高中物理第2章原子结构4氢原子光谱与能级结构学案鲁科版选修
《氢原子光谱与能级结构》优秀教案(鲁科选修)
第四节氢原子光谱与能级结构学案【学习目标】(1)了解光谱地定义和分类;(2)了解氢原子光谱地实验规律,知道巴耳末系;(3)了解经典原子理论地困难.【学习重点】氢原子光谱地实验规律.【知识要点】1、光谱早在17世纪,牛顿就发现了日光通过三棱镜后地色散现象,并把实验中得到地彩色光带叫做光谱.(1)发射光谱物体发光直接产生地光谱叫做发射光谱.发射光谱可分为两类:连续光谱和明线光谱.稀薄气体或金属地蒸气地发射光谱是明线光谱.明线光谱是由游离状态地原子发射地,所以也叫原子地光谱.实践证明,原子不同,发射地明线光谱也不同,每种原子只能发出具有本身特征地某些波长地光,因此明线光谱地谱线也叫原子地特征谱线.(2)吸收光谱高温物体发出地白光(其中包含连续分布地一切波长地光)通过物质时,某些波长地光被物质吸收后产生地光谱,叫做吸收光谱.各种原子地吸收光谱中地每一条暗线都跟该种原子地原子地发射光谱中地一条明线相对应.这表明,低温气体原子吸收地光,恰好就是这种原子在高温时发出地光.因此吸收光谱中地暗谱线,也是原子地特征谱线.(3)光谱分析由于每种原子都有自己地特征谱线,因此可以根据光谱来鉴别物质和确定地化学组成.这种方法叫做光谱分析.原子光谱地不连续性反映出原子结构地不连续性,所以光谱分析也可以用于探索原子地结构.2、氢原子光谱地实验规律氢原子是最简单地原子,其光谱也最简单.(课件展示)4、玻尔理论对氢光谱地解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近地轨道上运动,这种定态,叫基态.激发态:原子处于较高能级时,电子在离核较远地轨道上运动,这种定态,叫激发态.(2)原子发光:原子从基态向激发态跃迁地过程是吸收能量地过程.原子从较高地激发态向较低地激发态或基态跃迁地过程,是辐射能量地过程,这个能量以光子地形式辐射出去,吸收或辐射地能量恰等于发生跃迁地两能级之差.5、玻尔理论地局限性玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础.如粒子地观念和轨道.量子化条件地引进没有适当地理论解释.【典型例题】例题1:氦原子被电离一个核外电子,形成类氢结构地氦离子.已知基态地氦离子能量为E1=-54.4 eV,氦离子能级地示意图如图所示.在具有下列能量地光子中,不能被基态氦离子吸收而发生跃迁地是()A.40.8 eV B.43.2 eVC.51.0 eV D.54.4 eV解析:根据玻尔理论,氢原子吸收光子能量发生跃迁时光子地能量需等于能级差或大于基态能级地绝对值.氦离子地跃迁也是同样地.因为 E2-E1=-13.6-(-54.4) eV=40.8 eV,选项A是可能地.E3-E1=-6.0-(-54.4) eV=48.4 eVE4-E1=-3.4-(-54.4) eV=51.0 eV,选项C是可能地.E∞-E1=0-(-54.4)=54.4 eV,选项D是可能地. 所以本题选B.【达标训练】1.氢原子光谱在可见光部分只有四条谱线,一条红色、一条蓝色、两条紫色,它们分别是从n=3、4、5、6能级向n=2能级跃迁时产生地,则()(A)红色光谱是氢原子从n=6能级向n=2能级跃迁时产生地(B)蓝色光谱是氢原子从n=6能级或n=5能级向n=2能级跃迁时产生地(C)若从n=6能级向n=1能级跃迁时,则能够产生紫外线(D)若原子从n=6能级向n=1能级跃迁时所产生地辐射不能使某金属发生光电效应,则原子从n=6能级向n=2能级跃迁时将可能使该金属发生光电效应2.如图是氢原子能级图.有一群氢原子由n=4能级向低能级跃迁,已知普朗克常数h=6.63×10-34J·s,求:(1)这群氢原子地光谱共有几条谱线;(2)这群氢原子发出光地最大波长.答案:1.C2. 解析:(1)62)14(42)1(=-=-n n 条(或画图得出6条) (2)光子地能量越小,则频率越小,波长越大.从n=4能级向n=3跃迁时,辐射地光子能量最小J eV eV eV E E E 193410056.166.0)51.1(85.0-⨯==---=-=∆光子地最大波长为版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.rqyn1。
2019年高中物理第2章第4节氢原子光谱与能级结构学案鲁科版
氢原子光谱与能级构造1.氢原子光谱的特色之一是从红外区到紫外区呈现多条拥有确立波长的谱线Hα、 Hβ、 Hγ、 Hδ等,这些谱线能够帮助我们判断化合物中能否含有氢。
2.氢原子光谱的特色之二是从长波到短波,Hα~Hδ等谱线间的距离愈来愈小,表现出显然的规律1 1 1性,即λ= R2- 2( n= 3,4,5 , 6, ) 。
2 n3.玻尔理论的成功之处是引入了量子化的观点,解说了原子构造和氢原子光谱的关系。
但在推导过程中仍采纳了经典力学的方法,所以是一种半经典的量子论。
1.氢原子光谱的特色(1)从红外区到紫外区体现多条拥有确立波长的谱线; Hα~Hδ的这几个波长数值成了氢原子的“印记”,无论是何种化合物的光谱,只需它里面含有这些波长的光谱线,就能判定这类化合物里必定含有氢。
(2)从长波到短波, Hα~ Hδ等谱线间的距离愈来愈小,表现出显然的规律性。
2.巴尔末公式1 1 1 7λ= R 22-n2( n=3,4,5 ,) ,此中R叫做里德伯常量,数值为R= 1.096_775_ 81×10 _m -1。
3.玻尔理论对氢光谱的解说(1)理论推导依据玻尔原子理论,氢原子的电子从能量较高的能级跃迁到= 2 的能级上时,辐射出nE E的光子能量应为ν= n- 2,依据氢原子的能级公式n= 1 12可得2= 2,由此可得ν=-hE E En E 2 h11 1 1 - 1 1 1E 2 n ,因为c=λν,所以上式可写成λ=hc 2 n ,把这个式子与巴尔末公式比- E1 E1 7 - 1较,能够看出它们的形式是完好同样的,并且R=hc,计算出-hc的值为1.097 ×10 m 与里德伯常量的实验值切合得很好。
这就是说,依据玻尔理论,不只好够推导出表示氢原子光谱规律性的公式,并且还能够从理论上来计算里德伯常量的值。
由此可知,氢原子光谱的巴尔末系是电子从n=3,4,5,6 ,能级跃迁到n=2的能级时辐射出来的。
高中物理第2章原子结构2.4氢原子光谱与能级结构教案鲁科版选修3_5 (2)
第四节氢原子光谱与能级结构三维教学目标1、知识与技能(1)了解光谱的定义和分类;(2)了解氢原子光谱的实验规律,知道巴耳末系;(3)了解经典原子理论的困难。
2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。
3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。
教学重点:氢原子光谱的实验规律。
教学难点:经典理论的困难。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
(一)引入新课粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。
(二)进行新课1、光谱(结合课件展示)早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(如图所示)光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。
有时只是波长成分的记录。
(1)发射光谱物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。
只含有一些不连续的亮线的光谱叫做明线光谱。
明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)炽热的固体、液体和高压气体的发射光谱是连续光谱。
例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。
如图所示。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
如图所示。
(2)吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
鲁科版选修3-5 2.4 氢原子光谱与能级结构 学案
第4节氢原子光谱与能级结构学案学习目标:1.了解光谱、连续谱和线状谱等概念.2.知道氢原子光谱的实验规律.3.知道巴耳末公式、里德伯常量的概念.根底知识:一、氢原子光谱1.气体发光原理(1)气体放电:玻璃管中稀薄气体在强电场的作用下会电离,形成自由移动的正负电荷,于是气体变成导体,导电时会发光.(2)氢光谱:从氢气放电管可以获得氢原子光谱.2.巴耳末公式(1)公式:1λ=R⎝⎛⎭⎪⎫122-1n2(n=3,4,5…).(2)意义:巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的分立特征.二.玻尔理论对氢光谱的解释(1)解释巴耳末公式①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=E n-E m。
②巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2。
并且理论上的计算和实验测量的里德伯常量符合得很好。
(2)解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线。
2.玻尔理论的局限性(1)成功之处玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律。
(2)局限性保存了经典粒子的观念,把电子的运动仍然看做经典力学描述下的轨道运动。
重难点理解:1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如下图.2.氢原子光谱的特点在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.3.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到了下面的公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5…该公式称为巴耳末公式.(2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值.4.其他谱线除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.典例1、(多项选择)巴耳末通过对氢光谱的研究总结出巴耳末公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…),以下说法正确的选项是( ) A .巴耳末依据核式结构理论总结出巴耳末公式B .巴耳末公式反映了氢原子发光的连续性C .巴耳末依据氢光谱的分析总结出巴耳末公式D .巴耳末公式准确反映了氢原子发光的分立性,其波长的分立值并不是人为规定的CD [由于巴耳末是利用当时的在可见光区的4条谱线做了分析总结出的巴耳末公式,并不是依据核式结构理论总结出来的,巴耳末公式反映了氢原子发光的分立性,也就是氢原子实际只有假设干特定频率的光,C 、D 正确.] 稳固练习:1.(多项选择)对原子光谱,以下说法正确的选项是( )A.原子光谱是不连续的B.原子光谱是连续的C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同2.(多项选择)玻尔在他提出的原子模型中所作的假设有()A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率3.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n,并计算其波长.参考答案:1.AD2.ABC3.[解析]对应的n越小,波长越长,故当n=3时,氢原子发光所对应的波长最长.当n=3时,1λ1×107×⎝⎛⎭⎪⎫122-132m-1解得λ1×10-7 m.当n=∞时,波长最短,1λ=R⎝⎛⎭⎪⎫122-1n2=R×14,λ=4R=4×107×10-7 m.[答案]当n=3时,×10-7 m 当n=∞时,×10-7 m。
18学年高中物理原子结构4氢原子光谱与能级结构学案鲁科版3_51803194137
第4节氢原子光谱与能级结构[目标定位] 1.知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量.2.理解玻尔理论对氢原子光谱规律的解释.一、氢原子光谱1.氢原子光谱的特点:(1)从红外区到紫外区呈现多条具有确定波长的谱线;(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式:1λ=R⎝⎛⎭⎪⎫122-1n2(n=3,4,5,…)其中R叫做里德伯常量,其值为R=1.096 77581×107 m-1.二、玻尔理论对氢原子光谱的解释1.巴尔末系氢原子从n≥3的能级跃迁到n=2的能级得到的线系.2.玻尔理论的局限性玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大.一、氢原子光谱的实验规律1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如图1所示.图12.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.3.巴尔末公式(1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式:1λ=R(122-1n2) n=3,4,5…该公式称为巴尔末公式.(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值.4.赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系.例如:赖曼线系(在紫外区):1λ=R ⎝ ⎛⎭⎪⎫112-1n 2(n =2,3,4,…) 帕邢线系(在红外区):1λ=R ⎝ ⎛⎭⎪⎫132-1n 2(n =4,5,6,…) 【例1】 关于巴耳末公式1λ=R (122-1n 2)的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出B .公式中n 可取任意值,故氢原子光谱是连续谱C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析答案 C解析 只有氢原子光谱中可见光波长满足巴耳末公式,氢原子光谱在红外和紫外光区的其他谱线不满足巴耳末公式,满足的是与巴耳末公式类似的关系式,A 、D 错;在巴耳末公式中的n 只能取不小于3的整数,不能连续取值,波长也只能是分立的值,故氢原子光谱不是连续谱而是线状谱,B 错,C 对.二、玻尔理论对氢原子光谱的解释1.理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量h ν=E n -E 2,又E n =E 1E 2,E 2=E 122,由此可得h ν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于ν=c λ,所以上式可写作1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,此式与巴尔末公式比较,形式完全一样.由此可知,氢光谱的巴尔末线系是电子从n =3,4,5,…等能级跃迁到n =2的能级时辐射出来的.2.玻尔理论的成功之处(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图.(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的.(3)导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系.(4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分.【例2】 氢原子光谱的巴尔末公式是1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…),对此,下列说法正确的是( )A .巴尔末依据核式结构理论总结出巴尔末公式B.巴尔末公式反映了氢原子发光的连续性C.巴尔末依据对氢原子光谱的分析总结出巴尔末公式D.巴尔末公式准确反映了氢原子所有光谱的波长,其波长的分立值不是人为规定的答案 C解析巴尔末公式只确定了氢原子发光中的一个线系波长,不能描述氢原子发出的各种光的波长,也不能描述其他原子发出的光,故D错误.巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,故A、B错误,C正确.借题发挥巴尔末公式的应用方法及注意问题(1)巴尔末公式反映了氢原子发光的规律特征,不能描述其他原子.(2)公式中n只能取大于等于3的整数,不能连续取值,因此波长也只是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,但在紫外区的谱线也适用.(4)应用时熟记公式,当n取不同值时求出对应的波长λ.氢原子光谱的基本概念1.(多选)下列有关氢原子光谱、巴尔末公式和玻尔理论的说法,正确的是( )A.氢原子光谱说明氢原子只能发出特定频率的光B.氢原子光谱说明氢原子能级是分立的C.氢原子光谱线的频率与氢原子能级的能量差无关D.所有氢原子光谱的波长都与巴尔末公式相对应答案AB2.(多选)有关氢原子光谱的说法正确的是( )A.氢原子的发射光谱是连续谱B.氢原子光谱说明氢原子只发出特定频率的光C.氢原子光谱说明氢原子能级是分立的D.氢原子光谱线的频率与氢原子能级的能量差无关答案BC解析原子的发射光谱是原子跃迁时形成的,由于原子的能级是分立的,所以氢原子的发射光谱不是连续谱,原子发出的光子的能量正好等于原子跃迁时的能级差,故氢原子只能发出特定频率的光,综上所述,选项A、D错,B、C对.氢原子光谱的实验规律3.下列对于巴尔末公式的说法正确的是( )A.所有氢原子光谱的波长都与巴尔末公式相对应B .巴尔末公式只确定了氢原子发出的可见光部分的光的波长C .巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D .巴尔末公式确定了各种原子发光中的光的波长答案 C解析 巴尔末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A 、D 错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B 错误,C 正确.4.巴尔末系谱线波长满足巴尔末公式1λ=R (122-1n 2),n =3,4,5,……在氢原子光谱可见光(400 nm<λ<700 nm)区,最长波长与最短波长之比为( )A.95B.43C.98D.85答案 D解析 巴尔末系的前四条谱线在可见光区,n 的取值分别为3、4、5、6.n 越小,λ越大,故n =3时波长最大,λmax =365R;n =6时对应的可见光波长最小,λmin =92R ,故λmaxλmin =85,D 正确.(时间:60分钟)题组一 对氢原子光谱和特征谱线的理解1.(多选)下列叙述中符合物理学史实的有( )A .汤姆孙通过研究阴极射线实验,发现了电子的存在B .卢瑟福通过对α粒子散射实验现象的分析,证明了原子是可以再分的C .巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式D .玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说答案 AC解析 汤姆孙通过研究阴极射线实验,发现了电子,证实了原子是可以再分的,A 对、B 错;玻尔提出的原子模型继承了卢瑟福原子核式结构模型的部分内容,而不是彻底否定,D 错;巴尔末总结出了氢原子光谱的巴尔末公式,故C 正确.2.下列对氢原子光谱实验规律的认识中,正确的是( )A .因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光B .氢原子产生的光谱是一系列波长不连续的谱线C .氢原子产生的光谱是一系列亮度不连续的谱线D .氢原子产生的光的波长大小与氢气放电管放电强弱有关答案 B解析 氢原子光谱是线状谱,波长是一系列不连续的、分立的特征谱线,并不是只含有一种波长的光,也不是亮度不连续的谱线,B 对,A 、C 错;氢原子光谱是氢原子的特征谱线,只要是氢原子发出的光的光谱就相同,与放电管的放电强弱无关,D 错.3.如图1甲所示的a 、b 、c 、d 为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )图1A .a 元素B .b 元素C .c 元素D .d 元素答案 B 解析 由矿物的线状谱与几种元素的特征谱线进行对照,b 元素的谱线在该线状谱中不存在,故选B.与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.题组二 氢原子光谱规律的应用4.已知氢原子的基态能量为E 1,激发态能量E n =E 1n 2,其中n =2,3,…,用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 1答案 C解析 根据从第一激发态到电离状态吸收的能量ΔE =0-E 122=-E 14,根据ΔE =h ν,ν=c λ,可知λ=c ν=hc ΔE =-4hc E 1,因此正确答案为C. 5.氢原子光谱巴尔末系最小波长与最大波长之比为( )A.59B.49C.79D.29答案 A解析 由巴尔末公式1λ=R (122-1n 2),n =3,4,5,… 当n =∞时,有最小波长λ1,1λ1=R 122,当n =3时,有最大波长λ2,1λ2=R (122-132),得λ1λ2=59. 6.氢原子光谱的巴尔末系中波长最长的光波的光子能量为E 1,其次为E 2,则E 1E 2为( ) A.2027 B.2720 C.23 D.32答案 A解析 由1λ=R ⎝ ⎛⎭⎪⎫122-1n 2得:当n =3时,波长最长,1λ=R ⎝ ⎛⎭⎪⎫122-132,当n =4时,波长次之,1λ2=R ⎝ ⎛⎭⎪⎫122-142,解得:λ1λ2=2720,由E =h c λ得:E 1E 2=λ2λ1=2027,故A 对. 7.(多选)如图2所示是氢原子的能级图,大量处于n =4激发态的氢原子向低能级跃迁时,一共可以辐射出6种不同频率的光子,其中巴耳末系是指氢原子由高能级向n =2能级跃迁时释放的光子,则( )图2A .6种光子中波长最长的是n =4激发态跃迁到基态时产生的B .6种光子中有2种属于巴耳末系C .使n =4能级的氢原子电离至少要0.85 eV 的能量D .从n =2能级跃迁到基态释放的光子的能量比从n =3能级跃迁到n =2能级释放的光子的能量小答案 BC解析 根据跃迁假说在跃迁的过程中释放出光子的能量等于两能级之差,故从n =4跃迁到n =3时释放出光子的能量最小,频率最小,波长最长,所以A 错误;由题意知6种光子中有2种属于巴耳末系,他们分别是从n =4跃迁到n =2,从n =3跃迁到n =2时释放处的光子,故B 正确;E 4=0.85 eV ,故n =4能级的电离能等于0.85 eV ,所以C 正确;由图知,从n =3能级跃迁到n =2能级释放的光子的能量小于n =2能级跃迁到基态释放的光子的能量,所以D 错误.8.氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4、5、6…,R =1.10×107 m -1.若已知帕邢系的氢原子光谱在红外线区域,试求:(1)n =6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多大?n =6时,光的频率为多大?答案 (1)1.09×10-6m(2)3.0×108 m/s 2.75×1014 Hz解析 (1)由帕邢系公式1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,当n =6时,得λ≈1.09×10-6 m. (2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c =3.0×108 m/s ,由v =λT =λν,得ν=v λ=c λ=3×1081.09×10-6 Hz≈2.75×1014 Hz. 9.在氢原子的光谱的紫外区的谱线系中有多条谱线,试利用莱曼系的公式1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4,…,计算氢原子光谱紫外线的最长波和最短波的波长.(R =1.10×107m -1,结果均保留三位有效数字)答案 1.21×10-7 m 9.09×10-8 m解析 根据莱曼系公式:1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4,… 可得λ=1R ⎝ ⎛⎭⎪⎫112-1n 2.当n =2时波长最长,其值为λ=1R ⎝ ⎛⎭⎪⎫112-122=134R =134×1.10×107 m ≈1.21×10-7 m.当n =∞时,波长最短,其值为λ=1R ⎝ ⎛⎭⎪⎫112-0=1R =11.10×107 m≈9.09×10-8 m.。
高中物理 第2章 原子结构教案 鲁科版选修35
【课堂新坐标】(教师用书)2013-2014学年高中物理第2章原子结构教案鲁科版选修3-5第1节电子的发现与汤姆孙模型(教师用书独具)1.知道阴极射线是由电子组成的,电子是原子的组成部分,是比原子更基本的物质单元.2.体会电子的发现过程中蕴含的科学方法及人类探索原子结构的重大意义.3.知道汤姆孙的原子模型,认识19世纪末三大发现的物理意义.●教学地位本节教科书由阴极射线、电子的发现和汤姆孙模型三部分内容组成.重点是电子的发现过程蕴含的科学方法.首先通过实验说明阴极射线的存在,然后指出“19世纪后期”,物理学家对阴极射线的本质的认识有两种观点”,最后仍然通过实验研究发现了电子.电子的发现说明原子不是组成物质的最小微粒,对揭示原子结构有重大意义,是近代物理三大发现(X射线、放射性、电子)之一.电子的发现是一个很好的培养学生分析问题和解决问题能力的内容.认识电子发现的重大意义,体会电子的发现过程中蕴含的科学方法,是教学中的重点.(教师用书独具)●新课导入建议实验引入给阴极射线管加上高压,并将磁铁靠近阴极射线管,你会观察到什么现象?为什么会出现这种现象?阴极射线到底是什么?本节课我们重复着科学家的足迹进行探究.●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒步骤3:师生互动完成“探究1”除例1外可再变换命题角度,补充一个例题以拓展学生思路⇓步骤7:先由学生自己总结本节的主要知识,教师点评,安排学生课下完成【课后知能检测】⇐步骤6:指导学生完成【当堂双基达标】,验证学习情况⇐步骤5:师生互动完成“探究2”重在分析错误的原因⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评课标解读重点难点1.了解物质结构早期探究的基本历程.2.知道阴极射线的产生及其本质,理解汤姆孙对阴极射线研究的方法及电子发现的意义.3.了解汤姆孙原子模型. 1.理解阴极射线的研究过程.(重点)2.汤姆孙发现电子的理论推导.(难点)3.电子电荷量的测定.(难点)物质结构的早期探究1.(1)古人对物质的认识①我国西周的“五行说”认为万物是由金、木、水、火、土5种基本“元素”组成的.②古希腊的亚里士多德认为万物的本质是土、水、火、空气四种“元素”,天体则由第五种“元素”——“以太”构成.③古希腊哲学家德谟克利特等人建立了早期的原子论,认为宇宙间存在一种或多种微小的实体,叫做“原子”.(2)通过实验了解物质的结构①1661年,玻意耳以化学实验为基础建立了科学的元素论.②19世纪初,道尔顿提出了原子论,认为原子是元素的最小单位.③1811年,意大利化学家阿伏伽德罗提出了分子假说,指出分子可以由多个相同的原子组成.(3)结论在物质的结构中存在着分子、原子这样的层次,宏观物质的化学性质决定于分子,而分子则由原子组成.原子是构成物质的不可再分割的最小颗粒,它既不能创生,也不能消灭.2.思考判断(1)玻意耳认为万物的本质是土、水、火、空气四种元素的元素论.(×)(2)阿伏伽德罗提出分子可以由多个原子组成.(√)(3)19世纪初期形成的原子论观点认为原子是构成物质的最小颗粒是不可分的.(√)3.探究交流试简述道尔顿提出原子论的依据.【提示】18世纪一系列重要的实验结果,如化学反应遵从质量守恒定律,元素形成化合物时遵从定比定律、倍比定律等,启示人们推想物质是由一些不可毁灭的微粒构成的,而且各种不同的元素微粒按照一定的比例形成化合物,在此基础上,19世纪初,道尔顿提1.(1)汤姆孙的探究方法①让阴极射线分别通过电场或磁场,根据偏转现象,证明它是带负电的粒子流,通过静电偏转力与磁场偏转力相抵消等方法,确定了阴极射线粒子的速度,并测量出了其比荷.②换用不同金属的阴极,所得粒子的比荷值大体相同.③粒子带负电,阴极射线的电荷与氢离子的电荷大小基本相同,比荷是氢离子的近两千倍,说明阴极射线粒子的质量远小于氢离子质量.④组成阴极射线的粒子称为电子.(2)结论①阴极射线是高速电子流.②不同物质都能发射这种带电粒子,它是各种物质中共有的成分,比最轻的氢原子的质量还要小的多,汤姆孙将这种带电粒子称为电子.(3)电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.(4)19世纪末物理学的三大发现①1895年伦琴发现了X射线;②X射线发现后不久,贝克勒尔发现了放射性;③1897年汤姆孙发现了电子.(5)汤姆孙的原子模型原子带正电的部分充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置,正像葡萄干嵌在面包中那样.2.思考判断(1)电子的发现,说明原子具有一定的结构.(√)(2)电子是第一种被人类发现的微观粒子.(√)(3)电子的发现,是19世纪末的三大著名发现之一.(√)3.探究交流为什么汤姆孙要通过电场和磁场研究阴极射线?【提示】当时对阴极射线本质的认识存在两种认识:一是认为是带电粒子,二是认为是以太波.而汤姆孙认为阴极射线是带电粒子,而带电粒子可受电场力和磁场力.1.如何确定阴极射线的带电性质?2.如何确定阴极射线的比荷?3.阴极射线的本质是什么?1.电性的确定方法一:让阴极射线进入已知电场,由所受电场力方向确定带电的性质.方法二:让阴极射线进入磁场,由所受洛伦兹力的方向,根据左手定则确定带电的性质.2.比荷的测定方法图2-1-1(1)让粒子通过正交的电磁场,如图2-1-1所示,让其做直线运动,根据二力平衡条件,即F 洛=F 电(Bqv =qE )得到粒子的运动速度v =E B.图2-1-2(2)在其他条件不变的情况下,撤去电场,如图2-1-2所示,保留磁场,让粒子只在磁场中运动,由洛伦兹力提供向心力即Bqv =mv 2R,根据磁场情况和轨迹偏转情况,由几何知识求出其半径R .(3)由以上方法确定粒子比荷的表达式:q m =EB 2R.3.电子的发现(1)汤姆孙测得阴极射线粒子的比荷约为1011C/kg ,电荷量与氢离子基本相同,质量为氢离子的11 800.(2)最后经定量计算,汤姆孙认定组成阴极射线的粒子为电子.1.阴极射线的来源:若放电管的真空度高,阴极射线的粒子主要来自阴极;若放电管的真空度不高,粒子还可能来自管中气体.2.阴极射线不是X射线.(2012·文昌检测)1897年,物理学家汤姆孙正式测定了电子的比荷,打破了原子是不可再分的最小单位的观点.因此,汤姆孙的实验是物理学发展史上最著名的经典实验之一.在汤姆孙测电子比荷的实验中,采用了如图2-1-3所示的阴极射线管,从电子枪C 出来的电子经过A、B间的电场加速后,水平射入长度为L的D、G平行板间,接着在荧光屏中心F出现荧光斑.若在D、G间加上方向向下,场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、G电场区加上一垂直纸面的、磁感应强度为B的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去掉电场,电子向下偏转,偏转角为θ,试解决下列问题.图2-1-3(1)说明图中磁场沿什么方向;(2)根据L 、E 、B 和θ,求出电子的比荷. 【审题指导】 阴极射线带负电,根据运动的速度方向及在磁场中的偏转方向利用左手定则判断磁场方向,并利用几何关系计算比荷.【解析】 (1)由于所加磁场使电子受到向下的洛伦兹力,因此磁场的方向垂直纸面向里.(2)如图,当电子在DG 间做匀速直线运动时, 有eE =evB ①当电子在DG 间的磁场中偏转时,有evB =mv 2r②同时又有L =r sin θ③由①②③式得e m =E sin θB 2L.【答案】 见解析1.比荷的测定问题只是带电粒子在磁场和电场中运动的一类典型例子,这种方法可以推广到带电粒子在复合场中的运动,求其他相关的问题.2.解决带电粒子在电磁场中运动的问题时要注意以下几点:(1)带电粒子的带电性质.(2)正确描绘运动轨迹.(3)能确定半径、圆心.(4)会利用几何知识把有关线段与半径联系起来.(2013·琼海检测)如图2-1-4所示是汤姆孙的气体放电管的示意图,下列说法中正确的是( )汤姆孙的气体放电管的示意图图2-1-4A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转【解析】实验证明,阴极射线是电子流,它在电场中偏转时应偏向带正电的极板一侧,可知选项C正确,选项B错误.加上磁场时,电子在磁场中受洛伦兹力作用,要发生偏转,因而选项D错误.当不加电场和磁场时,电子所受的重力可以忽略不计,因而不发生偏转,选项A的说法正确.【答案】AC模型的意义认识不清导致错误下列说法正确的是 ( ) A.汤姆孙研究阴极射线,用测定粒子比荷的方法发现了电子B.电子的发现证明了原子是可分的C.汤姆孙认为原子里面带正电荷的物质应充斥整个原子,而带负电的电子,则镶嵌在球体的某些固定位置D.汤姆孙原子模型是正确的【正确解答】通过物理学史可得,选项A正确;根据电子发现的重要意义可得,选项B正确;选项C描述的是汤姆孙原子模型,选项C正确;汤姆孙原子模型本身是错的,选项D错误.【答案】ABC【备课资源】(教师用书独具)电子电荷量的测定——密立根油滴实验1.密立根油滴实验的原理电子所带的电荷量最早是由美国科学家密立根所做的油滴实验测出的.密立根实验的原理如图教2-1-1所示.图教2-1-1(1)两块水平放置的平行金属板A、B与电源相接,使上板带正电,下板带负电,油滴从喷雾器喷出后,经上面金属板中间的小孔,落到两板之间的匀强电场中.(2)大多数油滴在经过喷雾器喷嘴时,因摩擦而带负电,油滴在电场力、重力和空气阻力的作用下下降.观察者可在强光照射下,借助显微镜进行观察.2.方法(1)两板间的电势差、两板间的距离都可以直接测得,从而确定极板间的电场强度E,但是由于油滴太小,其质量很难直接测出.密立根通过测量油滴在空气中下落的终极速度来测量油滴的质量.没加电场时,由于空气的黏性,油滴所受的重力大小很快就等于空气给油滴的摩擦力而使油滴匀速下落,可测得速度v1.(2)再加一足够强的电场,使油滴做竖直向上的运动,在油滴以速度v2匀速运动时,油滴所受的静电力与重力、阻力平衡.根据空气阻力遵循的规律,即可求得油滴所带的电荷量.3.结论密立根测定了数千个带电油滴的电荷量,发现这些电荷量都等于某个最小电荷量的整数倍,从而证实了电荷是量子化的,并求得了元电荷即电子或质子所带的电荷量e.1.历史上第一个发现电子的科学家是( )A.贝可勒尔 B.道尔顿C.伦琴D.汤姆孙【解析】贝可勒尔发现了天然放射现象,道尔顿提出了原子论,伦琴发现了X射线,汤姆孙发现了电子.【答案】 D图2-1-52.如图2-1-5所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( )A.向纸内偏转B.向纸外偏转C.向下偏转D.向上偏转【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生及性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极端射出,根据左手定则可判定阴极射线(电子)向上偏转.【答案】 D3.关于电荷的电荷量,下列说法错误的是( )A.电子的电荷量是由密立根油滴实验测得的B.物体所带电荷量可以是任意值C.物体所带电荷量最小值为1.6×10-19 CD.物体所带的电荷量都是元电荷的整数倍【解析】密立根油滴实验测出了电子的电荷量为1.6×10-19C,并提出了电荷量量子化的观点,因而A、C对,B错;任何物体的电荷量都是e的整数倍,故D对;因此选B.【答案】 B4.关于阴极射线的性质,下列说法正确的是 ( )A.阴极射线带负电B.阴极射线带正电C.阴极射线中的负电粒子的比荷与氢离子的基本相同D.阴极射线中的负电粒子的带电荷量与氢离子的相同【解析】阴极射线是电子流,故带负电,A对B错.电子与氢离子的带电荷量相同,但质量不同,故C错D对.【答案】AD5.阴极射线是从阴极射线管的阴极发出的高速运动的图2-1-6粒子流,这些微观粒子是________.若在如图2-1-6所示的阴极射线管中部加垂直于纸面向里的磁场,阴极射线将________(选填“向上”、“向下”或“向外”)偏转.【解析】阴极射线即为电子流.当电子流穿过垂直纸面向里的磁场时,将受到洛伦兹力的作用而向下偏转(注意电流方向与电子流方向相反).【答案】电子向下1.早期原子论是由谁创立的( )A.阿伏伽德罗B.汤姆孙C.玻意耳 D.德谟克利特【解析】根据物理学史,古希腊哲学家德谟克利特建立了早期的原子论,认为宇宙间存在一种或多种微小的实体,叫做“原子”,D正确.玻意耳创立了元素论,C错.阿伏伽德罗提出了分子假说,A错.汤姆孙发现了电子,B错.【答案】 D2.(2013·济南检测)如果阴极射线像X射线一样,则下列说法正确的是( )A.阴极射线管内的高电压能够对其加速而增加其能量B.阴极射线通过偏转电场时不会偏转C.阴极射线通过偏转电场时能够改变方向D.阴极射线通过磁场时方向可能发生改变【解析】X射线是频率很高的光子,不带电.电场、磁场不能改变其运动方向,B正确.【答案】 B3.(2013·福州四中检测)汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”.关于电子的说法正确的是( )A.任何物质中均有电子B.不同的物质中具有不同的电子C.电子质量是质子质量的1 836倍D.电子是一种粒子,是构成物质的基本单元【解析】汤姆孙对不同材料的阴极发出的射线进行研究,均为相同的粒子——电子,故A正确、B错误;电子是构成物质的基本单元,它的质量远小于质子的质量,为质子质量的11 836,故C错、D对.【答案】AD图2-1-74.如图2-1-7所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线径迹往下偏,则 ( )A.导线中的电流由A流向BB.导线中的电流由B流向AC.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的径迹与AB中的电流方向无关【解析】阴极射线的粒子带负电,由左手定则判断管内磁场方向垂直纸面向里.由安培定则判定AB中电流的方向由B流向A,故B正确.电流方向改变,管内磁场方向改变,电子受力方向也改变,故C对.【答案】BC5.(2013·莆田检测)下列说法中正确的是( )A.原子是可以再分的,是由更小的微粒组成的B.通常情况下,气体是导电的C.在强电场中气体能够被电离而导电D.平时我们在空气中看到的放电火花,就是气体电离导电的结果【解析】原子可以再分为原子核和核外电子,A对;通常情况下,气体不导电,但在强电场中被电离后可导电,B错,C、D对.【答案】ACD6.汤姆孙用电场和磁场对电子进行偏转实验从而测定其比荷.在图所示的匀强电场和匀强磁场共存的区域内,电子可能沿水平方向向右做匀速直线运动的是( )【答案】 C7.(2013·漳州高二检测)如图2-1-8所示,有一混合正离子束先后通过正交电磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径R 相同,则它们具有相同的( )图2-1-8A .电荷量B .质量C .速度D .比荷 【解析】 正交电磁场区域Ⅰ实际上是一个速度选择器,这束正离子在区域Ⅰ中均不偏转,说明它们具有相同的速度,故C 正确.在区域Ⅱ中半径相同,R =mv qB,所以它们应具有相同的比荷.正确选项为C 、D. 【答案】 CD8.如图2-1-9是电子射线管示意图,接通电源后,电子射线由阴极沿x 轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z 轴负方向)偏转,在下列措施中可采用的是( )图2-1-9 A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向【解析】由于电子沿x轴正方向运动,若所受洛伦兹力向下,使电子射线向下偏转,由左手定则可知磁场方向应沿y轴正方向;若所加电场使电子射线向下偏转,所受电场力方向向下,则所加电场方向应沿z轴正方向,由此可知B正确.【答案】 B9.密立根实验的原理如图2-1-10所示,在A板上方用喷雾器将油滴喷出,若干个油滴从板上的一个小孔中落下,喷出的油滴因摩擦而带负电.已知A、B板间电压为U、间距为d时,油滴恰好静止.撤去电场后油滴徐徐下落,最后测出油滴以速度v匀速运动,已知空气阻力正比于速度:F=kv,则油滴所带的电荷量q=________.图2-1-10 某次实验得q-19【解析】 mg -Eq =0,mg -kv =0,解得q =kv /E .油滴所带电荷量是1.6×10-19C 的整数倍,故电荷的最小电荷量为1.6×10-19C.【答案】kv E电荷的最小电荷量为1.6×10-19C 10.(2013·南平检测)为测定带电粒子的比荷qm,让这个带电粒子垂直飞进平行金属板间,已知匀强电场的场强为E ,在通过长为L 的两金属板间后,测得偏离入射方向的距离为d ,如果在两板间加垂直电场方向的匀强磁场,磁场方向垂直粒子的入射方向,磁感应强度为B ,则离子恰好不偏离原来方向,求比荷qm的值为多少?【解析】 只加电场时,在垂直电场方向 d =12(Eq m )(L v 0)2 加磁场后,粒子做直线运动,则qv 0B =Eq ,即v 0=E B.联立解得:q m =2dEB 2L 2. 【答案】 2dEB 2L211.(2013·澄迈检测)汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图2-1-11所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A ′中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行极板P 和P ′间的区域,平行极板间距为b .当极板间不加偏转电压时,电子束打在荧光屏和中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O ′点,(O ′点与O 点的竖直间距为d ,水平间距可忽略不计)此时,在P 和P ′间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.求打在荧光屏O 点的电子速度的大小.图2-1-11【解析】 当电子受到的电场力与洛伦兹力相等时,电子做匀速直线运动、亮点重新回到中心O 点,设电子的速度为v .则qvB =qE ,得v =E B 又E =U b ,所以v =U Bb.【答案】U Bb12.美国科学家密立根通过油滴实验首次测得电子电量.油滴实验的原理如图2-1-12所示,两块水平放置的平行金属板与电源相连,上下板分别带正、负电荷.油滴从喷雾器喷出后.由于摩擦而带电,经上板中央小孔落到两板间的匀强电场中,通过显微镜可以观察到它运动的情况.两金属板间的距离为d ,忽略空气对油滴的浮力和阻力.图2-1-12(1)调节两金属板间的电势差U ,当U =U 0时,使得某个质量为m 1的油滴恰好做匀速运动,求该油滴所带的电荷量;(2)若油滴进入电场时的初速度可以忽略,当两金属板间的电势差U =U 1时,观察到某个质量为m 2的油滴进入电场后做匀加速运动,经过时间t 运动到下极板,求此油滴所带的电荷量.【解析】 (1)当U =U 0时,油滴恰好做匀速直线运动,满足m 1g -q U 0d =0,即q =m 1gdU 0. (2)当U =U 1时,质量为m 2的油滴做匀加速运动,满足d =12at 2,m 2g -q ′U 1d=m 2a由此得q ′=m 2d U 1(g -2d t 2)=m 2d U 1t 2(gt 2-2d ).【答案】 (1)m 1gd U 0 (2)m 2d U 1t2(gt 2-2d )第2节原子的核式结构模型(教师用书独具)加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义.●课标解读1.知道α粒子散射实验的原理、实验装置及实验结果.2.从α粒子散射实验的结果分析到卢瑟福建立原子的核式结构模型过程,体会科学实验与思维相结合的物理研究方法.3.知道原子的核式结构模型,并能成功解释α粒子的散射实验现象.●教学地位从汤姆孙的原子结构模型到卢瑟福的原子的核式结构模型的建立,既渗透科学探究的因素教学,又进行了模型法的教学,并将卢瑟福的原子的核式结构模型与行星结构相类比,指出大自然的和谐统一的美,渗透哲学教育.通过学生对α粒子散射实验现象的讨论与交流,顺理成章地否定了葡萄干面包模型,并开始建方新的模型.希望这一部分由学生自己完成,教师总结,总结时,突出汤姆孙原子模型与α粒子散射实验之间的矛盾,可以将α粒子分别穿过葡萄干面包模型和核式结构模型的不同现象用动画模拟,形成强烈的对比,突破难点.得到卢琴福的原子的核式结构模型后再展示立体动画α粒子散射模型,使学生有更清晰的直观形象、生动的认识.α粒子散射实验是教学的重点,高考的热点.(教师用书独具)●新课导入建议问题导入卢瑟福用α粒子轰击金箔时,发现少数α粒子发生了大角度偏转,这是用汤姆孙的原子模型解释不通的.你能解释这种现象吗?本节课请同学们和老师一起解决此问题.●教学流程设计课前预习安排:⇒1.看教材2.填写【课前自主导学】同学之间可进行讨论步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒步骤3:师生互动完成“探究1”除例1外可再变换命题角度,补充一个例题以拓展学生思路⇓步骤7:指导学生完成【当堂双基达标】,验证学习情况⇒步骤6:完成“探究3”重在讲解α粒子散射实验中的功能问题⇐步骤5:师生互动完成“探究2”方式同完成探究1相同⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评⇓步骤8:先由学生自己总结本节的主要知识,教师点评,安排学生课下完成【课后知能课标解读重点难点1.知道α粒子散射实验的原理和实验结果.2.知道原子的核式结构模型. 1.α粒子散射实验.(重点)2.卢瑟福提出的原子的核式结构模型.(重点)3.卢瑟福对实验结果的解释.(难点)α粒子散射实验1.(1)实验目的α粒子通过金箔时,用这些已知的粒子与金属内的原子相互作用,根据粒子的偏转情况来获得原子内部的信息.(2)实验方法用由放射源发射的α粒子束轰击金箔,利用荧光屏接收,探测通过金箔后的α粒子偏转情况.(3)实验结果绝大多数α粒子穿过金箔后仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转,有极少数α粒子偏转角超过了90°,有的甚至被原路弹回,α粒子被反射回来的概率。
高中物理第2章第4节氢原子光谱及能级结构学案鲁科版选修35
氢原子光谱与能级结构原子光的特点之一是从外区到紫外区呈多条具有确定波的Hα、Hβ、Hγ、Hδ等,些可以帮助我判断化合物中是否含有。
2.原子光的特点之二是从波到短波,Hα~Hδ等的距离越来越小,表出明的律111性,即λ=R2-2(n=3,4,5,6,⋯)。
2n3.玻理的成功之是引入了量子化的概念,解了原子构和原子光的关系。
但在推程中仍采用了典力学的方法,因此是一种半典的量子。
11.原子光的特点从外区到紫外区呈多条具有确定波的;Hα~Hδ的几个波数成了原子的“印〞,不是何种化合物的光,只要它里面含有些波的光,就能断定种化合物里一定含有。
从波到短波,Hα~Hδ等的距离越来越小,表出明的律性。
2.巴末公式1117λ=R22-n2(n=3,4,5,⋯),其中R叫做里德伯常量,数R=81×10_m1。
3.玻理光的解理推按照玻原子理,原子的子从能量高的能迁到n=2的能上,射出E1E1的光子能量hν=E n-E2,根据原子的能公式E n=n2可得E2=22,由此可得hν=-1111-111E2n,由于c=λν,所以上式可写成λ=hc2n,把个式子与巴末公式比-E1E17-1,可以看出它的形式是完全一的,并且R=hc,算出-hc的×10m与里德伯常量的符合得很好。
就是,根据玻理,不但可以推出表示原子光律性的公式,而且可以从理上来算里德伯常量的。
由此可知,原子光的巴末系是子从n=3,4,5,6,⋯能迁到n=2的能射出来的。
其中Hα~Hδ在可光区。
玻理的成功和局限性成功冲破了能量化的束,能量是量子化的之根据量子化能量算光的射率和吸收率局限性利用典力学的方法推子道半径,是一种半典的量子1.自主思考——判一判(1)原子光是不的,是由假设干率的光成的。
(√)2由于原子都是由原子核和核外子成的,所以各种原子的原子光是相同的。
(×)由于不同元素的原子构不同,所以不同元素的原子光也不相同。
(√)玻理是完整的量子化理。
高中物理鲁科选修35第2章原子结构练习及答案
第二章原子结构第1节电子的发现与汤姆孙模型一、物质结构的早期探究①我国西周的“五行说”;古希腊的亚里士多德认为万物的本质是土、水、火、空气四种“元素”,天体则由第五种“元素”——“以太”构成;古希腊哲学家德谟克利特等人建立了早期的原子论。
②1661年,玻意耳以化学实验为基础建立了科学的元素论.③19世纪初,道尔顿提出了原子论,认为原子是元素的最小单位.④1811年,意大利化学家阿伏伽德罗提出了分子假说,指出分子可以由多个相同的原子组成.结论:在物质的结构中存在着分子、原子这样的层次,宏观物质的化学性质决定于分子,而分子则由原子组成.原子是构成物质的不可再分割的最小颗粒,它既不能创生,也不能消灭.二、电子的发现及汤姆孙模型19世纪末物理学的三大发现:①1895年伦琴发现了X射线;②X射线发现后不久,贝克勒尔发现了放射性;③1897年汤姆孙发现了电子汤姆孙的原子模型:原子带正电的部分充斥整个原子,很小很轻的电子镶嵌在球体的某些固定位置,正像葡萄干嵌在面包中那样三、“阴极射线”性质(1)电性的确定方法一:让阴极射线进入已知电场,由所受电场力方向确定带电的性质.方法二:让阴极射线进入磁场,由所受洛伦兹力的方向,根据左手定则确定带电的性质.(2)比荷的测定方法①让粒子通过正交的电磁场,如图所示,让其做直线运动,根据二力平衡条件,即F洛=F电(Bq v=qE)得到粒子的运动速度v=E B.②在其他条件不变的情况下,撤去电场,如图2-1-2所示,保留磁场,让粒子只在磁场中运动,由洛伦兹力提供向心力即Bq v=m v2R,根据磁场情况和轨迹偏转情况,由几何知识求出其半径R.③由以上方法确定粒子比荷的表达式:qm=EB2R.1.早期原子论是由谁创立的()A.阿伏伽德罗B.汤姆孙C.玻意耳D.德谟克利特2.下列说法不正确的是()A.汤姆孙研究阴极射线,用测定粒子比荷的方法发现了电子B.电子的发现证明了原子是可分的C.汤姆孙认为原子里面带正电荷的物质应充斥整个原子,而带负电的电子,则镶嵌在球体的某些固定位置D.汤姆孙原子模型是正确的3.历史上第一个发现电子的科学家是()A.贝可勒尔B.道尔顿C.伦琴D.汤姆孙4.关于电荷的电荷量,下列说法错误的是()A.电子的电荷量是由密立根油滴实验测得的B.物体所带电荷量可以是任意值C.物体所带电荷量最小值为1.6×10-19C D.物体所带的电荷量都是元电荷的整数倍5.(多选)汤姆孙对阴极射线的探究,最终发现了电子,由此被称为“电子之父”.关于电子的说法正确的是()A.任何物质中均有电子B.不同的物质中具有不同的电子C.电子质量是质子质量的1836倍D.电子是一种粒子,是构成物质的基本单元6.(多选)关于阴极射线的性质,下列说法正确的是()A.阴极射线带负电B.阴极射线带正电C.阴极射线中的负电粒子的比荷与氢离子的基本相同D.阴极射线中的负电粒子的带电荷量与氢离子的相同7.(多选)如图所示是汤姆孙的气体放电管的示意图,下列说法中正确的是()A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转8.如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将()A.向纸内偏转B.向纸外偏转C.向下偏转D.向上偏转9.(多选)如图所示,一只阴极射线管,左侧不断有电子射出,若在管的正下方放一通电直导线AB时,发现射线径迹往下偏,则()A.导线中的电流由A流向BB.导线中的电流由B流向AC.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的径迹与AB中的电流方向无关10.在汤姆孙测电子比荷的实验中,采用了如图所示的阴极射线管,从电子枪C出来的电子经过A、B间的电场加速后,水平射入长度为L的D、G 平行板间,接着在荧光屏中心F出现荧光斑.若在D、G间加上方向向下,场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、G电场区加上一垂直纸面的、磁感应强度为B的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去掉电场,电子向下偏转,偏转角为θ,试解决下列问题.(1)说明图中磁场沿什么方向;(2)根据L、E、B和θ,求出电子的比荷.【答案】(1)垂直纸面向里(2)em=E sin θB2L11.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A′中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P′间的区域,平行极板间距为b.当极板间不加偏转电压时,电子束打在荧光屏和中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O′点,(O′点与O点的竖直间距为d,水平间距可忽略不计)此时,在P和P′间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点.求打在荧光屏O点的电子速度的大小.【答案】UBb第2节原子的核式结构模型一、α粒子散射实验汤姆孙的葡萄干面包模型卢瑟福的原子核式模型分布情况正电荷和质量均匀分布,负电荷镶嵌在其中正电荷和几乎全部质量集中在原子中心的一个极小核内,电子质量很小,分布在很大空间内受力情况α粒子在原子内部时,受到的库仑斥力相互抵消,几乎为零少数靠近原子核的α粒子受到的库仑力大,而大多数离核较远的α粒子受到的库仑力较小二、卢瑟福的原子模型及原子大小(1)核式结构模型:①原子的内部有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子绕核运动.②原子的核式结构模型又被称为行星模型.(2)原子的大小:①原子直径数量级:10-10 m.②原子核直径数量级:10-15_m. 1.下列能揭示原子具有核式结构的实验是()A.光电效应实验B.伦琴射线的发现C.α粒子散射实验D.氢原子光谱的发现2.卢瑟福提出原子的核式结构学说的根据是α粒子轰击金箔的实验,在实验中他发现α粒子()A.全部穿过或发生很小的偏转B.全部发生很大的偏转,甚至有的被反弹回C.绝大多数不发生或只发生很小的偏转,有极少数发生很大的偏转,个别甚至被反弹回D.绝大多数发生很大的偏转,甚至被反弹回,只有少数穿过3.(多选)α粒子散射实验结果表明()A.原子中绝大部分是空的B.原子中全部正电荷都集中在原子核上C.原子内有中子D.原子的质量几乎全部都集中在原子核上4.在α粒子散射实验中,不考虑电子和α粒子的碰撞影响,是因为() A.α粒子与电子根本无相互作用B.α粒子受电子作用的合力为零,是因为电子是均匀分布的C.α粒子和电子碰撞损失能量极少,可忽略不计D.电子很小,α粒子碰撞不到电子5.(多选)如图所示为卢瑟福和他的同事们做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中A、B、C、D四个位置时,观察到的现象,下述说法中正确的是()A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察一些闪光,但次数极少6.(多选)英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象.如图所示,O表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的是()BD7.如图所示,根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.图中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从a运动到b,再运动到c的过程中,下列说法中正确的是() A.动能先增大,后减小B.电势能先减小,后增大C.电场力先做负功,后做正功,总功等于零D.加速度先变小,后变大8.(多选)α粒子散射实验中,当α粒子最接近原子核时,α粒子符合下列哪种情况()A.动能最小B.势能最小C.α粒子与金原子组成的系统的能量最小D.所受原子核的斥力最大9.如图所示,实线表示金原子核电场的等势线,虚线表示α粒子在金核电场中散射时的运动轨迹.设α粒子通过a、b、c三点时速度分别为v a、v b、v c,电势能分别为εa、εb、εc,则()A.v a>v b>v c,εb>εa>εcB.v b>v c>v a,εb<εa<εcC.v b>v a>v c,εb<εa<εcD.v b<v a<v c,εb>εa>εc10.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是()C第3节玻尔的原子模型一、玻尔理论的内容轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值能量量子化:与轨道量子化对应的能量不连续的现象跃迁假说:原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即hν=E2-E1(或E1-E2).总而言之根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容二、氢原子的能级结构氢原子在不同能级上的能量和相应的电子轨道半径为E n=E1n(n=1,2,3,…);r n=n2r1(n=1,2,3,…),式中E1≈-13.6 eV,r1=0.53×10-10 m.三、原子能级跃迁(1)能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=n(n-1)2=C2n。
2019-2020学年高中物理 第2章 原子结构 第4节 氢原子光谱与能级结构教师用书 鲁科版选修3-5
2019-2020学年高中物理第2章原子结构第4节氢原子光谱与能级结构教师用书鲁科版选修3-5[先填空]1.氢原子光谱的特点(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这n个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢.(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式1λ=R(122-1n2)(n=3,4,5,…),其中R叫做里德伯常量,数值为R=1.09677581×107m-1.[再判断]1.氢原子光谱是不连续的,是由若干频率的光组成的.(√)2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相同的.(×) 3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√)[后思考]氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?【提示】氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.[核心点击]其他谱线也都满足与巴尔末公式类似的关系式1.一群氢原子由n =3能级自发跃迁至低能级发出的谱线中属于巴尔末线系的有________条.【解析】 在氢原子光谱中,电子从较高能级跃迁到n =2能级发光的谱线属于巴尔末线系.因此只有由n =3能级跃迁至n =2能级的1条谱线属巴尔末线系.【答案】 12.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n ,并计算其波长.【解析】 对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长. 当n =3时,1λ1=1.10×107×⎝ ⎛⎭⎪⎫12-13m -1解得λ1=6.55×10-7m.当n =∞时,波长最短,1λ=R ⎝ ⎛⎭⎪⎫122-1n 2=R ×14,λ=4R=41.1×107 m =3.64×10-7m.【答案】 当n =3时,波长最长为6.55×10-7m 当n =∞时,波长最短为3.64×10-7m巴尔末公式的应用方法及注意问题(1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ.[先填空] 1.理论推导按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n =2的能级上时,辐射出的光子能量应为h ν=E n -E 2,根据氢原子的能级公式E n =E 1n 2可得E 2=E 122,由此可得h ν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于c =λν,所以上式可写成1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,把这个式子与巴尔末公式比较,可以看出它们的形式是完全一样的,并且R =-E 1hc ,计算出-E 1hc的值为1.097×107 m-1与里德伯常量的实验值符合得很好.这就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值.由此可知,氢原子光谱的巴尔末系是电子从n =3,4,5,6,…能级跃迁到n =2的能级时辐射出来的.其中H α~H δ在可见光区.2.玻尔理论的成功与局限性1.玻尔理论是完整的量子化理论.(×)2.玻尔理论成功的解释了氢原子光谱的实验规律.(√)3.玻尔理论不但能解释氢原子光谱,也能解释复杂原子的光谱.(×) [后思考]玻尔理论的成功和局限是什么?【提示】 成功之处在于引入了量子化的观念,局限之处在于保留了经典粒子的观念,把电子的运动看做是经典力作用下的轨道运动.[核心点击] 1.成功方面(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出能级图. (2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.(3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符.2.局限性及原因(1)局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍复杂原子的光谱现象.(2)原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.3.关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是( )【导学号:18850032】A .经典电磁理论不能解释原子的稳定性B .根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C .根据经典电磁理论,原子光谱应该是连续的D .氢原子光谱彻底否定了经典电磁理论E .根据经典电磁理论,原子光谱应为明线光谱【解析】 根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,是引入了新的观念.【答案】 ABC4.氢原子光谱的巴耳末系中波长最长的光波的波长为λ1,波长次之为λ2,则λ1λ2=________.【解析】 由1λ=R ⎝ ⎛⎭⎪⎫122-1n 2得:当n =3时,波长最长,1λ1=R ⎝ ⎛⎭⎪⎫122-132,当n =4时,波长次之,1λ2=R ⎝ ⎛⎭⎪⎫122-142,解得:λ1λ2=2720. 【答案】27205.已知氢原子光谱中巴尔末线系第一条谱线H α的波长为6 565 A 0,求:【导学号:18850033】(1)试推算里德伯常量的值;(2)利用巴尔末公式求其中第四条谱线的波长和对应光子的能量.(1 A 0=10-10m)【解析】 (1)巴尔末系中第一条谱线为n =3时, 即1λ1=R (122-132) R =365λ1=365×6 565×10-10 m -1=1.097×107 m -1. (2)巴尔末系中第四条谱线对应n =6, 则1λ4=R (122-162)λ4=368×1.097×107m=4.102×10-7 mE=hν=h·cλ4=6.63×10-34×3×1084.102×10-7J=4.85×1019 J.【答案】(1)1.097×107 m-1(2)4.102×10-7 m 4.85×1019 J氢原子光谱线是最早发现、研究的光谱线1.氢光谱是线状的、不连续的,波长只能是分立的值.2.谱线之间有一定的关系,可用一个统一的公式表达:1λ=R(1m2-1n2)式中m=2对应巴尔末公式:1λ=R(122-1n2),(n=3,4,5,…).其谱线称为巴尔末线系,是氢原子核外电子由高能级跃迁至n=2的能级时产生的光谱,其中Hα~Hδ在可见光区.由于光的频率不同,其颜色不同.m=1 对应赖曼系即赖曼系(在紫外区)1λ=R(112-1n2),(n=2,3,4,…)m=3 对应帕邢系即帕邢系(在红外区)1λ=R(132-1n2),(n=4,5,6,…)。
高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构教学案鲁科版选修3_5
第3节玻尔的原子模型第4节氢原子光谱与能级结构1.了解玻尔理论的主要内容.2.掌握氢原子能级和轨道半径的规律.(重点+难点)3.了解氢原子光谱的特点,知道巴尔末公式及里德伯常量. 4.理解玻尔理论对氢光谱规律的解释.(重点+难点)一、玻尔原子模型1.卢瑟福的原子核式结构模型能够很好的解释α粒子与金箔中原子碰撞所得到的信息,但不能解释原子光谱是特征光谱和原子的稳定性.2.玻尔理论的内容基本假设内容定态假设原子只能处于一系列能量不连续的状态中,在这些状态中,原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定态.电子绕原子核做圆周运动,只能处在一些分立的轨道上,它只能在这些轨道上绕核转动而不产生电磁辐射跃迁假设原子从一种定态跃迁到另一定态时,吸收(或辐射)一定频率的光子能量hν,假如,原子从定态E2跃迁到定态E1,辐射的光子能量为hν=E2-E1轨道假设原子的不同能量状态对应于电子的不同运行轨道.原子的能量状态是不连续的,电子不能在任意半径的轨道上运行,只有轨道半径r跟电子动量m e v的乘积满足下式m e vr=nh2π(n=1,2,3,…)这些轨道才是可能的.n是正整数,称为量子数1.(1)玻尔的原子结构假说认为电子的轨道是量子化的.( )(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.( )(3)电子能吸收任意频率的光子发生跃迁.( )提示:(1)√(2)√(3)×二、氢原子的能级结构1.能级:在玻尔的原子理论中,原子只能处于一系列不连续的能量状态,在每个状态中,原子的能量值都是确定的,各个不连续能量值叫做能级.2.氢原子能级结构图根据玻尔理论,氢原子在不同能级上的能量和相应的电子轨道半径为E n =E 1n(n =1,2,3,…) r n =n 2r 1(n =1,2,3,…)式中,E 1≈-13.6__eV ,r 1=0.53×10-10__m .根据以上结果,把氢原子所有可能的能量值画在一张图上,就得到了氢原子的能级结构图(如图所示).n =∞————————E ∞=0⋮n =5 ————————E 5=-0.54 eVn =4 ————————E 4=-0.85 eVn =3 ————————E 3=-1.51 eVn =2 ————————E 2=-3.4 eVn =1 ————————E 1=-13.6 eV3.玻尔理论对氢原子光谱特征的解释(1)在正常或稳定状态时,原子尽可能处于最低能级,电子受核的作用力最大而处于离核最近的轨道,这时原子的状态叫做基态. (2)电子吸收能量后,从基态跃迁到较高的能级,这时原子的状态叫做激发态. (3)当电子从高能级跃迁到低能级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.因为电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的.这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光.1.只要原子吸收能量就能发生跃迁吗?提示:原子在跃迁时吸收或辐射的能量都不是任意的,只有这个能量等于电子跃迁时始末两个能级的能量差,才会发生跃迁.三、氢原子光谱1.氢原子光谱的特点(1)从红外区到紫外区呈现多条具有确定波长(或频率)的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1.3.红外区和紫外区:其谱线也都遵循与巴尔末公式类似的关系式.2.(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.( )(2)稀薄气体的分子在强电场的作用下会变成导体并发光.( )(3)巴耳末公式中的n 既可以取整数也可以取小数.( )提示:(1)× (2)√ (3)×四、玻尔理论对氢光谱的解释1.理论推导:由玻尔理论可知,当激发到高能级E 2的电子跃迁到低能级E 1时,就会释放出能量.根据 E n =-13.6n2 eV(n =1,2,3,…) 得E 2=-13.6n 22 eV ,E 1=-13.6n 21eV 再根据hν=E 2-E 1,得ν=13.6h ⎝ ⎛⎭⎪⎫1n 21-1n 22 此式在形式上与氢原子光谱规律的波长公式一致,当n 1=2,n 2=3,4,5,6,…时就是巴尔末公式.2.巴尔末系:氢原子从相应的能级跃迁到n =2的能级得到的线系.2.玻尔理论是量子化的理论吗?提示:不是,玻尔理论的电子轨道是量子化的,并根据量子化能量计算光的发射和吸收频率,这是量子论的方法;而电子轨道的半径是用经典电磁理论推导的,所以玻尔理论是半经典的量子论.对玻尔原子模型的理解1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值.模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的量值.例如,氢原子的电子最小轨道半径为r 1=0.053 nm ,其余可能的轨道半径还有0.212 nm 、0.477 nm 、…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.2.能量量子化:与轨道量子化对应的能量不连续的现象.电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量形式称为能量量子化.3.跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即h ν=E 2-E 1(或E 1-E 2).可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫做电子的跃迁.4.总而言之:根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.(1)处于基态的原子是稳定的,而处于激发态的原子是不稳定的.(2)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E 1(E 1<0),电子质量为m ,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h ).[思路点拨] 根据玻尔原子理论与能量守恒定律求解.[解析] 根据玻尔理论,氢原子中电子离原子核越远,氢原子能量越大,根据能量守恒定律可知:h ν+E 1=12mv 2,所以电子速度为:v =2(hν+E 1)m . [答案] 越大2(hν+E 1)m电子被电离后可认为离原子核无限远,即电子的电势能为零,所以此时电子的能量等于电子的动能.1.(多选)按照玻尔原子理论,下列表述正确的是( )A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m-E n(m>n) D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量解析:选BC.根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A 错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.对氢原子能级跃迁的理解1.能级跃迁处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.如图带箭头的竖线表示原子由较高能级向较低能级的跃迁.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为:N=n(n-1)2=C2n.2.根据玻尔理论,当氢原子从高能级跃迁到低能级时以光子的形式放出能量.原子在始、末两个能级E m和E n(m>n)间跃迁时,辐射光子的能量等于前后两个能级之差(hν=E m-E n),由于原子的能级不连续,所以辐射的光子的能量也不连续,因此产生的光谱是分立的线状光谱.3.原子能量的变化(1)光子的发射原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.hν=E m-E n(E m、E n是始、末两个能级且m>n)能级差越大,放出光子的频率就越高.(2)光子的吸收由于原子的能级是一系列不连续的值,任意两个能级差也是不连续的,故原子发射一些特定频率的光子,同样也只能吸收一些特定频率的光子,原子吸收光子后会从较低能级向较高能级跃迁,吸收光子的能量仍满足hν=E m -E n .(m >n )(3)原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能E p 减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.4.原子跃迁时需注意的几个问题(1)注意一群原子和一个原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.(2)注意直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况的辐射(或吸收)光子的频率不同.(3)注意跃迁与电离原子跃迁时,不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差.若想把处于某一定态上的原子的电子电离出去,就需要给原子一定的能量.如基态氢原子电离,其电离能为13.6 eV ,只要能量等于或大于13.6 eV 的光子都能被基态氢原子吸收而电离,只不过入射光子的能量越大,原子电离后产生的电子具有的动能越大.(1)对于处于高能级状态的一群氢原子,每个原子都能向低能级状态跃迁,且跃迁存在多种可能,有的可能一次跃迁到基态,有的可能经几次跃迁到基态.同样,处于基态的氢原子吸收不同能量时,可以跃迁到不同的激发态.(2)实物粒子和原子碰撞时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,就可使原子受激发而向较高能级跃迁.大量氢原子处于不同能量激发态,发生跃迁时放出三种不同能量的光子,其能量值分别是:1.89 eV ,10.2 eV ,12.09 eV.跃迁发生前这些原子分布在________个激发态能级上,其中最高能级的能量值是________eV(基态能量为-13.6 eV).[思路点拨] 由于发出三种不同能量的光子,由N =n (n -1)2可知,大量氢原子跃迁前处于n =2和n =3两个激发态上.[解析] 大量氢原子跃迁发出三种不同能量的光子,跃迁情况为n =3的激发态到n =2的激发态或直接到n =1的基态,也可能是n =2的激发态到n =1的基态,所以跃迁发生前这些原子分布在2个激发态能级上,最高能量值满足E =-13.6 eV +12.09 eV ,即E 为-1.51 eV.[答案] 2 -1.51解答本题的关键是对氢原子的能级跃迁有深刻的理解.2.如图为氢原子能级示意图的一部分,则氢原子( )A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大C .若要从低能级跃迁到高能级,必须吸收光子D .从高能级向低能级跃迁时,氢原子核一定向外放出能量解析:选A.氢原子跃迁时辐射出电磁波,h ν=hc λ=E m -E n =ΔE .可见λ与ΔE 成反比,由能级图可得从n =4能级跃迁到n =3能级时,ΔE =0.66 eV ,从n =3能级跃迁到n =2能级时,ΔE =1.89 eV ,所以A 正确;电磁波的速度都等于光速,B 错误;若有电子去碰撞氢原子,入射电子的动能可全部或部分被氢原子吸收,所以只要入射电子的动能大于氢原子两个能级之间的能量差,也可使氢原子由低能级向高能级跃迁,C 错误;从高能级向低能级跃迁时,是氢原子向外放出能量,而非氢原子核,D 错误.对氢原子光谱的理解1.对氢原子光谱的几点说明氢原子是自然界中最简单的原子,通过对它的光谱线的研究,可以了解原子的内部结构和性质.氢原子光谱线是最早发现、研究的光谱线.(1)氢光谱是线状的,不连续的,波长只能是分立的值.(2)谱线之间有一定的关系,可用一个统一的公式1λ=R ⎝ ⎛⎭⎪⎫1m 2-1n 2表达.式中m =2对应巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5….其谱线称为巴尔末线系,是氢原子核外电子由高能级跃迁至n =2的能级时产生的光谱,其中H α~H δ在可见光区.由于光的频率不同,其颜色不同.m =1 对应赖曼线系;m =3 对应帕邢线系即赖曼线系(在紫外区)1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4… 帕邢线系(在红外区)1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4,5,6… 2.玻尔理论对氢光谱的解释(1)理解导出的氢光谱规律:按玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量:hν=E n -E 2,但E n =E 1n 2,E 2=E 122,由此可得:hν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于ν=c λ,所以上式可写作:1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,此式与巴尔末公式比较,形式完全一样.由此可知,氢光谱的巴尔末系是电子从n =3,4,5,6等能级跃迁到n =2的能级时辐射出来的.(2)成功方面①运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了其能级图.②处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.③导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系.④能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分.(3)局限性和原因①局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍微复杂原子的光谱.②原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.(多选)关于巴尔末公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2的理解,正确的是( ) A .此公式是巴尔末在研究氢光谱特征时发现的B .公式中n 可取任意值,故氢光谱是连续谱C .公式中n 只能取不小于3的整数,故氢光谱是线状谱D .公式不但适用于氢光谱的分析,也适用于其他原子的光谱分析[思路点拨] 根据巴尔末公式及氢原子能量的量子化解答.[解析] 此公式是巴尔末在研究氢光谱在可见光区的谱线时得到的,只适用于氢光谱的分析,且n 只能取大于等于3的正整数,则λ不能取连续值,故氢原子光谱是线状谱.故选AC.[答案] AC3.对于巴尔末公式下列说法正确的是( )A .所有氢原子光谱的波长都与巴尔末公式相对应B .巴尔末公式只确定了氢原子发光的可见光部分的光的波长C .巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D .巴尔末公式确定了各种原子发光中的光的波长解析:选C.巴尔末公式只确定了氢原子发光中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A 、D 错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B 错误,C 正确.原子的能量与能量变化1.原子的能量包括电子绕核运动的动能和电子与核系统具有的电势能.(1)电子的动能电子绕核做圆周运动所需向心力由库仑力提供k e 2r 2=m v 2r ,故E k n =12mv 2n =ke 22r n. (2)系统的电势能电子在半径为r n 的轨道上所具有的电势能E p n =-ke 2r n(E p ∞=0). (3)原子的能量E n =E k n +E p n =ke 22r n +-ke 2r n =-ke 22r n. 即电子在半径大的轨道上运动时,动能小,电势能大,原子能量大.2.跃迁时电子动能、原子电势能与原子能量的变化:当原子从高能级向低能级跃迁时,轨道半径减小,库仑引力做正功,原子的电势能E p 减小,电子动能增大,向外辐射能量,原子能量减小.反之,原子电势能增大,电子动能减小,原子能量增大.氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV.电子的质量m =9.1×10-31kg ,电荷量e =1.6×10-19 C .求氢原子处于基态时:(1)电子的动能;(2)原子的电势能.[思路点拨] 电子绕核运动的动能可根据库仑力充当向心力求出,电子在某轨道上的动能与电势能之和,为原子在该定态的能量E n ,即E n =E k n +E p n ,由此可求得原子的电势能.[解析] (1)设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 21r 1所以电子动能E k1=12mv 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19 eV ≈13.6 eV. (2)因为E 1=E k1+E p1所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.[答案] (1)13.6 eV (2)-27.2 eV该类问题是玻尔氢原子理论与经典电磁理论的综合应用,用电子绕核的圆周运动规律与轨道半径公式、能级公式的结合求解.4.氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大解析:选D.根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错误;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r,又E k=12mv 2,所以E k =ke22r .由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错误;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.[随堂检测]1.(多选)由玻尔理论可知,下列说法中正确的是( ) A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量C .原子内电子的可能轨道是连续的D .原子的轨道半径越大,原子的能量越大解析:选BD.按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,很短时间内电子的能量就会消失,与客观事实相矛盾,由玻尔假设可知选项A 、C 错误,B 正确;原子轨道半径越大,原子能量越大,选项D 正确.2.白炽灯发光产生的光谱是( ) A .连续光谱 B .明线光谱 C .原子光谱D .吸收光谱解析:选A.白炽灯发光属于炽热的固体发光,所以发出的是连续光谱.3.如图所示是某原子的能级图a 、b 、c 为原子跃迁所发出的三种波长的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )解析:选C.能量越大,频率越高,波长越短,根据能级图可以看出,三种光的能量按a 、c 、b 的顺序依次降低,所以波长也是按这个顺序依次增大.4.试计算氢原子光谱中巴尔末系的最长波和最短波的波长各是多少?解析:根据巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5,…可得λ=1R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…).当n =3时波长最长,其值为λmax =1R ⎝ ⎛⎭⎪⎫122-1n 2=1536R=1536×1.10×107 m ≈6.55×10-7m ,当n →∞时,波长最短,其值为λmin =1R ⎝ ⎛⎭⎪⎫122-0=4R=41.10×107 m ≈3.64×10-7m.答案:6.55×10-7m 3.64×10-7m[课时作业]一、单项选择题1.关于玻尔的原子模型理论,下列说法正确的是( ) A .原子可以处于连续的能量状态中 B .原子的能量状态不是连续的C .原子中的核外电子绕核做变速运动一定向外辐射能量D .原子中的电子绕核运动的轨道半径是连续的解析:选B.玻尔依据经典物理在原子结构问题上遇到了困难,引入量子化观念建立了新的原子模型理论,主要内容为:电子轨道是量子化的,原子的能量是量子化的,处在定态的原子不向外辐射能量.由此可知B 正确.2.关于光谱,下列说法正确的是( ) A .一切光源发出的光谱都是连续谱 B .一切光源发出的光谱都是线状谱 C .稀薄气体发出的光谱是线状谱D .作光谱分析时,利用连续谱和线状谱都可以鉴别物质和确定物质的化学组成 解析:选C.不同光源发出的光谱有连续谱,也有线状谱,故A 、B 错误.稀薄气体发出的光谱是线状谱,C 正确.利用线状谱和吸收光谱都可以进行光谱分析,D 错误.3.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加D .吸收光子,能量减少解析:选B.由玻尔理论可知,氢原子由高能级向低能级跃迁时,辐射出光子,原子能量减少.4.汞原子的能级图如图所示,现让一束单色光照射到大量处于基态的汞原子上,汞原子只发出三种不同频率的单色光,那么,关于入射光的能量,下列说法正确的是( )A.可能大于或等于7.7 eVB.可能大于或等于8.8 eVC.一定等于7.7 eVD.包含2.8 eV,5 eV,7.7 eV三种解析:选C.由玻尔理论可知,轨道是量子化的,能级是不连续的,只能发射不连续的单色光,于是要发出三种不同频率的光,只有从基态跃迁到n=3的激发态上,其能量差ΔE =E3-E1=7.7 eV,选项C正确,A、B、D错误.5.已知处于某一能级n上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )解析:选A.根据玻尔理论,波长最长的跃迁对应着频率最小的跃迁,根据氢原子能级图,频率最小的跃迁对应的是从5到4的跃迁,选项A正确.6.如图甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )A.a元素B.b元素C.c元素D.d元素解析:选B.把矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选项B正确,与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.二、多项选择题7.根据玻尔理论,氢原子中量子数n越大( )A.电子的轨道半径越大B.核外电子的速率越大C.氢原子能级的能量越大D.核外电子的电势能越大解析:选ACD.根据玻尔理论,氢原子中量子数n越大,电子的轨道半径就越大,A正确;核外电子绕核做匀速圆周运动,库仑力提供向心力k e 2r 2=m v 2r,则半径越大,速率越小,B 错误;量子数n 越大,氢原子所处的能级能量就越大,C 正确;电子远离原子核的过程中,电场力做负功,电势能增大,D 正确.8.关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是( ) A .经典电磁理论很容易解释原子的稳定性B .根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C .根据经典电磁理论,原子光谱应该是连续的D .氢原子光谱彻底否定了经典电磁理论解析:选BC.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上,经典物理学无法解释原子的稳定性,并且原子光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,而是要引入新的观念.故正确答案为B 、C.9.如图所示,氢原子可在下列各能级间发生跃迁,设从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则下列关系式中正确的是( )A .λ1<λ3B .λ3<λ2C .λ3>λ2D .1λ3=1λ1+1λ2解析:选AB.已知从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h c λ1>h c λ3>h c λ2,即1λ1>1λ3,λ1<λ3,1λ3>1λ2,λ3<λ2,又h c λ1=h c λ3+h cλ2,即1λ1=1λ3+1λ2,则1λ3=1λ1-1λ2,即正确选项为A 、B.10.氢原子能级如图,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线。
2019_2020学年高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构教学案鲁科版选修3_
第3节玻尔的原子模型第4节氢原子光谱与能级结构1.了解玻尔理论的主要内容.2.掌握氢原子能级和轨道半径的规律.(重点+难点)3.了解氢原子光谱的特点,知道巴尔末公式及里德伯常量. 4.理解玻尔理论对氢光谱规律的解释.(重点+难点)一、玻尔原子模型1.卢瑟福的原子核式结构模型能够很好的解释α粒子与金箔中原子碰撞所得到的信息,但不能解释原子光谱是特征光谱和原子的稳定性.2.玻尔理论的内容基本假设内容定态假设原子只能处于一系列能量不连续的状态中,在这些状态中,原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定态.电子绕原子核做圆周运动,只能处在一些分立的轨道上,它只能在这些轨道上绕核转动而不产生电磁辐射跃迁假设原子从一种定态跃迁到另一定态时,吸收(或辐射)一定频率的光子能量hν,假如,原子从定态E2跃迁到定态E1,辐射的光子能量为hν=E2-E1轨道假设原子的不同能量状态对应于电子的不同运行轨道.原子的能量状态是不连续的,电子不能在任意半径的轨道上运行,只有轨道半径r跟电子动量m e v的乘积满足下式m e vr=nh2π(n=1,2,3,…)这些轨道才是可能的.n是正整数,称为量子数1.(1)玻尔的原子结构假说认为电子的轨道是量子化的.( )(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.( )(3)电子能吸收任意频率的光子发生跃迁.( )提示:(1)√(2)√(3)×二、氢原子的能级结构1.能级:在玻尔的原子理论中,原子只能处于一系列不连续的能量状态,在每个状态中,原子的能量值都是确定的,各个不连续能量值叫做能级.2.氢原子能级结构图 根据玻尔理论,氢原子在不同能级上的能量和相应的电子轨道半径为 E n =E 1n 2(n =1,2,3,…) r n =n 2r 1(n =1,2,3,…)式中,E 1≈-13.6__eV ,r 1=0.53×10-10__m .根据以上结果,把氢原子所有可能的能量值画在一张图上,就得到了氢原子的能级结构图(如图所示).n =∞————————E ∞=0⋮n =5 ————————E 5=-0.54 eVn =4 ————————E 4=-0.85 eVn =3 ————————E 3=-1.51 eVn =2 ————————E 2=-3.4 eVn =1 ————————E 1=-13.6 eV3.玻尔理论对氢原子光谱特征的解释(1)在正常或稳定状态时,原子尽可能处于最低能级,电子受核的作用力最大而处于离核最近的轨道,这时原子的状态叫做基态.(2)电子吸收能量后,从基态跃迁到较高的能级,这时原子的状态叫做激发态.(3)当电子从高能级跃迁到低能级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.因为电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的.这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光.1.只要原子吸收能量就能发生跃迁吗?提示:原子在跃迁时吸收或辐射的能量都不是任意的,只有这个能量等于电子跃迁时始末两个能级的能量差,才会发生跃迁.三、氢原子光谱1.氢原子光谱的特点(1)从红外区到紫外区呈现多条具有确定波长(或频率)的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1.3.红外区和紫外区:其谱线也都遵循与巴尔末公式类似的关系式.2.(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.( )(2)稀薄气体的分子在强电场的作用下会变成导体并发光.( )(3)巴耳末公式中的n 既可以取整数也可以取小数.( )提示:(1)× (2)√ (3)×四、玻尔理论对氢光谱的解释1.理论推导:由玻尔理论可知,当激发到高能级E 2的电子跃迁到低能级E 1时,就会释放出能量.根据 E n =-13.6n2 eV(n =1,2,3,…) 得E 2=-13.6n 22 eV ,E 1=-13.6n 21eV 再根据hν=E 2-E 1,得ν=13.6h ⎝ ⎛⎭⎪⎫1n 21-1n 22 此式在形式上与氢原子光谱规律的波长公式一致,当n 1=2,n 2=3,4,5,6,…时就是巴尔末公式.2.巴尔末系:氢原子从相应的能级跃迁到n =2的能级得到的线系.2.玻尔理论是量子化的理论吗?提示:不是,玻尔理论的电子轨道是量子化的,并根据量子化能量计算光的发射和吸收频率,这是量子论的方法;而电子轨道的半径是用经典电磁理论推导的,所以玻尔理论是半经典的量子论.对玻尔原子模型的理解1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的数值.模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的量值.例如,氢原子的电子最小轨道半径为r 1=0.053 nm ,其余可能的轨道半径还有0.212 nm 、0.477 nm 、…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.2.能量量子化:与轨道量子化对应的能量不连续的现象.电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量形式称为能量量子化.3.跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即h ν=E 2-E 1(或E 1-E 2).可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫做电子的跃迁.4.总而言之:根据玻尔的原子理论假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态.只有电子从一条轨道跃迁到另一条轨道上时才辐射能量,辐射的能量是一份一份的,等于这两个定态的能量差.这就是玻尔理论的主要内容.(1)处于基态的原子是稳定的,而处于激发态的原子是不稳定的.(2)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E 1(E 1<0),电子质量为m ,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h ).[思路点拨] 根据玻尔原子理论与能量守恒定律求解.[解析] 根据玻尔理论,氢原子中电子离原子核越远,氢原子能量越大,根据能量守恒定律可知:h ν+E 1=12mv 2,所以电子速度为:v =2(hν+E 1)m .[答案] 越大2(hν+E1)m电子被电离后可认为离原子核无限远,即电子的电势能为零,所以此时电子的能量等于电子的动能.1.(多选)按照玻尔原子理论,下列表述正确的是( )A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=E m-E n(m>n) D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量解析:选BC.根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A 错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.对氢原子能级跃迁的理解1.能级跃迁处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.如图带箭头的竖线表示原子由较高能级向较低能级的跃迁.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为:N=n(n-1)2=C2n.2.根据玻尔理论,当氢原子从高能级跃迁到低能级时以光子的形式放出能量.原子在始、末两个能级E m和E n(m>n)间跃迁时,辐射光子的能量等于前后两个能级之差(hν=E m-E n),由于原子的能级不连续,所以辐射的光子的能量也不连续,因此产生的光谱是分立的线状光谱.3.原子能量的变化(1)光子的发射原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.hν=E m-E n(E m、E n是始、末两个能级且m>n)能级差越大,放出光子的频率就越高.(2)光子的吸收由于原子的能级是一系列不连续的值,任意两个能级差也是不连续的,故原子发射一些特定频率的光子,同样也只能吸收一些特定频率的光子,原子吸收光子后会从较低能级向较高能级跃迁,吸收光子的能量仍满足hν=E m-E n.(m>n)(3)原子能量的变化当轨道半径减小时,库仑引力做正功,原子的电势能E p减小,电子动能增大,原子能量减小.反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大.4.原子跃迁时需注意的几个问题(1)注意一群原子和一个原子氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.(2)注意直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况的辐射(或吸收)光子的频率不同.(3)注意跃迁与电离原子跃迁时,不管是吸收还是辐射光子,其光子的能量都必须等于这两个能级的能量差.若想把处于某一定态上的原子的电子电离出去,就需要给原子一定的能量.如基态氢原子电离,其电离能为13.6 eV,只要能量等于或大于13.6 eV的光子都能被基态氢原子吸收而电离,只不过入射光子的能量越大,原子电离后产生的电子具有的动能越大.(1)对于处于高能级状态的一群氢原子,每个原子都能向低能级状态跃迁,且跃迁存在多种可能,有的可能一次跃迁到基态,有的可能经几次跃迁到基态.同样,处于基态的氢原子吸收不同能量时,可以跃迁到不同的激发态.(2)实物粒子和原子碰撞时,由于实物粒子的动能可全部或部分地被原子吸收,所以只要入射粒子的动能大于或等于原子某两定态能量之差,就可使原子受激发而向较高能级跃迁.大量氢原子处于不同能量激发态,发生跃迁时放出三种不同能量的光子,其能量值分别是:1.89 eV,10.2 eV,12.09 eV.跃迁发生前这些原子分布在________个激发态能级上,其中最高能级的能量值是________eV(基态能量为-13.6 eV).[思路点拨] 由于发出三种不同能量的光子,由N =n (n -1)2可知,大量氢原子跃迁前处于n =2和n =3两个激发态上.[解析] 大量氢原子跃迁发出三种不同能量的光子,跃迁情况为n =3的激发态到n =2的激发态或直接到n =1的基态,也可能是n =2的激发态到n =1的基态,所以跃迁发生前这些原子分布在2个激发态能级上,最高能量值满足E =-13.6 eV +12.09 eV ,即E 为-1.51 eV.[答案] 2 -1.51解答本题的关键是对氢原子的能级跃迁有深刻的理解.2.如图为氢原子能级示意图的一部分,则氢原子( )A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大C .若要从低能级跃迁到高能级,必须吸收光子D .从高能级向低能级跃迁时,氢原子核一定向外放出能量解析:选A.氢原子跃迁时辐射出电磁波,h ν=hc λ=E m -E n =ΔE .可见λ与ΔE 成反比,由能级图可得从n =4能级跃迁到n =3能级时,ΔE =0.66 eV ,从n =3能级跃迁到n =2能级时,ΔE =1.89 eV ,所以A 正确;电磁波的速度都等于光速,B 错误;若有电子去碰撞氢原子,入射电子的动能可全部或部分被氢原子吸收,所以只要入射电子的动能大于氢原子两个能级之间的能量差,也可使氢原子由低能级向高能级跃迁,C 错误;从高能级向低能级跃迁时,是氢原子向外放出能量,而非氢原子核,D 错误.对氢原子光谱的理解1.对氢原子光谱的几点说明氢原子是自然界中最简单的原子,通过对它的光谱线的研究,可以了解原子的内部结构和性质.氢原子光谱线是最早发现、研究的光谱线.(1)氢光谱是线状的,不连续的,波长只能是分立的值.(2)谱线之间有一定的关系,可用一个统一的公式1λ=R ⎝ ⎛⎭⎪⎫1m 2-1n 2表达. 式中m =2对应巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5….其谱线称为巴尔末线系,是氢原子核外电子由高能级跃迁至n =2的能级时产生的光谱,其中H α~H δ在可见光区.由于光的频率不同,其颜色不同.m =1 对应赖曼线系;m =3 对应帕邢线系即赖曼线系(在紫外区)1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4… 帕邢线系(在红外区)1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4,5,6… 2.玻尔理论对氢光谱的解释(1)理解导出的氢光谱规律:按玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量:hν=E n -E 2,但E n =E 1n 2,E 2=E 122,由此可得:hν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于ν=c λ,所以上式可写作:1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,此式与巴尔末公式比较,形式完全一样.由此可知,氢光谱的巴尔末系是电子从n =3,4,5,6等能级跃迁到n =2的能级时辐射出来的.(2)成功方面①运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了其能级图.②处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.③导出了巴尔末公式,并从理论上算出了里德伯常量R的值,并很好地解释甚至预言了氢原子的其他谱线系.④能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分.(3)局限性和原因①局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍微复杂原子的光谱.②原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.(多选)关于巴尔末公式1λ=R⎝⎛⎭⎪⎫122-1n2的理解,正确的是( )A.此公式是巴尔末在研究氢光谱特征时发现的B.公式中n可取任意值,故氢光谱是连续谱C.公式中n只能取不小于3的整数,故氢光谱是线状谱D.公式不但适用于氢光谱的分析,也适用于其他原子的光谱分析[思路点拨] 根据巴尔末公式及氢原子能量的量子化解答.[解析] 此公式是巴尔末在研究氢光谱在可见光区的谱线时得到的,只适用于氢光谱的分析,且n只能取大于等于3的正整数,则λ不能取连续值,故氢原子光谱是线状谱.故选AC.[答案] AC3.对于巴尔末公式下列说法正确的是( )A.所有氢原子光谱的波长都与巴尔末公式相对应B.巴尔末公式只确定了氢原子发光的可见光部分的光的波长C.巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D.巴尔末公式确定了各种原子发光中的光的波长解析:选 C.巴尔末公式只确定了氢原子发光中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确.原子的能量与能量变化1.原子的能量包括电子绕核运动的动能和电子与核系统具有的电势能.(1)电子的动能电子绕核做圆周运动所需向心力由库仑力提供 k e 2r 2=m v 2r ,故E k n =12mv 2n =ke 22r n. (2)系统的电势能电子在半径为r n 的轨道上所具有的电势能E p n =-ke 2r n(E p ∞=0). (3)原子的能量E n =E k n +E p n =ke 22r n +-ke 2r n =-ke 22r n. 即电子在半径大的轨道上运动时,动能小,电势能大,原子能量大.2.跃迁时电子动能、原子电势能与原子能量的变化:当原子从高能级向低能级跃迁时,轨道半径减小,库仑引力做正功,原子的电势能E p 减小,电子动能增大,向外辐射能量,原子能量减小.反之,原子电势能增大,电子动能减小,原子能量增大.氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV.电子的质量m =9.1×10-31kg ,电荷量e =1.6×10-19 C .求氢原子处于基态时:(1)电子的动能;(2)原子的电势能.[思路点拨] 电子绕核运动的动能可根据库仑力充当向心力求出,电子在某轨道上的动能与电势能之和,为原子在该定态的能量E n ,即E n =E k n +E p n ,由此可求得原子的电势能.[解析] (1)设处于基态的氢原子核外电子速度为v 1,则k e 2r 21=mv 21r 1所以电子动能E k1=12mv 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19 eV ≈13.6 eV. (2)因为E 1=E k1+E p1所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.[答案] (1)13.6 eV (2)-27.2 eV该类问题是玻尔氢原子理论与经典电磁理论的综合应用,用电子绕核的圆周运动规律与轨道半径公式、能级公式的结合求解.4.氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( )A .原子要吸收光子,电子的动能增大,原子的电势能增大B .原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大解析:选 D.根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错误;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r,又E k=12mv 2,所以E k =ke22r .由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错误;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.[随堂检测]1.(多选)由玻尔理论可知,下列说法中正确的是( ) A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量C .原子内电子的可能轨道是连续的D .原子的轨道半径越大,原子的能量越大解析:选BD.按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,很短时间内电子的能量就会消失,与客观事实相矛盾,由玻尔假设可知选项A 、C 错误,B 正确;原子轨道半径越大,原子能量越大,选项D 正确.2.白炽灯发光产生的光谱是( ) A .连续光谱 B .明线光谱 C .原子光谱D .吸收光谱解析:选A.白炽灯发光属于炽热的固体发光,所以发出的是连续光谱.3.如图所示是某原子的能级图a 、b 、c 为原子跃迁所发出的三种波长的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )解析:选C.能量越大,频率越高,波长越短,根据能级图可以看出,三种光的能量按a 、c 、b 的顺序依次降低,所以波长也是按这个顺序依次增大.4.试计算氢原子光谱中巴尔末系的最长波和最短波的波长各是多少?解析:根据巴尔末公式:1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,n =3,4,5,…可得λ=1R ⎝ ⎛⎭⎪⎫122-1n 2(n =3,4,5,…).当n =3时波长最长,其值为λmax =1R ⎝ ⎛⎭⎪⎫122-1n 2=1536R=1536×1.10×107 m ≈6.55×10-7m ,当n →∞时,波长最短,其值为λmin =1R ⎝ ⎛⎭⎪⎫122-0=4R=41.10×107 m ≈3.64×10-7m.答案:6.55×10-7m 3.64×10-7m[课时作业]一、单项选择题1.关于玻尔的原子模型理论,下列说法正确的是( ) A .原子可以处于连续的能量状态中 B .原子的能量状态不是连续的C.原子中的核外电子绕核做变速运动一定向外辐射能量D.原子中的电子绕核运动的轨道半径是连续的解析:选B.玻尔依据经典物理在原子结构问题上遇到了困难,引入量子化观念建立了新的原子模型理论,主要内容为:电子轨道是量子化的,原子的能量是量子化的,处在定态的原子不向外辐射能量.由此可知B正确.2.关于光谱,下列说法正确的是( )A.一切光源发出的光谱都是连续谱B.一切光源发出的光谱都是线状谱C.稀薄气体发出的光谱是线状谱D.作光谱分析时,利用连续谱和线状谱都可以鉴别物质和确定物质的化学组成解析:选C.不同光源发出的光谱有连续谱,也有线状谱,故A、B错误.稀薄气体发出的光谱是线状谱,C正确.利用线状谱和吸收光谱都可以进行光谱分析,D错误.3.一个氢原子从n=3能级跃迁到n=2能级,该氢原子( )A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少解析:选 B.由玻尔理论可知,氢原子由高能级向低能级跃迁时,辐射出光子,原子能量减少.4.汞原子的能级图如图所示,现让一束单色光照射到大量处于基态的汞原子上,汞原子只发出三种不同频率的单色光,那么,关于入射光的能量,下列说法正确的是( )A.可能大于或等于7.7 eVB.可能大于或等于8.8 eVC.一定等于7.7 eVD.包含2.8 eV,5 eV,7.7 eV三种解析:选 C.由玻尔理论可知,轨道是量子化的,能级是不连续的,只能发射不连续的单色光,于是要发出三种不同频率的光,只有从基态跃迁到n=3的激发态上,其能量差ΔE =E3-E1=7.7 eV,选项C正确,A、B、D错误.5.已知处于某一能级n上的一群氢原子向低能级跃迁时,能够发出10种不同频率的光,下列能表示辐射光波长最长的那种跃迁的示意图是( )解析:选 A.根据玻尔理论,波长最长的跃迁对应着频率最小的跃迁,根据氢原子能级图,频率最小的跃迁对应的是从5到4的跃迁,选项A正确.6.如图甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )A.a元素B.b元素C.c元素D.d元素解析:选B.把矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选项B正确,与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.二、多项选择题7.根据玻尔理论,氢原子中量子数n越大( )A.电子的轨道半径越大B.核外电子的速率越大C.氢原子能级的能量越大D.核外电子的电势能越大解析:选ACD.根据玻尔理论,氢原子中量子数n越大,电子的轨道半径就越大,A正确;核外电子绕核做匀速圆周运动,库仑力提供向心力k e2r2=mv2r,则半径越大,速率越小,B错误;量子数n越大,氢原子所处的能级能量就越大,C正确;电子远离原子核的过程中,电场力做负功,电势能增大,D正确.8.关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是( )A.经典电磁理论很容易解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的D .氢原子光谱彻底否定了经典电磁理论解析:选BC.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上,经典物理学无法解释原子的稳定性,并且原子光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,而是要引入新的观念.故正确答案为B 、C.9.如图所示,氢原子可在下列各能级间发生跃迁,设从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则下列关系式中正确的是( )A .λ1<λ3B .λ3<λ2C .λ3>λ2D .1λ3=1λ1+1λ2解析:选AB.已知从n =4到n =1能级辐射的电磁波的波长为λ1,从n =4到n =2能级辐射的电磁波的波长为λ2,从n =2到n =1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h c λ1>h c λ3>h c λ2,即1λ1>1λ3,λ1<λ3,1λ3>1λ2,λ3<λ2,又h c λ1=h c λ3+h c λ2,即1λ1=1λ3+1λ2,则1λ3=1λ1-1λ2,即正确选项为A 、B.10.氢原子能级如图,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级解析:选CD.根据氢原子的能级图和能级跃迁规律,当氢原子从n =2能级跃迁到n =1的能级时,辐射光的波长一定小于656 nm ,因此A 选项错误;根据发生跃迁只能吸收和辐。
高二物理选修学案:《氢原子光谱与能级结构》
第四节氢原子光谱与能级结构学案【学习目标】(1)了解光谱的定义和分类;(2)了解氢原子光谱的实验规律,知道巴耳末系;(3)了解经典原子理论的困难。
【学习重点】氢原子光谱的实验规律。
【知识要点】1、光谱早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。
(1)发射光谱物体发光直接产生的光谱叫做发射光谱。
发射光谱可分为两类:连续光谱和明线光谱。
稀薄气体或金属的蒸气的发射光谱是明线光谱。
明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。
实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。
(2)吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。
这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。
因此吸收光谱中的暗谱线,也是原子的特征谱线。
(3)光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定的化学组成。
这种方法叫做光谱分析。
原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。
2、氢原子光谱的实验规律氢原子是最简单的原子,其光谱也最简单。
(课件展示)4、玻尔理论对氢光谱的解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。
激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。
(2)原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。
原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
5、玻尔理论的局限性玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础。
高中物理 第2章 原子结构 第4讲 氢原子光谱与能级结构学案 鲁科版选修
高中物理第2章原子结构第4讲氢原子光谱与能级结构学案鲁科版选修1、知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量、2、理解玻尔理论对氢原子光谱规律的解释、一、氢原子光谱1、氢原子光谱的特点:(1)从红外区到紫外区呈现多条具有确定波长的谱线;(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性、2、巴尔末公式:=R(n=3,4,5,…)其中R叫做里德伯常量,其值为R=1、09677581107 m-1、二、玻尔理论对氢原子光谱的解释1、巴尔末系氢原子从n≥3的能级跃迁到n=2的能级得到的线系、2、玻尔理论的局限性玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大、一、氢原子光谱的实验规律1、氢原子的光谱从氢气放电管可以获得氢原子光谱,如图1所示、图12、氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性、3、巴尔末公式(1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式:=R(-)n=3,4,5…该公式称为巴尔末公式、(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值、4、赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系、例如:赖曼线系(在紫外区):=R(n=2,3,4,…)帕邢线系(在红外区):=R(n=4,5,6,…)例1 下列关于巴尔末公式=R的理解,正确的是()A、此公式是巴尔末在研究氢原子光谱特征时发现的B、公式中n可取任意值,故氢原子光谱是连续的光谱C、公式中n只能取不小于3的整数值,故氢原子光谱是分立的光谱D、公式不但适用于氢原子的光谱,也适用于其他原子的光谱答案AC解析此公式是巴尔末在研究氢原子光谱在可见光区的14条谱线中得到的,只适用于氢原子光谱的分析,且n只能取大于等于3的整数,则λ不能取连续值,故氢原子光谱是分立的光谱,故A、C对,B、D错、二、玻尔理论对氢原子光谱的解释1、理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n跃迁到能量较低的轨道2时辐射出的光子能量hν=En-E2,又En=,E2=,由此可得hν=-E1,由于ν=,所以上式可写作=-,此式与巴尔末公式比较,形式完全一样、由此可知,氢光谱的巴尔末线系是电子从n=3,4,5,…等能级跃迁到n=2的能级时辐射出来的、2、玻尔理论的成功之处(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图、(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的、(3)导出了巴尔末公式,并从理论上算出了里德伯常量R的值,并很好地解释甚至预言了氢原子的其他谱线系、(4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分、例2 氢原子光谱的巴尔末公式是=R(n=3,4,5,…),对此,下列说法正确的是()A、巴尔末依据核式结构理论总结出巴尔末公式B、巴尔末公式反映了氢原子发光的连续性C、巴尔末依据对氢原子光谱的分析总结出巴尔末公式D、巴尔末公式准确反映了氢原子所有光谱的波长,其波长的分立值不是人为规定的答案C解析巴尔末公式只确定了氢原子发光中的一个线系波长,不能描述氢原子发出的各种光的波长,也不能描述其他原子发出的光,故D错误、巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,故A、B错误,C正确、借题发挥巴尔末公式的应用方法及注意问题(1)巴尔末公式反映了氢原子发光的规律特征,不能描述其他原子、(2)公式中n只能取大于等于3的整数,不能连续取值,因此波长也只是分立的值、(3)公式是在对可见光区的四条谱线分析时总结出的,但在紫外区的谱线也适用、(4)应用时熟记公式,当n取不同值时求出对应的波长λ、氢原子光谱的基本概念1、下列有关氢原子光谱、巴尔末公式和玻尔理论的说法,正确的是()A、氢原子光谱说明氢原子只能发出特定频率的光B、氢原子光谱说明氢原子能级是分立的C、氢原子光谱线的频率与氢原子能级的能量差无关D、所有氢原子光谱的波长都与巴尔末公式相对应答案AB2、仔细观察氢原子的光谱,发现它只有几条不连续的亮线,其原因是()A、氢原子只有几个能级B、氢原子只能发出平行光C、氢原子有时发光,有时不发光D、氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的答案D氢原子光谱的实验规律3、下列对于巴尔末公式的说法正确的是()A、所有氢原子光谱的波长都与巴尔末公式相对应B、巴尔末公式只确定了氢原子发出的可见光部分的光的波长C、巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D、巴尔末公式确定了各种原子发光中的光的波长答案C解析巴尔末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确、4、巴尔末系谱线波长满足巴尔末公式=R(-),n=3,4,5,……在氢原子光谱可见光(400 nm<λ<700 nm)区,最长波长与最短波长之比为()A、B、C、D、答案D解析巴尔末系的前四条谱线在可见光区,n的取值分别为3、4、5、6、n越小,λ越大,故n=3时波长最大,λmax =;n=6时对应的可见光波长最小,λmin=,故=,D正确、(时间:60分钟)题组一对氢原子光谱和特征谱线的理解1、下列叙述中符合物理学史实的有()A、汤姆孙通过研究阴极射线实验,发现了电子的存在B、卢瑟福通过对α粒子散射实验现象的分析,证明了原子是可以再分的C、巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式D、玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说答案AC解析汤姆孙通过研究阴极射线实验,发现了电子,证实了原子是可以再分的,A对、B错;玻尔提出的原子模型继承了卢瑟福原子核式结构模型的部分内容,而不是彻底否定,D 错;巴尔末总结出了氢原子光谱的巴尔末公式,故C正确、2、下列对氢原子光谱实验规律的认识中,正确的是()A、因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光B、氢原子产生的光谱是一系列波长不连续的谱线C、氢原子产生的光谱是一系列亮度不连续的谱线D、氢原子产生的光的波长大小与氢气放电管放电强弱有关答案B解析氢原子光谱是线状谱,波长是一系列不连续的、分立的特征谱线,并不是只含有一种波长的光,也不是亮度不连续的谱线,B对,A、C错;氢原子光谱是氢原子的特征谱线,只要是氢原子发出的光的光谱就相同,与放电管的放电强弱无关,D错、3、如图1甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )图1A、a元素B、b元素C、c元素D、d元素答案B解析由矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选B、与几个元素的特征谱线不对应的线说明该矿物中还有其他元素、题组二氢原子光谱规律的应用4、已知氢原子的基态能量为E1,激发态能量En=,其中n=2,3,…,用h表示普朗克常量,c表示真空中的光速、能使氢原子从第一激发态电离的光子的最大波长为()A、-B、-C、-D、-答案C解析根据从第一激发态到电离状态吸收的能量ΔE=0-=-,根据ΔE=hν,ν=,可知λ===-,因此正确答案为C、5、氢原子光谱巴尔末系最小波长与最大波长之比为()A、B、C、D、答案A解析由巴尔末公式=R(-),n=3,4,5,…当n =∞时,有最小波长λ1,=R,当n=3时,有最大波长λ2,=R(-),得=、6、氢原子光谱的巴尔末系中波长最长的光波的光子能量为E1,其次为E2,则为()A、B、C、D、答案A解析由=R得:当n=3时,波长最长,=R,当n=4时,波长次之,=R,解得:=,由E=h得:==,故A对、7、密立根油滴实验进一步证实了电子的存在、1885年瑞士的中学教师巴尔末发现,氢原子光谱中可见光部分的四条谱线的波长可归纳成一个简单的经验公式:=R(-),n为大于2的整数,R 为里德伯常量、1913年,丹麦物理学家玻尔受到巴尔末公式的启发,同时还吸取了普朗克的量子假说、爱因斯坦的光子假说和卢瑟福的原子核式结构模型,提出了自己的原子理论、根据玻尔理论,推导出了氢原子光谱谱线的波长公式:=R(-),m与n都是正整数,且n>m、当m取定一个数值时,不同数值的n得出的谱线属于同一个线系、如:m=1,n=2、3、4、……组成的线系叫赖曼系;m=2,n=3、4、5、……组成的线系叫巴尔末系;m=3,n=4、5、6、……组成的线系叫帕邢系;m=4,n=5、6、7、……组成的线系叫布喇开系;m=5,n=6、7、8、……组成的线系叫普丰德系;以上线系只有一个在紫外光区,这个线系是()A、赖曼系B、帕邢系C、布喇开系D、普丰德系答案A解析在真空中,电磁波的波长和频率互成反比例关系,波长最长的频率最小、紫外光区的频率较大,根据氢原子光谱谱线的波长公式:=R(-)得这个线系是赖曼系、故A正确,B、C、D错误、8、氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为=R,n=4、5、6…,R=1、10107 m-1、若已知帕邢系的氢原子光谱在红外线区域,试求:(1)n=6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多大?n=6时,光的频率为多大?答案(1)1、0910-6 m(2)3、0108 m/s2、751014 Hz解析(1)由帕邢系公式=R,当n=6时,得λ≈1、0910-6 m、(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c=3、0108 m/s,由v==λν,得ν===Hz≈2、751014 Hz、9、在氢原子的光谱的紫外区的谱线系中有多条谱线,试利用莱曼系的公式=R,n=2,3,4,…,计算氢原子光谱紫外线的最长波和最短波的波长、(R=1、10107m-1,结果均保留三位有效数字)答案1、2110-7 m9、0910-8 m解析根据莱曼系公式:=R,n=2,3,4,…可得λ=、当n=2时波长最长,其值为λ===m≈1、2110-7 m、当n=∞时,波长最短,其值为λ===m≈9、0910-8 m、第 1 页共 1 页。
鲁科物理选修35同步第2章第4节氢原子光谱与能级结构PPT课件
第2章 原子结构
课 三、氢原子光谱
核
前
心
自 主
1.氢原子光谱的特点:(1)从红外区到紫外区呈
要 点
学 案
现多条具有确定___波_长____ (或频率)的谱线;(2)从
突 破
长 波 到 短 波 , Hα ~ Hδ 等 谱 线 间 的 距 离
__越__来__越__小____,表现出明显的规律性.
课
知
堂
能
优 化
讲 练
转动而不产生电磁辐射.
训 练
山东水浒书业有限公司·
优化方案系列丛书
第2章 原子结构
课 跃 原子从一种定态跃迁到另一种定态时,吸收(或 核
前 自
迁
辐射)一定__频__率___的光子能量hν,例如,原子
心 要
主 学 案
假 设
从定态E2跃迁到定态E1,辐射的光子能量为 __h_ν_=__E__2-__E__1 __.
主
点
学 来.提出了量子化的原子模型.
突
案
破
思考感悟
课
1.经典电磁理论解释原子光谱遇到的困难说明 知
堂 互
了什么?
能 优
动
化
讲 提示:这说明从宏观现象中总结出来的经典电磁 训
练 理论不适用于微观现象,必须代之以新的理论
练
山东水浒书业有限公司·
优化方案系列丛书
第2章 原子结构
课 前
基本
自 主
假设
内容
核 心 要 点
互
优
动
化
讲
训
练
练
山东水浒书业有限公司·
优化方案系列丛书
第2章 原子结构
课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节氢原子光谱与能级结构[目标定位]1.知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量.2.理解玻尔理论对氢原子光谱规律的解释.一、氢原子光谱 1.氢原子光谱的特点:(1)从红外区到紫外区呈现多条具有确定波长的谱线;(2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式:1λ=R ⎝⎛⎭⎪⎫1-1n 2(n =3,4,5,…)其中R 叫做里德伯常量,其值为R =1.096775 81×107m -1.二、玻尔理论对氢原子光谱的解释 1.巴尔末系氢原子从n ≥3的能级跃迁到n =2的能级得到的线系. 2.玻尔理论的局限性玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大.一、氢原子光谱的实验规律 1.氢原子的光谱从氢气放电管可以获得氢原子光谱,如图1所示.图12.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性. 3.巴尔末公式(1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式: 1λ=R (1-1n2) n =3,4,5…该公式称为巴尔末公式.(2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值.4.赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系.例如:赖曼线系(在紫外区):1λ=R ⎝ ⎛⎭⎪⎫112-1n 2(n =2,3,4,…) 帕邢线系(在红外区):1λ=R ⎝ ⎛⎭⎪⎫132-1n 2(n =4,5,6,…) 例1关于巴耳末公式1λ=R (1-1n2)的理解,下列说法正确的是()A .所有氢原子光谱的波长都可由巴耳末公式求出B .公式中n 可取任意值,故氢原子光谱是连续谱C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 答案C解析只有氢原子光谱中可见光波长满足巴耳末公式,氢原子光谱在红外和紫外光区的其他谱线不满足巴耳末公式,满足的是与巴耳末公式类似的关系式,A 、D 错;在巴耳末公式中的n 只能取不小于3的整数,不能连续取值,波长也只能是分立的值,故氢原子光谱不是连续谱而是线状谱,B 错,C 对. 二、玻尔理论对氢原子光谱的解释1.理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量hν=E n -E 2,又E n =E 1E 2,E 2=E 1,由此可得hν=-E 1⎝ ⎛⎭⎪⎫1-1n 2,由于ν=c λ,所以上式可写作1λ=-E 1hc ⎝ ⎛⎭⎪⎫1-1n2,此式与巴尔末公式比较,形式完全一样.由此可知,氢光谱的巴尔末线系是电子从n =3,4,5,…等能级跃迁到n =2的能级时辐射出来的. 2.玻尔理论的成功之处(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图.(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的.(3)导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系.(4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分. 例2氢原子光谱的巴尔末公式是1λ=R ⎝ ⎛⎭⎪⎫1-1n 2(n =3,4,5,…),对此,下列说法正确的是()A .巴尔末依据核式结构理论总结出巴尔末公式B.巴尔末公式反映了氢原子发光的连续性C.巴尔末依据对氢原子光谱的分析总结出巴尔末公式D.巴尔末公式准确反映了氢原子所有光谱的波长,其波长的分立值不是人为规定的答案C解析巴尔末公式只确定了氢原子发光中的一个线系波长,不能描述氢原子发出的各种光的波长,也不能描述其他原子发出的光,故D错误.巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,故A、B错误,C正确.借题发挥巴尔末公式的应用方法及注意问题(1)巴尔末公式反映了氢原子发光的规律特征,不能描述其他原子.(2)公式中n只能取大于等于3的整数,不能连续取值,因此波长也只是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,但在紫外区的谱线也适用.(4)应用时熟记公式,当n取不同值时求出对应的波长λ.氢原子光谱的基本概念1.(多选)下列有关氢原子光谱、巴尔末公式和玻尔理论的说法,正确的是()A.氢原子光谱说明氢原子只能发出特定频率的光B.氢原子光谱说明氢原子能级是分立的C.氢原子光谱线的频率与氢原子能级的能量差无关D.所有氢原子光谱的波长都与巴尔末公式相对应答案AB2.(多选)有关氢原子光谱的说法正确的是()A.氢原子的发射光谱是连续谱B.氢原子光谱说明氢原子只发出特定频率的光C.氢原子光谱说明氢原子能级是分立的D.氢原子光谱线的频率与氢原子能级的能量差无关答案BC解析原子的发射光谱是原子跃迁时形成的,由于原子的能级是分立的,所以氢原子的发射光谱不是连续谱,原子发出的光子的能量正好等于原子跃迁时的能级差,故氢原子只能发出特定频率的光,综上所述,选项A、D错,B、C对.氢原子光谱的实验规律3.下列对于巴尔末公式的说法正确的是()A.所有氢原子光谱的波长都与巴尔末公式相对应B.巴尔末公式只确定了氢原子发出的可见光部分的光的波长C .巴尔末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D .巴尔末公式确定了各种原子发光中的光的波长 答案C解析巴尔末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A 、D 错误;巴尔末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B 错误,C 正确.4.巴尔末系谱线波长满足巴尔末公式1λ=R (1-1n2),n =3,4,5,……在氢原子光谱可见光(400 nm<λ<700 nm)区,最长波长与最短波长之比为() A.95 B.43 C.98 D.85 答案D解析巴尔末系的前四条谱线在可见光区,n 的取值分别为3、4、5、6.n 越小,λ越大,故n =3时波长最大,λmax =365R ;n =6时对应的可见光波长最小,λmin =92R ,故λmax λmin =85,D 正确.(时间:60分钟)题组一对氢原子光谱和特征谱线的理解 1.(多选)下列叙述中符合物理学史实的有() A .汤姆孙通过研究阴极射线实验,发现了电子的存在B .卢瑟福通过对α粒子散射实验现象的分析,证明了原子是可以再分的C .巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式D .玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构学说 答案AC解析汤姆孙通过研究阴极射线实验,发现了电子,证实了原子是可以再分的,A 对、B 错;玻尔提出的原子模型继承了卢瑟福原子核式结构模型的部分内容,而不是彻底否定,D 错;巴尔末总结出了氢原子光谱的巴尔末公式,故C 正确. 2.下列对氢原子光谱实验规律的认识中,正确的是()A .因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光B .氢原子产生的光谱是一系列波长不连续的谱线C .氢原子产生的光谱是一系列亮度不连续的谱线D .氢原子产生的光的波长大小与氢气放电管放电强弱有关答案B解析氢原子光谱是线状谱,波长是一系列不连续的、分立的特征谱线,并不是只含有一种波长的光,也不是亮度不连续的谱线,B 对,A 、C 错;氢原子光谱是氢原子的特征谱线,只要是氢原子发出的光的光谱就相同,与放电管的放电强弱无关,D 错.3.如图1甲所示的a 、b 、c 、d 为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为()图1A .a 元素B .b 元素C .c 元素D .d 元素 答案B解析由矿物的线状谱与几种元素的特征谱线进行对照,b 元素的谱线在该线状谱中不存在,故选B.与几个元素的特征谱线不对应的线说明该矿物中还有其他元素. 题组二氢原子光谱规律的应用4.已知氢原子的基态能量为E 1,激发态能量E n =E 1n2,其中n =2,3,…,用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为() A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 1答案C解析根据从第一激发态到电离状态吸收的能量ΔE =0-E 1=-E 14,根据ΔE =hν,ν=c λ,可知λ=c ν=hc ΔE =-4hcE 1,因此正确答案为C. 5.氢原子光谱巴尔末系最小波长与最大波长之比为() A.59 B.49 C.79 D.29 答案A解析由巴尔末公式1λ=R (1-1n2),n =3,4,5,…当n =∞时,有最小波长λ1,1λ1=R 1,当n =3时,有最大波长λ2,1λ2=R (1-132),得λ1λ2=59. 6.氢原子光谱的巴尔末系中波长最长的光波的光子能量为E 1,其次为E 2,则E 1E 2为() A.2027 B.2720 C.23 D.32 答案A解析由1λ=R ⎝ ⎛⎭⎪⎫1-1n 2得:当n =3时,波长最长,1λ=R ⎝ ⎛⎭⎪⎫1-132,当n =4时,波长次之,1λ2=R ⎝ ⎛⎭⎪⎫1-142,解得:λ1λ2=2720,由E =h c λ得:E 1E 2=λ2λ1=2027,故A 对. 7.(多选)如图2所示是氢原子的能级图,大量处于n =4激发态的氢原子向低能级跃迁时,一共可以辐射出6种不同频率的光子,其中巴耳末系是指氢原子由高能级向n =2能级跃迁时释放的光子,则()图2A .6种光子中波长最长的是n =4激发态跃迁到基态时产生的B .6种光子中有2种属于巴耳末系C .使n =4能级的氢原子电离至少要0.85 eV 的能量D .从n =2能级跃迁到基态释放的光子的能量比从n =3能级跃迁到n =2能级释放的光子的能量小 答案BC解析根据跃迁假说在跃迁的过程中释放出光子的能量等于两能级之差,故从n =4跃迁到n =3时释放出光子的能量最小,频率最小,波长最长,所以A 错误;由题意知6种光子中有2种属于巴耳末系,他们分别是从n =4跃迁到n =2,从n =3跃迁到n =2时释放处的光子,故B 正确;E 4=0.85 eV ,故n =4能级的电离能等于0.85 eV ,所以C 正确;由图知,从n =3能级跃迁到n =2能级释放的光子的能量小于n =2能级跃迁到基态释放的光子的能量,所以D 错误.8.氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,n =4、5、6…,R =1.10×107 m -1.若已知帕邢系的氢原子光谱在红外线区域,试求:(1)n =6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多大?n =6时,光的频率为多大? 答案(1)1.09×10-6m (2)3.0×108m/s2.75×1014Hz解析(1)由帕邢系公式1λ=R ⎝ ⎛⎭⎪⎫132-1n 2,当n =6时,得λ≈1.09×10-6m.(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c =3.0×108m/s ,由v =λT =λν,得ν=v λ=c λ=3×1081.09×10-6 Hz≈2.75×1014Hz.9.在氢原子的光谱的紫外区的谱线系中有多条谱线,试利用莱曼系的公式1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4,…,计算氢原子光谱紫外线的最长波和最短波的波长.(R =1.10×107m -1,结果均保留三位有效数字)答案1.21×10-7m9.09×10-8m 解析根据莱曼系公式:1λ=R ⎝ ⎛⎭⎪⎫112-1n 2,n =2,3,4,… 可得λ=1R ⎝ ⎛⎭⎪⎫112-1n 2.当n =2时波长最长,其值为λ=1R ⎝ ⎛⎭⎪⎫112-1=134R =134×1.10×107 m≈1.21×10-7m.当n =∞时,波长最短,其值为λ=1R ⎝ ⎛⎭⎪⎫112-0=1R =11.10×107 m≈9.09×10-8m.。