运筹学基础及应用第五版 胡运权PPT
合集下载
运筹学胡运权第五版课件(第二章)分析
2 x3 4 x4 4 x2 x3 x4 6
x1 0, x2,x3 0, x4无约束
对偶问题:max w 5 y1 4 y2 6 y3
y1 2 y2
2
s.t.
y1 3 y1
2 y2
y3 y3
3 5
y1 4 y2 y3 1
y1 0, y2 0, y3无约束
zmax=wmin .
证: 设X*是原问题的最优解,则所有检验数都非正。
即 = C- CB B-1 A 0 ∴ CB B-1 A C 令 CBB-1 = Y* T,有 Y*T A C, 转置得A TY* CT -----------------------① 又因为 S′ = -CBB-1 = -Y * T 0,所以Y* = -( S′)T 0------②
4x1 2x2 6x3 24
s.t.
3x1 6x2 4x3 15
5x2 3x3 30
x1 0, x2无约束,x3 0
解:第一步 改写为 min 的基本形式
令x1 x1,x2 x2 x2
min z 7x1 (4 x2 x2) 3x3
4
x1
(2 x2
x2)
6 x3
24
证明: 由弱对偶性: 当X 和Y 分别是P和D的可行解时,CX bTY 若CX ,则不存在Y 使得CX bTY; 若bTY ,则不存在X 使得CX bTY。
注:逆定理不成立。 即“如果原问题无可行解,那么对偶问题有无界解”不成立。 此时,对偶问题可能有无界解,也可能无可行解。
4、强对偶性(对偶定理) 若原问题有最优解,则对偶问题一定有最优解,且
由①②知Y*是对偶问题的可行解,
而 CX* = CB b ′,其满足: CX* =CB (B-1 b) = CB B-1b = Y*T b= b TY* 由最优性(性质2),∴ Y*是对偶问题的最优解。
运筹学胡运权第五版课件
运筹学胡运权第五 版课件大纲
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法
等
图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法
等
图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高
运筹学基础及应用第五版 胡运权第三章
例3
设有三个化肥厂供应四个地区的农用化肥,假
定等量的化肥在这些地区使用效果相同,已知各化肥厂 年产量,各地区年需要量及从各化肥厂到各地区单位化 肥的运价表如下,试决定使总的运费最节省的化肥调拨 方案。
解:这是一个产销不平衡的运输问题,总产量为
160万t,四个地区最低需求为110万t ,最高需求为无限。 当其它地区都是满足最低需求时,第Ⅳ地区每年最多能 分配到60万t ,这样最高需求就是210万t,大于产量。 为建立产销平衡表,在表中增加一假想化肥厂D , 其年产量为50万t 。并把各地区的最低需求和额外需求 区分开来,建立产销平衡表。
例1
现在把问题概括一下,在线性规划中我们研究这样 一类运输问题:有某种物资需要调运,这种物资的计量
单位可以是重量、包装单位或其他。已知有m个地点可以
供应该种物资(以后通称产地,用 i 1,, m 表示),有 n个地点需要该种物资(以后通称销地,用 j 1,, n 表示),又知这m个产地的可供量(以后通称产量)为 (可通写为 a i ),n个销地的需要量(以后 a1 , a2 ,, am
第三章 运输问题
§1.运输问题的典例和数学模型
§ 2.表上作业法
§ 3.产销不平衡的运输问题及其应用
§1.运输问题的典例和数学模型
某食品公司经销主要产品之一是糖果,它下面 设有三个加工厂,每天的糖果生产量分别为: A1 7t , A3 9t。该公司把这些糖果分别运往四个地区 A2 4t , 的门市部销售,各地区每天的销售量: B1 3t , B2 6t, B4 6t 。已知从每个加工厂到各销售门市部每 B3 5t, 吨糖果的运价如下表: 单位:元/t
产 销 平 衡 表
当一个产地的产量不能运往某一个销地的时候,认为 运价为M(表示任意大正数)。额外需求部分的销量,由于 是否满足都可以,所以假想厂运往这些销地的运价定为 0。
《运筹学基础及应用》胡运权主编,哈工大出版社,完整版ppt课件
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
Page 8
运筹学在工商管理中的应用
Page 9
运筹学在工商管理中的应用涉及几个方面: 1. 生产计划 2. 运输问题 3. 人事管理 4. 库存管理 5. 市场营销 6. 财务和会计
基可行解
线性规划问题的数学模型
Page 30
例1.4 求线性规划问题的所有基矩阵。
maxZ 4x1 2x2 x3
5x110x1x2
x3 6x2
x4 2x3
3 x5
2
x
j
0,
j
1,
,5
解: 约束方程的系数矩阵为2×5矩阵
5 1 A1 0 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
图解法
Page 31
线性规划问题的求解方法
一般有 两种方法
图解法 单纯形法
两个变量、直角坐标 三个变量、立体坐标
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
运筹学胡运权第五版(第6章)课件
零图: 边集为空集的图。
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n
2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。
运筹学胡运权第五版(第6章)
2、图的阶:即图中的点数。 例如 右图为一个五阶图
3、若图中边e= [vi,vj] ,则vi,vj称 为e的端点,
e称为vi,vj的关联边。 若vi与vj是一条边的两个端
点,则称vi与vj相邻; 若边ei与ej有公共的端点,
则称ei与ej相邻。
e8
1、图(graph):由V,E构成的有序二元组,用以表示对 某些现实对象及其联系的抽象,记作 G={V,E}。 其中V称为点集,记做V={v1,v2,···,vn}
E称为边集,记做E={e1,e2,···,em}
点(vertex):表示所研究的对象,用v表示; 边(edge):表示对象之间的联系,用e表示。 网络图(赋权图): 点或边具有实际意义(权数)的图, 记做N。
路:点不能重复的链。
圈:起点和终点重合的链。
回路:起点和终点重合的路。
连通图:任意两点之间至少存在一条链的图。
完全图:任意两点之间都有边相连的简单图。
n阶完全图用Kn表示,边数=
C 2 n(n 1)
n
2
注意:完全图是连通图,但连通图不一定是完全图。
运筹学胡运权第五版(第6章)
v1 e4
v4 e5 v5
依次下去,vn必然与前面的某个点相邻,图中有圈,矛盾!
注意:树去掉悬挂点和悬挂边后余下的子图还是树。
运筹学胡运权第五版(第6章)
(2)n阶树必有n-1条边。
证明(归纳法): 当n=2时,显然;
设n=k-1时结论成立。 当n=k时,树至少有一个悬挂点。
去掉该悬挂点和悬挂边,得到一个k-1阶的树,它有 k-2条边,则原k阶树有k-1条边。
7、已知图G1={V1,E1}, G2={V2,E2}, 若有V1V2,E1E2,则称G1是G2的一个子图; 若V1=V2,E1E2且 E1≠E2 ,则称G1是G2的一个部分图。
运筹学基础及应用第五版 胡运权资料
约束方程 i: =
对偶问题(原问题) 约束右端项 目标函数系数 约束条件系数向量 AT 约束条件个数
min
约束方程 j : =
变量 y i : yi 0 y i 无约束 yi0
2.3 对偶问题的基本性质
Max z = CX
Min w = Y b
s t . AX b
s t . YA C
X0
X1 0 , X2 0
2.资源最低售价模型
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
s.t AX b X 0
min w’’ = -CX s.t -AX -b X0
min w = Y b
s.t YA C Y0 例2
max w’ = -Y b
s.t -YA -C Y0
对偶模型其它结构关系
(2)若模型为
max z = C X
s.t AX b
变形
X 0
min w=Y ´(-b)
Y0
(1) 弱对偶性:
若 X0——原问题可行解,Y0——对偶问题可行解 则 CX0 Y0b
证明: ∵ Y0 0, AX0 b, ∴ Y0 AX0 Y0 b,
而 Y0 A C , ∴ Y0AX0 CX0 ,
∴ CX0 Y0 AX0 Y0 b
(2)最优性:
若 X0——原问题可行解,Y0——对偶问题可行解,且 CX0 = Y0b
对偶问题(原问题) 约束右端项 目标函数系数 约束条件系数向量 AT 约束条件个数
min
约束方程 j : =
变量 y i : yi 0 y i 无约束 yi0
2.3 对偶问题的基本性质
Max z = CX
Min w = Y b
s t . AX b
s t . YA C
X0
X1 0 , X2 0
2.资源最低售价模型
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
s.t AX b X 0
min w’’ = -CX s.t -AX -b X0
min w = Y b
s.t YA C Y0 例2
max w’ = -Y b
s.t -YA -C Y0
对偶模型其它结构关系
(2)若模型为
max z = C X
s.t AX b
变形
X 0
min w=Y ´(-b)
Y0
(1) 弱对偶性:
若 X0——原问题可行解,Y0——对偶问题可行解 则 CX0 Y0b
证明: ∵ Y0 0, AX0 b, ∴ Y0 AX0 Y0 b,
而 Y0 A C , ∴ Y0AX0 CX0 ,
∴ CX0 Y0 AX0 Y0 b
(2)最优性:
若 X0——原问题可行解,Y0——对偶问题可行解,且 CX0 = Y0b
运筹学基础及应用第五版 胡运权
则 CX0 CX* Y*b Y0b
但 CX0 = Y0 b, ∴ CX0 = CX* = Y* b = Y0 b ∴ X0 = X* , Y0 = Y* 即 X0——原问题最优解, Y0——对偶问题最优解 证毕。
(3)无界性
若原问题(对偶问题)最优解无界,则对偶问题(原问 题)无可行解 证:由性质1,C X0 Y0 b,当 CX0 ∞ 时,则不可 能存在Y0,使得 C X0 Y0 b 。
设 备 产品
A
B
C
D
单位利润
甲产品 乙产品
现有材料 数量
2 2 12
1 2 8
4 0 16
0 4 12
2 3
1.最大生产利润模型
设 企业生产甲产品为X1件, 乙产品为X2件,则
max z= 2 X1 +3 X2
2.资源最低售价模型
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有
min w= 12y1 + 8y2 + 16y3 +12 y4 y1 y2 y3 y4
列单纯表计算:
Cj → CB XB b 0 y4 -2 0 y5 -1 cj - zj -24 y2 0 y5 cj - zj -24 y2 -5 y3 cj - zj 1/4 1/2 1/3 -1/3 -15 -24 -5 0 0
y1
0 -5
y2
-6 -2
y3
-1 -1
y4
1 0
y5
0 1 0 0 1
s.t
2 X1
+2 X2 12 X1 +2 X2 8 4 X1 16 4 X2 12 X1 0 , X2 0
运筹学基础及应用第五版 胡运权
第八章 动态规划
8.1 多阶段决策问题 8.2 最优化原理与动态规划的数学模型 8.3 离散确定性动态规划模型的求解 8.4 离散随机性动态规划模型的求解
8.5 一般数学规划模型的动态规划 解法
1
学习要点:
理解动态规划基本概念、最优化 原理和基本方程,逆序法和顺序解法,学 习应用动态规划解决多阶段决策问题。
34
最优化原理Optimization Principl
作为整个过程的最优策略具有这样的性质: • 无论过去的状态和决策如何,对先前决策
所形成的状态而言,余下的诸决策必构成 最优策略。
B M A
若M是从A到B的最优路线上的一点,则从 M到B的路线也是最优的。
35
动态规划的基本方程
(最优化原理的应用)
重点 :掌握动态规划模型结构、 逆序法算法原理、资源分配、设备更新、 生产与存贮等问题。
2
第一节 多阶段的决策 问题
3
动态规划(Dynamic Programming)
R. Bellman50年代执教于普林斯顿和斯坦福大学, 后进入兰德(Rand)研究所。1957年发表“Dynamic Programming”一书,标识动态规划的正式诞生。
3
3
C3
3
f(C3)=6
f(D1)=3
D1
3
f(E)=0
E
D2 4
f(D2)=4
状态 最优决策 状态
决A策 (状态A,B3)
B3
最优决策
状态
最优决策
状态
最优
21
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
8.1 多阶段决策问题 8.2 最优化原理与动态规划的数学模型 8.3 离散确定性动态规划模型的求解 8.4 离散随机性动态规划模型的求解
8.5 一般数学规划模型的动态规划 解法
1
学习要点:
理解动态规划基本概念、最优化 原理和基本方程,逆序法和顺序解法,学 习应用动态规划解决多阶段决策问题。
34
最优化原理Optimization Principl
作为整个过程的最优策略具有这样的性质: • 无论过去的状态和决策如何,对先前决策
所形成的状态而言,余下的诸决策必构成 最优策略。
B M A
若M是从A到B的最优路线上的一点,则从 M到B的路线也是最优的。
35
动态规划的基本方程
(最优化原理的应用)
重点 :掌握动态规划模型结构、 逆序法算法原理、资源分配、设备更新、 生产与存贮等问题。
2
第一节 多阶段的决策 问题
3
动态规划(Dynamic Programming)
R. Bellman50年代执教于普林斯顿和斯坦福大学, 后进入兰德(Rand)研究所。1957年发表“Dynamic Programming”一书,标识动态规划的正式诞生。
3
3
C3
3
f(C3)=6
f(D1)=3
D1
3
f(E)=0
E
D2 4
f(D2)=4
状态 最优决策 状态
决A策 (状态A,B3)
B3
最优决策
状态
最优决策
状态
最优
21
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
《运筹学教程》胡云权-第五版-第二章--运输问题PPT课件
B1
14
82
8
10
8 v1
u2 v3 3 u3 v2 5 u3 v4 6
B2
2 12 10
1
14 5
14 v2
B3 10 4 23
11
12
12 v3
设 u2 0 v1 2,
u1
-
1,
B4
产量
ui
6 11
16
u1
9
-1
10
u2
86
22
u3
14
48
v4
v2 9, u3 4,
v3 3
-
4
运输问题的数学模型
针对单一品种物资运输调度问题
设某物资有m个产地A1,A2,…,Am,产量分别是a1,a2,… ,am , 有n个销地B1,B2, …,Bn ,销量分别是b1,b2,… ,bn。
从产地Ai (i=1,2, …,m)到销地Bj (j=1,2, …,n )运输单位物品的运价是cij 。 如何调运这些物资使得总费用最小?
行罚数
①②③④⑤
0 0 07 0 1 1 16 0 12
①
2
列②
2
5
1
3
初始基可行解:x13=12,
1
3
罚③ 数④
2
1
2
x14=4, x21=8, x24=2,
1
2
x32=14, x34=8,其余均为0。
⑤
-
2
z=244
16
产销平衡运输问题解法——表上作业法
1、确定初始基可行解
当最小元素或最大罚数对应的ai和bj相等时,即对应的产 量和销量相等时,为保证基变量的个数为m+n-1个,除了在产 销平衡表填xij=ai外,还应在产销平衡表中的第i行或第j列某空 格(相应运价未被划掉)处填一个“0”,然后同时划去运价 表上的第i行和第j列,该“0”看作是数字格。
(完整版)运筹学胡运权第五版课件(第1章)
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
x
j
xj
且
x
j
0
…
am1x1+am2x2+…+amnxn≤(=,≥) bm
x1 , x2, …, xn≥0
(3)其他形式: 连加形式
1-3 线性规划问题的标准形式
1、标准形式
或
2、条件
目标函数求极大值 约束条件全是等式(线性方程组) 决策变量全非负 右端常数全非负
3、标准化方法
(1)若目标函数求极小值,即
则令 z z
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。
(2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
运筹学
( Operations Research )
绪论
一、古代朴素的运筹学思想
例如:田忌赛马
二、运筹学的起源
国外 英文原名 Operations Research 简称“O.R.” 直译为:运用研究或作业研究 正式出现于1938年7月英国一份关于防空作战 系统运行的研究报告中
《运筹学教程》胡云权第五版运筹学-线性规划-3excel线性规划及应用PPT课件
x3
4000
x1 3000
x2
3000
x3 3000
xi
0, i
1, 2, 3
2021/2/12
第 3第3 页33 页
3、人员分配问题
上海财经大学
《运筹学》
某昼夜服务的公交线路每天各时间区段内所需四
级和乘务人员数如下表所示。问该公交线路至少配备 多少名司机和乘务人员?
班次 1 2 3 4 5 6
开始上班,则
min Z x1 x2 x3 x4 x5 x6
x1 x6 60
x1
x2
70
x2
x3
60
x3 x4 50
x4
x5
20
x5 xi
x6 30 0, i 1, 2,
,6
2021/2/12
第 3第5 页35 页
4、运输问题
上海财经大学
《运筹学》
设有A1,A2,A3三个产地,生产某种物质,其产 量分别为7,5,7,B1,B2,B3,B4四个销地,需要该 物资,销量分别为2,3,4,6,又已知各产销地之间 的运价如下表,确定总运费最少的调运方案。
2021/2/12
第 2第9 页29 页
1、材料利用问题
上海财经大学
《运筹学》
现要做100 套钢架,每套用长为2.9m , 2.1m 和1.5m 的元钢各一根制成。已知原料长7.4米,问应如何下料, 使用的原材料最省?
2021/2/12
30
第 3第0 页30 页
1、材料利用问题
上海财经大学
《运筹学》
第18页运筹学第18页2019117上海财经大学?在工作表的顶部输入数据?确定每个决策变量所对应的单元格位置?选择单元格输入公式找到目标函数的值?选择一个单元格输入公式计算每个约束条件左边的值?选择一个单元格输入公式计算每个约束条件右边的值图中规定b12c12为可变单元格可变单元格存放决策变量的取值可变单元格数目等于决策变量个数建立数学公式步骤二第19页运筹学第19页2019117上海财经大学?在工作表的顶部输入数据?确定每个决策变量所对应的单元格位置?选择单元格输入公式找到目标函数的值?确定约束单元格输入公式计算每个约束条件左边的值?确定约束单元格输入公式计算每个约束条件右边的值在目标单元格中需要填入计算目标函数值的公式
运筹学基础及应用第五版 胡运权第一章
产品Ⅰ 产品Ⅱ A B 2 1 2 2
计划期内 生产能力 12 8
C D
利润
4 0
2
0 4
3
16 12
MAX
需满足条件:
2 x1 2 x2 12 x 2x 8 1 2 16 4 x1 4 x2 12 x1 , x2 0
实现目的:
z 2 x1 3x2 max
标准形式:
max z c j x j
j 1 n
标准形式特点:
1. 2. 3. 4.
n ,m) aij x j bi (i 1, j 1 x 0 (j 1, ,n) j
目标函数为求极大值; 约束条件全为等式; 约束条件右端常数项全为非负值; 决策变量取值非负。
2
x
dv 0 dx
a
2(a 2 x ) x (2) (a 2 x )2 0
a x 6
§1.一般线性规划问题的数学模型
一、问题的提出
某企业计划生产Ⅰ、Ⅱ两种产品。这两种产 品都要分别在A、B、C、D四种不同设备上加工。 生产每件产品Ⅰ需占用各设备分别为2、1、4、 0h,生产每件产品Ⅱ,需占用各设备分别为2、2、 0、4h。已知各设备计划期内用于生产这两种产 品的能力分别为12、8、16、12h,又知每生产一 件产品Ⅰ企业能获得2元利润,每生产一件产品 Ⅱ企业能获得3元利润,问企业应安排生产两种 产品各多少件,使总的利润收入为最大。
(3)目标函数中松弛变量的系数 由于松弛变量和剩余变量分别表示未被充分利 用的资源以及超用的资源,都没有转化为价值和利 润,因此在目标函数中系数为零。
松弛变量和剩余变量统称为松弛变量
3. 取值无约束的变量
运筹学基础及应用第五版 胡运权第五章
d - —— 未达到目标的差值,称为负偏差变量。 因实际决策值不可能既超过目标值又低于目标值,故 最终结果中恒有 d + · d - =0 (即两者至少有一个为0)。 目标规划中,一般有多个目标值,每个目标值都相应 有一对偏差变量 。
2. 绝对约束和目标约束
绝对约束是指必须严格满足的等式约束或不等式
k 1 l 1 kl l kl
K
L
l
前述问题的目标规划模型可以写为:
min z p d p2 d d p d
, 2 x1 x 2 11 x x d d 2 1 1 0, 1 x1 2 x 2 d 2 d 2 10, 8 x1 10x 2 d 3 d 3 56, x1 , x 2 , d i , d i 0 , i 1, 2 , 3。
1 1
2
2
3 3
s.t.
§2.目标规划的图解分析法
对于只有两个决策变量的线性目标规划的数学模型, 可以用图解法来分析求解。传统的线性规划一般只是寻求 一个点,在这个点上得到单目标的最优值,目标规划一般 是寻求一个区域,这个区域提供了相互矛盾的目标集的折 衷方案。
步骤1 建立直角坐标 系,令各偏差变量为0,作 出所有的约束直线 。满足 所有绝对约束条件的区域, 用阴影标出。
相邻行,只要在起上方即可)。
§4.求解目标规划的层次算法
求解目标规划是从高优先级到低优先级逐层优化的, 求解目标规划的层次算法就是根据这样的思想构造的。
层次算法步骤:
第一步: 对目标函数中的 P1 层次进行优化,建立第 一层次的线性规划模型 LP1 并求解。 LP1的目标函数为
2. 绝对约束和目标约束
绝对约束是指必须严格满足的等式约束或不等式
k 1 l 1 kl l kl
K
L
l
前述问题的目标规划模型可以写为:
min z p d p2 d d p d
, 2 x1 x 2 11 x x d d 2 1 1 0, 1 x1 2 x 2 d 2 d 2 10, 8 x1 10x 2 d 3 d 3 56, x1 , x 2 , d i , d i 0 , i 1, 2 , 3。
1 1
2
2
3 3
s.t.
§2.目标规划的图解分析法
对于只有两个决策变量的线性目标规划的数学模型, 可以用图解法来分析求解。传统的线性规划一般只是寻求 一个点,在这个点上得到单目标的最优值,目标规划一般 是寻求一个区域,这个区域提供了相互矛盾的目标集的折 衷方案。
步骤1 建立直角坐标 系,令各偏差变量为0,作 出所有的约束直线 。满足 所有绝对约束条件的区域, 用阴影标出。
相邻行,只要在起上方即可)。
§4.求解目标规划的层次算法
求解目标规划是从高优先级到低优先级逐层优化的, 求解目标规划的层次算法就是根据这样的思想构造的。
层次算法步骤:
第一步: 对目标函数中的 P1 层次进行优化,建立第 一层次的线性规划模型 LP1 并求解。 LP1的目标函数为
运筹学PPT完整版胡运权
另外,还应用于设备维修、更新和可靠性分析,项目的选择 与评价,工程优化设计等。
运筹学在工商管理中的应用
Page 10
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
5x110x1x2
x3 x4 3 6x2 2x3 x5
2
x
j
0,
j
1,,5
解: 约束方程的系数矩阵为2×5矩阵
5 A 10
1 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1
5 0
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
线性规划问题的数学模型
Page 13
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
运筹学在工商管理中的应用
Page 10
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 Taco Bell Delta航空公司
Interface上发表的部分获奖项目
应用
效果
在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排
5x110x1x2
x3 x4 3 6x2 2x3 x5
2
x
j
0,
j
1,,5
解: 约束方程的系数矩阵为2×5矩阵
5 A 10
1 6
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1
5 0
Chapter1 线性规划
(Linear Programming)
本章主要内容:
LP的数学模型 图解法 单纯形法 单纯形法的进一步讨论-人工变量法 LP模型的应用
线性规划问题的数学模型
Page 13
1. 规划问题 生产和经营管理中经常提出如何合理安排,使人力、 物力等各种资源得到充分利用,获得最大的效益, 这就是规划问题。
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
(4) 第3个约束方程右端常数项为-5,方程两边同乘以(-1),将右 端常数项化为正数;
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
运筹学基础及应用第五版 胡运权第四章
逻辑(0-1)变量在建立数学模型中的作用
1. m 个约束条件中只有 k 个起作用
设 m 个约束条件可以表示为:
a x
j 1 ij
n
j
bi
(i 1,, m)
定义逻辑变量
1,假定第 i 个约束条件不起作用 yi 0,假定第 i 个约束条件起作用 又设 M 为任意大的正数,则约束条件可以改写为:
其最优解为:
x1 3.25 , x2 2.5
最优值为:
z 14.75
(2)定界
目前最优值为 z=14.75 ,令
z =14.75;
现在还没有任何整数解,可以令(0,0)作为初始整 数解,因此有 z =0 。 (3)分枝 将线性规划问题 L0分为两枝。 在 L0的最优解中,任选一个非整数变量,如 x2=2.5 ; 因 x2 的最优整数解只可能是 x2≤2 或 x2≥3 ,故在 L0中分 别增加约束条件: L0加上约束条件 x2≤2 ,记为 L1; L0加 上约束条件 x2≥3 ,记为 L2 。这样,将分解成两个子问题 L1 和 L2(即两枝)。
1. 分配问题中人数和工作任务不相等时 当人数多于工作任务数时,可以添加假想任务使得人 数与工作任务数相同,因为工作任务是假想的,因此完成 这些任务的时间是零。当任务数多于人数时,可添加假想 的人。这样的方法和运输问题中处理的方法类似。 2. 当问题目标变为求极大时
m m i 1 j 1
max z aij xij 可改写为 min z (aij ) xij
r n aij x j bi yi i 1 j 1 y y y 1 2 r 1
3. 两组条件满足其中一组 若 x1≤4,则 x2≥1(第一组条件);否则当 x1 ≥ 4 时, x2≤3(第二组条件). 定义逻辑变量:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B3) B3
21
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
3
4
5
B3 1 5
f(B3)=8
f(C1)=4
2
A5
3
B1
7 5
6
3
B2 2
4 5
B3
1 5
C1
1
4
6
C2
3
3
C3
3
D1
f(E)=0
3
E
D2 4
11
考虑一个阶段的最优选择
2
A5
3
B1
7 5
6
3
B2 2
4 5
B3
1 5
C1
1
4
6
C2
3 3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
12
考虑一个阶段的最优选择
2
A5
3
B1 7 5
6
3
B2 2
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B3) B3 ( B3, C2 ) C2
22
f(B1)=11
f(A)=11
4 5
B3
1 5
C1
1
4
6
C2
3
3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
13
考虑二个阶段的最优选择
2
A5
3
B1 7 5 6 3
B2 2
4 5
B3 1 5
f(C1)=4
C1
1
4
6
C2
3
3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
14
考虑二个阶段的最优选择
的性质,结合多种数学技巧。因此,实践经验 及创造性思维将起重要作用。
2)“维数障碍”:当变量个数太多时,由于 计算机内存和速度的限制导致问题无法解决。 有些问题由于涉及的函数没有理想的性质使问 题只能用动态规划描述,而不能用动态规划方 法求解。
10
第二节 最优化原理与动态规划的数学模型 一 最短路线问题求解
4
3
5
B3 1 5
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(2)=4
19
四个阶段联合考虑从A点到E点的最优选择
f(A)=11
A
f(B1)=11
B1 7 5
2 f(B2)=170 6
3
5
B2 2
4
3
5
B3 1 5
2
A5
3
B1 7 5 6 3
B2 2
4 5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
15
考虑二个阶段的最优选择
2
A5
3
B1 7 5 6 3
B2 2
4 5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
B3
1 5
1
2
C1
1
4
6
C2
3
3
C3
3
D1
3
E
D2 4
3
4
5
7
引例2 生产与存贮问题 要求确定一个逐月的生产计划,在满足需求条件下, 使一年的生产与存贮费用之和最小? 引例3 投资决策问题 某公司现有资金Q万元,在今后5年内考虑给A,B, C,D 4个项目投资? 引例4 设备更新问题 现企业要决定一台设备未来8年的更新计划,问应在 哪些年更新设备可使总费用最小?
重点 :掌握动态规划模型结构、逆序 法算法原理、资源分配、设备更新、生产 与存贮等问题。
2
第一节 多阶段的决策问题
3
动态规划(Dynamic Programming)
R. Bellman50年代执教于普林斯顿和斯坦福大学, 后进入兰德(Rand)研究所。1957年发表“Dynamic Programming”一书,标识动态规划的正式诞生。
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
20
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
3
4
5
B3 1 5
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
第八章 动态规划
8.1 多阶段决策问题 8.2 最优化原理与动态规划的数学模型 8.3 离散确定性动态规划模型的求解 8.4 离散随机性动态规划模型的求解 8.5 一般数学规划模型的动态规划解法
1
学习要点: 理解动态规划基本概念、最优化原理
和基本方程,逆序法和顺序解法,学习应 用动态规划解决多阶段决策问题。
动态规划是解决复杂系统优化问题的一种方法。 是解决动态系统多阶段决策过程的基本方法之一。
动态规划的基本概念和定义
动态规划的研究对象和引例
4
动态规划:是解决多阶段决策过程最优 化问题的一种方法,无特定的数学模型。
可解决 与时间有关的动态问题 与时间无关的静态问题
5
多阶段决策问题
1)动态决策—将时间作为变量的决策问题称 为动态决策。其基本特点是多次决策。
f(B1)=11
B1 7 5
2 f(B2)=7
6 3
A5
B2 2
4
3
5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f (D1)=3
D1
f (E)=0
3
E
D2 4
f (D2)=4
18
考虑三个阶段的最优选择
f(B1)=11
B1 7 65
2 f(B2)=7 3
A5
B2 2
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
16
考虑三个阶段的最优选择
f(B1)=11
2
A5
B1 7 5 6 3
B2 2
4
3
5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
17
考虑三个阶段的最优选择
8
动态规划方法的特点
☻优点: 1)许多问题用动态规划求解比线性规划、非线
性规划更有效,特别是离散性问题,解析数学 无用武之地,而动态规划成为得力工具。
2)某些情况下,用动态规划处理不仅能作定性 描述分析,且可利用计算机给出求其数值解的 方法。
9
动态规划方法的特点
缺点: 1)没有统一的处理方法,求解时要根据问题
2)多阶段决策问题是一类特殊形式的动态决 策问题。是指这样一类活动过程:系统的动态 过程可以按照时间进程分为状态互相联系而又 互相区别的各个阶段,而且在每个阶段都要进 行决策,当每一个阶段的决策确定以后,就完 全确定了一个过程的活动路线。
6
引例1 最短路线问题
2
A5
3
B1
7 5
6
3
B2 2
4 5