频率与概率教学设计省级
高中高三数学《频率与概率》教案、教学设计
(五)总结归纳
在总结归纳环节,我将引导学生从以下几个方面进行:
1.本节课我们学习了频率与概率的关系,以及概率的性质和计算方法。
2.通过实例分析,我们了解了如何运用概率知识解决实际问题。
3.学生在小组讨论和课堂练习中,提高了自己的问题解决能力和合作能力。
最后,我会强调概率在生活中的重要作用,鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际中。同时,提醒学生课后复习本节课的内容,巩固所学知识。
五、作业布置
为了巩固本节课所学内容,检验学生对频率与概率知识的掌握程度,特布置以下作业:
1.请同学们完成课后练习题第1、2、3题,重点加强对概率性质、计算方法的理解和应用。
3.小组合作:鼓励学生进行小组讨论,培养学生的团队协作能力和沟通能力。
4.知识迁移:将所学概率知识与其他学科知识相结合,提高学生的综合运用能力。
5.数学建模:运用概率知识解决实际问题,培养学生的建模能力和创新意识。
(三)情感态度与价值观
在本章节的教学中,教师应关注学生的情感态度与价值观的培养,使学生在学习过程中形成以下素养:
4.复习本节课内容,准备下次课的小测验,内容包括:
-随机事件、频率与概率的定义及其关系。
-概率的性质和计算方法。
-古典概型的计算及应用。
5.阅读拓展资料,了解概率论在统计学、经济学等领域的应用,拓宽知识视野。
请同学们认真完成作业,加强对频率与概率知识的学习和巩固。在完成作业的过程中,如遇到问题,请及时与同学、老师交流,共同解决问题。期待大家在下次课上的优秀表现!
1.深化学生对概率概念的理解,引导学生从多角度认识概率,提高学生的抽象思维能力。
《频率与概率》教案
《频率与概率》教案《频率与概率》教案教学目的:1。
经历试验,统计等活动过程,在活动中进一步开展学生合作交流的意识和才能。
2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的概率。
3.能运用树状图和列表法计算简单事件发生的概率。
教学重点:运用树状图和列表法计算事件发生的概率。
教学难点:树状图和列表法的运用方法。
教学过程:问题引入:对于前面的摸牌游戏,在一次试验中,假如摸得第一张牌面数字为1,那么摸第二张牌的数字为几的可能性大?假如摸得第一张牌的牌面数字为2呢?〔由此引入课题,然后要求学生做实验来验证他们的猜测〕做一做:实验1:对于上面的试验进展30次,分别统计第一张牌的牌面字为1时,第二张牌的牌面数字为1和2的次数。
实验的详细做法:每两个人一个小组,一个负责抽纸张,另一个人负责记录,如:1 2 2 1---------(上面一行为第一次抽的) 2 1 2 1---------〔下面一行为第二次抽的'〕想一想:对于前面的游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性一样吗?会出现3种可能的结果:牌面数字和为2,牌面数字和3,牌面数字和4,每种结果出现的可能性一样会出现4种可能的结果:牌面数字为〔1,1〕,牌面数字为〔1,2〕,牌面数字为〔2,1〕,牌面数字为〔2,2〕每种结果出现的可能性一样实际上,摸第一张牌时,可能出现的的结果是:牌面数字为1或2,而且这两种结果出现的可能性一样;摸第二张牌时,情况也是如此,因此,我们可以用下面的“树状图”或表格来表示所有可能出现的结果:开场第一张牌的面的数字: 1 2 第二张牌的牌面数字: 1 2 1 2 可能出现的结果〔1,1〕〔1,2〕〔2,1〕〔2,2〕第二张牌面的数字第一张牌面的数字 1 2 1 〔1,1〕〔1,2〕 2 〔2,1〕〔2,2〕从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:〔1,1〕〔1,2〕〔2,1〕〔2,2〕,而且每种结果出现的可能性一样,也就是说,每种结果出现的概率都是1/4。
《频率与概率》教案
《频率与概率》教案教学目标1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率.2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念.3.通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力. 教学重点理解当试验次数较大时,试验频率稳定于理论概率.教学难点1.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯.2. 在活动中进一步发展合作交流的意识和能力.教学过程一、创设情境,明确任务一家篮球俱乐部准备补充2名善于投3分球的队员,由于俱乐部此前对报名的队员依据身体条件和心理素质等方面进行了初选,确定了30名备选队员,这次着重考察的是投篮命中率(概率),请同学们设计一个方案,帮助俱乐部能从这30名队员中选出2名善于投3分球的队员.用不少于5分钟的时间独立思考,然后,小组交流形成共识,最后以小组为单位阐述各自的方案.在老师的引导下,得出最佳的方案是:让这30名候选队员分别投篮,每人投100次,看各自的命中率是多少,选命中率高的前两名.在老师的引导下,让同学们明白,这是用(现在投篮命中的)频率估计(将来投篮命中的)概率.二、合作游戏:组织学生分组合作开展实验(P141),用抛掷硬币时正面向上的频率估计概率.以小组上黑板展示,在表格中填入统计数字.试验次数要在100次以上.老师组织学生观看黑板上各小组的统计结果.结果发现,当我们进行了大量的试验后,正面向上的频率稳定在0.5这个常数,所以我们说,只要试验次数足够多,就能用频率估计概率.三、课堂练习,巩固提高:1.课本P97页练习A2.课本P97页练习B:用前面掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.四、课堂小结:大家畅所欲言的谈谈自己的收获.。
频率与概率的教案
频率与概率的教案教案标题:频率与概率的教案教案目标:1. 理解频率与概率的概念及其在日常生活中的应用。
2. 能够计算简单事件的频率和概率。
3. 能够分析和解释频率和概率对决策和预测的影响。
教学资源:1. 白板、黑板或投影仪。
2. 教学PPT或课件。
3. 学生练习册或工作纸。
4. 骰子、扑克牌或其他随机事件的实物。
教学步骤:引入(5分钟):1. 引导学生回顾事件和概率的概念,并提问他们对频率和概率的理解。
2. 通过举例子引导学生思考频率和概率在日常生活中的应用,如天气预报、运动比赛、抽奖等。
探索(15分钟):1. 向学生介绍频率的概念,即某事件在一定次数内发生的次数。
2. 利用实物(如骰子、扑克牌)进行实际操作,让学生通过多次实验计算事件发生的频率。
3. 引导学生发现频率与实验次数的关系,并进行简单的数据分析和图表绘制。
解释(10分钟):1. 引导学生理解概率的概念,即某事件发生的可能性大小。
2. 通过计算频率与实验次数的比值,引导学生计算事件的概率。
3. 引导学生分析频率和概率之间的关系,并讨论其对决策和预测的影响。
拓展(15分钟):1. 提供更多实例,让学生计算事件的频率和概率。
2. 引导学生思考如何利用频率和概率做出更准确的决策,如购买彩票、选择交通工具等。
3. 引导学生思考概率的局限性,如随机性、样本大小等因素的影响。
总结(5分钟):1. 对频率和概率的概念进行总结,并强调它们在日常生活中的应用重要性。
2. 检查学生对频率和概率的理解,解答他们可能存在的疑问。
作业:布置相关练习,要求学生计算事件的频率和概率,并思考概率在实际生活中的应用。
评估:1. 观察学生在课堂上的参与和讨论情况。
2. 收集学生完成的练习和作业,评估他们对频率和概率的掌握程度。
3. 可以进行小组或个人形式的口头或书面评估,让学生解答与频率和概率相关的问题。
教案扩展:1. 可以引导学生进行更复杂的频率和概率计算,如多个事件的组合、条件概率等。
频率与概率教案
频率与概率教案一、教学目标1.了解频率和概率的概念及其关系;2.掌握频率和概率的计算方法;3.能够应用频率和概率解决实际问题。
二、教学内容1. 频率的概念频率是指某一事件在一定时间内发生的次数与总次数之比。
例如,某个班级有50名学生,其中男生有20人,女生有30人,那么男生的频率为20/50=0.4,女生的频率为30/50=0.6。
2. 概率的概念概率是指某一事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示不可能发生,1表示一定会发生。
例如,掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
3. 频率和概率的关系频率和概率都是描述事件发生的概念,它们之间存在着密切的关系。
当事件发生的次数越多,其频率越接近于概率。
例如,掷一枚硬币,如果掷100次,正面朝上的次数为50次,那么正面朝上的频率为50/100=0.5,与概率0.5非常接近。
4. 频率和概率的计算方法4.1 频率的计算方法频率的计算方法是:某一事件发生的次数/总次数。
例如,某个班级有50名学生,其中男生有20人,女生有30人,那么男生的频率为20/50=0.4,女生的频率为30/50=0.6。
4.2 概率的计算方法概率的计算方法是:某一事件发生的可能性大小。
例如,掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
5. 应用频率和概率解决实际问题5.1 样本调查样本调查是一种常用的应用频率和概率的方法。
例如,某个班级有50名学生,其中男生有20人,女生有30人,那么男生的频率为20/50=0.4,女生的频率为30/50=0.6。
通过对样本的调查,可以推断出整个群体的情况。
5.2 掷骰子游戏掷骰子是一种常用的应用频率和概率的游戏。
例如,掷一枚骰子,点数为1到6之间的任意一个数,每个点数出现的概率都是1/6。
通过掷骰子的次数越多,其频率越接近于概率。
三、教学方法1. 讲授法通过讲解频率和概率的概念、计算方法和应用,让学生了解频率和概率的基本知识。
频率与概率教案
频率与概率教案
一、教学目标
1.了解频率和概率的概念和基本性质;
2.能够计算样本空间、事件和概率;
3.掌握频率和概率之间的关系。
二、教学重点
1.频率和概率的概念和计算;
2.频率和概率的关系。
三、教学难点
1.频率和概率的概念的区分;
2.概率的计算。
四、教学过程
1.导入(5分钟)
向学生提出以下问题:“什么是概率?你们平时都是如何理解和应用概率的?”引导学生回想和讨论他们对概率的理解和应用情况。
2.概念讲解(10分钟)
介绍频率和概率的概念和定义,频率是指事件发生的次数与试
验进行的总次数之比,概率是指事件发生的可能性大小。
3.计算方法(20分钟)
(1)样本空间的计算:样本空间是指试验所有可能结果的集合,可以通过列举法或计数法进行计算。
(2)事件的计算:事件是样本空间的子集,也可以通过列举法或计数法进行计算。
(3)概率的计算:概率可以通过频率计算近似估计,也可以通过等可能原理(即事件发生的可能性相等)进行计算。
4.实例分析(15分钟)
通过一些实际生活中的例子,如投骰子、抛硬币等,引导学生运用频率和概率的计算方法,计算相应的概率。
5.练习与拓展(10分钟)
提供一些练习题,让学生通过计算频率和概率来巩固和拓展所学知识。
6.归纳总结(5分钟)
对所学知识进行总结,梳理频率和概率的概念和计算方法,并强调二者之间的关系。
五、课堂反思
通过本节课的教学,学生对频率和概率的概念和计算方法有了初步的了解和掌握,但还需进行更多的实例分析和练习,以提高运用频率和概率的能力。
《频率与概率》教案
频率与概率【知识与技能】1.了解运用列表法和树状图法理论分析随机事件的概率.2.理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.【教学重点】频率与概率的理解和应用.【教学难点】利用频率估计概率的理解.一、情境导入,初步认识问题:要想知道一个鱼缸里有12条鱼,只要数一数就可以了,但要估计一个鱼塘里有多少条鱼,该怎么办?【教学说明】先前我们学习了用分析的方法求随机事件的概率,那么这里的问题情境中,很容易让学生想到这个事件的结果不能分析出来,而且每种结果出现的可能性也不一定是相同的,从而引发学生的求知:对这类事件的概率该怎样求解呢?引入课题.二、思考探究,获取新知问题1:怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?【分析】列表法树状图法思考:理论分析与重复试验得到的结果是否是一致的?问题2:见课本P142问题3学生用自制的转盘做试验,并完成课本P143表25.2.4和图25.2.3.拓展延伸:课本P143“思考〞【教学说明】让学生通过试验的方法来预测随机事件的概率.问:你能用理论分析的方法来预测两个转盘指针停在蓝色区域的概率吗?归纳:P(小转盘指针停在蓝色区域)=1 4P(大转盘指针停在蓝色区域)=1 4思考1:从重复试验结果中你得出了哪些结论?对以上这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率.思考2:是不是所有的问题都可以这样呢?问题3:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.【分析】由于图钉的形状比拟特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值,因此只能靠重复试验来帮助.【教学说明】让学生分成几个小组,每小组10人,每人试验50次,每个小组数据累加起来,并作好每个小组的实验记录.归纳:通过试验发现,当试验进行到720次后,所得的频率值就在46%上下浮动,我们可以取46%作为这个事件发生概率的估计值,即P(钉尖触地)≈46%.三、运用新知,深化理解1.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有______张.2.一个口袋中有12个白球和假设干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计,当n很大时,摸到白球的频率将会接近______;(2)假设你去摸一次,你摸到白球的概率是,摸到黑球的概率是______.(3)试估算口袋中黑、白两种颜色的球各有多少只.(3)8,12【教学说明】可让学生自主完成,分小组展示,教师点评.四、师生互动,课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?【教学说明】教师先提出上述问题,让学生相互交流,再选派几名同学进行回忆总结,师生再共同完善.1.布置作业:从教材相应练习和“习题”中选取.2.完成练习册中本课时练习.1.猜测试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.2.一般地,当试验的可能结果是有限个而且各种结果发生的可能性相等时,可以用P(A)=mn的方式得出概率.当试验的所有可能的结果是无限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率的.。
频率与概率(三)教学设计
第六章频率与概率1.频率与概率(三)河南省第二实验中学胡亚丽一、学生知识状况分析七年级时学生已会求涉及一步试验的随机事件的概率;频率与概率的第一课时学生通过试验、统计等活动,已经对“当试验次数很大时,事件发生的频率稳定在相应概率的附近”有了体验,对试验频率稳定于理论概率这一重要的概率思想有所了解。
并能借助于树状图、列表法计算两步随机实验的概率.二、教学任务分析进一步经历用树状图、列表法计算两步随机实验的概率.教学目标1.知识与技能目标:经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.2.方法与过程目标:鼓励学生思维的多样性,发展学生的创新意识.进一步提高学习数学的信心.教学重点: 借助于树状图、列表法计算随机事件的概率.教学难点:正确利用树状图、列表法计算随机事件的概率.三、教学过程分析本节设计六个教学环节第一环节:合作学习,解决问题第二环节:练习提高第三环节:知识盘点第四环节:布置作业.利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;较方便地求出某些事件发生的概率. 用树状图和列表的方法求概率时,应注意各种结果出现能性务必相同.第一环节:合作学习,解决问题活动内容:“配紫色”游戏.活动目的:以“配紫色”游戏为主要情境,让学生再次经历利用树状图或列表的方法求出概率并解决问题的过程,通过应用所学知识解决问题的能力.活动过程:游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?解法一:借助树状图(1)(红,红)(红,蓝)(蓝,红)(蓝,蓝)(2)游戏者获胜的概率是1/2.解法二: 借助表格(1)红色蓝色红色(红,红)(红,蓝)蓝色(蓝,红)(蓝,蓝)游戏者获胜的概率是1/2.游戏2 “配紫色2”用图所示的转盘进行“配紫色”游戏.小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是1/2.小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是21.你认为谁做得对?说说你的理由.活动效果:有了上节课对利用树状图或列表的方法求出概率的体验,这节课学生基本能顺利完成本节教学内容.本节以学生练习为主.对于游戏2,学生能指出“小颖的做法不正确,小亮的做法正确.因为左边的转盘中红色部分和蓝色部分的面积不同,因而指针落在两个区域的可能性不同.而用列表法求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.而小亮的做法把左边转盘中的红色区域等分成2份,分别记作“红色1”“红色2”,保证了左边转盘中指针落在“蓝色区域”“红色1”“红色2”三个区域的等可能性,因此是正确的”。
北师大版数学九年级上册6.1《频率与概率》教学设计1
北师大版数学九年级上册6.1《频率与概率》教学设计1一. 教材分析《频率与概率》是北师大版数学九年级上册第六章第一节的内容。
本节课主要介绍了频率与概率的概念,以及如何通过实验来估计概率。
教材通过具体的案例,让学生感受概率在生活中的应用,培养学生的数学应用意识。
本节课的内容是学生学习概率统计的基础,对于学生形成初步的概率观念,理解随机现象具有重要意义。
二. 学情分析九年级的学生已经具备了一定的抽象思维能力,对于新知识有较强的求知欲。
但是,对于概率这一概念,学生可能初次接触,理解起来有一定难度。
因此,在教学过程中,教师需要利用学生已有的知识经验,通过生活中的实例,引导学生理解概率的概念,并能够运用概率知识解决实际问题。
三. 教学目标1.了解频率与概率的概念,理解频率与概率之间的关系。
2.会通过实验估计事件的概率,并能运用概率知识解决实际问题。
3.培养学生的数学应用意识,提高学生的动手操作能力。
四. 教学重难点1.重点:频率与概率的概念,如何通过实验估计概率。
2.难点:频率与概率之间的关系,如何运用概率知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实验探究频率与概率之间的关系。
2.利用生活实例,让学生感受概率在生活中的应用,培养学生的数学应用意识。
3.采用小组合作学习的方式,让学生在讨论中思考,在实践中探究。
六. 教学准备1.准备与教学内容相关的实例,如抛硬币、抽签等。
2.准备实验器材,如硬币、卡片等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过抛硬币实验,引导学生思考:抛硬币时,正面朝上的概率是多少?让学生感受概率与生活的联系,激发学生的学习兴趣。
2.呈现(10分钟)教师呈现频率与概率的定义,解释频率与概率之间的关系。
引导学生通过实验,探究如何估计事件的概率。
3.操练(10分钟)教师学生进行小组讨论,让学生通过实验,估计抛硬币时正面朝上和反面朝上的概率。
苏科版数学八年级下册8.3《频率与概率》教学设计2
苏科版数学八年级下册8.3《频率与概率》教学设计2一. 教材分析《频率与概率》是苏科版数学八年级下册8.3节的内容,本节内容是在学生已经掌握了概率的定义和计算方法的基础上进行教学的。
本节课的主要内容有:频率与概率的关系,如何通过实验得到频率,如何估计概率,以及如何利用概率解决实际问题。
本节课的内容对于学生理解概率的本质,提高解决问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了概率的基本概念和方法,但是对于频率与概率的关系,以及如何通过实验得到频率,估计概率,解决实际问题等方面还不是很清楚。
因此,在教学过程中,需要引导学生通过实验探究频率与概率的关系,培养学生的动手操作能力和解决问题的能力。
三. 教学目标1.知识与技能:使学生理解频率与概率的关系,学会通过实验得到频率,估计概率,解决实际问题。
2.过程与方法:通过实验探究,使学生掌握频率与概率的关系,提高学生的动手操作能力和解决问题的能力。
3.情感态度价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:频率与概率的关系,如何通过实验得到频率,估计概率,解决实际问题。
2.难点:频率与概率的关系,如何通过实验得到频率,估计概率。
五. 教学方法1.采用探究式教学法,引导学生通过实验探究频率与概率的关系。
2.采用案例教学法,让学生通过解决实际问题,掌握频率与概率的关系。
3.采用小组合作学习法,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备实验器材,如骰子,卡片等。
2.准备相关的实际问题,如抽奖问题,概率问题等。
3.准备课件,进行辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾概率的基本概念和方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过实验演示,使学生直观地感受频率与概率的关系。
例如,用骰子进行实验,抛掷骰子100次,记录出现的频率,然后引导学生思考频率与概率的关系。
九年级数学下册《频率与概率的关系》教案、教学设计
1.学生认真完成作业,注重作业质量,养成良好的学习习惯。
2.教师及时批改作业,给予学生反馈,关注学生在作业中的表现,调整教学策略。
3.鼓励学生在作业中提出疑问,教师针对疑问进行个性化辅导,提高学生的学习效果。
2.教学方法:引导学生运用频率与概率的知识,进行小组讨论,分享各自的观点。
3.教学目的:培养学生的团队协作能力和应用意识,提高学生解决实际问题的能力。
(四)课堂练习
1.教学内容:设计具有层次性的练习题,涵盖频率与概率的计算、实际应用等方面。
-基础题:计算给定事件的频率和概率。
-提高题:利用频率与概率解决实际问题。
4.小组合作:
-以小组为单位,讨论并解决以下问题:如何利用频率与概率的知识,为一场篮球比赛制定胜负概率?
-各小组将讨论成果整理成报告,并在课堂上进行分享。
5.家庭作业:
-完成课后作业第4、5、6题,涵盖频率与概率的计算、实际应用等方面。
-家长协助学生完成作业,关注学生在解决问题时的思考过程,鼓励学生主动探索。
-设计一个简单的概率实验,如掷骰子、抽卡片等,记录实验数据,计算相应事件的频率和概率。
-结合实际生活,举例说明频率与概率在生活中的应用,并简要分析其合理性。
3.拓展提升:
-阅读教材附录中的相关阅读材料,了解概率论的发展历程及其在科学、社会等方面的应用。
-探究问题:在抛硬币实验中,为什么频率可以估计概率?请从数学理论上进行解释。
4.能够运用概率知识解决一些实际问题,如彩票中奖、比赛胜负等,培养学以致用的能力。
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提升自身的数学素养:
1.通过小组合作、实验探究等教学活动,培养学生主动参与、积极思考的学习习惯。
北师大版数学九年级上册6.1《频率与概率》教案1
北师大版数学九年级上册6.1《频率与概率》教案1一. 教材分析《频率与概率》是北师大版数学九年级上册第六章第一节的内容。
本节内容主要介绍了频率与概率的概念,以及如何通过实验来估计概率。
教材通过具体的例子让学生理解频率与概率之间的关系,培养学生运用概率知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了初步的统计知识,对实验有一定的认识。
但在理解和应用概率知识方面,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过实验观察频率与概率的关系,提高学生解决问题的能力。
三. 教学目标1.让学生理解频率与概率的概念,掌握频率与概率之间的关系。
2.培养学生通过实验估计概率的能力。
3.培养学生运用概率知识解决实际问题的能力。
四. 教学重难点1.重点:频率与概率的概念,频率与概率之间的关系。
2.难点:如何通过实验估计概率,以及运用概率知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实验观察频率与概率的关系。
2.运用案例教学,让学生在具体的情境中理解和应用概率知识。
3.采用小组合作学习,培养学生合作解决问题的能力。
六. 教学准备1.准备相关案例材料,用于讲解和引导学生思考。
2.准备实验器材,如骰子、卡片等,用于学生实验操作。
3.设计好教学课件,辅助讲解和展示相关内容。
七. 教学过程1.导入(5分钟)通过一个简单的抽奖游戏,引出频率与概率的概念。
2.呈现(10分钟)讲解频率与概率的定义,并通过实例让学生理解频率与概率之间的关系。
3.操练(10分钟)学生分组进行实验,利用实验器材估计概率。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生分组讨论,分享实验结果,总结频率与概率之间的关系。
教师点评并总结。
5.拓展(10分钟)出示一些实际问题,让学生运用概率知识解决。
教师引导学生思考,提供解答思路。
6.小结(5分钟)对本节课的主要内容进行总结,强调频率与概率之间的关系,以及如何运用概率知识解决实际问题。
北师大版数学九年级上册6.1.1《频率与概率》教学设计
北师大版数学九年级上册6.1.1《频率与概率》教学设计一. 教材分析《频率与概率》是北师大版数学九年级上册第六章第一节的内容。
本节内容主要介绍了频率与概率的概念,以及如何通过实验来估计事件的概率。
本节课的内容对于学生来说比较抽象,需要通过大量的实验和案例来理解和掌握。
教材通过具体的案例和实验,引导学生认识频率与概率之间的关系,培养学生运用概率知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。
但是,由于本节课的内容比较抽象,学生可能对于频率与概率的概念和关系有一定的困难。
因此,在教学过程中,需要通过具体的案例和实验,让学生直观地感受频率与概率之间的关系,从而更好地理解和掌握本节课的内容。
三. 教学目标1.理解频率与概率的概念,掌握频率与概率之间的关系。
2.能够通过实验来估计事件的概率,并运用概率知识解决实际问题。
3.培养学生的动手操作能力和数据分析能力,提高学生的数学思维能力。
四. 教学重难点1.频率与概率的概念及其关系。
2.如何通过实验来估计事件的概率。
3.运用概率知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过具体的案例和实验,引导学生自主探索频率与概率之间的关系。
2.利用多媒体课件和实物教具,进行直观演示,帮助学生理解和掌握概念。
3.学生进行小组讨论和合作交流,培养学生的团队合作能力和口头表达能力。
4.结合课后习题和实际问题,进行巩固练习,提高学生的应用能力。
六. 教学准备1.多媒体课件和实物教具。
2.实验器材:骰子、卡片、抽奖箱等。
3.课后习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个简单的猜数字游戏,引导学生思考概率的概念。
教师提出问题:“如果你猜一个数字,有多少的概率能够猜中?”让学生思考并回答。
2.呈现(10分钟)教师通过多媒体课件或者实物教具,呈现频率与概率的概念。
解释频率是指事件发生的次数与总次数的比值,概率是指事件发生的可能性。
《频率与概率》教学设计
《频率与概率》教学设计1、重点:通过分析推算相互独立的两个或多个事件发生的预期结果。
2、难点:理解相互独立的事物,同时发生和先后发生的关系。
3、关键:理解概率的本质:对事件发生的可能性的定量描述,即部分占总体的比值。
二、教学目标:1、经历实验、统计等活动过程,并以此估计概率。
2、能运用树状图分析法和表格分析法计算简单事件发生的概率。
三、教学思路分析:本课主要通过以下几个环节达到预期的教学目标:1、让学生浏览课文,对本课的学习内容有概括的了解。
2、根据对课文的了解进行实验,在实验中相互合作,提高学习效率。
3、针对学生实验中出现的问题重点讲解,并配备与本课知识想关且易混淆的题目,使学生养成主动思考、主动探索的良好学习习惯。
4、视所教班级的具体情况,补充概率的代数运算方法。
四、学生学习状况分析:学生对于一个独立事件发生的所有可能性和目标出现的可能性的分析比较熟练,但对于多个(主要解决两个的)独立事件同时或先后发生是否相同,学生初次接触多个事件的概率,理解比较困难。
五、教学过程:(一)回顾与思考1、请同学们简单地概括一下,理论概率与实验频率之间存在怎样的关系?2、所有的事件都可以通过实验来估计其发生的可能性吗?(二)两个独立事件发生的可能性:1、学生:通读教材,了解本课的学习内容。
(约5~6分钟,若条件允许,尽量做到课前预习。
)2、老师:深入教材,提出问题,引导学生思考和展开讨论:①在摸牌游戏中,第一次摸牌和第二次摸牌这两个事件是独立的还是相互影响的?即第一次摸到的牌面数字是否会影响到第二次摸到的牌面数字是几?②如果把小明先后在两组牌中各摸出一张牌改为小明和小亮同时分别在两组牌中各摸一长牌,这两种实验方法,其实验结果相同吗?3、学生:同位之间相互合作,根据老师提出的问题进行实验,用两种方法验证在两组牌中各摸出一张,两张牌的牌面数字都是2的的概率。
(三)理论分析法:1、老师:概率分析法有列表法和树状图分析法。
频率与概率(二)教学设计
1 第六章 频率与概率1.频率与概率(二)河南省第二实验中学 胡亚丽一、学生知识状况分析七年级时学生已会求涉及一步试验的随机事件的概率;在频率与概率的第一课时里,学生通过试验、统计等活动,已经对“当试验次数很大时,事件发生的频率稳定在相应概率的附近”有了体验,对试验频率稳定于理论概率这一重要的概率思想有所了解.二、教学任务分析本课时介绍两种计算概率的方法———树状图和列表法; 要求会借助树状图和列表法计算简单的事件发生概率.为此建立教学目标如下:1.知识与技能目标:①进一步理解当试验次数较大时试验频率稳定于概率.②会借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 2.方法与过程目标:合作探究,培养合作交流的意识和良好思维习惯. 3.情感态度价值观积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率. 教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率.2三、教学过程分析本节设计五个教学环节第一环节:承上启下,提出问题; 第二环节:合作学习,解决问题 第三环节:练习提高 第四环节:知识盘点; 第五环节:布置作业.第一环节:承上启下,提出问题复习提问:某个事件发生的概率是21,这意味着在两次重复试验中,该事件必有一次发生吗?目的:使学生再次体会,某个事件发生的概率是21,是指当实验次数很大时,这个事件的实验频率稳定于它的理率概率,但我们在前面做过的大量实验中还发现,实验频率并不一定等于理论概率,虽然多次实验的频率逐渐稳定于其理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的,经常的.第二环节:合作学习,解决问题活动内容:两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,计算两张牌的牌面数字和为3的概率 .活动目的:探究用树状图或表格,求某些事件发生的概率. 活动过程:提出要求:通过同位合作,来解决以下问题:能用我们学过的知识计算出两张牌的牌面数字和为3的概率吗?.3学生分组活动后,可能会用如下几种计算方法提出:方法一:一次实验中.两张牌的牌面数字的和等可能的情况有: 1+1=2;1+2=3;2+1=3;2+2=4.共有四种情况.而和为3的情况有2种,因此, P(两张牌的牌面数字和等于3)=42=21.两张牌的牌面数字的和有四种等可能的情况,而 两张牌的牌面数字和为3的情况有2次,因此.两张 牌的牌面数字的和为3的概率为42=21.方法二:两张牌的牌面数字的和有四种等可能的情况, 也可以用树状图来表示而两张牌的牌面数字和为3 的情况有2次,因此.两张牌的牌面数字的和为3 的概率为42=21.方法三:通过列表的方式如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法.用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率.在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概4 率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件.教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的.第三环节:练习提高活动内容:处理练习题活动目的:检测学习效果。
《频率与概率》word教案 (公开课获奖)2022苏教版 (4)
频率与概率 (2) 学习目标:1.认识到在实际生活中,人们常把试验次数很大时,事件发生的频率作为概率的估计值;2.初步体会到出现时机的均等与试验结果是否具有等可能性的关系;3.通过试验,加深对频率与概率的关系的理解.3.让学生感受数学学习中,从猜测→实验〔验证〕的过程和感受从实验→结果〔估计〕的过程重点、难点:1.经历试验过程,培养随机观念;2.画频率的折线统计图,用频率估计概率.一.【预学指导】预习47、48页二.【问题探究】数学实验室:在硬地上掷1枚图钉,通常会出现两种情况:钉尖着地,钉尖不着地;〔1〕任意掷1枚图钉,你认为是“钉尖着地〞的可能性大,还是“钉尖不着地〞的可能性大?〔2〕做“掷图钉试验〞,每人掷1枚图钉20次,分别汇总5人、10人、15人、…、50人……的试验结果,并将试验数据填入下表:抛掷次数n 102030405060708090100…钉尖不着地的频数m钉尖不着地的频率nm〔3〕根据上表,完成下面的折线统计图:钉尖不着地的频100 200 300 400 600500 700 800 900 100〔4〕观察所画的折线统计图,你发现了什么?并与同学交流.三.三、【拓展提升】 问题2. 活动二某种绿豆在相同条件下发芽试验的结果如下:〔2〕画出绿豆发芽频率的折线统计图;〔3〕这种绿豆发芽的概率的估计值是多少? 四.【课堂小结】通过这节课的学习,你有什么收获呢? 五.【当堂反应】1、事件“同一枚硬币抛50次,没有一次正面朝上〞是 〔 〕 A 、必然事件 B 、不可能事件 C 、随机事件 D 、何种事件不能肯定2、一枚均匀的硬币抛200次,假设正面朝上的次数为102次,那么反面朝上的频率是_______3、一个事件经过5000次试验,它的频率是0.32,那么它的概率估计值是 _______4、如下图是一个可以自由转动的转盘,转1次得到1个数, 利用这种转盘,可能得到的最大三位数是 ,可能得到最小三位数是 ,哪一个出现的可能性大?为什么? 10、一个圆形转盘的半径为2cm ,现将圆盘分成假设干个扇形,并分别相间涂上红、黄两种颜色,转盘转动10000次,指针指向红色局部为2500次。
《频率与概率》word教案 (公开课获奖)2022苏教版 (2)
(4)观察所画的折线统计图,你发现了什么?并与同学交流. 思考 在一定条件下大量重复进行同一试验时,随机事件发生的频率nm会在某一个常数附近摆动.在实际生活中,人们常把试验次数很大时,事件发生的频率作为其概率的估计值.例如,根据统计学家历次做“抛掷质地均匀的硬币试验”的结果中,可以估计“正面朝上”的概率为0.5;根据“某批足球产品质量检验结果”,可以估计这批足球优等品的概率为0.95;根据“掷图钉试验”的结果,可以估计“钉尖不着地”的概率为0.61,为什么试验的结果不具有等可能性?学生畅所欲言,勇于发表自己的看法,踊跃回答.事实上,在“抛掷硬币试验”中,只要硬币的质地是均匀的,出现“正面朝上” 与出现“反面朝上”的机会就均等,试验的结果具有等可能性;在“掷图钉试验”中,显然钉帽的质量较大,因而“钉尖着地”与“钉尖不着地”的机会不均等,试验的结果不具有等可能性.通过相互讨论使学生主动参与活动中,培养学生合作交流和发散思维能力,给足学生空间和时间,让学生在“做中学”,经历知识的形成过程,让学生对钉尖不着地的频率100 200 300 400 600 500 700 800 900 10009.1 单项式乘单项式力.教学重点:理解单项式相乘的法则,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法则解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?(1)体积的表示方法;(2)面对你的侧面积的表示方法.探索新知让学生在交流的基础上思考下列问题:(1)体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.(2)从不同的表示中你发现了什么?(3)通过下面两个计算我们来进一步的探讨:(2a 2b )(3ab 2)=[2 ×3]•(a 2•a )(b •b 2)=6a 3b3系数相乘 相同字母 相同字母(4ab 2)(5b )=[4×5]•(b 2• b )•a =20ab 3系数相乘 相同字母 只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢? 通过探索得到单项式乘单项式的计算法则: (1)将它们的系数相乘; (2)相同字母的幂相乘;(3)只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式规范,板书过程.(通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.) 练习1: 判断正误:(1)3x 3·(-2x 2)=5x 3; (2)3a 2·4a 2=12a 2; (3)3b 3·8b 3=24b 9;(4)-3x ·2xy =6x 2y ; (5)3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:(1)(2x )3·(-3xy 2); (2)(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算. 练习3:计算:(1)(a 2)2·(-2ab ); (2)-8a 2b ·(-a 3b 2) ·14b 2 ;(3)(-5an +1b ) ·(-2a )2;(4)[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】 补充习题和同步练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教具准备多媒体(PPT)计算器、每小组准备两组扑克牌
教学过程
教学内容学生活动教师点拨教学说明时间
安排一、创设问题情境,引入新课
(一)复习:
1、什么是频数?什么是频率?什么
是概率?
2、必然事件发生的概率
为;记作P(必然事
件)= ;
3、不可能事件发生的概率
为;记作P(不可能事
件)= ;
4、不确定事件发生的概率介于
~ 之间,即<P(不确定
事件)< 。
即如果A为不确定事件;那么
0<P(A)<1。
(二)随机投一枚硬币一次,如果出现正面朝上,那么正面朝上的频率是1,但是随机投一枚硬币,硬币正面朝上的概率永远都是0.5。
学生跟
着导学案
一起复习
学过的知
识!
频率是
一个试验数
据,是在变
化的,然而
概率是一件
事情发生的
可能性,是
不变的。
学生要
找到频率
与概率的
关系,首先
得知道频
率与概率
的概念、及
其两者的
本质区别。
3
分
钟
二、自主探索,发现新知
活动一:
准备两组相同的牌,每组两张。
两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.
(1)估计一次
实验中。
两张牌的牌面数字和可能有哪些值?
全班
同学分为
七组,每
组6人,
组内分工
合作,每
人做30次
试验,并
做好自己
试验数据
的统计。
由于探
究过程是试
验形式,所
以试验过程
中必须要求
1、试验数据
来源要真
实、随机。
2、试验次数
越多越好
试验题
材的设计
既注意了
问题的新
颖性,又注
意了试验
的可操作
性和理论
概率计算
的简单性,
为了引入
第二课时
的树状图
和列表法,
15
分
钟。