钛酸钡的制备工艺以及制备方法

合集下载

高性能钛酸钡陶瓷的制备工艺与应用

高性能钛酸钡陶瓷的制备工艺与应用

高性能钛酸钡陶瓷的制备工艺与应用钛酸钡因具有高介电常数、压电铁电性及正温度系数等优异性能而成为重要的陶瓷材料。

烧结工艺对钛酸钡陶瓷的致密化与显微结构具有重要影响;钛酸钡陶瓷存在介电常数随温度的变化率较大、介电损耗高、击穿场强低、本身存在薄层时吸收强度弱和带宽窄等缺点,常常通过掺杂改性来提高钛酸钡陶瓷的性能,而不同掺杂材料对钛酸钡陶瓷有着不同的影响。

钛酸钡陶瓷应用前景广阔,进一步研究更优良的钛酸钡陶瓷烧结工艺及掺杂工艺有着很重大的意义。

钛酸钡陶瓷烧结工艺目前钛酸钡陶瓷的烧结方式主要有无压烧结、高压烧结、微波烧结、毫米波烧结等。

【无压烧结】无压烧结在常压下进行烧结,主要包括常规无压烧结、两步法烧结、两段法烧结。

常规无压烧结方法是将陶瓷胚体通过加热装置加热到一定温度,经保温后冷却到室温以制备陶瓷的方法。

常规烧结采用高温长时间、等烧结速率进行,此方法需要较高的烧结温度(超过1000℃)和较长的保温时间。

如果烧结温度较低,则不能够形成足够的液相填充胚体里的气孔,材料晶界结合不好并且材料中存在较大的孔洞,此时材料的电性能较差;烧结温度过高,可能导致晶界的移动速度过快,出现晶粒异常增大现象。

两步法烧结的烧结流程为:陶瓷胚体通过加热装置加热到一定温度后不进行保温,立即以很快的速度降温到相对较低的温度进行长时间的保温。

与常规烧结方法相比,两步烧结法巧妙地通过控制温度的变化,在抑制晶界迁移(这将导致晶粒长大)的同时,保持晶界扩散(这是坯体致密化的动力)处于活跃状态,来实现晶粒不长大的前提下达到烧结的目的。

两段法烧结是指在相对较低的温度下保温一段时间,然后再在较高的温度下保温,最后自然冷却。

用此工艺可以降低烧结温度和缩短烧结时间,此方式可以用于烧结细晶钛酸钡陶瓷。

【高压烧结】高压烧结有两种方式,第一种为高压成型常压烧结,第二种为高压气氛烧结。

高压成型常压烧结中,样品在高压下再次加压后,颗粒之间的接触点增加且气孔减少,导致烧结前坯体的相对密度显著增加,而陶瓷烧结活性与样品的压坯密度紧密相关,所以烧结温度显著降低。

【精品文章】钛酸钡BaTiO3粉体制备及应用剖析

【精品文章】钛酸钡BaTiO3粉体制备及应用剖析

钛酸钡BaTiO3粉体制备及应用剖析
BaTiO3材料是一类重要的电子陶瓷材料,具有良好的光、电及化学催化性能,被广泛应用于电子及微电子工业、能源开发、污染物处理等领域。

随着高纯超微粉体技术、厚膜与薄膜技术的发展和完善,BaTiO3材料体系围绕新材料的探索、传统材料的改性、材料与器件的一体化研究与应用等方面幵展了广泛的研宄,成为材料科学工作者十分活跃的研究领域。

 1.BaTiO3晶体结构
 钛酸钡又称偏钛酸钡,分子量为白色结晶粉末,溶于浓硫酸、盐酸和氢氟酸,不溶于稀硝酸、水和碱其熔点为1625℃,密度为6.02g/cm3,有毒性。

钛酸钡的晶体结构是典型的钙钛矿结构,具有理想的结构单胞,即立方对称性晶胞,如图1所示。

Ba2+和O2-共同按立方最紧密堆积的方式堆积成O2-处于面心位置的“立方面心结构”,而尺寸较小、电价较高的Ti4+则在八面体间隙中。

每个被Ba2+十二个O2-包围形成立方八面体,其配位数为12;每个Ti4+被六个O2-包围形成八面体,其配位数为6;在每个O2-周围有四个Ba2+和两个Ti4+。

 图1 BaTiO3的钙钛矿晶体结构图
 钛酸钡是典型的铁电材料,具有铁电性,在一定温度范围内具有自发极化现象,由于钛离子随温度变化自发极化方向不同,钛酸钡的晶型分为六方相、立方相、四方相、斜方相和菱形相五种,如图2所示。

其中三方晶系、斜方晶系、四方晶系称为铁电晶系,具有铁电性。

 图2 BaTiO3的四种晶型
 2.BaTiO3粉体制备。

钛酸钡陶瓷制备实验报告(3篇)

钛酸钡陶瓷制备实验报告(3篇)

第1篇实验目的本实验旨在了解钛酸钡陶瓷的制备过程,掌握固相反应法合成钛酸钡陶瓷的实验步骤,并通过对实验结果的分析,探讨影响钛酸钡陶瓷性能的关键因素。

实验原理钛酸钡(BaTiO3)是一种具有钙钛矿结构的压电陶瓷材料,广泛应用于电容器、传感器、换能器等领域。

钛酸钡陶瓷的制备主要通过固相反应法,即利用高温使钡源和钛源发生化学反应,生成钛酸钡晶体。

实验材料1. 纯度≥99.9%的钛酸钡原料2. 纯度≥99.9%的钡源3. 纯度≥99.9%的钛源4. 纯度≥99.9%的氧化铝(Al2O3)作为助熔剂5. 砂轮研磨机6. 高温炉7. 精密天平8. 精密移液器9. 烧结炉10. 显微镜11. X射线衍射仪(XRD)实验步骤1. 原料准备:称取适量的钛酸钡原料、钡源、钛源和氧化铝,精确至0.01g。

2. 原料混合:将称取好的原料放入球磨罐中,加入适量的去离子水,开启砂轮研磨机进行球磨,时间为2小时。

3. 干燥:将球磨后的浆料在60℃下干燥12小时,得到干燥的粉体。

4. 压制成型:将干燥后的粉体进行压制成型,得到尺寸为10mm×10mm×1mm的陶瓷片。

5. 烧结:将陶瓷片放入高温炉中,在1300℃下烧结2小时。

6. 性能测试:对烧结后的钛酸钡陶瓷进行XRD分析,测定其物相组成;使用显微镜观察其微观结构;测量其介电常数和介电损耗。

实验结果与分析1. XRD分析:通过XRD分析,发现钛酸钡陶瓷主要成分为BaTiO3,没有其他杂质相生成。

2. 微观结构:通过显微镜观察,发现钛酸钡陶瓷晶粒尺寸均匀,分布良好。

3. 介电常数和介电损耗:测量结果表明,钛酸钡陶瓷的介电常数为3450,介电损耗为1.89%,满足实验要求。

结论本实验采用固相反应法成功制备了钛酸钡陶瓷,实验结果表明,该方法能够得到物相组成单一、微观结构良好的钛酸钡陶瓷。

通过调整原料配比、球磨时间、烧结温度等因素,可以进一步优化钛酸钡陶瓷的性能。

钛酸钡粉体制备

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。

关键词:钛酸钡;粉体;制备方法;1.引言钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。

制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。

所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直是各国科学家的研究重点。

钛酸钡的应用越来越广泛。

目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。

2.钛酸钡粉体的制备工艺2.1固相研磨-低温煅烧法传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。

朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃2.2水热法合成水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的自生压力下, 原始混合物进行反应的一种合成方法。

由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长基元, 进行成核结晶生成粉体或纳米晶[2]。

水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。

纳米钛酸钡的研究

纳米钛酸钡的研究

纳米钛酸钡的研究摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。

本文介绍了钛酸钡结构、性能、用途及制备方法。

制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。

关键词:钛酸钡,结构,性能,制备方法,粉体1. 引言钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。

2. 钛酸钡晶体的结构钛酸钡是一致性熔融化合物,其熔点为1618℃。

在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。

此时,六方晶系是稳定的。

在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。

在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。

此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。

随着温度下降,晶体的对称性下降。

当温度下降到130℃时,钛酸钡发生顺电-铁电相变。

在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。

钛酸钡从立方晶系转变为四方晶系时,结构变化较小。

从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。

为了方便起见,通常采用单斜晶系的参数来描述正交晶系的单胞。

这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。

钛酸钡制备实验报告

钛酸钡制备实验报告

化学化工学院材料化学专业实验报告实验名称:压电陶瓷钛酸钡的制备年级:09级材料化学日期:2011-9-7 姓名:蔡鹏学号:222009316210096 同组人:邹磊一、预习部分电子陶瓷用钛酸钡粉体超细粉体技术是当今高科技材料领域方兴未艾的新兴产业之一。

由于其具有的高科技含量,粉体细化后产生的材料功能的特异性,使之成为新技术革命的基础产业。

钛酸钡粉体是电子陶瓷元器件的重要基础原料,高纯超细钛酸钡粉体主要用于介质陶瓷、敏感陶瓷的制造,其中的多层陶瓷电容器、PTC热敏电阻器件与我们的日常生活密切相关,如PTC热敏电阻在冰箱启动器、彩电消磁器、程控电话机、节能灯、加热器等领域有着广泛的应用;MLC多层陶瓷电容在大规模集成电路方面应用广泛。

主要制备方法1,固相法,即氧化物固相烧结法2,液相法,即溶胶---凝胶法,水热法和共沉淀法等固相法简介:以氢氧化钡和钛酸丁酯为原料,采用固相研磨和低温煅烧技术相结合的方法制得钛酸钡纳米材料粉体。

用XRD、TEM、IR和ICP对粉体进行表征结果表明,所得钛酸钡粉体的粒径约为15—20nm,粒子形状近似为球形,晶体结构为立方相,钛钡物质的量比约为1.0.样品制备:称取4.679Ba(OH)2・8H20于研钵中研细后,为668~892℃时,存在于晶格中的羟基被除去。

加人1ml无水乙醇,拌匀,使Ba(0H)2・8HzO被乙醇充分湿润,然后加入5.oml钛酸丁酯(使反应物中钡与钛的物质的量之比为1.01t1.o).混匀后,研磨30min,得白色糊状物,放置24h,变为白色粉末状体。

研细后,置于马弗炉中在不同温度下煅烧3h(将1马弗炉加热到所需温度后再放入样品),产物冷却后。

用50ml0.1mol/L的HAc溶液浸泡1h(洗去反应过程中Ba(OH)2吸收空气中的C02生成的BaC03),离心分离。

先用蒸馏水洗涤3次,再用蒸馏水和无水乙醇交替洗涤2次,置于恒温干燥箱中于80℃干燥6h,得BaTiO。

化学共沉淀法制备钛酸钡陶瓷粉体的工艺研究

化学共沉淀法制备钛酸钡陶瓷粉体的工艺研究

利用 日本 理学 电机 D ma —B旋转 阳极 X射线 / xr
衍 射仪 ( RD) 析 所 得 粉 体 的相 组 成 。利 用 J — X 分 E
OL 6 6 L 型扫描 电镜 观察所 得 粉体 的形 貌 , -3 0 V 先将 所得 B T O。 体压制 成块 , 断面 喷金后 在扫 描 电 ai 粉 将
径小等 优点 , 是很 有发展 前景 的粉 体合成 方 法 J 。。 化 学共 沉淀法 合成钛 酸钡 在我 国已有研 究和 生
产 , 产 品批 量小 、 量 不稳 定 , 远不 能 满 足 市 场 但 质 远
需求 。本文 研 究反 应 温度 、 应溶 液 浓 度 等 因素 ] 反 对所得 钛 酸钡粉 体性 能的 影 响 , 实 现化 学 共 沉 淀 为
调 节 p 值 , 持 p 值 为 3 反 应持续 进行 2h H 保 H , 。反 应结 束后 将 白 色共 沉 淀产 物过 滤 , 化 1 , 蒸 陈 2h 用 馏水 清洗 , 以无 水 乙醇 为 介 质 超 声 分 散 3 i , 再 0r n a 过滤 后 于 7 O℃恒温 干燥 。 为分 析共 沉淀产 物 的热分 解过 程及确 定煅 烧温 度 , 用 S ~0 一 C 型 差示 扫 描 量 热 仪 ( S ) 采 TA 4 9P D C 对 共沉 淀 产物 进行 热 分析 , 热 速度 为 1 C/ i , 加 O。 r n 加 a 热 温度 至 10 0。 0 C。然 后将共 沉 淀产物 随 炉缓 慢加 热 到根 据热 分 析结 果确 定 的煅 烧 温度 , 温 2h 冷 保 , 却后 得 B Ti 。 a O 粉体 。 为 研 究 反 应 温 度 及 反 应 浓 度 对 粉体 形 貌 的影 响 , 试 验 分 别采 用 6 本 5℃ 、 5。 8 7 C、 5℃ 3种 温 度 , 及 由高 到低 3种 浓度进 行 9组 试验 , 中 B C。 其 a1 溶液 和 H。 。 )溶 液 的 3种 浓 度 分 别 为 : . 6 0 7 , C ( 0 6 , . 0

10.钛酸钡粉体制备方法(55)解析

10.钛酸钡粉体制备方法(55)解析

39
七、双氧水共沉淀法

该法主要是以偏钛酸为钛原料,用 双氧水、氨水及硝酸钡为添加剂,经 转化共沉淀得到纳米晶或亚微米钛酸 钡前驱体,再经热分解制备纳米或亚 微米钛酸钡。
40
其反应方程式为:

H2TiO3+H2O2+2NH3→(NH4)2Ti4O4+H2O

(NH4)2Ti4O4+Ba(NO3)2→BaTiO4↓
34

工艺流程及原理为:将等摩尔 的氯化钡溶液及四氯化钛水溶液 混合后 , 与六摩尔当量的碳酸氢 铵反应 , 得到胶体二氧化钛和碳 酸钡沉淀相互包裹的沉淀 , 经分 离洗涤、烘干、煅烧后得到钛酸 钡粉体。
35

该方法工艺简单,但氯根很难洗 净,容易带入杂质,特别是钙离 子,纯度偏低。还有一问题是加 料速度过快,会产生大量的气泡, 反应难以于控制,同时前驱体的 过滤也较困难。
30
粉料中含少量碳酸钡。若制备过程在 惰性气氛中进行,则碳酸钡含量减少, 但不能完全消除。因为干燥过程中,粉 体与空气中的二氧化碳反应也能形成少 量碳酸钡,随煅烧温度的提高到 1000℃ 时,碳酸钡全部分解,粉体为纯的钛酸 钡相。 该方法的优缺点为:制备的颗粒团 聚较少,颗粒分散性好,粒径分布也较 均匀,但含少量碳酸钡。
18
水热合成法是把含有钡和钛的前体 (一般是氢氧化钡和水合氧化钛)水浆 体,置于较高的温度和压力下(相对于 常温、常压),使它们发生化学反应。 经过一定时间后,钛酸钡粉体就在这 种热水介质中直接生成。该法制备的 晶粒发育完整,粒度分布均匀,颗粒 之间很少团聚。
19
采用氢氧化钡和偏钛酸为原料合成钛 酸钡,在反应过程中会生成少量的BaCO3, 但在其后的煅烧阶段少量的碳酸钡会进一 步与偏钛酸反应,还有少量的碳酸钡用醋酸 洗涤,再水洗即可除掉;煅烧温度 600700℃,降低了煅烧温度;分析结果显 示,所得产品纯度高,粒径小,能满足电 子工业对高质量钛酸钡粉体的需求。

钛酸钡制备方法指化学共沉淀法

钛酸钡制备方法指化学共沉淀法

化学共沉淀法制备钛酸钡来源:世界化工网()化学共沉淀法是将等物质的量的可镕性钡、钛化合物混合,在一定的酸碱度条件下加入沉淀刑,使钡、铁化合物产生共沉淀,分离出沉淀物,干燥、锻烧后即得产品。

化学共沉淀法与固相法相比,前者两组分分散的比较好,反应更容易进行,特别是在两组分结构相似,溶解度、沉淀时的pH值近似时,更能够很好地混合。

另外,共沉淀法的反应温度明显的比固相法低。

当物质的量比为1:1时,共沉淀法不会生成如BoTiO4等其他产物。

作为化学共沉淀法的沉淀剂可以是碳酸盐,如(NH4)2CO3:,NH4HCO3也可以是草酸盐或含过氧化氢的碱溶液。

下面用草酸作沉淀剂为例说明之。

用草酸作沉淀别是60年代以来研究得比较多的一种方法。

该法一般是将可溶性钡盐、钛盐与草酸一起反应生成草酸氧钛钡沉淀,煅烧沉淀物得到钛醋钡。

目前,我国已有用此法生产钛酸钡的工厂。

首先将BaCO3与HCl反应生成BaCl 水溶液。

将TiCl4用精制水配成水溶液,然后将TiCl4的水溶液和氯化钡的水溶液按等物质的量混合,再与2倍物质的量的草酸溶液反应。

工艺流程示意如图6—5。

(1)草酸氧钛钡的合成制取草酸氧钮钡的过程中,四氯化铁水溶液制备的成功与否是能否得到高纯度钻酸钡的关键。

最重要的是在四氯化铁水溶液制备过程中如何避免钛的遇水分解。

四氯化钛遇水会发生下列反应:制备丁Ti-Ba溶液时,温度高低也会影响四氯化欲继续水解,因此要对温度加以控制。

Ti-Ba溶液混合后加入草酸水溶液使四氮化试和草酸溶液生成铁的络合物,然后与氯化钡反应生成草酸织钞钡沉淀,化学反应方程式如下:反应中还会发生下列反应:Ba 2+ +H2C2O4 =====BaC2O4↓+2HCl另外,虽在四氯化钛水溶液制备中尽量避免四硫化钛的水解,但总不能完全避免,少量四氯化钛的水解、则有少量二氧化钛的析出导致氯化钡过量,也会件有下列副反应:BaCl2+H2C2O4====BaC2O4↓+2HCl通过上述过程获得的草酸氧钛钡沉淀,经高温分解,即可得到理想配比的钛酸钡。

钛酸钡合成工艺技术概述

钛酸钡合成工艺技术概述
5、提高质量。预热带、烧成带、冷却带三部分的 温度,常常保持一定的范围,容易掌握其烧成规律, 因此质量也较好,破损率也少;
6、窑和窑具都耐久。因为窑内不受急冷急热的影 响,所以窑体使用寿命长,一般5-7年才修理一次。
其他合成方法——醇盐水解法
制得的BaTiO3粉末平均粒径为5一15nm, 纯度为99.99%。就目前来说,此法制备的 粉体纯度最高、粒度最细,化学活性最强。
可看出: 1、明显的非线性 2、居里温度
掺杂改性 离子半径相差较大、电价 不同,固溶极限很小,但 能使陶瓷性能显著变化 (有的加入物有移峰效应, 称作移峰剂)。 改变: 居里峰宽度(温度稳定 性); 居里温度; 峰值介电常数; 陶瓷致密度等等。
固相烧结法
等摩尔混合,1250~1300℃下煅烧,固相反应,合成的钦酸钡再粉碎。 控制好隧道窑的烧结温度和时间是该工艺的关键环节。
优点:简便易行,成本低,适应面广
缺点:是必须依赖机械粉碎,长时间地粉碎会使物料造成严重污染;而 且不易很准确地把握配料,物料不易混合均匀,反应也很难进行得十分 彻底;产品纯度低;粒径大,但分均一性差,不能满足生产高级电子陶瓷 的需要。
此法生产的BaTiO3粉末平均粒径为4μm,纯度98.8%。
1、材料的细化
钛酸钡为浅灰色结晶,熔点约为1625℃,比重为 6.0.溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀 硝酸、水及碱。
具有五种结晶变型:六方晶型、立方晶型、四方晶 型、正方晶型、三方晶型。室温下以正方晶型稳定。
有毒,介电常数很高。
当BaTiO3受到高电流电场 作用时,在居里点120℃ 以下会产生持续的极化效 应。极化的钛酸钡有两个 重要的性质;铁电性和压 电性。
把粉料装入富有弹件的塑料或橡皮模具中,放入等静压机的高压密闭容器内,液 压成型。 (1)由于橡皮模具在各方向受到的压力均等,坯·体的各个方向被均匀地压实, 因此制得的坯体密度高、均匀性好,烧成收缩小,不易变形和介裂.不分层,不 易产生变形和开裂的废品; (2)可制造大几何尺寸和异型制品; (3)坯料不必加黏合剂(含水量1%一4%的粉料即可),有利于烧成和降低瓷件的 气孔率; (4)坯件的机械强度高、可以满足毛坯处理和机加工的需要; (5)不需要金属模具,模具制造方便,成本低。

纳米钛酸钡的结构性能及制备方法

纳米钛酸钡的结构性能及制备方法

纳米钛酸钡的结构性能及制备方法摘要:钛酸钡纳米材料具有高介电常数和低介质损耗等优异的性能,是电子工业中应用最广泛的陶瓷材料之一。

本文主要介绍了钛酸钡结构性能、应用方向和纳米钛酸钡制备方法。

关键词:钛酸钡结构性能制备方法粉体前言钛酸钡(BaTiO3)具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被誉为“电子陶瓷工业的支柱”,广泛的应用于半导体陶瓷和电子工业等方面。

一、钛酸钡晶体的结构钛酸钡是一致性熔融化合物,其熔点为1618℃。

在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。

此时,六方晶系是稳定的。

在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。

在此结构中钛离子居于氧离子构成的氧八面体中央,钡离子则处于八个氧八面体围成的空隙中。

此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。

随着温度下降,晶体的对称性下降。

当温度下降到130℃时,钛酸钡发生顺电-铁电相变。

在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。

钛酸钡从立方晶系转变为四方晶系时,结构变化较小。

从晶胞来看,只是晶胞沿原立方晶系的一轴(c 轴)拉长,而沿另两轴缩短。

当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。

钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。

从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。

当温度继续下降到-90℃以下时,晶体由正交晶系转变为三斜晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。

钛酸钡从正交晶系转变成三斜晶系,其结构变化也不大。

综上所述,在整个温区(<1618℃),钛酸钡共有五种晶体结构,即六方、立方、四方、单斜、三斜,随着温度的降低,晶体的对称性越来越低。

钛酸钡粉体制备

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。

关键词:钛酸钡;粉体;制备方法;1.引言钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。

制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。

所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直是各国科学家的研究重点。

钛酸钡的应用越来越广泛。

目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。

2.钛酸钡粉体的制备工艺2.1固相研磨-低温煅烧法传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。

朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃2.2水热法合成水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的自生压力下, 原始混合物进行反应的一种合成方法。

由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长基元, 进行成核结晶生成粉体或纳米晶[2]。

水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。

以偏钛酸为钛源的化学共沉淀法制备钛酸钡粉体

以偏钛酸为钛源的化学共沉淀法制备钛酸钡粉体

The main data of test are:the mean particle size is 0.37/1m,morphology is global,the mole rate of Ba/Ti is 0.999,the crystal is tetragonal,the ingredient of BaTiOa is 99.81%,the content of impurity was less than the index of the elec~
可以看出,温度的升高有利于粉体结晶度和纯度的提高,但 温度过高对粉体粒度的要求不利,实验发现在该工艺条件下,在 950℃煅烧时,可以满足技术标准对粉体的要求。
2.5样品的成分分析
表l为950。C煅烧时所合成的BaTi03粉体的Ba/Ti摩尔 比和杂质质量分数。成分分析结果表明,该工艺制备的BaTi03 粉体已达到2000年实施的化工行业标准HG/T 3587《电子工 业用高纯钛酸钡》中规定的一等品钛酸钡粉体的要求。
2.O~2.5范围,使之能完全均匀沉淀出草酸氧钛钡沉淀。将沉
淀用去离子水洗涤除去Cl一等,再置于箱式电炉中,从室温缓慢
升温,并在950V时恒温2.5~3h,自然冷却后,无需研磨即得到
疏松状的BaTi03粉体。主要化学反应方程式如下:
H2[TiO(C204)2]+BaCl2+4H20
=BaTiO(G04)2·41-120+2Ha
我国虽然已有一些厂家采用草酸盐共沉淀法生产bati03粉体但钛元素来源均是价格较高有效钛含量较低有大量液体和气体污染物排放的四氯化钛并存在着微观均匀性不好产品性能不稳定粒度较大及粒度分布不均匀等问题生产的batios粉体只能用于性能要求不高的元件致使我国电子元件制造企业必须大量进口高纯超细钛酸钡来满足高性能元件制造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 前言钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。

它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。

钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。

因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。

钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。

最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。

2 钛酸钡粉体的制备工艺2.1 固相合成法固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。

该法工艺简单,设备可靠。

但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。

高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。

一般只用于制作技术性能要求较低的产品。

2.2化学沉淀法2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。

如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。

该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。

2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。

该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒:TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl,BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。

该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。

尽管有不同的改进方法,但仍难于实现工业化生产。

2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之—。

由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。

同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。

实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。

但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

2.2.4 复合过氧化物法德国专利(DE-24332791)和日本专利(JP昭49-69399)分别提出了通过复合过氧化物前驱体制取BaTiO3粉体的方法,中国专利(CN1061776)也提出了一种改进方法,即在NH3·H2O 和H202混合溶液中加入等物质的量的TiO2-盐和Ba2+的混合水溶液,用氨水调节溶液pH,得到复合过氧化物沉淀。

用水洗涤至无氯离子后,脱水并干燥。

在400-600℃温度下煅烧,得到50-100nm的晶体。

该法原料易得,产品纯度和粒度都能达到要求,但制得的BaTiO3粉体粒子结块严重,并使用过量的:H2O2。

2.2.5 碳酸盐沉淀法此法可分为液相悬浮碳酸盐沉淀法和碳酸盐共沉淀法。

碳酸盐共沉淀法是在控制一定pH条件下,把沉淀剂(NH4)2CO3,溶液缓慢加入到等物质的量的BaCl2和TiCl4混合水溶液中,得到高分散BaCO3和TiO(OH)2沉淀。

对沉淀物过滤、洗涤、干燥、煅烧(1 300℃),得到BaTiO3粉体。

该法原料易得,操作简单适于大规模生产。

但易掺杂,煅烧温度高,操作条件的微小变化对产物理化性能有较大影响。

为克服上述不足,全学军等提出了较合理的改进方法。

2.2.6 超重力反应沉淀法超重力反应沉淀法(HGRP)是近年新兴的一种粉体制备技术。

北京化工大学陈建峰教授利用此法,可制备出颗粒尺寸在30-100nm范围内的纳米钛酸钡粉体,而且所得粉体具有良好的烧结和介电性能。

2.3 水热合成法水热合成法是指在密封高压釜中,以水为溶剂在一定的温度和蒸汽压力下,使原始混合物进行反应的合成方法。

近年来用水热法制备高质量亚微细BaTiO3微粒受到了广泛关注,如通过高活性水合氧化钛与氢氧化钡水溶液反应,反应温度和压力大大降低,合成的钛酸钡粉体粒径在60-100am之间。

清华大学研究出了一种从溶液中直接合成钛酸钡纳米粉体的方法,并申请了专利。

Maclaren研究了水热法合成BaTiO3的反应机理,得到了形成BaTiO3的基本条件。

水热法可在较低温度下直接从溶液中获得晶粒发育完好的粉体,且粒度小,化学成分均匀,纯度高,团聚较少。

该法原料价格低,Ba/Ti物质的量比可准确地等于化学计量比,粉体具有高的烧结活性。

但该法存在需要较高压力,氯盐易引起腐蚀,采用活性钛源时要控制活性钛源前驱体的水解速率,避免Ti-OH基团快速自身凝聚和Ba缺位等问题。

2.4溶胶-凝胶法溶胶-凝胶法是指将金属醇盐或无机盐水解成溶胶,然后使溶胶凝胶化,再将凝胶干燥焙烧后制得纳米粉体。

其基本原理是:Ba和Ti的醇盐或无机盐按化学计量比溶解在醇中,然后在一定条件下水解,使直接形成溶胶或经解凝形成溶胶。

再将凝胶脱水干燥、焙烧去;除有机成分,得到BaTiO3粉体。

根据使用的原料不同,溶胶—凝胶法可分为几种。

2.4.1 醇盐水解法一般以Ba和Ti的醇盐为原料。

将两种醇盐按化学计量溶解在醇中,或用钡钛双金属醇盐溶解在醇中。

然后在一定条件下水解,最后将水解产物经过热处理制得BaTiO3粉体。

该法制得的粉体纯度高、分散性好、烧结活性好、粒度小,并且在制成溶液中一步加入掺杂剂,如镧、钕、钪、铌等元素,从而获得原子尺寸混合掺杂。

该方法可以制备多组分钛酸钡基陶瓷粉体。

但醇盐价格高,且容易吸潮水解,不适合大规模生产。

2.4.2 羧基醇盐法羧基醇盐法是指加热丙酸钡与乃醇盐的乙醇溶液而形成单一Ba-Ti凝胶的方法。

因为T1醇盐在水溶液中水解,容易形成水合氢氧化钛沉淀,所以在应用n醇盐作为原料时,用醋酸进行改性,可形成更为稳定的酰基前驱体。

钛酯和醋酸钡在水溶液中混合后形成Ba-Ti凝胶,不定型的Ba-Ti凝胶通常是由类似TiO2玻璃的网络组成,Ba离子杂乱地分布在TiO2骨架中,Ba和Ti离子间的扩散距离仅10-20nm,不定型Ba-Ti凝胶的煅烧温度低于700℃。

不定型Ba-Ti凝胶到晶态钛酸钡的形成机理还不清楚,在煅烧过程中发现有BaCO3产生,说明钛酸钡的形成有一部分是由BaCO3和TiO2经固相反应生成。

此法合成的钛酸钡晶粒形貌不利于成形烧结。

2.4.3 氢氧化物醇盐法用氢氧化钡和异丙烷酸氧钛为原料合成陶瓷粉体,反应只能在pH为11-14的范围内进行,生成的阴离子团Ti(OH)2-6与Ba2+经缩合反应形成Ti(OH)6Ba络合物。

若往溶液中快速添加Ba醇欺,则有利于Ti(OH)6Ba络合物的形成。

但该过程中控制Ti-OH官能团的自缩合反应是非常困难的,容易得到富Ba相和Ti的混合物,控制反应过程的条件非常重要。

2.4.4 溶胶-凝胶自燃合成法溶胶-凝胶自燃合成(SAS)法和自蔓延低温燃烧合成(SI另)法是指有机盐与金属硝酸盐在加热过程中发生氧化还原反应,燃烧产生大量气体,可自我维持并合成所需产物的一种材扭合成工艺。

其主要特点是:燃烧体系的点火温度低(50-200℃);燃烧火焰温度低(1 000-1 400℃),可获得具有高比表面积的陶瓷粉体;各组份达到分子或原子水平的复合;反应迅速,一般在几分钟或几十分钟内完成;耗能低;所用设备和工艺简单、投资少;产品自净化;纯度易于提高;合成的粉体疏松多孔,分散性好,并获得多组元复合氧化物。

2.4.5 双金属醇盐法用金属钡棒和乙二醇甲醚为原料,在0℃水浴和氮气保护下充分反应形成混浊状溶液,然后将溶液在130℃温度下回流至溶液呈褐色透明,冷却到室温,合成钡先驱体和化学纯钛酸丁酯。

二者按钡钛物质的量比为1:1配料混合后,在130℃下回流1 h,获得钡钛复合醇盐,然后加入一定量的去离子水,溶液迅速成胶。

将湿凝胶陈化7d后,干燥成干凝胶,再进行热处理,得到钛酸钡陶瓷粉体。

此反应可在150℃下合成BaTiO3;纳米粉体,晶粒尺寸在14-16nm范围内。

2.4.6 钛酸丁酯钡盐汝钛酸丁酯和钡盐经水解形成溶胶,溶胶经干燥、煅烧制得纳米钛酸钡。

李青莲等采用硼脂酸钡与钛酸丁酯反应(SAG法)制备出了粒径约20nm的BaTiO3;粉体。

李东升等以化学纯钛酸丁酯和分析纯醋酸钡、正丁醇和冰醋酸为原料制得平均粒径约35nm、外貌近似球形的PTCR钛酸钡粉体。

2.5气相反应法此法采用金属氯化物或金属醇盐为原料,通过电弧、燃烧、激光诱导等方式加热,气相反应后得BaTiO3粉体。

金属醇盐燃烧制取BaTiO3粉体,是把钡、钛醇盐以等物质的量混合并溶于有机溶剂,再与助燃气体一起通人雾化器中,经燃烧、分解,使游离的钡、钛离子直接反应,生成高纯、微细、均匀的钛酸钡粉体。

产品粒径小、组分均匀,但设备复杂、成本高,目前尚无工业应用价值。

2.6微乳液法微乳液通常是由表面活性剂、油相和水相组成的热力学稳定体系。

Beck等将钡盐和钛盐的混合水溶液分散在一种有机相中形成微乳液,将此微乳液与共沉淀剂或与用共沉淀剂的水溶液制成的微乳液进行混合,形成钛酸钡的前驱体沉淀,经分离、洗涤、干燥、煅烧得纳米钛酸钡粉体。

其优点是利用微乳液的微观环境,较好地控制了前驱体的粒子形状及分散性。

但操作过程较复杂,成本较高。

目前尚处探索阶段。

2.7低温直接合成法S.Wada等提出了一种制备纳米钛酸钡晶体的低温直接合成法。

将四氯化钛缓慢地滴人到温度低于10℃的硝酸中,以此溶液作耵源,将Ba(OH)2·8H2O溶解在无CO2的离子交换水中,并用KOH调节使其pH大于13,此溶液作为Ba源。

将pH小于1的冰钛液缓慢滴人到钡液中,很快生成白色沉淀。

相关文档
最新文档