离散数学试题与答案
《离散数学》试题及答案
《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。
A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。
答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。
答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。
答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。
答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。
离散数学试题及答案
离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学考试题及答案
离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。
A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。
A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。
A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。
A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。
答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。
答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。
答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。
答案:可达10. 命题逻辑中,合取(AND)的符号是______。
答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。
证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。
因此,若p∧q为真,则p和q都为真。
12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。
请找出f的值域。
答案:根据函数的定义,f的值域是其所有输出值的集合。
因此,f的值域为{4,5,6}。
(完整版)离散数学题目及答案
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学试题总汇及答案
离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
离散数学考试题及答案
离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学习题集(十五套) - 答案
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有()个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题目及答案
离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。
若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。
若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。
答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。
离散数学试题+答案
离散数学试题+答案⼀、单项选择题(本⼤题共15⼩题,每⼩题1分,共15分)在每⼩题列出的四个选项中只有⼀个选项是符合题⽬要求的,请将正确选项前的字母填在题后的括号内。
1.⼀个连通的⽆向图G,如果它的所有结点的度数都是偶数,那么它具有⼀条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平⾯图,G中有11个顶点5个⾯,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的⼦群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,?x,y∈ZR具有的性质是A.⾃反性B.对称性C.传递性D.反⾃反性8.设A={a,b,c},A上⼆元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式⼦正确的是( )A. ?∈?B.C.{?}??D.{?}∈?11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x( )A.( ?x)( ?y)( ?z)(A(x,y))→A(f(x,z),f(y,z))B.( ?x)A(f(a,x),a)C.(?x)(?y)(A(f(x,y),x))D.(?x)(?y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(?x)(A(x)→B)等价于( )A.(?x)A(x)→BB.(?x)A(x)→BC.A(x)→BD.(?x)A(x)→(?x)B13.谓词公式(?x)(P(x,y))→(?z)Q(x,z)∧(?y)R(x,y)中变元x( )A.是⾃由变元但不是约束变元C.既是⾃由变元⼜是约束变元D.是约束变元但不是⾃由变元14.若P:他聪明;Q:他⽤功;则“他虽聪明,但不⽤功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)⼆、填空题(每空1分,共20分)16.在⼀棵根树中,仅有⼀个结点的⼊度为______,称为树根,其余结点的⼊度均为______。
离散数学考试题及答案
离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。
答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。
答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。
答案:满射4. 在图论中,一个没有环的连通图被称为_________。
答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。
答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。
离散数学试题及答案
离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。
答案:如果x不能被2整除,则x不是偶数。
2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。
答案:6个顶点。
3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。
答案:2^4=16个元素。
4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。
答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。
5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。
答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学试题及答案
离散数学试题及答案一、选择题(每题2分,共20分)1. 集合A={x|x<5},集合B={x|x>2},则A∩B为:A. {x|x>2}B. {x|x<2}C. {x|2<x<5}D. {x|x≥5}2. 命题p:"x>0"是命题q:"x^2>0"的:A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件3. 函数f(x)=x^2+3x-2的值域是:A. (-∞, -1]B. [1, +∞)C. (-∞, 4]D. (-∞, 2]4. 逻辑表达式((P∨Q)∧(¬P))的真值表中,当P为真时,表达式的值为:A. 真B. 假C. 不确定D. 无法判断5. 已知二元关系R定义在集合A上,若对于任意a,b,c∈A,若aRb且bRc,则aRc,那么R是:A. 自反的B. 对称的C. 传递的D. 完全的6. 有限状态自动机(DFA)与确定有限状态自动机(DFA)的区别在于:A. DFA可以识别非正则语言B. DFA可以有多个起始状态C. DFA可以有多个接受状态D. DFA可以有多个状态7. 命题逻辑中,若命题P的否定为P',则P和P'的关系是:A. 互为对立B. 互为矛盾C. 互为等价D. 互为同一律8. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 89. 一个命题逻辑公式的真值表中,若存在一行结果为假,则该公式:A. 总是假B. 有时真,有时假C. 总是真D. 无法判断10. 布尔代数中,逻辑与(AND)操作的特点是:A. 有0则0B. 有1则1C. 非0即1D. 非1即0二、简答题(每题5分,共10分)1. 简述集合论中的幂集概念。
2. 描述图的邻接矩阵表示方法。
三、计算题(每题10分,共30分)1. 证明函数f(x)=x^3-3x^2+2x-1在R上是单调递增的。
《离散数学》试卷及答案精选全文完整版
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}
离散数学试题及答案解析
离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
离散数学考试试题及答案
离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。
离散数学试题与参考答案
《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。
(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学试题及答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=_____{3}______________; ρ(A) - ρ(B)=____{{3},{1,3},{2,3},{1,2,3}}__________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = ___2^(n^2)________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是____A1 = {(a,1), (b,1)}, A2 = {(a,2), (b,2)}, A3 = {(a,1), (b,2)}, A4 = {(a,2), (b,1)},_________ _____________, 其中双射的是______A3, A4__________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取式是____P∧⌝Q∧R (m5)____.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=______{4}______; A⋃B=____{1,2,3,4}_________;A-B=______{1,2}_______ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________, _________对称性_________, _________传递性_____________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有_____(1,0,0)__________,______(1,0,1)________, ________(1,1,0)________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1•R2= ___{(1,3),(2,2),(3,1)}____,R2•R1 =_____{(2,4), (3,3), (4,2)}_____, R12=_______{(2,2), (3,3)}_________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = ______2^(m*n)___________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = _____{x | -1 ≤x < 0, x ∈R}_______ , B-A = ______{x | 1 < x < 2, x ∈R}_____ ,A∩B = ______{x | 0 ≤x ≤1, x ∈R}__________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________________{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}_________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束式是_____∃y∃x(P(y)→Q(x))________ _____.15.设G是具有8个顶点的树,则G中增加__21___条边才能把G变成完全图。
16. 设谓词的定义域为{a, b},将表达式∀xR(x)→∃xS(x)中量词消除,写成与之对应的命题公式是________(R(a)∧R(b))→(S(a)∨S(b))______________________.17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
则R⋅S =_______{(1, 3),(2, 2)}________________,R2=_____________{(1, 1),(1, 2),(1, 3)}_______________.二、选择题1设集合A={2,{a},3,4},B = {{a},3,4,1},E为全集,则下列命题正确的是( C)。
(A){2}∈A (B){a}⊆A (C)∅⊆{{a}}⊆B⊆E (D){{a},1,3,4}⊂B.2设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备( D).(A)自反性(B)传递性(C)对称性(D)反对称性3 设半序集(A,≤)关系≤的哈斯图如下所示,若A的子集则元素6为B的( B)。
(A)下界(B)上界(C)最小上界(D)以上答案都不对4下列语句中,( B)是命题。
(A)请把门关上(B)地球外的星球上也有人(C)x + 5 > 6 (D)下午有会吗?5设I是如下一个解释:D={a,b},11b)P(b,a)P(b,b)P(a,),(aaP则在解释I下取真值为1的公式是( D).(A)∃x∀yP(x,y) (B)∀x∀yP(x,y) (C)∀xP(x,x) (D)∀x∃yP(x,y).6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( C).(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).7. 设G、H是一阶逻辑公式,P是一个谓词,G=∃xP(x), H=∀xP(x),则一阶逻辑公式G→H 是( C).(A)恒真的(B)恒假的(C)可满足的(D)前束式.8设命题公式G=⌝(P→Q),H=P→(Q→⌝P),则G与H的关系是( A)。
(A)G⇒H (B)H⇒G (C)G=H (D)以上都不是.9 设A, B 为集合,当( D )时A -B =B.(A)A =B(B)A ⊆B(C)B ⊆A(D)A =B =∅.10 设集合A = {1,2,3,4}, A 上的关系R ={(1,1),(2,3),(2,4),(3,4)}, 则R 具有( B )。
(A)自反性 (B)传递性(C)对称性 (D)以上答案都不对11 下列关于集合的表示中正确的为( B )。
(A){a}∈{a,b,c} (B){a}⊆{a,b,c}(C)∅∈{a,b,c} (D){a,b}∈{a,b,c}12 命题∀xG(x)取真值1的充分必要条件是( A ).(A) 对任意x ,G(x)都取真值1. (B)有一个x 0,使G(x 0)取真值1. (C)有某些x ,使G(x 0)取真值1. (D)以上答案都不对.13. 设G 是连通平面图,有5个顶点,6个面,则G 的边数是( A ).(A) 9条 (B) 5条 (C) 6条 (D) 11条.14. 设G 是5个顶点的完全图,则从G 中删去( A )条边可以得到树.(A)6 (B)5(C)10 (D)4.15. 设图G 的相邻矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110110101110110010111110,则G 的顶点数与边数分别为( D ).(A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8.三、计算证明题1.设集合A ={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
(1) 画出半序集(A,R)的哈斯图;124836129(2) 写出A 的子集B = {3,6,9,12}的上界,下界,最小上界,最大下界;B 无上界,也无最小上界。
下界1, 3; 最大下界是3.(3) 写出A 的最大元,最小元,极大元,极小元。
A 无最大元,最小元是1,极大元8, 12, 90+; 极小元是1.2. 设集合A ={1, 2, 3, 4},A 上的关系R ={(x,y) | x, y ∈A 且 x ≥ y}, 求(1) 画出R 的关系图;(2) 写出R 的关系矩阵.1000110011101111R M ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦3. 设R 是实数集合,σ,τ,ϕ是R 上的三个映射,σ(x) = x+3, τ(x) = 2x, ϕ(x) = x/4,试求复合映射σ•τ,σ•σ, σ•ϕ, ϕ•τ,σ•ϕ•τ. (1)σ•τ=σ(τ(x))=τ(x)+3=2x+3=2x+3. (2)σ•σ=σ(σ(x))=σ(x)+3=(x+3)+3=x+6, (3)σ•ϕ=σ(ϕ(x))=ϕ(x)+3=x/4+3, (4)ϕ•τ=ϕ(τ(x))=τ(x)/4=2x/4 = x/2,(5)σ•ϕ•τ=σ•(ϕ•τ)=ϕ•τ+3=2x/4+3=x/2+3.4. 设I 是如下一个解释:D = {2, 3},a b f (2) f (3) P (2, 2) P (2, 3) P (3, 2) P (3, 3) 32320 0 1 1试求 (1) P (a , f (a ))∧P (b , f (b ));P (a , f (a ))∧P (b , f (b ))= P(3, f (3))∧P(2, f (2))= P(3, 2)∧P(2,3)= 1∧0= 0.(2)∀x∃y P (y, x).∀x∃y P (y, x) = ∀x (P (2, x)∨P (3, x))= (P (2, 2)∨P (3, 2))∧(P (2, 3)∨P (3, 3))= (0∨1)∧(0∨1)= 1∧1= 1.5. 设集合A={1, 2, 4, 6, 8, 12},R为A上整除关系。
(1)画出半序集(A,R)的哈斯图;(2)写出A的最大元,最小元,极大元,极小元;无最大元,最小元1,极大元8, 12; 极小元是1.(3)写出A的子集B = {4, 6, 8, 12}的上界,下界,最小上界,最大下界. B无上界,无最小上界。
下界1, 2; 最大下界2.6. 设命题公式G = ⌝(P→Q)∨(Q∧(⌝P→R)), 求G的主析取式。
7. (9分)设一阶逻辑公式:G = (∀xP(x)∨∃yQ(y))→∀xR(x),把G化成前束式.G = (∀xP(x)∨∃yQ(y))→∀xR(x)= ⌝(∀xP(x)∨∃yQ(y))∨∀xR(x)= (⌝∀xP(x)∧⌝∃yQ(y))∨∀xR(x)= (∃x⌝P(x)∧∀y⌝Q(y))∨∀zR(z)= ∃x∀y∀z((⌝P(x)∧⌝Q(y))∨R(z))9. 设R是集合A = {a, b, c, d}. R是A上的二元关系, R = {(a,b), (b,a), (b,c), (c,d)},(1)求出r(R), s(R), t(R);r(R)=R∪I A={(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d)},s(R)=R∪R-1={(a,b), (b,a), (b,c), (c,b) (c,d), (d,c)},t(R)=R∪R2∪R3∪R4={(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,d)};(2)画出r(R), s(R), t(R)的关系图.r(R)s(R)d t(R)11. 通过求主析取式判断下列命题公式是否等价:(1) G = (P∧Q)∨(⌝P∧Q∧R)(2) H = (P∨(Q∧R))∧(Q∨(⌝P∧R))G =(P ∧Q)∨(⌝P ∧Q ∧R)=(P ∧Q ∧⌝R)∨(P ∧Q ∧R)∨(⌝P ∧Q ∧R) =m 6∨m 7∨m 3 =∑ (3, 6, 7)H = (P ∨(Q ∧R))∧(Q ∨(⌝P ∧R)) =(P ∧Q)∨(Q ∧R))∨(⌝P ∧Q ∧R)=(P ∧Q ∧⌝R)∨(P ∧Q ∧R)∨(⌝P ∧Q ∧R)∨(P ∧Q ∧R)∨(⌝P ∧Q ∧R) =(P ∧Q ∧⌝R)∨(⌝P ∧Q ∧R)∨(P ∧Q ∧R) =m 6∨m 3∨m 7 =∑ (3, 6, 7)G ,H 的主析取式相同,所以G = H.13. 设R 和S 是集合A ={a , b , c , d }上的关系,其中R ={(a , a ),(a , c ),(b , c ),(c , d )},S ={(a , b ),(b , c ),(b , d ),(d , d )}. (1) 试写出R 和S 的关系矩阵;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000100001000101R M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000000011000010S M(2) 计算R •S , R ∪S , R -1, S -1•R -1. R •S ={(a , b ),(c , d )},R ∪S ={(a , a ),(a , b ),(a , c ),(b , c ),(b , d ),(c , d ),(d , d )}, R -1={(a , a ),(c , a ),(c , b ),(d , c )},S-1•R-1={(b, a),(d, c)}.四、证明题1. 利用形式演绎法证明:{P→Q, R→S, P∨R}蕴涵Q∨S。