数学建模答案3(新)
数学建模竞赛参考答案
数学建模竞赛参考答案数学建模竞赛参考答案数学建模竞赛是一项旨在培养学生综合运用数学知识和解决实际问题能力的竞赛活动。
参赛者需要通过分析问题、建立数学模型、求解问题等环节,最终给出合理的答案和解决方案。
在这篇文章中,我们将为大家提供一些数学建模竞赛的参考答案,希望能够给参赛者们提供一些启示和帮助。
第一题:某公司的销售额预测问题描述:某公司希望通过过去几年的销售数据,预测未来一年的销售额。
请根据给定的销售数据,建立合适的数学模型,并给出未来一年的销售额预测值。
解答思路:根据问题描述,我们可以将销售额看作是时间的函数,即销售额随时间变化。
可以使用回归分析的方法来建立数学模型。
首先,我们将销售额作为因变量,时间作为自变量,通过拟合曲线来预测未来一年的销售额。
我们可以选择多项式回归模型来拟合曲线。
通过将时间作为自变量,销售额作为因变量,进行多项式回归分析,可以得到一个多项式函数,该函数可以描述销售额随时间变化的趋势。
然后,我们可以使用该多项式函数来预测未来一年的销售额。
将未来一年的时间代入多项式函数中,即可得到未来一年的销售额预测值。
第二题:城市交通流量优化问题描述:某城市的交通流量问题日益突出,如何优化交通流量成为了当地政府亟待解决的难题。
请根据给定的交通数据和道路拓扑结构,建立合适的数学模型,并给出交通流量优化的方案。
解答思路:根据问题描述,我们可以将城市的交通流量看作是网络中的流量分配问题。
可以使用网络流模型来建立数学模型。
首先,我们需要将城市的道路网络抽象成一个有向图,节点表示交叉口,边表示道路,边上的权值表示道路的容量。
然后,我们可以使用最小费用最大流算法来求解交通流量优化的方案。
该算法可以通过调整道路上的流量分配,使得整个网络中的流量达到最大,同时满足道路容量的限制。
通过计算最小费用最大流,可以得到交通流量优化的方案。
最后,我们可以根据最小费用最大流算法的结果,对交通流量进行合理调控。
例如,可以调整信号灯的时长,优化交通信号控制系统,减少交通拥堵现象,提高交通效率。
数学建模知到章节答案智慧树2023年山东师范大学
数学建模知到章节测试答案智慧树2023年最新山东师范大学第一章测试1.人类研究原型的目的主要有()。
参考答案:优化;预测;评价;控制2.概念模型指的是以图示、文字、符号等组成的流程图形式对事物的结构和机理进行描述的模型。
()参考答案:对3.数学建模的全过程包括()。
参考答案:模型应用;模型检验;模型求解;模型建立4.下面()不是按问题特性对模型的分类。
参考答案:交通模型5.椅子放稳问题中,如果椅子是长方形的,则不能在不平的地面上放稳。
()参考答案:错第二章测试1.山崖高度的估计模型中,测量时间中需要考虑的时间包括()。
参考答案:物体下落的时间;声音返回的时间;人体的反应时间2.落体运动模型当阻力趋于零时变为自由落体模型。
()参考答案:对3.安全行车距离与()有关。
参考答案:车辆速度;车辆品牌;驾驶员水平4.人体反应时间的确定一般使用测试估计法进行。
()参考答案:对5.当车速为80-120千米/小时时,简便的安全距离判断策略是()。
参考答案:等于车速1.存贮模型的建模关键是()。
参考答案:一个周期内存贮量的确定2.下面对简单的优化模型的描述()是正确的。
参考答案:没有约束条件的优化模型3.商品生产费用因为数值太小,所以不需要考虑。
()参考答案:错4.同等条件下,允许缺货时的生产周期比不允许缺货时的生产周期()。
参考答案:偏大5.开始灭火后,火灾蔓延的速度会()。
参考答案:变小1.如果工人工作每小时的影子价格是2元,则雇佣工人每小时的最高工资可以是3元。
()参考答案:错2.下面关于线性规划的描述正确的是()。
参考答案:可行域是凸多边形;最优解可以在可行域内部取得;目标函数是线性的;约束条件是线性的3.在牛奶加工模型中,牛奶资源约束是紧约束。
()参考答案:对4.在牛奶加工模型中,A1的价格由24元增长到25元,应该生产计划。
()参考答案:错5.求整数规划时,最优解应该采用()获得。
参考答案:使用整数规划求解方法重新求解1.人口过多会带来()。
数学建模题目附标准答案
各种信息。用数学语言来描述问题。 2 模型假设:根据实际对象的特征和建模的目的,对问题进行必要
的简化,并用精确的语言提出一些恰当的假设。猫虿驢绘燈鮒诛髅貺庑。 3 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量
现在,我们来证明:如果上述假设条 件成立,那么答案是肯定的。以长方桌的中 心为坐标原点作直角坐标系如图所示,方桌 的四条腿分别在 A、B、C、D 处,A、B,C、D 的初始位置在与 x 轴平行,再假设有一条在 x 轴上的线 ab,则 ab 也与 A、B,C、D 平行。当方桌绕中心 0 旋转时, 对角线 ab 与 x 轴的夹角记为 。矚慫润厲钐瘗睞枥庑赖。
本题就是让我们根据本题就是让我们根据本题就是让我们根据aa来确定每日进购数来确定每日进购数来确定每日进购数nn基本假设基本假设基本假设111假设报童现在要与报社签定一个长期的订购合同所以要确假设报童现在要与报社签定一个长期的订购合同所以要确假设报童现在要与报社签定一个长期的订购合同所以要确定每日的订购量定每日的订购量定每日的订购量nn假设报纸每日的需求量是假设报纸每日的需求量是假设报纸每日的需求量是rr但报童是一个初次涉足卖报行业但报童是一个初次涉足卖报行业但报童是一个初次涉足卖报行业的菜鸟毫无经验无法掌握需求量的菜鸟毫无经验无法掌握需求量的菜鸟毫无经验无法掌握需求量rr的分布函数的分布函数的分布函数只知道每份报纸只知道每份报纸只知道每份报纸的进价的进价的进价bbb售价售价售价aa及退回价及退回价及退回价cc333假设每日的定购量是假设每日的定购量是假设每日的定购量是nn444报童的目的是尽可能的多赚钱
最后重点分析(2)式。
显然式中 r 表需求量,n 表订购量,(b-c)表示退回一份儿报纸赔
数学建模复习资料参考答案
《数学建模》复习资料参考答案一、不定项选择1、建模能力包括 A、B、C、D 。
A、理解实际问题的能力B、抽象分析问题的能力C、运用工具知识的能力D、试验调试的能力2、按照模型的应用领域分的模型有 A、E 。
A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型3、对黑箱系统一般采用的建模方法是 C 。
A、机理分析法B、几何法C、系统辩识法D、代数法4、一个理想的数学模型需满足 A、B 。
A、模型的适用性B、模型的可靠性C、模型的复杂性D、模型的美观性5、按照建立模型的数学方法分的模型有 B、C、D 。
A、传染病模型B、代数模型C、几何模型D、微分模型E、生态模型6、下列说法正确的有 A、C 。
A、评价模型优劣的唯一标准是实践检验。
B、模型误差是可以避免的。
C、生态模型属于按模型的应用领域分的模型。
D、白箱模型意味着人们对原型的内在机理了解不清楚。
7、力学中把 A 的量纲作为基本量纲。
A、质量、长度、时间B、密度、时间、长度C、质量、密度D、时间、长度8、下列说法错误的有 B 。
A、评价模型优劣的唯一标准是实践检验。
B、模型误差是可以避免的。
C、生态模型属于按模型的应用领域分的模型。
D、白箱模型意味着人们对原型的内在机理了解清楚。
9、建立数学模型的方法和步骤有ABCDE。
A、模型假设。
B、模型求解。
C、模型构成。
D、模型建立。
E、模型分析。
10、模型按照替代原型的方式可以简单分为AB。
A、形象模型B、抽象模型C、生态模型D、白箱模型11、形象模型可以具体分为ABC。
A.直观模型B、物理模型C、分子结构模型等;12、抽象模可以具体分为ABC。
A 思维模型B符号模型C数学模型D分子结构模型13建模的一般原则为ABCD。
A目的性原则B简明性原则C真实性原则D全面性原则;14 模型的结构大致分为ABC。
A、灰箱模型B、白箱模型C、黑箱模型15A、建立递阶层次结构模型;B、构造出各层次中的所有判断矩阵;C、层次单排序及一致性检验;D、层次总排序及一致性检验。
数学建模答案 (3)
一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了某种特定的目的将原型的某一部分信息简化、压缩、提炼而构成的原型替代物。
如地图。
苯分子图等。
2.数学模型答:由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。
3.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型。
从实际的人、物、事和概念中抽取所关心的共同特性,忽略非本质的细节把这些特性用各种概念精确地加以描述。
二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类。
形象模型:直观模型,物理模型,分子模型等;抽象模型:思维模型,符号模型,数学模型等。
2.数学建模的基本步骤(1) 建模准备:确立建模课题的过程;(2) 建模假设:根据建模的目的将原型进行抽象,简化.有目的性的原则。
简明性原则,真实性原则和全面性原则。
(3) 构造模型:在模型假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻画实际问题的数学模型;(4) 模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;(5) 模型分析:根据建模的目的的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;(6) 模型检验:模型分析符合要求之后,还必须回到客观中去对模型进行检验,看它是否符合客观实际;(7) 数学应用:模型应用是数学建模的宗旨,将其用于分析,研究和解决实际问题,充分发挥建模在生产和科研中的特殊作用。
3.数学模型的作用数学模型的根本作用在于他将客观原型化繁为简,化难为易,便于人们采用定量的方法去分析和解决实际问题。
正应为如此,数学建模在科学发展,科学预见,科学预测,科学管理,科学决策,驾控市场乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。
数学建模答案(完整版)
1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。
数学建模第三版习题答案
数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。
《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。
在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。
第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。
2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。
3. 数学建模的分类:确定性建模和随机建模。
4. 数学建模的特点:抽象性、理想化、简化性和应用性。
第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。
2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。
3. 线性规划模型的应用:生产计划、资源分配、运输问题等。
第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。
2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。
3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。
第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。
2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。
3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。
第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。
2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。
3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。
第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。
2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。
数学建模习题3答案
2.某种山猫在较好的,中等及较差的自然环境下,年平均增长率分别是1.68%,0.55%,-4.5%。
假设开始时有100只山猫,按以下情况分别讨论山猫数量逐年变化的过程及趋势:(1)三种自然环境下25年的变化过程,结果要列表并图示;解:首先讨论紫檀环境下山猫的数量的演变。
记k年山猫的数量为x k,设自然条件下的年平均增长率为r(相当于假设年增长率r为常数),则列式得:X k+1=x k*(1+r),k=0,1,2,……解为等比数列X k=x0*(1+r)k ,k=0,1,2,……在以下的Matlab的程序里,分别取r=0.0168,0.0055,-0.045,取初始值x0 =100,用循环语句迭代计算出25年不同自然环境下山猫的数量的演变过程,将结果列表并绘图:n=25;r=[.0168,.0055,-.045];x=[100,100,100];for k=1:nx(k+1,:)=x(k,:).*(1+r);enddisp('自然条件下(b=0)山猫的数量的演变')%列表自然条件下(b=0)山猫的数量的演变disp(' 年较好中等较差') %每列项目的名称年较好中等较差disp([(0:n)',round(x)]) %舍入为整数,列表0 100 100 1001 102 101 962 103 101 913 105 102 874 107 102 835 109 103 796 111 103 767 112 104 728 114 104 699 116 105 6610 118 106 6311 120 106 6012 122 107 5813 124 107 5514 126 108 5215 128 109 5016 131 109 4817 133 110 4618 135 110 4419 137 111 4220 140 112 4021 142 112 3822 144 113 3624 149 114 3325 152 115 32plot(0:n,x(:,1),'k^',0:n,x(:,2),'ko',0:n,x(:,3),'kv')legend('r=0.0168','r=0.0055','r=-0.045',2)axis([-1,n+1,0,200])title('自然条件下(b=0)山猫数量的演变')xlabel('第k年'),ylabel('山猫的数量')(2)如果每年捕获三只,山猫的数量将会如何变化?会灭绝吗?如果每年捕获一只呢?解:讨论每年捕获三只条件下山猫数量的演变。
数学建模知到章节答案智慧树2023年哈尔滨师范大学
数学建模知到章节测试答案智慧树2023年最新哈尔滨师范大学第一章测试1.数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用,是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
参考答案:对2.数学模型是为了特定的目的,根据所研究对象的内在规律,经过必要的简化假设,再运用适当的数学工具而得到的一个数学结构。
参考答案:错3.模型是为了某个特定的目的,将原型的全部信息采集经过缜密的加工处理得到的原型拓展。
参考答案:错4.人物写生课堂上真人模特是_____。
参考答案:原型5.画师与人物写生课堂上的真人模特之间的关系是_____。
参考答案:临摹者与被临摹者6.数学模型不是原型的复制品,而是为了一定的目的,对原型所作的一种_____。
参考答案:抽象模拟7.数学在形成人类_____的过程中发挥着独特的、不可替代的作用。
参考答案:促进个人智力发展;理性思维8.原型是客观存在的各种研究对象,包括_____。
参考答案:无形的对象;有形的对象;各种系统和过程;思维中的对象9.原型与模型的关系_____。
参考答案:模型只要求反映与某些目的有关的那些方面和层次 ;原型是模型的前提与基础;模型是原型的提炼与升华;原型有各个方面和各个层次的特征10.数学模型运用数学算式、数学符号、程序和图表等对客观事物的本质属性与内在关系进行刻画,是_____。
参考答案:对现实世界的抽象;对现实世界简化且有本质的描述;它源于现实又高于现实第二章测试1.建立数学模型之前首先需要做模型准备,即问题的提出和量的分析。
参考答案:对2.八步建模法中模型分析不包括对假设的鲁棒性分析。
参考答案:错3.机理分析法是数学建模采用的唯一的重要方法。
参考答案:错4.数学模型通常不会一次就成功,往往需要反复修正,逐渐完善。
这是数学模型的_____。
参考答案:渐进性5.对于已建好的数学模型,当观测数据有微小的改变或者模型结构及参数发生微小变化时, 模型求解的结果也随之发生微小的变化。
数学建模课后习题答案
第一章 课后习题6.利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。
解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为:)()0(mg M x =由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程M x x dtdx=-=)0(,λ (1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。
由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程:0)0(,=-=y y x dtdyμλ (2) 方程(1)可转换为:tMe t x λ-=)(带入方程(2)可得:)()(t t e e M t y λμμλλ----=将01386=λ和1155.0=μ带入以上两方程,得:t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t针对孩子求解,得:严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解:严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987=课后习题7.对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。
解:已知血液透析法是自身排除率的6倍,所以639.06==μut e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---=1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dtdzt 解得:()2,274.112275693.01386.0≥+=--t e e t z t t用matlab 画图:图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。
数学建模样题及答案
数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。
学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。
(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。
(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
(试解释其道理。
)(4) 试提出其他的方法。
数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+ t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。
解:=r(x m -x),r 为比例系数,x(0)=x 0 解为:x(t)= x m -( x m - x 0),如下图粗线,当t →∞时,它与Logistic 模型相似。
数学建模作业三一容器内盛入盐水100L,含盐50g .然后将含有2g/L的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。
同时,此混合物又以2L/min的流量流出,试求在30min时,容器内所含的盐量。
若以同样流量放进的是淡水,则30min时,容器内还剩下多少盐?要求写出分析过程。
解:设x(t)为t时刻容器内剩余的盐的质量①x(t)=2(100+t)-1.5(100+t)-2X(t=30)=171.24② x(t)=(100+t)-2 X(t=30)=29.59数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i ,它们需要的货物量分别是25,10,20,30,15个单位质量。
全国大学生数学建模大赛2021卷III答案解析
全国⼤学⽣数学建模⼤赛2021卷III答案解析1、解:以竖直黄⾊平⾯(充电区域)的中线为对称轴,找到A点关于该充电区域的对称点A,,连接A,与B两点,如下图所⽰:连接A,与B,在充电区域有⼀个交点,则该交点点即为⽆⼈机要充电的区域,⽆⼈机的最佳飞⾏路线为:A-充电点-B;原理为:两点之间,线段最短。
2、程序代码:#include <iostream>#include <string>using namespace std;int main(){string str[80], temp;int i, j, n,m=4,sum=67;cin>>n;for (i=0; i<n; i++){cin>>str[i];}for (i=0; i<n; i++)for (j=i+1; j<n; j++)if (str[i]>str[j]){temp=str[i], str[i]=str[j], str[j]=temp;}for (i=0, cout<<"排序后的结果为:\n"; i<n; cout<<str[i++]<<endl);printf("m所占的百分⽐为:%d/%d",m,sum);return 0;}运⾏结果:(先输⼊共有的字母数67,依次输⼊字母,此处以6为测试⽤例)6yreiuy排序后的结果为:eiruyym所占的百分⽐为:4/67--------------------------------Process exited after 15.06 seconds with return value 0请按任意键继续. . .3、修改后的程序为:(这道题没有运⾏出来丫,答案是错的)clearclcd=200;b=0.6;cm=10;c=15;k=0.9;r=0.2;for a=0.5:0.02:0.9cd=(b*(d-a*cm)*(c+r^2))/(4*a*c*k^2-(c+r^2)*b^2);ms=(b*(d-a*cm)*(c+r^2))/(8*a*c*k^2-(c+r^2)*b^2);hold onplot(a,cd,'b-',a,ms,'k-')plot(cd,'b-',,ms,'k-')end4、这些⽅程可以被改写成:(3.4)且当x i和y i的所有值都满⾜时,代⼊x i和y i,上述⽅程就可以解出a和b。
数学建模课后参考答案
数学建模课后参考答案数学建模课后参考答案数学建模是一门应用数学的学科,旨在解决实际问题。
在学习数学建模的过程中,课后作业是巩固知识、提高能力的重要环节。
然而,由于数学建模问题的多样性和复杂性,有时候我们可能会遇到一些难以解决的问题,或者对于某些题目的答案不够确定。
因此,提供一份数学建模课后参考答案是很有必要的。
1. 问题描述假设有一座小岛,岛上有一座高度为h的灯塔,灯塔的光照范围是一个圆形区域。
现在有一只船在岛外的海上,船上的人想知道距离灯塔多远的位置才能看到灯塔。
请问,船上的人应该停留在哪个位置才能看到灯塔?2. 建模过程首先,我们可以根据几何知识得出,船上的人能够看到灯塔的条件是船在灯塔的光照范围内。
因此,我们需要确定灯塔的光照范围。
灯塔的光照范围是一个圆形区域,半径为r。
根据几何知识,我们可以得出光照范围的半径与灯塔的高度之间的关系:r = √(2hR)其中,R为地球半径,h为灯塔的高度。
接下来,我们需要确定船在哪个位置才能看到灯塔。
我们可以假设船位于距离灯塔为d的位置,且船与灯塔连线与地球表面垂直。
此时,船与灯塔连线与地球表面的夹角为θ。
根据三角函数的定义,我们可以得出:tan(θ) = h/d解出θ后,我们可以得到船位于距离灯塔为d的位置时,船与灯塔连线与地球表面的夹角。
3. 答案求解根据上述建模过程,我们可以得到船位于距离灯塔为d的位置时,船与灯塔连线与地球表面的夹角θ。
如果我们已知灯塔的高度h和地球半径R,我们可以使用数学软件或计算器来计算出θ的近似值。
例如,假设灯塔的高度h为100米,地球半径R为6371千米。
我们可以使用计算器来计算出船位于距离灯塔为d的位置时,船与灯塔连线与地球表面的夹角θ的近似值。
根据公式tan(θ) = h/d,我们可以解出θ的近似值为θ ≈ 0.0157 弧度。
4. 结论根据上述计算结果,船位于距离灯塔为d的位置时,船与灯塔连线与地球表面的夹角θ的近似值为θ ≈ 0.0157 弧度。
数学建模答案--完整版
验
目
的
4、用 MATLAB 计算函数 f ( x ) 实
sin x cos x 在 x= 处的值. 2 3 1 x
5、用 MATLAB 计算函数 f ( x) arctan x ln( x 1) 在 x=1.23 处的值.
验
15、求极限 lim
x 0
sin 2 x 1 cos x
过
>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x)); >> limit(y,x,0,‘right’) ans =
程
2
1 21x ( ) 16、求极限 lim x 0 3
>> syms x y >> y=(1/3)^(1/(2*x)); >> limit(y,x,0,'right') ans = 0 17、求极限 xlim
y x 2 , y x3 , y x 4 这三条曲线的
图形,并要求用两种方法加各种标注.
x t2 13、作曲线 y sin t 的 3 维图象. z t
实
x (1 cos u ) cos v 14、作环面 y (1 cos u ) sin v 在 (0, 2 ) (0, 2 ) 上的 3 维图象. z sin u
验
19、求极限 lim
1 cos 2 x x 0 x sin x
>> syms x y >> y=(1-cos(2*x))/(x*sin(x)); >> limit(y,x,0) 过 ans = 2 20、求极限 lim
2022年秋季-福师《数学建模》在线作业二-[复习资料]-答案3
2022年秋季-福师《数学建模》在线作业二-0003
试卷总分:100 得分:100
一、判断题 (共 40 道试题,共 80 分)
1.最小二乘法估计是常见的回归模型参数估计方法
<-A.->错误
<-B.->正确
【正确答案】:B
2.样本平均值和理论均值不属于参数检验方法
<-A.->错误
<-B.->正确
【正确答案】:A
3.量纲齐次原则指任一个有意义的方程必定是量纲一致的<-A.->错误
<-B.->正确
【正确答案】:B
4.对实际问题建模没有确定的模式
<-A.->错误
<-B.->正确
【正确答案】:B
5.数学建模以模仿为目标
<-A.->错误
<-B.->正确
【正确答案】:A
6.利用乘同余法可以产生随机数
<-A.->错误
<-B.->正确
【正确答案】:B
7.大学生走向工作岗位后就不需要数学建模了
<-A.->错误
<-B.->正确
【正确答案】:A。
数学建模3D试题及答案
数学建模3D试题及答案
试题:
1. 假设一个立方体的体积为27立方厘米,求其边长。
2. 一个球体的半径为3厘米,求其表面积。
3. 已知一个圆柱体的底面半径为2厘米,高为5厘米,求其体积。
4. 一个长方体的长、宽、高分别为4厘米、3厘米、2厘米,求其对
角线的长度。
5. 一个正四面体的边长为a,求其体积。
答案:
1. 立方体的体积公式为V=a³,其中a为边长。
已知体积V=27立方厘米,所以a³=27,解得a=3厘米。
2. 球体的表面积公式为S=4πr²,其中r为半径。
已知半径r=3厘米,所以S=4π×3²=36π平方厘米。
3. 圆柱体的体积公式为V=πr²h,其中r为底面半径,h为高。
已知
底面半径r=2厘米,高h=5厘米,所以V=π×2²×5=20π立方厘米。
4. 长方体对角线的长度公式为d=√(l²+w²+h²),其中l、w、h分
别为长、宽、高。
已知长l=4厘米,宽w=3厘米,高h=2厘米,所以
d=√(4²+3²+2²)=√(16+9+4)=√29厘米。
5. 正四面体的体积公式为V=(a³√2)/12,其中a为边长。
所以体积V=(a³√2)/12。
数学建模教程课后答案
每人能划船条件下的一种安全过河方案
(共5次过渡)
师甲乙丙
① 甲丙过去, 接着甲回;
丙
师甲乙
② 师甲过去, 接着师回;
甲丙
师乙
③ 师乙过去.
师甲乙丙
#1-2①:对任何正整数n的n商n从安全 过河问题,不允许重复的解一定是有 限个.
证:对给定的正整数n,安全状态集的点数 是有限数3n+1.显然,经过有限个点,并按 跳棋规则从点(n,n)跳到点(0,0)的不重 复跳棋方案的个数一定有限.这就证明: 不重复安全过河方案必定是有限个.
#1-2②:在渡船至多容2人条件下,3商3从 安全过河问题,不允许重复解的个数是4.
证:下图给出一个无重复的解.仔细分析此 解不难看出:任何一个无重复的解的最先 2步除下图给出的方案外,还有且仅有另 一个方案是:”1商1从过去,接着1商回 来”.此外,其最后2步除下图给出的方案 外,还有且仅有另一个方案是:”1商回来, 接着1商1从过去”.
所以,锐,直,钝角三角形个数分别是 210=20; 410=40; 610=60.
#1-8② n=9时各类三角形个数
解:此时有
直角构形0个, ∴,n2=0; 钝角构形6个:(0,0,6),(0,1,5), (0,5,1),(1,1,4),(0,2,4),(0,4,2), ∴ n3=69=54;
n1=987/6-n2-n3=84-54=30. 答案:锐,直,钝角三角形个数分别是30,0
和54.
注:锐角构形有4个,其中一个为等边只乘3.
#1-9 证明n为偶数时有n3=3n1
解:前面已证明n=2k时有
n2 =n(n-2)/2;
nn31
=(n/2)(n/2-1)(n/2-2)=n(n-2)(n-4)/8; =Cn3-n2-n3
姜启源数学模型课后答案(3版)
《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QCTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β)(2)8322(22022bp a T T t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域.925002+-=TdT dC直线l :20x+30y=c 在可行域内平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te V kD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==,()()()TAS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()TS 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章。
数学建模练习答案
1.第6题第1题解释:非线性模型待数据拟合的函数模型关于某些待定参数是非线性的,就称为非线性模型。
第2题解释:线性模型待数据拟合的函数模型关于全体待定参数都是线性的,就称为线性模型。
第10题解释:数学模型数学模型(Mathematical Model)是由数字、字母或者其他数学符号组成的,描述现实量规律的数学公式、图形或算法.第11题词解释:一阶差分方程第3题在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距车距离,车速越快,刹车距离越长. 请问刹车距离与车速之间具有怎样的数量关系?案:9.第6题在数学建模的实践中,没必要对所有参数都进行灵敏度分析,需要对哪些参数进行灵敏度分析要从实际意义出发考虑参数的不确定程度. 有些参数实际上是稳定的,其观测值是准确可靠的;另一些参数实际上经常变动,观测、估计或预测所得的参数值往往会包含不小的误差. 显然,前一种参数没有做灵敏度分析的必要,而后一种参数的不确定性会影响模型解答的可信性,所以灵敏度分析非常有必要.17.第16题请说明MATLAB的变量名、M文件名和函数名的命名规则。
MATLAB的变量名、函数名、程序文件名的命名规则为:必须以字母开头,可以有字母、数字和下划线(不能包含其他字符,例如中文字符),区分大小写字母;可以是任意长度,但是只有前63个字符是有效的;不能和任何MATLAB关键字同名;命名应该避免使用MATLAB 系统已经安装的函数名(包括特殊值),因为这样做会导致同名函数不能使用,直到以命令“clear 变量(函数、程序文件)名”清除该变量(函数、程序文件)名为止.18.第18题回答以下问题:(1)什么是一级动力学反应?(2)写出一级动力学反应的微分方程模型及满足初始条件的特解.(3)什么是半衰期?(4)为什么一级动力学反应的半衰期是一个与初始状态无关的常数?19.第19题什么是数学建模?数学建模有哪些步骤?请简述这些步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型指为了某种特定目的将原型的某一部分信息简化、压缩、提炼而构造成的原型替代物。
如地图、苯分子图。
2.数学模型由数字、字母或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。
具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构陈伟数学模型。
如概率的功利化定义。
3.抽象模型抽象模型是指通过人们对模型的反复观察、理解、认识,从获取到的信息中抽出共同的、本质性的特征,舍弃其非本质的特征来建立一个合理的模型。
二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类。
形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型、数学模型等。
2.数学建模的基本步骤(1)建模准备:确立建模课题的过程;(2)建模假设:根据建模的目的对原型进行抽象、简化。
有目的性原则、简明性原则、真实性原则和全面性原则;(3)构造模型:在建模假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻划实际问题的数学模型;(4)模型求解:构造数学模型之后,找出解决问题的方法和算法,并借助计算机完成对模型的求解;(5)模型分析:根据建模的目的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;(6)模型检验:模型分析符合要求后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;(7)模型应用:模型应用是数学建模的宗旨,将其应用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用。
3.数学模型的作用数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题。
正因为如此,数学模型在科学发展、科学预见、科学预测、科学管理、科学决策、驾控市场经济乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。
数学不仅是人们认识世界的有力工具,而且对于人的素质培养,无论是在自然科学,还是社会科学中都随时发生着作用,使其终生受益。
特别是,当代计算机科学的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。
数学模型还物化于各种高新科技之中,从家用电器到天气预报,从通信到广播电视,从核电站到卫星,从新材料到生物工程,高科技的高精度、高速度、高安全、高质量、高效率等特点无一不是通过数学模型和数学方法并借助计算机的计算、控制来实现的。
三、解答题(满分20分)A 题(9n, 9n+8)小童父亲要到美国访问,授人之托希望多带点东西。
中国民航的《国际旅游须知》中有关“计件免费行李额”中规定“适应于中美、中加国际航线上的行李运输……。
经济和旅游折扣票价,免费交运的行李件数为两件,每件箱体三边之和不得超过62英寸,但两件之和不得超过107英寸,每件的最大重量不得超过32公斤。
”试问这两件箱子的长、宽、高各为多少可达最大体积?请你到市场上看一看,商店出售的行李箱的尺寸与你的计算结果是否接近?为什么?解:x1 , y1, z1分别表示第一个箱子的长、宽、高,x2, y2, z2分别表示表示第一个箱子的长、宽、高. 于是建立数学模型为MaxV = x1 y1z1+ x2y2z2x 1+ y1+ z1≤ 62,x 2+ y2+ z2≤ 62,max{x1 , y1, z1} + max{x2, y2, z2} ≤ 107,x 1≥ 0, y1≥ 0, z1≥ 0, x2≥ 0, y2≥ 0, z2≥ 0.1= y1= z2= x2= y2= z2=64时,体积最大.四、综合题(21分)L. 跑步中的数学问题(7n+2, 7n+6, 7n+4)跑步是基本活动技能,是人体快速移动的一种动作姿势。
跑步和走路的主要区别在于两腿在交替落地过程中有一个腾空阶段。
跑步是最简便而易见实效的体育健身内容。
近二三十年来,跑步已成为国内外千百万人参加的群众健身运动, 是深受广大群众所欢迎的健身项目。
人们普遍认为跑步是最好的健身方法。
每个正常人都经历过跑步,有人会疲惫不堪。
我们的问题是:怎样跑不能使我们消耗的能量尽可能的少?1.论文题目《关于跑步能量消耗的数学模型》(2()2'21v m mg d h W W W s f ++=+= (3) 用 L 表示人的身高,不妨设 m 、m ′ 与 L 3 成正比, a 与 L 成正比,即L C a L C m L C m 33231,',===模型的解法与结果重心离开 B 上升到最高点所需要的时间vb t 2= 因此,最高的高度为222821vgb gt h ==所以()222'218v m v bmg b a W ++= 又因为完成一个周期跑步的时间为(a + b)/v,从而单位时间所消耗的能量为)(2'832b a v m v bmg v ba W P ++=+= 再由第二假设,令b = ja ,于是()j L v C v L j C P ++=123544 再令dP ,有吗?2.地面凹凸坡面是连续变化的,沿任何方向都不会出现间断(如没有象台阶那样的情况),即地面可看作数学上的连续曲面;3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地;4.挪动仅只是绕一个定点的旋转。
假设1显然是合理的。
否则即便放在平面上也不会是椅子放稳。
假设2相当于给出了椅子能够放稳的必要条件,因为如果地面高度不连续(比如在有j 阶或裂缝的地方)是无法使椅子四只脚同时着地。
假设3是要排除地面上与椅脚间距和椅子腿长度的尺寸大小相当的范围内,出现深沟或凸峰(即使连续变化的),将使椅子三只脚也无法同时着地。
三、建模与分析首先,根据假设1,椅脚连线呈正方形,而正方形以中心为对称,即正方形绕中心的旋转可以表示椅子位置的改变,于是可以用旋转角度这一变量表示椅子的位置。
如图1,椅脚连线为正方形ABCD ,在图1所示的坐标系下对角线AC 与ox 轴重合,椅子绕中心o 旋转角度θ后,正方形转至的位置,如图2所示,即对角线AC 与ox 轴的夹角表示了椅子的位置。
正方形ABCD 绕O 点旋转其次,要把椅子着地用数学符号表示出来。
如果用某个变量表示椅脚与地面的竖值距离,那么当这个距离为零时就是椅脚着地了。
椅子在不同的位置时,椅脚与地面的距离不尽相同,所以这个距离是变量θ的函数。
虽然椅子有四只脚,因而有四个距离,即每一个椅脚和地面都有一个距离。
但由假设3以及正方形关于中心的对成性,只要设两个距离就可以了。
设A 、C 两脚与地面的距离之和为f(θ) ,B 、D 两脚与地面的距离之和为 g(θ), 显然f(θ) 、 g(θ) ≥0。
由假设2知f(θ) 、 g(θ)都是连续函数。
在由假设3知,椅子在任何位置上至少有三只脚着地,所以对于任意的θ, f(θ) 、 g(θ)中至少有一个为零。
当θ= 0 时,不妨设f(θ) > 0、 g(θ)= 0。
另一方 面,由对称性知道,旋转p/2的角度后,相当于AC 和BD 互换一个位置.故有f(p/2)=0,g(p/2)>0,这样,改变椅子位置使四只脚同时着地,就归结为证明如下数学命题。
命题1已知f(θ)和g(θ)是θ的连续函数,对任意的θ,有f(θ). g(θ)=0 ,且f(0 )>0 、g(0)=0,g(π/2)>0 ,f(π/2 )=0,则存在θ∈[0 , (π/2 ],使得f( )= g( ) =0 .可以看到,引入变量θ和函数f(θ) 、g(θ),就把模型的假设条件和椅脚同时着地的结论用简单而精确的数学语言表示出来,从而构成了这个实际问题的数学模型。
四、模型求解令h(θ)= f(θ)–g(θ),则h(0)>0和h(π/2)<0.由 f (θ) ,g (θ) 的连续性知 h (θ) 为[0 ,π/2] 上连续函数,根据区间上连续函数的介质性定理, 必存在一个∈[0 , π/2],使h( )=0,即f ( ) = g( ). 因为f(θ) . g(θ)=0,所以f( ) = g( ) = 0.五、模型的分析及推广1. 模型分析 θ0θ0θ0θθ0θ0θ模型的优点在于用一元变量表示了椅子的位置,用的两个函数表示了椅子四只脚与地面的距离,充分运用了正方形关于中心的对称性,使得问题得到了极大的简化,并得到了逻辑上的求解。
缺点在于运用了正方形关于中心的对称性,使模型的适应范围受到了一定的局限,如对一般四边形是否也适应,未能作出回答;而且也未能考虑到平行移动的情形。
2. 如果椅脚连线呈矩形,其结论也成立。
事实上,如图3建立坐标系,A 、B 、C 、D 表示椅子的四只脚.假设条件只需将正方形假设条件中的正方形改为矩形。
设f(θ)表示相邻两脚A 、B 与地面的距离之和,g(θ)表示相邻两脚C 、D 两脚与地面的距离之和。
由矩形对称性知道,旋 转180°度的角后,相当于AB 和CD 互换一个位置。
这样,改变椅子位置使四只脚同时着地就归结为证明如下数学命题:命题2已知f(θ)和g(θ)是θ的连续函数, 对任意的θ,有f(θ). g(θ)=0,且f(0 )>0 、g(0) =0 ,f(π)=0 、g(π)>0,则存在θ∈[0,π],使得f( )= g( ) =0。
3. 模型的进一步分析与推广由于正方形和矩形的任意一个顶点通过适当的旋转,可到达每一个顶点,即就是说正方形和矩形的四个顶点绕其中心旋转一周所得轨迹是同一个圆周。
这也就是正方形和矩形的四个顶点共圆,可通过适当的旋转将椅子放平稳。
那么,椅子四脚连线所构成的四边形是圆内接四边形,是否一定可通过适当的旋转可将椅子放平稳?反之,通过适当的旋转可将椅子放平稳,椅子四脚连线是否一定是圆内接四边形?我们先看一个实例,设地面为一个足够大的球面部分,其方程为:x2 + y2 + (z . 10000)2 = 100002 (z < 10000) θ0θ0θ0θ0椅子四只脚构成一菱形ABCD ,对角线的长度分别为 AC=8,BD=6。
根据球面的特点,要使得菱形ABCD 的顶 点至少有三个在球面上,则其三个顶点必在同一个圆上。
不妨取菱形 ABCD 所在的平面与球面的截痕及菱形,在 xoy 面上投影图如示图,其圆周的半径为R=25/8,2R=25/4<B=AC.这说明A,C 两点必有一点在球面之外。