的概率相同:为确定自己的成绩,甲还需信息1-2 解:该锁共可设个数值,开锁号码选取每一个值的概率都相同,所以-3 解:由于每个汉字的使用频度相同,它们有相同的出现概率,即因此每个汉字所含的信息量为每个显示方阵能显示种不同的状态,等概分布时信息墒最大,所以一个显示方阵所能显示的最大信息量是显示方阵的利用率或显示效率为-4 解:第二次发送无误收到,因此发、收信息量相等,均为第一次发出的信息量为第一次传送的信息量为两次发送信息量之差:-5 解:由信息熵定义,该信源输出的信息熵为消息ABABBA所含的信息量为消息FDDFDF所含的信息量为6位长消息序列的信息量期望值为三者比较为-6 解:由信息熵定义,该信源输出的信息熵为消息ABABBA所含的信息量为消息FDDFDF所含的信息量为6位长消息序列的信息量期望值为三者比较为-7 解:X和Y的信息熵分别为因传输无误,信宿收到的信息等于发送信息。
因此当第一个字符传送结束后,两信宿收到信息量等于发送的信息量,即整个序列发送结束后,由于符号间独立,两信宿收到的总信息量是平均每次(每个符号)发送(携带)的信息为-8 解:(a) 根据扑克牌的构成,抽到“红桃”、“人头”、“红桃人头”的概率分别为13/52=1/4、12/52=3/13和3/52,所以当告知抽到的那张牌是:“红桃”、“人头”和“红桃人头”时,由信息量定义式(1-5),所得到的信息各是(b) 在52张扑克牌中,共有红人头6张(3张红桃,3张方块),因此在已知那张牌是红人头,为确切地知道是哪张牌,还需要信息。
-9 解:一个二元信息所含的最大信息熵是确定的,所以当以2或5为底时,最大信息熵相同,即1 bit = (该信息量单位)或 1 (该信息量单位) = 2.33 bits同理, 1 nat = 0.62 (该信息量单位)或 1(该信息量单位) = 1.61 nats。
信息论基础第二版习题答案
信息论基础第二版习题答案信息论是一门研究信息传输和处理的学科,它的基础理论是信息论。
信息论的基本概念和原理被广泛应用于通信、数据压缩、密码学等领域。
而《信息论基础》是信息论领域的经典教材之一,它的第二版是对第一版的修订和扩充。
本文将为读者提供《信息论基础第二版》中部分习题的答案,帮助读者更好地理解信息论的基本概念和原理。
第一章:信息论基础1.1 信息的定义和度量习题1:假设有一个事件发生的概率为p,其信息量定义为I(p) = -log(p)。
求当p=0.5时,事件的信息量。
答案:将p=0.5代入公式,得到I(0.5) = -log(0.5) = 1。
习题2:假设有两个互斥事件A和B,其概率分别为p和1-p,求事件A和B 同时发生的信息量。
答案:事件A和B同时发生的概率为p(1-p),根据信息量定义,其信息量为I(p(1-p)) = -log(p(1-p))。
1.2 信息熵和条件熵习题1:假设有一个二进制信源,产生0和1的概率分别为p和1-p,求该信源的信息熵。
答案:根据信息熵的定义,信源的信息熵为H = -plog(p) - (1-p)log(1-p)。
习题2:假设有两个独立的二进制信源A和B,产生0和1的概率分别为p和1-p,求两个信源同时发生时的联合熵。
答案:由于A和B是独立的,所以联合熵等于两个信源的信息熵之和,即H(A,B) = H(A) + H(B) = -plog(p) - (1-p)log(1-p) - plog(p) - (1-p)log(1-p)。
第二章:信道容量2.1 信道的基本概念习题1:假设有一个二进制对称信道,其错误概率为p,求该信道的信道容量。
答案:对于二进制对称信道,其信道容量为C = 1 - H(p),其中H(p)为错误概率为p时的信道容量。
习题2:假设有一个高斯信道,信道的信噪比为S/N,求该信道的信道容量。
答案:对于高斯信道,其信道容量为C = 0.5log(1 + S/N)。
信息论基础知到章节答案智慧树2023年广东工业大学
信息论基础知到章节测试答案智慧树2023年最新广东工业大学第一章测试1.信息论由哪位科学家创立()。
参考答案:香农2.点对点通信模型包含以下哪些部分()。
参考答案:译码器;信源;信宿3.信息就是消息。
()参考答案:错4.连续信源分为,___,___。
参考答案:null5.研究信息论的目的是:提高信息传输的___,___,___、___,达到信息传输的最优化。
参考答案:null第二章测试1.某一单符号离散信源的数学模型为,则其信息熵为()。
参考答案:1比特/符号2.单符号信源具有以下哪些特点()。
参考答案:无记忆;平稳3.熵函数具有以下哪些基本性质()。
参考答案:对称性;连续性;确定性4.信源要含有一定的信息,必须具有随机性。
()参考答案:对5.信息熵表示信源X每发一个符号所提供的平均信息量。
()参考答案:对第三章测试1.以下等式或不等式关系成立的是()。
参考答案:2.单符号离散无记忆的N次扩展信道,有以下哪两种特点()。
参考答案:无预感性;无记忆性3.后向信道矩阵中任·一行之和为1。
()参考答案:对4.信道容量指信道的最大信息传输率。
()参考答案:对5.互信息量等于___与___比值的对数。
参考答案:null1.某信源输出信号的平均功率和均值均被限定,则其输出信号幅值的概率密度函数是以下哪种分布时,信源达到最大差熵值()。
参考答案:高斯分布2.某信源的峰值功率受限,则概率密度满足以下哪个个条件时,差熵达到最大值()。
参考答案:均匀分布3.连续信道的平均互信息不具有以下哪些性质()。
参考答案:连续性4.差熵具有以下哪两个性质()。
参考答案:条件差熵值小于无条件差熵;差熵可为负值5.一维高斯分布连续信源是瞬时功率受限的一类连续平稳信源。
()参考答案:错1.分组码分为()。
参考答案:非奇异码;奇异码2.在输入符号先验等概时,采用以下哪些准则的译码方法可以使平均译码错误概率最小()。
参考答案:最大后验概率准则;最大似然准则3.平均码长可作为衡量信源编码效率的标准。
信息论答案完整版
/8
⎥ ⎦
,其发出的消息为(202
120
130
213
001
203 210 110 321 010 021 032 011 223 210),求:
(1) 此消息的自信息是多少?
(2) 在此消息中平均每个符号携带的信息量是多少?
解:(1)因为离散信源是无记忆的,所以它发出的消息序列中各个符号是无依赖的,统计独立的。因
在研究香农信源编码定理的同时,另外一部分科学家从事寻找最佳编码(纠错码)的研究工作,并 形成一门独立的分支——纠错码理论。
1959 年香农发表了“保真度准则下的离散信源编码定理”,首先提出了率失真函数及率失真信源 编码定理。从此,发展成为信息率失真编码理论。
香农 1961 年的论文“双路通信信道”开拓了网络信息论的研究。 现在,信息理论不仅在通信、计算机以及自动控制等电子学领域中得到直接的应用,而且还广泛地 渗透到生物学、医学、生理学、语言学、社会学、和经济学等领域。
I (a4
=
3)
=
− log
P(a4 )
=
− log
1 8
=
log2
8=3(比特)
此消息中共有 14 个符号“0”,13 个符号“1”,12 个符号“2”和 6 个符号“3”,则此消息的自
信息是
I = 14I (a1 = 0) +13I (a2 = 1) +12I (a3 = 2) + 6I (a4 = 3) ≈ 14×1.415 +13× 2 +12× 2 + 6× 3 ≈ 87.71(比特)
此,此消息的自信息就等于各个符号的自信息之和。则可得:
I
(a1
=
信息论基础及答案
《信息论基础》试卷第1页《信息论基础》试卷答案一、填空题(共25分,每空1分)1、连续信源的绝对熵为无穷大。
(或()()lg lim lg p x p x dx +¥-¥D ®¥--D ò)2、离散无记忆信源在进行无失真变长信源编码时,编码效率最大可以达到、离散无记忆信源在进行无失真变长信源编码时,编码效率最大可以达到 1 1 1 。
3、无记忆信源是指信源先后发生的符号彼此统计独立。
4、离散无记忆信源在进行无失真变长编码时,码字长度是变化的。
根据信源符号的统计特性,对概率大的符号用短码,对概率小的符号用长码,这样平均码长就可以降低,从而提高有效性有效性((传输速率或编码效率传输速率或编码效率) ) ) 。
5、为了提高系统的有效性可以采用信源编码,为了提高系统的可靠性可以采用信道编码。
6、八进制信源的最小熵为、八进制信源的最小熵为 0 0 0 ,最大熵为,最大熵为,最大熵为 3bit/ 3bit/ 3bit/符号符号。
7、若连续信源输出信号的平均功率为1瓦特,则输出信号幅度的概率密度函数为高斯分布高斯分布((或()0,1x N 或2212x ep-)时,信源具有最大熵,其值为其值为 0.6155hart( 0.6155hart( 0.6155hart(或或1.625bit 或1lg 22e p )。
8、即时码是指任一码字都不是其它码字的前缀。
9、无失真信源编码定理指出平均码长的理论极限值为信源熵信源熵((或H r (S)(S)或或()lg H s r),此时编码效率为时编码效率为 1 1 1 ,编码后的信息传输率为,编码后的信息传输率为,编码后的信息传输率为 lg lg r bit/ bit/码元码元。
1010、一个事件发生的概率为、一个事件发生的概率为0.1250.125,则自信息量为,则自信息量为,则自信息量为 3bit/ 3bit/ 3bit/符号符号。
信息论基础各章参考答案.doc
= pQhb) = = pWLh)124各章参考答案2. 1. (1) 4.17 比特;(2) 5.17 比特;(3) 1.17 比特; (4) 3.17 比特 2. 2. 1.42比特2. 3.(1) 225.6 比特;(2) 13.2 比特2. 4. (1) 24.07 比特;(2) 31.02 比特2. 5. (1)根据炳的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。
如果我们使每次实验所获得的信息量最大。
那么所需要的总实验次数就最少。
用无秩码天平 的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3o 从12个硬币 中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。
冽31og3=log27>log24o 所以在理论上用3次称重能够鉴别硬币并判断其轻或重。
每次实验应使结果具有最大的炳。
其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ② 左倾③右倾。
i )若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚 中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出肃中没有假币;若有,还能 判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可 判断出假币。
订)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未 称的3枚放到右盘中,观察称重缺码,若平衡,说明取下的3枚中含假币,只能判出轻重, 若倾斜方的不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说 明从右盘取过的3枚中有假币,便可判出轻重。
(2)第三次称重类似i )的情况,但当两个硬币知其中一个为假,不知为哪个时, 第三步用一个真币与其中一个称重比较即可。
对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在一五个硬币的组里,则鉴 别所需信息量为Iogl0>log9=21og3,所以剩下的2次称重不能获得所需的信息.2. 6. (1) log2“=15 比特;(2)1比特;(3) 15个问题2. 7. 证明: (略)2. 8.证明: (略)/ 、 111 、 12.9. P (dibi) = - p(ci\bi )= 12P (cM — — P (sb) < , 12 ,6,2. 10.证明: (略) 2. 11.证明: (略)2.12.证明: (略)2 [3.(1) H(X) = H(Y) = 1, H(Z) = 0.544, H(XZ) = 1.406, H(YZ) = 1.406,H(XKZ) = 1.812(2)H(X/Y) = H(Y/X) = 0.810f H(X/Z) = 0.862, H(Z/X) = H(Z/Y) =0.405 , H(Y/Z) = 0.862, H(X/YZ) = H(Y/XZ) = 0.405, H(Z/XY) =(3)1(X;K) = 0.188 Z(X;Z) = 0.138 Z(K;Z) = 0.138 7(X;Y/Z) =0.457 , I(Y;Z/X) = I(X;Z/Y) = 0.406(单位均为比特/符号)p 游(000) = 1)= Pg(l°l)=服z(l 1°)= 714. X 1 Z ■,(2)P加(°°°)=P宓(111)= !(3)P加(°°°)= 〃加(°。
信息论基础1答案
信息论基础1答案《信息论基础》答案一、填空题(本大题共10小空,每小空1分,共20分)1. 按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。
2. 一个八进制信源的最大熵为3bit/符号3.有一信源X,其概率分布为:X i X2 X3其信源剩余度为94.64%:若对该信源进行十次扩展,则每十个符号的平均信息量是15bit。
4. 若一连续消息通过放大器,该放大器输出的最大瞬间电压为b,最小瞬时电压为a。
若消息从放大器中输出,则该信源的绝对熵是 _:其能在每个自由度熵的最大熵是log (b-a ) bit/自由度:若放大器的最高频率为F,则单位时间内输出的最大信息量是2Flog (b-a )bit/s.5. 若某一信源X,其平均功率受限为16w,其概率密度函数是高斯分布时,差熵的最大值为2log32 e ;与其熵相等的非高斯分布信源的功率为16w6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
7、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H _「(S))。
&当R=C或(信道剩余度为0)时,信源与信道达到匹配。
9、根据是否允许失真,信源编码可分为无—真信源编码和限失真信源编码。
10、在下面空格中选择填入数学符号“,‘ ‘ ” 或“”(1)当X和Y相互独立时,H ( XY)=H(X)+H(X/Y)。
(2 )假设信道输入用X表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0,H(Y/X)=0,l(X;Y)<HX)。
二、掷两粒骰子,各面出现的概率都是1/6 , 计算信息量:1. 当点数和为3时,该消息包含的信息量是多少?2. 当点数和为7是,该消息包含的信息量是多少?3. 两个点数中没有一个是1的自信息是多少?解:1.P (“点数和为3” =P( 1,2)+ P( 1,2)=1/36+1/36=1/18则该消息包含的信息量是:l=-logP (“点数和为3”)=log18=4.17bit2. P (“点数和为7” =P( 1,6)+ P(6,1) + P (5,2)+ P (2,5)+ P (3,4)+ P (4,3) =1/366=1/6则该消息包含的信息量是:l=-logP (“点数和为7”)=log6=2.585bit3. P (“两个点数没有一个是1” =1-P “两个点数中至少有一个是1 ”=1-P(1,1or1,jori,1)=1-(1/36+5/36+5/36)=25/36则该消息包含的信息量是:l=-logP (“两个点数中没有一个是1”) =log25/36=0.53bit三、设X、丫是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
信息论基础知到章节答案智慧树2023年潍坊学院
信息论基础知到章节测试答案智慧树2023年最新潍坊学院第一章测试1.信息论的奠基人是()。
参考答案:香农2.下列不属于信息论的研究内容的是()。
参考答案:信息的产生3.下列不属于消息的是()参考答案:信号4.信息就是消息. ()参考答案:错5.信息是不可以度量的,是一个主观的认识。
()参考答案:错6.任何已经确定的事物都不含有信息。
()参考答案:对7.1948年香农的文章《通信的数学理论》奠定了香农信息理论的基础。
()参考答案:对8.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的(),使信息传输系统达到最优化。
参考答案:保密性;可靠性;认证性;有效性9.下列属于香农信息论的主要研究理论的是()。
参考答案:传输理论;压缩理论;保密理论10.信源编码的作用包含()。
参考答案:数据压缩;对信源的输出进行符号变换第二章测试1.信息传输系统模型中,用来提升信息传输的有效性的部分为()参考答案:信源编码器、信源译码器2.对于自信息,以下描述正确的是()参考答案:以2为底时,单位是比特。
3.信息熵的单位是()参考答案:比特每符号4.必然事件和不可能事件的自信息量都是0 。
()参考答案:错5.概率大的事件自信息量大。
()参考答案:错6.互信息量可正、可负亦可为零。
()参考答案:对7.互信息量I(X;Y)表示收到Y后仍对信源X的不确定度。
()参考答案:对8.信源X的概率分布为P(X)={1/2,1/3,1/6},信源Y的概率分布为P(X)={ 1/3,1/2,1/6},则信源X和Y的熵相等。
()参考答案:对9.熵函数具有以下哪些基本性质()参考答案:连续性;确定性;对称性10.平均互信息具有以下哪些基本性质()参考答案:非负性;互易性;极值性;凸函数性第三章测试1.单符号离散信源的自信息和信源熵都具有非负性。
()参考答案:对2.单符号离散信源的联合自信息量和条件自信息量都是非负的和单调递减的。
信息理论基础课后答案
(2)
(3)
2.10一阶马尔可夫信源的状态图如下图所示。信源X的符号集为{0, 1, 2}。
(1)求平稳后信源的概率分布;
(2)求信源的熵H∞。
解:
(1)
(2)
2.11黑白气象传真图的消息只有黑色和白色两种,即信源X={黑,白}。设黑色出现的概率为P(黑)= 0.3,白色出现的概率为P(白)= 0.7。
解:
(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:
(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:
2.4设离散无记忆信源 ,其发出的信息为(202120130213001203210110321010021032011223210),求
(1)忙闲的无条件熵;
(2)天气状态和气温状态已知时忙闲的条件熵;
(3)从天气状态和气温状态获得的关于忙闲的信息。
解:
(1)
根据忙闲的频率,得到忙闲的概率分布如下:
(2)
设忙闲为随机变量X,天气状态为随机变量Y,气温状态为随机变量Z
(3)
2.15有两个二元随机变量X和Y,它们的联合概率为
YX
x1=0
现在需要传送的符号序列有140000个二元符号,并设P(0)=P(1)= 1/2,可以计算出这个符号序列的信息量是
要求10秒钟传完,也就是说每秒钟传输的信息量是1400bit/s,超过了信道每秒钟传输的能力(1288 bit/s)。所以10秒内不能将消息序列无失真的传递完。
3.7求下列各离散信道的容量(其条件概率P(Y/X)如下:)
2)可抹信道
信息论基础-练习与思考1
p/2
/p e2
p(e2 ) p(e1) p(e2 / e1) p(e2 ) p(e2 / e2 ) p(e3) p(e2 / e3) 0
p/2
1
p/2
p(e3 ) p(e1) p(e3 / e1) p(e2 ) p(e3 / e2 ) p(e3) p(e3 / e3) p/2
p/2 p/2
间而且不论此前发生过什么符号,均按P(0)=0.4, P(1)=0.6旳概率发出符号。
(1)试问这个信源是否是平稳旳?
(2)试计算
H
(
X
2
),
H
(
X
3
/
X1X
2
)及
lim
N
H
N
(
X
);
(3)试计算 H(x4)并写出x4信源中可能有旳全部符号。
2024/9/28
18
作业题6
第二章 信源熵
解答: (1)信源发出符号旳概率分布与时间平移无关,而且 信源发出旳序列之间也是彼此无依赖旳,所以该信源是 平稳旳,而且是离散无记忆信源。
2024/9/28
20
作业题7
第二章 信源熵
2.22.一阶马尔可夫信源旳状态图如图2.8所示。信源X旳符
号集为{0,1,2}。
(1)求信源平稳后旳概率分布P(0),P(1),P(2);
(2)求信源旳熵H∞。
/p
p/2
/p
(3)近似以为此信源为无记忆时, 符号旳概率分布为平稳分布,
e1
e2
0
p/2
1
2024/9/28
7
作业题2
第二章 信源熵
2.2. 同步扔一对均匀旳骰子,当得知“两骰子面 朝上点数之和为2”或“面朝上点数之和为8” 或“骰子面朝上点数是3和4时”,试问这三种 情况分别取得多少信息量?
信息论基础 课后习题答案
信息论基础课后习题答案问题1问题:信息论的基本目标是什么?答案:信息论的基本目标是研究信息的传递、存储和处理的基本原理和方法。
主要关注如何量化信息的量和质,并通过定义信息熵、条件熵、互信息等概念来描述信息的特性和性质。
问题2问题:列举一些常见的信息论应用领域。
答案:一些常见的信息论应用领域包括:•通信领域:信息论为通信系统的性能分析和设计提供了基础方法,例如信道编码和调制调制等。
•数据压缩领域:信息论为数据压缩算法的研究和实现提供了理论依据,例如无损压缩和有损压缩等。
•隐私保护领域:信息论用于度量隐私保护方案的安全性和隐私泄露的程度,在隐私保护和数据共享中起着重要作用。
•机器学习领域:信息论被应用于机器学习中的特征选择、集成学习和模型评估等任务中,提供了许多有用的数学工具和概念。
•生物信息学领域:信息论被应用于分析DNA序列、蛋白质序列和生物网络等生物数据,发现其中的模式和规律。
问题3问题:信息熵是什么?如何计算信息熵?答案:信息熵是衡量一个随机变量的不确定性或信息量的度量值。
信息熵越大,表示随机变量的不确定性越高,每个可能的取值都相对等可能发生;反之,信息熵越小,表示随机变量的不确定性越低,某些取值较为集中或者出现的概率较大。
信息熵的计算公式如下所示:H(X) = -Σ P(x) * log2(P(x))其中,H(X) 表示随机变量 X 的信息熵,P(x) 表示随机变量X 取值为 x 的概率。
问题4问题:条件熵是什么?如何计算条件熵?答案:条件熵是在给定其他随机变量的条件下,一个随机变量的不确定性或信息量的度量。
条件熵基于条件概率定义,用于描述一个随机变量在给定其他相关随机变量的条件下的信息量。
条件熵的计算公式如下所示:H(Y|X) = -Σ P(x, y) * log2(P(y|x))其中,H(Y|X) 表示随机变量 Y 在给定随机变量 X 的条件下的条件熵,P(x, y) 表示随机变量 X 取值为 x 且随机变量 Y 取值为 y 的概率,P(y|x) 表示随机变量 Y 在给定随机变量 X 取值为x 的条件下取值为 y 的概率。
信息论基础(含习题与解答)
信息论基础(含习题与解答)
1.习题
(1)解码的定义是什么?
解码是指从消息中分离出编码信息,并将其转换为原始消息的过程。
(2)什么是哈夫曼编码?
哈夫曼编码是一种熵编码方案,它把出现频率最高的信息单位用最短的码字表示,从而有效地压缩了信息。
(3)请解释索引信息论。
索引信息论是一种认知科学,它研究了使用多个索引信息对信息资源进行管理和协作的方法。
它重点研究的是如何将信息可视化,以便用户可以快速找到需要的信息,同时有效地利用多个索引信息。
2.答案
(1)解码的定义是什么?
解码是指从消息中分离出编码信息,并将其转换为原始消息的过程。
(2)什么是哈夫曼编码?
哈夫曼编码是一种熵编码方案,它把出现频率最高的信息单位用最短的码字表示,从而有效地压缩了信息。
(3)请解释索引信息论。
索引信息论是一种认知科学,它研究了使用多个索引信息对信息资源进行管理和协作的方法。
它主要专注于通过设计有效的用户界面来提高信
息的有用性,实现信息的检索和可视化,以实现快速了解和分析信息资源。
它强调以用户为中心,基于支持知识管理和协作的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论基础1答案《信息论基础》答案一、填空题(本大题共10小空,每小空1分,共20分)1.按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。
2.一个八进制信源的最大熵为3bit/符号3.有一信源X ,其概率分布为123xx x X 111P 244⎛⎫⎡⎤ ⎪=⎢⎥ ⎪⎣⎦⎝⎭,其信源剩余度为94.64%;若对该信源进行十次扩展,则每十个符号的平均信息量是 15bit 。
4.若一连续消息通过放大器,该放大器输出的最大瞬间电压为b ,最小瞬时电压为a 。
若消息从放大器中输出,则该信源的绝对熵是∞;其能在每个自由度熵的最大熵是log (b-a )bit/自由度;若放大器的最高频率为F ,则单位时间内输出的最大信息量是 2Flog (b-a )bit/s.5. 若某一 信源X ,其平均功率受限为16w,其概率密度函数是高斯分布时,差熵的最大值为1log32eπ;与其熵相等的非高斯分布信2源的功率为16w≥6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
7、无失真信源编码的平均码长最小理论极限(S))。
制为信源熵(或H(S)/logr= Hr8、当R=C或(信道剩余度为0)时,信源与信道达到匹配。
9、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
10、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈”(1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)。
(2)假设信道输入用X表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、掷两粒骰子,各面出现的概率都是1/6,计算信息量:1.当点数和为3时,该消息包含的信息量是多少?2.当点数和为7是,该消息包含的信息量是多少?3.两个点数中没有一个是1的自信息是多少?解:1.P(“点数和为3”)=P(1,2)+ P(1,2)=1/36+1/36=1/18则该消息包含的信息量是:I=-logP(“点数和为3”)=log18=4.17bit2.P(“点数和为7”)=P(1,6)+ P(6,1)+ P(5,2)+ P(2,5)+ P(3,4)+ P(4,3)=1/36 6=1/6则该消息包含的信息量是:I=-logP(“点数和为7”)=log6=2.585bit3.P(“两个点数没有一个是1”)=1-P (“两个点数中至少有一个是1”)=1-P(1,1or1,jori,1)=1-(1/36+5/36+5/36)=25/36则该消息包含的信息量是:I=-logP (“两个点数中没有一个是1”)=log25/36=0.53bit三、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z ,取Z=YX (一般乘积)。
试计算: 1.H (Y )、H (Z ); 2.H (XY )、H (YZ ); 3.I (X;Y )、I (Y;Z ); 解: 1.2i 11111H Y P y logP y log log 2222i i =⎡⎤=-+⎢⎥⎣⎦∑()=-()()=1bit/符号QZ=YX 而且X 和Y 相互独立∴1(1)(1)(1)P P X P Y P X ⋅=+=-⋅=-(Z =1)=P(Y=1)= 11122222⨯+⨯=2(1)(1)(1)P P X P Y P X ⋅=-+=-⋅=(Z =-1)=P(Y=1)=11122222⨯+⨯=故H(Z)= i2i1(z )log (z )i P P =-∑=1bit/符号2.从上式可以看出:Y 与X 的联合概率分布为:H(YZ)=H(X)+H(Y)=1+1=2bit/符号3.QX与Y相互独立,故H(X|Y)=H(X)=1bit/符号∴I (X;Y )=H(X)-H(X|Y)=1-1=0bit/符号I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/符号四、如图所示为一个三状态马尔科夫信源的转移概率矩阵P=1102211022111424⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭1. 绘制状态转移图;P(Y,Z) Y=1 Y=-1Z=1 0.25 0.25 Z=-1 0.25 0.252. 求该马尔科夫信源的稳态分布;3. 求极限熵;解:1.状态转移图如右图 2.由公式31()()(|)jiji i p E P E P EE ==∑,可得其三个状态的稳态概率为:1123223313123111()()()()22411()()()2211()()()24()()()1P E P E P E P E P E P E P E P E P E P E P E P E P E ⎧=++⎪⎪⎪=+⎪⎨⎪=+⎪⎪⎪++=⎩1233()72()72()7P E P E P E ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩3.其极限熵:3i i 13112112111H = -|E =0+0+72272274243228=1+1+ 1.5=bit/7777i P H H H H ∞=⨯⨯⨯⨯⨯⨯∑(E )(X )(,,)(,,)(,,)符号五、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:1. 该信道的转移概率矩阵P2. 信道疑义度H (X|Y )3. 该信道的信道容量以及其输入概率分布 解:1.该转移概率矩阵为P=0.90.10.10.9⎡⎤⎢⎥⎣⎦2.根据P (XY )=P (Y|X )⋅P (X ),可得联合概率P (XY ) Y Y X=0 9/40 1/40 X=13/4027/401 0.0.0.0.1P(Y=i) 12/40 28/40 由P (X|Y )=P(X|Y)/P(Y)可得P(X|Y) Y=0 Y=1 X=0 3/4 1/28 X=1 1/427/28H(X|Y)=-i jiji j(x y )log x |y =0.09+0.12+0.15+0.035=0.4bit/P P∑,()符号 3.该信道是对称信道,其容量为: C=logs-H=log2-H(0.9,0.1)=1-0.469=0.531bit/符号这时,输入符号服从等概率分布,即0111()22X P X ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦六、某信道的转移矩阵⎥⎦⎤⎢⎣⎡=1.006.03.001.03.06.0P试求:该信道的信道容量及其最佳输入概率分布。
解:该信道是准对称信道,分解为两个互不相交的子信道矩阵0.60.30.30.6⎡⎤⎢⎥⎣⎦ 0.1000.1⎡⎤⎢⎥⎣⎦这里110.90.9N M == 220.10.1N M== ∴C=logr-H(P 的行矢量)-2k 1log 1(0.6.3.1)0.9log 0.9-0.1log 0.1KK NM H ==--⨯⨯∑,0,0=0.174bit/符号这时,输入端符号服从等概率分布,即()X P X ⎡⎤⎢⎥⎣⎦=011122⎡⎤⎢⎥⎢⎥⎣⎦七、信源符号X 有六种字母,概率为0.32,0.22,0.18,0.16,0.08,0.04。
用赫夫曼编码法编成二进制变长码,写出编码过程并计算其平均码长、编码后的信息传输率和编码效率。
解:该信源在编码之前的信源熵为:6i i 1()(x )log x i H S P P ==-∑()=0.526+0.481+0.445+0.423+0.292+0.186=2.353bit/符号编码后的平均码长:(0.320.220.18)20.163(0.080.04)4L =++⨯+⨯++⨯=2.4码元/信源符号编码后的信息传输率为:() 2.3530.982.4H S R L===bit/码元编码效率为:max()0.98log RH S R L rη===码0111 0101010.0.0.0.0.0.“0 10 0.0 10 0. 1 0 1八、设在平均功率受限的高斯可加波形信道中,信道带宽为3KHz ,又设信噪比为101.试计算该信道传达的最大信息率(单位时间);2.若功率信噪比降为5dB ,要达到相同的最大信息传输率,信道带宽是多少? 解:1. 10d SNR B =Q 10SNR ∴=故:该信道传送的最大信息速率为:3t 4=log +log =bit/sC W ⨯⨯⨯(1SNR )=310(11)1.04102.若SNR=5dB ,则10,在相同tC 情况下1.04410⨯=Wlog (1+SNR )=Wlog4.162⇒W=5.04⨯310Hz。