考点06 线段垂直平分线的性质和判定(原卷版)

合集下载

专题1.4 线段的垂直平分线的判定与性质【九大题型】(举一反三)(北师大版)(原卷版)

专题1.4 线段的垂直平分线的判定与性质【九大题型】(举一反三)(北师大版)(原卷版)

专题1.4 线段的垂直平分线的判定与性质【九大题型】【北师大版】【题型1 利用线段垂直平分线的性质求长度】 (1)【题型2 利用线段垂直平分线的性质求最值】 (2)【题型3 利用线段垂直平分线的性质求角度】 (3)【题型4 利用线段垂直平分线的性质探究角度之间的关系】 (4)【题型5 利用线段垂直平分线的性质证明】 (5)【题型6 线段垂直平分线的判定】 (7)【题型7 尺规作线段垂直平分线】 (8)【题型8 线段垂直平分线的判定与性质的综合运用】 (9)【题型9 线段垂直平分线的实际应用】 (10)【知识点1线段垂直平分线的性质】线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【题型1利用线段垂直平分线的性质求长度】【例1】(2023春·辽宁阜新·八年级统考期末)如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若△ABC的周长是20,AB=4,AC=7,则△AEF的周长为()A.4B.7C.9D.11【变式1-1】(2023春·四川成都·八年级校考期中)如图,△ABC中,∠ABC的角平分线BD和AC边的中垂线DE交于点D,DM⊥BA的延长线于点M,DN⊥BC于点N.若AB=3,BC=7,则AM的长为.【变式1-2】(2023春·福建福州·八年级校考期中)如图,ΔABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.如果AB=5,AC=3,则AE=.【变式1-3】(2023春·辽宁丹东·八年级校考期中)如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为11cm,分别连接OA、OB、OC,若△OBC的周长为23cm,则OA的长为.【题型2利用线段垂直平分线的性质求最值】【例2】(2023春·甘肃陇南·八年级统考期末)如图,在△ABC中,AB=5,AC=7,BC=10,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是.【变式2-1】(2023春·江西九江·八年级统考开学考试)如图,在△ABC中,AC=4,BC边上的垂直平分线分别交BC、AB于点D、E,若△AEC的周长是11,则直线DE上任意一点到A、C距离和最小为( )A.28B.18C.10D.7【变式2-2】(2023春·山东济南·八年级统考期中)如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =2,△ABC 面积为3,则BM +MD 长度的最小值等于 .【变式2-3】(2023春·山东青岛·八年级校考期末)如图,在△ABC 中,∠A =54°,∠C =76°,D 为AB 中点,点P 在AC 上从C 向A 运动;同时,点Q 在BC 上从B 向C 运动,当∠PDQ =时,△PDQ 的周长最小.【题型3 利用线段垂直平分线的性质求角度】【例3】(2023春·福建宁德·八年级统考期中)如图,在△ABC 中,点M ,N 为AC 边上的两点,AM =NM ,BM ⊥AC ,ND ⊥BC 于点D ,且NM =ND ,若∠A =α,则∠C =( )A .32αB .90°−12αC .120°−αD .2α−90°【变式3-1】(2023春·安徽池州·八年级统考开学考试)如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =48°,则∠ABC 的度数为 .【变式3-2】(2023春·四川甘孜·八年级统考期末)如图,在△ABC 中,∠B =32°,∠BAC 的平分线AD 交BC 于点D ,若DE 垂直平分AB ,求∠C 的度数.【变式3-3】(2023春·河北保定·八年级统考期中)如图,在△ABC 中,AI 平分∠BAC ,BI 平分∠ABC ,点O 是AC 、BC 的垂直平分线的交点,连接AO 、BO ,若∠AOB =α,则∠AIB 的大小为( )A .αB .14α+90°C .12α+90°D .180°−12α【题型4 利用线段垂直平分线的性质探究角度、线段之间的关系】【例4】(2023春·福建三明·八年级统考期末)如图,四边形ABCD 是长方形,E 是边CD 的中点,连接AE 并延长交边BC 的延长线于F ,过点E 作AF 的垂线交边BC 于M ,连接AM .(1)请说明 ΔADE ≌ ΔFCE ;(2)试说明AM = BC + MC ;(3)设S △AEM = S 1,S △ECM = S 2,S △ABM = S 3,试探究S 1,S 2,S 3三者之间的等量关系,并说明理由.【变式4-1】(2023春·陕西西安·八年级西安市铁一中学校考期末)△ABC 的两边AB 、AC 的中垂线交于边BC 上的P 点,则线段PA 和BC 的关系正确的是( )A .PA <12BCB .PA =12BC C .PA >12BCD .PA ≥12BC 【变式4-2】(2023春·河南平顶山·八年级统考期末)如图,OF 是∠MON 的平分线,点A 在射线OM 上,P ,Q 是直线ON 上的两动点,点Q 在点P 的右侧,且PQ =OA ,作线段OQ 的垂直平分线,分别交直线OF ,ON 于点B ,点C ,连接AB ,P B .(1)如图1,请指出AB 与PB 的数量关系,并说明理由.(2)如图2,当P ,Q 两点都在射线ON 的反向延长线上时,线段AB ,PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.【变式4-3】(2023春·山东日照·八年级统考期末)如图1,在直角△ABC 中,∠C=90°,分别作∠CAB 的平分线AP 和AB 的垂直平分线DP ,交点为P .(1)如图2,若点P 正好落在BC 边上.①求∠B 的度数;②求证:BC=3PC .(2)如图3,若点C 、P 、D 恰好在一条直线上,线段AD 、PD 、BC 之间的数量关系是否满足AD +PD=BC ?若满足,请给出证明;若不满足,请说明理由.【题型5 利用线段垂直平分线的性质证明】【例5】(2023春·陕西榆林·八年级校考期末)如图,在四边形ABDC 中,AD 所在直线垂直平分线段BC ,过点C作CF∥BD交AB于点F,延长AB,CD交于点E.求证:(1)CB平分∠ECF;(2)∠ACF=∠E.【变式5-1】(2023春·重庆綦江·八年级校联考期中)已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM丄AB与M,DN丄AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.【变式5-2】(2023春·陕西咸阳·八年级统考期末)如图,在Rt△ABC中,∠ACB=90°,点E、F在AB上,连接CE,CF,且CF=BF.已知∠A=50°,∠ACE=30°,试证明∠CFE=∠CEF.【变式5-3】(2023春·福建龙岩·八年级校考开学考试)已知(如图),在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,交AB于点E,连结EF.(1)求证:BG=CF.(2)试判断BE+CF与EF的大小关系,并说明理由.【知识点2线段垂直平分线的判定】到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,(这样的点需要找两个)【题型6线段垂直平分线的判定】【例6】(2023春·吉林长春·八年级长春外国语学校校考期中)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;(2)若AB=3,AC=2,△ABC的面积是4,则DE=.【变式6-1】(2023春·陕西宝鸡·八年级统考期中)如图所示,已知AD⊥BC于点D,BD=DC,AB+BD=DE,求证:点C在AE的垂直平分线上.【变式6-2】(2023春·四川成都·八年级统考期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE 平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°;(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.【变式6-3】(2023春·陕西汉中·八年级统考期末)如图,AD与BC相交于点O,AB=CD,∠ABC=∠CDA,EB=ED,连接OE,BD,求证;OE垂直平分BD.【题型7尺规作线段垂直平分线】【例7】(2023春·山东威海·八年级统考期末)如图,在△ABC中,AB=AC,请用尺规作图法在AC上求作一点M,使MC+MB=AC,并连接MB.(保留作图痕迹,不写作法)【变式7-1】(2023春·湖南郴州·八年级统考期末)如图,在△ABC中,AB=AC=5,BC=8.(1)尺规作图:作边AC的垂直平分线交BC于点D,连接AD(要求:保留作图痕迹,不必写作法和证明);(2)在(1)作出的图形中,求△ABD的周长.【变式7-2】(2023春·广东深圳·八年级深圳市福田区上步中学校考期中)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC,则下列选项正确的()A.B.C.D.【变式7-3】(2023春·上海闵行·八年级校考期中)如图,点P在∠AOB外,点Q在边OA上,按要求画图,写出作图结论,并填空.(1)过点P分别画PE⊥OA,PF⊥OB,垂足分别是E、F.(2)连接PQ,用尺规作线段PQ的垂直平分线MN.(3)过P、Q两点分别作OA、OB的平行线交于点G;若∠AOB=120°,则∠G=______________.【题型8线段垂直平分线的判定与性质的综合运用】【例8】(2023春·广东河源·八年级校考期中)如图:在△ABC中,点D是BC的中点,点E,F分别在AB,AC 边上,且DE⊥DF.(1)猜想:EF BE+CF(填上“<”、“=”或“>”);(2)证明你的猜想.【变式8-1】(2023春·福建福州·八年级统考期末)如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.【变式8-2】(2023春·河北唐山·八年级统考期中)如图,在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F.下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则BC=AB.正确的结论序号是()A.①②B.①②④C.②③④D.①③④【题型9线段垂直平分线的实际应用】【例9】(2023春·河南平顶山·八年级统考期末)(1)图1是小正方形的边长均为1的方格纸,请你涂出一个图形(所有顶点都在格点上),使其满足如下条件:①图形的面积为7;②图形是轴对称图形.(2)如图2,一条笔直的公路MN同一侧有两个村庄A和B,现准备在公路MN上修一个公共汽车站点P,使站点P到两个村庄A和B的距离相等.请你用尺规作图找出点P的位置,不写作法,保留作图痕迹.【变式9-1】(2023春·河北秦皇岛·八年级校考开学考试)元旦联欢会上,3名同学分别站在△ABC三个顶点的位置上.游戏时,要求在他们中间放一个凳子,该先坐到子上谁获胜,为使游戏公平,则凳子应放置。

专题1.3线段垂直平分线的性质和判定(举一反三)(北师大版)(原卷版)

专题1.3线段垂直平分线的性质和判定(举一反三)(北师大版)(原卷版)

专题1.3 线段垂直平分线的性质和判定【七大题型】【北师大版】【题型1 线段垂直平分线的性质在求线段中的应用】 (1)【题型2 线段垂直平分线的性质在求角中的应用】 (2)【题型3 线段垂直平分线的性质在实际中的应用】 (3)【题型4 线段垂直平分线的性质的综合运用】 (5)【题型5 线段垂直平分线的判定】 (6)【题型6 线段垂直平分线的作法】 (7)【题型7 线段垂直平分线的判定与性质的综合】 (8)【题型1 线段垂直平分线的性质在求线段中的应用】【例1】(2022秋•南召县期末)已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=.【变式11】(2022秋•潮安区期中)如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.BF.(3)试说明CE=12【变式12】(2022秋•庐阳区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF 在数量和位置上有什么关系?并说明理由.【变式13】(2022秋•海珠区校级期中)△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.【题型2 线段垂直平分线的性质在求角中的应用】【例2】(2022秋•周村区校级期中)如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为()A.168°B.158°C.128°D.118°【变式21】(2022秋•龙马潭区校级月考)如图,已知锐角△ABC中,AB、AC边的中垂线交于点O,∠A =α(0°<α<90°),(1)求∠BOC;(2)试判断∠ABO+∠ACB是否为定值?若是,求出定值,若不是,请说明理由.【变式22】(2022秋•西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=()A.50°B.80°C.90°D.100°【变式23】(2022春•金牛区校级期中)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC 的数量关系是:∠BOC=.【题型3 线段垂直平分线的性质在实际中的应用】【例3】(2022秋•甘井子区期末)如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在()A.A处B.B处C.C处D.D处【变式31】(2022春•浑南区期末)有A、B、C三个不在同一直线上的居民点,现要选址建一个新冠疫苗接种点方便居民接种疫苗,要求接种点到三个居民点的距离相等,接种点应建在()A.△ABC的三条中线的交点处B.△ABC三边的垂直平分线的交点处C.△ABC三条角平分线的交点处D.△ABC三条高所在直线的交点处【变式32】(2022春•武功县期末)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在△ABC()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三个角的角平分线的交点【变式33】如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B 的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应该修建在()A.∠1的平分线和线段AB的交点处B.∠1的平分线和线段AB的垂直平分线的交点处C.∠2的平分线和线段AB的交点处D.∠2的平分线和线段AB的垂直平分线的交点处【题型4 线段垂直平分线的性质的综合运用】【例4】(2022秋•广陵区校级月考)在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)如图(1),连接AM、AN,求∠MAN的度数;(2)如图(2),如果AB=AC,求证:BM=MN=NC.【变式41】(2022秋•鄂托克旗期中)如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC 于D,连接BD.(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.【变式42】(2022春•市中区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【变式43】(2022秋•红花岗区校级月考)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;(2)若EF=4,BF:FD=5:3,S△BCF=10,求点D到AB的距离.【题型5 线段垂直平分线的判定】【例5】(2022秋•伊川县期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【变式51】(2022秋•奈曼旗期中)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.【变式52】(2022春•市北区期末)如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.求证:(1)OC=OD,(2)OE是线段CD的垂直平分线.【变式53】(2022秋•平邑县期中)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF,求证:AD垂直平分EF.【题型6 线段垂直平分线的作法】【例6】(2022秋•武城县期末)已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.AB的长为半径【变式61】(2022秋•祁阳县期末)如图,在△ABC中,分别以点A和点B为圆心,大于12画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为()A.8B.10C.18D.20【变式62】(2022•榆林模拟)如图,在△ABC中,DE⊥BC于点D,交AB于点E.请用尺规作图法,在线段DC上求作一点P,使AP∥ED.(保留作图痕迹,不写作法)【变式63】(2022•长安区一模)如图,在△ABC中,AD⊥BC于点D,且CD=2BD,请用尺规作图法,在边AC上找一点P,使得△P AD的面积等于△BAD的面积(保留作图痕迹,不写作法).【题型7 线段垂直平分线的判定与性质的综合】【例7】(2022秋•伊通县期末)如图,在△ABC中,AB的垂直平分线l1交AB于点M,交BC于点D,AC 的垂直平分线l2交AC于点N,交BC于点E,l1与l2相交于点O,△ADE的周长为10.请你解答下列问题:(1)求BC的长;(2)试判断点O是否在边BC的垂直平分线上,并说明理由.【变式71】(2022•阜宁县校级月考)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)设直线DM、EN交于点O.①试判断点O是否在BC的垂直平分线上,并说明理由;②若∠BAC=100°,求∠BOC的度数.【变式72】(2022•宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于直线BC对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【变式73】(2022秋•信都区期末)如图1,△ABC中,AB=AC,点D在AB上,且AD=CD=BC.(1)求∠A的大小;(2)如图2,DE⊥AC于E,DF⊥BC于F,连接EF交CD于点H.①求证:CD垂直平分EF;②直接写出三条线段AE,DB,BF之间的数量关系.。

说课稿线段的垂直平分线的性质和判定 (2)1

说课稿线段的垂直平分线的性质和判定 (2)1

13.1.2线段的垂直平分线的性质(说课稿〕天池王晓我说课的内容是人教版《数学》八年级上册第十三章第一节第二课时《线段垂直平分线性质》.下面我就从教材分析;学生情况;教学过程设计,板书设计这几个方面把我的说课与大家分享一下.一.教材分析线段的垂直平分线的性质是在以后的学习中经常要用到的.这局部内容是后续学习的根底, 它是学习了角平分线性质和认识了轴对称性的础上进行的。

是今后证明线段相等和直线互相垂直的依据,因此本节课具有承上启下的重要作用.2.教学目标:知识与技能目标:(1)理解线段垂直平分线的性质和判定定理,(2)会利用线段的垂直平分线的性质及判定定理进行简单的推理、判断、计算作用.过程与方法目标:自己动手探究发现线段的垂直平分线的性质,培养学生的观察力、实验推理能力.情感态度与价值观目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美.3.教学重难点:重点:掌握线段垂直平分线的性质和判定定理难点:运用线段垂直平分线的性质解决几何问题二、学情分析从心理特征来说,阶段的学生逻辑思维从经验型逐步向理论型开展,观察能力,记忆能力和想象能力也随着迅速开展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和时机,让学生发表见解,发挥学生学习的主动性。

认知状况来说,学生在此之前已经学习了轴对称图形,对线段的垂直平分线已经有了初步的认识,这为顺利完本钱节课的教学任务打下了根底,所以教学中应具体生动,深入浅出的让学生发现知识.三、教学过程设计教法与学法教法学法采用引导发现法、类比法、比照法。

教师通过精心创设的两个问题,激发学生的求知欲,学生在教师的引导和合作下,通过自主探索,合作交流,发现问题,解决问题。

引导学生观察动手测量,猜测小组交流合作探究总结出线段垂直平分线的性质,培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

线段垂直平分线的性质和判定(分层作业)(解析版)

线段垂直平分线的性质和判定(分层作业)(解析版)

13.1.2线段垂直平分线的性质和判定夯实基础篇一、单选题:1.如图,△AB C中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8B.10C.12D.14【答案】B【知识点】线段垂直平分线的性质【解析】【解答】设边AB的垂直平分线交AB于点E,∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故答案为:B.【分析】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.2.如图,在△AB C中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠AC B.若BE=2,则AE的长为()AB.1C D.2【答案】B【知识点】角平分线的性质;线段垂直平分线的性质;含30°角的直角三角形【解析】【解答】解:∵在△AB C中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=12CE=1.故选B.【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE=12CE=1.3.如图所示,在△AB C中,∠ACB=90°,分别以点A,B为圆心,大于12AB长为半径画弧,两弧交于点M,N,作直线MN分别交AB,AC于点D,E,连结CD,BE.下列结论中,错误的是()A.AD=CD B.BE>CDC.∠BEC=∠BDC D.BE平分∠CBD【答案】D【知识点】三角形的外角性质;线段垂直平分线的性质【解析】【解答】解:由作图可得,DE是AB的垂直平分线,∴AE=BE,AD=BD,∴点D为AB的中点.∵∠ACB=90°,点D为AB的中点,∴CD为Rt△ABC的边AB上的中线,∴CD=AD=BD,故A选项正确;∵DE⊥AB,∴Rt△ADE中,AE>A D.∵AE>AD。

《线段垂直平分线的性质和判定》课件精品 (公开课)2022年数学PPT

《线段垂直平分线的性质和判定》课件精品 (公开课)2022年数学PPT

A
∴∠EAD=∠FAD ,∠AED=∠AFD =90°.
F
又∵AD=AD ,
∴△ADE≌△ADF ,
E
∴AE=AF ,DE=DF.
B
D
C
∴A、D均在线段EF的垂直平分线上 ,即直线
AD垂直平分线段EF.
拓展提升: 8.如图 ,在四边形ADBC中 ,AB与CD互相垂
直平分 ,垂足为点O. (1)找出图中相等的线段; (2)OE ,OF分别是点O到∠CAD两边的垂线
2.一般地 ,a和 -a互为相反数.
代数意义
练一练
判断题:
〔1〕-5是5的相反数;〔 √〕
〔2〕-5是相反数;〔
×〕
〔3〕 2 1 与 互1 为相反数;〔 〔4〕-52 和5互为2相反数;〔

×


〔5〕 相反数等于它本身的数只有0; ﹙√ ﹚ 〔6〕 符号不同的两个数互为相反数.﹙ ×﹚
结合数轴考虑:
结论: 三角形三边垂直平分线交于一点 ,这一点到 三角形三个顶点的距离相等.
例4 如图 ,在四边形ABCD中 ,AD∥BC ,E为CD的中 点 ,连接AE、BE ,BE⊥AE ,延长AE交BC的延长线 于点F. 求证:(1)FC=AD;(2)AB=BC+AD.
解析:(1)根据AD∥BC可知∠ADC= ∠ECF ,再根据E是CD的中点可得出 △ADE≌△FCE ,根据全等三角形的性质 即可解答.
∴点C和点D在线段AB的垂直平分线上,
∴ CD为线段AB的垂直平分线.
又 ∵AB与CD相交于点 ∴ AO=BO. O,
7.如以以以下图 ,在△ABC中 ,AD平分
∠BAC ,DE⊥AB于点E ,DF⊥AC于点F ,试说明AD与

线段的垂直平分线的性质第1课时(课件)人教版八年级数学上册(完整版)

线段的垂直平分线的性质第1课时(课件)人教版八年级数学上册(完整版)
证明:过点P 作线段AB 的垂线PC, 垂足为C.则∠PCA =∠PCB =90°. 在Rt△PCA 和Rt△PCB 中, 因为 PA =PB,PC =PC, 所以 Rt△PCA ≌Rt△PCB(HL). 所以 AC =BC. 又 PC⊥AB, 所以 点P 在线段AB 的垂直平分线上.
AC B
讲授新知
讲授新知
【验证结论】
已知:如图所示,直线l⊥AB,垂足为C,AC =CB,点P 在l 上.
求证:PA =PB.
l
证明:因为 l⊥AB,
P
所以 ∠PCA =∠PCB.
又 AC =CB,PC =PC,
所以 △PCA ≌△PCB(SAS).
A
C
B
所以 PA =PB.
故此: NA=NB
范例应用
例1AB, 垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( C ) A.5cm B.10cmC.15cmD.
AB+BC=16cm,则△BCE的周长是 16 cm.
当堂训练
5.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为
C,D,连接CD.求证:OE是CD的垂直平分线.
证明: 因为OE平分∠AOB,EC⊥OA,ED⊥OB,
所以DE=CE.
O
B D
E
因为点E是∠AOB的平分线上一点, 所以∠DOE=∠COE,
2.到三角形三个顶点的距离相等的点是( B )
A.三条角平分线的交点 B.三边垂直平分线的交点
C.三边高线的交点
D.没有这样的点
3.如图所示,直线CD是线段AB的垂直平分线,点P为直线CD上的一
点,且PA=5,则线段PB的长为 5 .

八年级上学期数学期末专题:点段垂直平分线与角平分线综合(原题和解析)

八年级上学期数学期末专题:点段垂直平分线与角平分线综合(原题和解析)

【期末压轴题】专题04:线段的垂直平分线与角平分线综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC 中,CD 是AB 边上的高,BE 平分△ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积是( )A .9B .7C .10D .18 2.如图,△ABC 中,△A =△ACB ,CP 平分△ACB ,BD ,CD 分别是△ABC 的两外角的平分线,下列结论中:△CP △CD △△P =12A ∠△BC =CD △01902D A ∠=-∠△PD //AC ,其中正确的结论有( )A .1个B .2个C .3个D .4个 3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接P A 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .85.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A .1△1△1B .2△3△4C .1△2△3D .3△4△5 6.在下列各原命题中,逆命题是假命题的是( )A .两直线平行,同旁内角互补;B .如果两个三角形全等,那么这两个三角形的对应边相等;C .如果两个三角形全等,那么这两个三角形的对应角相等;D .两个相等的角是对顶角.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△ 8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个 9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°10.如图,在△ABC 中,△BAC 和△ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD △BC 于D ,下列三个结论:△△AOB =90°+△C ;△当△C =60°时,AF +BE=AB ;△若OD=a ,AB +BC +CA =2b ,则S △ABC =ab .其中正确的个数是( )A .1个B .2个C .3个D .0个 11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .112.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =二、填空题 13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△ 17.如图,反比例函数k y x=的图象经过点(-1,-,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC时,点A 的坐标是____________.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)19.如图,在ABC 中,AB 、AC 的垂直平分线分别交BC 于D 、E 两点,并且相交于点F ,且70DFE ∠=︒,则DAE ∠的度数是______.20.如图,AP ,BP 分别平分△ABC 内角△CAB 和外角△CBD ,连接CP ,若△ACP =130°,则△APB =___.三、解答题21.已知,如图1,射线PE 分别与直线AB 、CD 相交于E 、F 两点,△PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设△PFM =α,△EMF =β,且2(35)αβα-+-0=.(1)α=____ °,β=______ °;直线AB 与CD 的位置关系是_______ ;(2)如图2,若点G 是射线MA 上任意一点,且△MGH=△PNF ,试找出△FMN 与△GHF 之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 和点N ,时,作△PMB 的角平分线MQ 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由. 22.如图1,将线段AB 平移至CD ,使A 与D 对应,B 与C 对应,连AD 、BC .(1)填空:AB 与CD 的关系为__________,B 与D ∠的大小关系为__________. (2)如图2,若60B ∠=︒,F 、E 为BC 的延长线上的点,∠=∠EFD EDF ,DG 平分CDE ∠交BE 于G ,求FDG ∠.(3)在(2)中,若B α∠=,其它条件不变,则FDG ∠=__________.23.如图1所示,已知点E 在直线AB 上,点F ,G 在直线CD 上,且EFG FEG ∠=∠,EF 平分AEG ∠.(1)判断直线AB 与直线CD 是否平行,并说明理由.(2)如图2所示,H 是AB 上点E 右侧一动点,EGH ∠的平分线GQ 交FE 的延长线于点Q ,设Q α∠=,EHG β∠=.△若40HEG ∠=︒,20QGH ∠=︒,求Q ∠的度数.△判断:点H 在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.24.如图,已知△ABC 和△CDE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连结OC 、FG ,(1)求证:BD =AE , 并求出△DOE 的度数;(2)判断△CFG的形状并说明理由;(3)求证:OA+OC=OB;(4)判断下列两个结论是否正确,若正确请说明理由:△OC平分△FOG;△CO平分△FCG.25.在平面直角坐标系中,已知点A(0,a),B(b,0),其中a,b满足:(x+b)(x +2)=x2+ax+6(a,b为常数).(1)求点A,B的坐标;(2)如图1,D为x轴负半轴上一点,C为第三象限内一点,且△ABC=△ADC=90°,AO=DO,DB平分△ADC.过点C作CE△DB于点E,求证:DE=OB;(3)如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作BQ△BP,且BQ=BP,连接PC,PQ,QC.在(2)的条件下,设P(0,p),求△PCQ的面积(用含p的式子表示).26.在△ABC中,AB=CD△AB于点D,CD.(1)如图1,当点D是线段AB中点时,△AC的长为;△延长AC至点E,使得CE=AC,此时CE与CB的数量关系为,△BCE与△A 的数量关系为.(2)如图2,当点D不是线段AB的中点时,画△BCE(点E与点D在直线BC的异侧),使△BCE=2△A,CE=CB,连接AE.△按要求补全图形;△求AE的长.27.如图1,已知线段AC△y轴,点B在第一象限,且AO平分△BAC,AB交y轴于点D,连接OB,OC.(1)可以判断AOD的形状为三角形(直接写答案);(2)若OE平分△AOB且△B=2△BAO,证明:AO=BE+OB;(3)如图2,若点B,C关于y轴对称,AO△BO,点M为OA上一点,且△ACM=45°,点B的坐标为(3,1),求点M的坐标.28.如图,已知点B(-2,0),C(2,0),A为y轴正半轴上一点,点D为第二象限内的一个动点,M在BD的延长线上,CD交AB于点F,且△ABD=△ACD.(1)求证:△BDC=△BAC;(2)求证:DA平分△CDM;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,△BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出△BAC的度数?【期末压轴题】专题04:线段的垂直平分线与角平分线综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC中,CD是AB边上的高,BE平分△ABC,交CD于点E,BC=6,DE=3,则△BCE的面积是()A.9B.7C.10D.18【标准答案】A【思路点拨】作EH△BC于点H,根据角平分线的性质得出EH=DE,最后根据三角形的面积公式进行求解.【精准解析】如图,作EH△BC于点H,△BE平分△ABC,CD是AB边上的高,EH△BC,△EH=DE=3,△1163922BCES BC EH=⋅=⨯⨯=△.故选A.【名师指导】本题考查角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.如图,△ABC中,△A=△ACB,CP平分△ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:△CP△CD△△P=12A∠△BC=CD△01902D A∠=-∠△PD//AC,其中正确的结论有()A.1个B.2个C.3个D.4个【标准答案】D【思路点拨】根据邻补角平分线性质可判断△;根据三角形外角与角平分线定义列出等式2△PBG=△A+2△PCB,△PBG=△P+△PCB,可判断△,根据外角性质与角平分线定义,结合三角形内角和△BCD+△CBD=12BCF∠+12CBE∠=1902A︒+∠可判断△,利用等腰三角形性质与外角性质,可得△DBC=△A,可得△D=90°12DBC-∠,得出2△D+△DBC=180°,当△A=60°时,△D=△DBC=60°成立,可判断△,根据△DBC=△A=△ACB,利用平行线判定定理可判断△.【精准解析】解:△△BCA+△BCF=180°,CP平分△ACB,CD平分△FCB,△△PCB=12BCA∠,△DCB=12BCF∠,△△PCD=△PCB+△DCB =12BCA∠+()11118090 222BCF BCA BCF∠=∠+∠=⨯︒=︒,△CP△CD;故△正确;延长CB到G,△BD平分△CBE,△△EBD=△DBC,△△EBD=△PBA,△CBD=△PBG,△△PBA =△PBG,△△ABG=2△GBP,△△ABG=△A+△ACB,即2△PBG=△A+2△PCB,△PBG=△P+△PCB,△△PBG=12△A+△PCB,△△P=12△A,△CD 平分△BCF ,△△BCD =12BCF ∠, △DBC =12CBE ∠, △△BCD +△CBD =12BCF ∠+12CBE ∠, =()()1122A ABC A ACB ∠+∠+∠+∠, =()1122A ABC ACB A ∠+∠+∠+∠, =1902A ︒+∠, △△D=180°-(△BCD +△CBD )=180°-11909022A A ︒-∠=︒-∠, 故△正确;△AB =BC ,△△BAC =△ACB ,△2△DBC =△EBC =△A +△ACB =2△A ,△△DBC =△A ,△△D =90°12DBC -∠, △2△D +△DBC =180°,当△A =60°时,△D =△DBC =60°,△BC =CD ,故△不正确,△△DBC =△A =△ACB ,△PD△AC ,故正确的结论有4个.故选D .【名师指导】本题考查三角形内角与外角平分线,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定,掌握三角形内角与外角平分线定义,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定是解题关键.3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接PA 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小【标准答案】A【思路点拨】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,运用三角形面积公式,三角形三边关系定理判断即可.【精准解析】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,△CAB ∠和CBA ∠的角平分线交于点P ,△PD =PE =PF =h ,△1S =1h 2AB ,2S =1h 2BC ,3S =1h 2AC ,△23()S S +=1h 2BC +1h 2AC =1()h 2AC BC +, △AC +BC >AB ,△23()S S +>1S ,△123S S S <+,△A 符合题意,B ,C ,D 都不符合题意,故选A .【名师指导】本题考查了角的平分线的性质定理,三角形的面积公式,三角形的三边关系定理,灵活运用角的平分线的性质和三角形三边关系定理是解题的关键.4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .8【标准答案】B【思路点拨】 作DF △AC 于F ,如图,根据角平分线定理得到DE =DF =4,再利用三角形面积公式和S △ADB +S △ADC =S △ABC 得到12×4×7+12×4×AC =26,然后解一次方程即可.【精准解析】解:作DF △AC 于F ,如图,△AD 是△ABC 中△BAC 的角平分线,DE △AB ,DF △AC ,△DE =DF =4,△S △ADB +S △ADC =S △ABC , △12×4×7+12×4×AC =26,△AC =6,故选:B .【名师指导】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,三角形的面积公式等知识,解题的关键是学会添加常用辅助线,学会利用面积法构建方程解决问题. 5.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A.1△1△1B.2△3△4C.1△2△3D.3△4△5【标准答案】B【思路点拨】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【精准解析】解:过点O作OD△AC于D,OE△AB于E,OF△BC于F,△点O是内心,△OE=OF=OD,△S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:B.【名师指导】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.6.在下列各原命题中,逆命题是假命题的是()A.两直线平行,同旁内角互补;B.如果两个三角形全等,那么这两个三角形的对应边相等;C.如果两个三角形全等,那么这两个三角形的对应角相等;D.两个相等的角是对顶角.【标准答案】C【思路点拨】先写出逆命题,再根据相关性质,定义判断即可.【精准解析】解:A逆命题是同旁内角互补,两直线平行,是真命题,△A不符合题意;B 逆命题是如果两个三角形的对应边相等,那么这两个三角形全等,是真命题,△B 不符合题意;C 逆命题是如果两个三角形的对应角相等,那么这两个三角形全等,是假命题,△C 符合题意;D 逆命题是如果两个角是对顶角,那么这两个角相等,是真命题,△D 不符合题意;故选C .【名师指导】本题考查了命题,互逆命题,命题的真假,熟练确定逆命题,灵活运用相关知识判断是解题的关键.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△【标准答案】C【思路点拨】 证明ABE AFC ∆≅∆,由全等三角形的性质得到BE CF =,可得AEB ACF ∠=∠,则60CON CAE MOB ∠=∠=︒=∠,得出180120BOC CON ∠=︒-∠=︒;ABE AFC S S ∆∆=,得到AP AQ =,利用角平分线的判定定理得AO 平分EOF ∠,在OF 上截取OD OB =,根据SAS 可证明FBD ABO ∆≅∆,得出DF OA =,由此可以解决问题.【精准解析】解:△AB AF =,AC AE =,60FAB EAC ∠=∠=︒,FAB BAC EAC BAC ∴∠+∠=∠+∠,即FAC BAE ∠=∠,在ABE ∆与AFC ∆中,AB AF BAE FAC AE AC =⎧⎪∠=∠⎨⎪=⎩,()ABE AFC SAS ∴∆≅∆,BE FC ∴=,AEB ACF ∠=∠,故△正确,180EAN ANE AEB ∠+∠+∠=︒,180CON CNO ACF ∠+∠+∠=︒,ANE CNO ∠=∠,60CON CAE MOB ∴∠=∠=︒=∠,180120BOC CON ∴∠=︒-∠=︒,故△正确,连接AO ,过A 分别作AP CF ⊥与P ,AM BE ⊥于Q ,如图1,ABE AFC ∆≅∆,ABE AFC S S ∆∆∴=, ∴1122CF AP BE AQ =,而CF BE =, ∴=AP AQ ,OA ∴平分FOE ∠,所以△正确,在OF 上截取OD OB =,60BOF ∠=︒,OBD ∴∆是等边三角形,BD BO ∴=,60DBO ∠=︒,FBD ABO ∴∠=∠,BF AB =,()FBD ABO SAS ∴∆≅∆,DF OA ∴=,OF DF OD OA OB ∴=+=+;故△正确;故选:C . 【名师指导】本题考查了等边三角形的性质、全等三角形的判定和性质、角平分线的判定定理等知识,利用全等三角形面积相等证明高相等是解决问题的关键.8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个【标准答案】D【思路点拨】 由等边三角形的性质得出AB =DB ,△ABD =△CBE =60°,BE =BC ,得出△ABE =△DBC ,由SAS 即可证出△ABE △△DBC ;由△ABE △△DBC ,得出△BAE =△BDC ,根据三角形外角的性质得出△DMA =60°;由ASA 证明△ABP △△DBQ ,得出对应边相等BP =BQ ,即可得出△BPQ 为等边三角形;由△ABE △△DBC 得到△ABE 和△DBC 面积等,且AE =CD ,从而证得点B 到AE 、CD 的距离相等,利用角平分线判定定理得到点B 在角平分线上.【精准解析】解:△△ABD 、△BCE 为等边三角形,△AB =DB ,△ABD =△CBE =60°,BE =BC ,△△ABE =△DBC ,△PBQ =60°,在△ABE 和△DBC 中,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩△△ABE △△DBC (SAS ),△△正确;△△ABE △△DBC ,△△BAE =△BDC ,△△BDC +△BCD =180°-60°-60°=60°,△△DMA =△BAE +△BCD =△BDC +△BCD =60°,△△正确;在△ABP 和△DBQ 中,60BAP BDQ AB DB ABP DBQ ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩△△ABP △△DBQ (ASA ),△BP =BQ ,△△BPQ 为等边三角形,△△正确;△△ABE △△DBC△AE =CD ,S △ABE =S △DBC ,△点B 到AE 、CD 的距离相等,△B 点在△AMC 的平分线上,即MB 平分△AMC ;△△正确;故选:D .【名师指导】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、角平分线的判定定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°【标准答案】B【思路点拨】 仔细分析题意,可连接BO ,CO ,根据角平分线性质和中垂线性质不难得到△OAB =△OBA ;然后结合三角形内角和定理以及等边对等角可得△ABC 的度数;接下来根据全等三角形的判定易得△ABO △△ACO ,进而结合全等三角形的性质可得△OCB 的度数;最后根据折叠变换的性质得出EO =EC ,由等边对等角以及三角形内角和定理的知识即可求出△OEC 的度数.【精准解析】解:连接BO ,CO ,△△BAC=46°,△BAC的平分线与AB的中垂线交于点O,△△OAB=△OAC=23°,△OD是AB的垂直平分线,△OA=OB,△OA=OB,△OAB=23°,△△OAB=△ABO=23°,△AB=AC,△△ABC=△ACB=67°,△△OBC=△ABC-△ABO=67°-23°=44°,△AB=AC,△OAB=△OAC,AO=AO,△△ABO△△ACO(SAS),△BO=CO,△△OBC=△OCB=44°,△点C沿EF折叠后与点O重合,△EO=EC,△△EOC=△OCE=44°,△△OEC=180°-△EOC-△OCE=180°-2×44°=92°,故选:B.【名师指导】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.10.如图,在△ABC中,△BAC和△ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD△BC于D,下列三个结论:△△AOB=90°+△C;△当△C=60°时,AF+BE=AB;△若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的个数是()A .1个B .2个C .3个D .0个【标准答案】B【思路点拨】 由角平分线的定义结合三角形的内角和的可求解△AOB 与△C 的关系,进而判定△;在AB 上取一点H ,使BH =BE ,证得△HBO △△EBO ,得到△BOH =△BOE =60°,再证得△HAO △△F AO ,得到AF =AH ,进而判定△正确;作OH △AC 于H ,OM △AB 于M ,根据三角形的面积可证得△正确.【精准解析】解:△△BAC 和△ABC 的平分线相交于点O ,△△OBA =12△CBA ,△OAB =12△CAB ,△△AOB =180°−△OBA −△OAB =180°−12△CBA −12△CAB=180°−12(180°−△C )=90°+12△C ,△错误;△△C =60°,△△BAC +△ABC =120°,△AE ,BF 分别是△BAC 与ABC 的平分线,△△OAB +△OBA =12(△BAC +△ABC )=60°,△△AOB =120°,△△AOF =60°,△△BOE =60°,如图,在AB 上取一点H ,使BH =BE ,△BF 是△ABC 的角平分线,△△HBO =△EBO ,在△HBO 和△EBO 中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,△△HBO △△EBO (SAS ),△△BOH =△BOE =60°,△△AOH =180°−60°−60°=60°,△△AOH =△AOF ,在△HAO 和△F AO 中,HAO FAO AO AO AOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△HAO △△F AO (ASA ),△AF =AH ,△AB =BH +AH =BE +AF ,故△正确;作OH △AC 于H ,OM △AB 于M ,△△BAC 和△ABC 的平分线相交于点O ,△点O 在△C 的平分线上,△OH =OM =OD =a ,△AB +AC +BC =2b△S △ABC =12×AB ×OM +12×AC ×OH +12×BC ×OD =12(AB +AC +BC )•a =ab ,△正确. 故选:B .【名师指导】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO △△EBO ,得到△BOH =△BOE =60°,是解决问题的关键.11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .1【标准答案】A【思路点拨】根据“手拉手”模型证明BCE ACD ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=︒,即可证明△;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN ≌,结合角平分线的判定定理即可证明△;利用面积法表示BCF △和DCF 的面积,然后利用比值即可证明△;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ 为等边三角形,再结合“手拉手”模型推出BCF ACQ ≌即可证明△.【精准解析】解:△△ABC 和CDE △均为等边三角形,△60ACB ECD ∠=∠=︒,AC BC =,EC DC =,△ACB ACE ECD ACE ∠+∠=∠+∠,△BCE ACD ∠=∠,在BCE 和ACD △中, BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩△()BCE ACD SAS ≌,△CBE CAD ∠=∠,△AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,△60AFB ACB ∠=∠=︒,故△正确;△如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=︒,△BCE ACD ≌,△CEM CDN ∠=∠,在CEM 和CDN △中,CME CND CEM CDN CE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CEM CDN AAS ≌,△CM CN =,△CF 平分BFD ∠,故△正确;△如图所示,作FP BD ⊥于P 点, △1122BCF S BF CM BC FP ==,1122DCF S DF CN CD FP ==, △11221122BCFDCF BF CM BC FP S S DF CN CD FP ==, △CM CN =,△整理得:BF BC DF CD=, △3BC CD =,△33BF CD DF CD==, △3BF DF =,故△正确;△如图所示,在AD 上取点Q ,使得FC FQ =,△60AFB ACB ∠=∠=︒,CF 平分BFD ∠,△120BFD ∠=︒,1602CFD BFD ∠=∠=︒, △FCQ 为等边三角形,△60FCQ ∠=︒,CF CQ =,△60ACB ∠=︒,△ACB ACF FCQ ACF ∠+∠=∠+∠,△BCF ACQ ∠=∠,在BCF △和ACQ 中,BC AC BCF ACQ CF CQ =⎧⎪∠=∠⎨⎪=⎩△()BCF ACQ SAS ≌,△BF AQ =,△AQ AF FQ =+,FQ FC =,△BF AF FC =+,故△正确;综上,△△△△均正确;故选:A .【名师指导】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.12.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =【标准答案】D【思路点拨】 A.根据BC AC =,90ACB ∠=︒可知45CAB ABC ∠=∠=︒,再由AD 平分BAC ∠可知22.5BAE EAF ∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,可求出EAF FBC ∠=∠,由BC AC =可求出Rt ADC Rt BFC ∆≅∆,故可求出AD BF =;B.由选项A中Rt ADC Rt BFC ∆≅∆可直接得出结论;C.由选项A中Rt ADC Rt BFC ∆≅∆可知,CF CD =,故AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,根据45CAB ∠=︒可知,18067.5ABF EAF CAB ∠=︒-∠-∠=︒,即可求出AF AB =,即AC CD AB +=;D.由选项C可知,ABF ∆是等腰三角形,由于BE AD ⊥,故12BE BF =,在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B中22.5CBF ∠=︒相矛盾,故BE CF ≠;【精准解析】解:A.BC AC =,90ACB ∠=︒,45CAB ABC ∴∠=∠=︒, AD 平分BAC ∠,22.5BAE EAF ∴∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,EAF FBC ∴∠=∠,BC AC =,EAF FBC ∠=∠,BCF AEF ∠=∠,Rt ADC Rt BFC ∴∆≅∆,AD BF ∴=;故选项A 正确; B.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,故选项B 正确; C.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,∴在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,45CAB ∠=︒,18018067.54567.5ABF F CAB ∴∠=︒-∠-∠=︒-︒-︒=︒,AF AB ∴=,即AC CD AB +=,故C 正确;D.由选项C 可知,ABF ∆是等腰三角形,BE AD ⊥,12BE BF ∴=, 在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B 中22.5CBF ∠=︒相矛盾,故BE CF ≠,故选项D 错误;故选:D .【名师指导】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.二、填空题13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______【标准答案】60︒或90︒或120︒【思路点拨】根据ECB ∠,DBC ∠的角平分线交于点M ,可求得1902M A ∠=︒-∠,延长 CB 至F ,根据BM 为ABC ∆的外角DBC ∠的角平分线,可得 BN 是ABC ∆的外角ABF ∠的平分线, 根据CN 平分 ACB ∠,得到2ACB NCB ∠=∠,则有NBF NCB N ∠=∠+∠,可得 2ABF ACB N ∠=∠+∠,可求得12N A ∠=∠;再根据NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠90=︒,分四种情况:△290MCN N ∠=∠=︒;△ 290MCN M ∠=∠=︒;△2M N ∠=∠;△2N M ∠=∠,分别讨论求解即可. 【精准解析】 解:外角ECB ∠,DBC ∠的角平分线交于点 M ,()12MCB MBC ECB DBC ∴∠+∠=∠+∠ ()11801802ACB ABC =︒-∠+︒-∠ ()13602ACB ABC =︒-∠-∠ ()13601802A =︒-︒+∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒△()11180180909022M MCB MBC A A ⎛⎫∠=︒-∠+∠=︒-︒+∠=︒-∠ ⎪⎝⎭; 如图示,延长CB 至F ,BM 为ABC ∆的外角DBC ∠的角平分线,BN ∴是ABC ∆的外角ABF ∠的平分线,2ABF NBF ∴∠=∠, CN 平分ACB ∠,2ACB NCB ∴∠=∠,NBF NCB N ∠=∠+∠,222NBF NCB N ∴∠=∠+∠,即2ABF ACB N ∠=∠+∠,又ABF ACB A ∠=∠+∠,△2ACB N ACB A ∠+∠=∠+∠2A N ∴∠=∠,即12N A ∠=∠; NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠ 11802=⨯︒ 90=︒;如果CMN ∆中,存在一个内角等于另一个内角的2倍,那么分四种情况:△290MCN N ∠=∠=︒,则45N ∠=︒, 290A N ∠=∠=︒;△290MCN M ∠=∠=︒,则45M ∠=︒, 45N ∠=︒,290A N ∠=∠=︒;△2M N ∠=∠,则1190222A A ︒-∠=⨯∠,解得 60A ∠=︒;△2N M ∠=∠,则1129022A A ⎛⎫∠=︒-∠ ⎪⎝⎭,解得 120A ∠=︒. 综上所述,A ∠的度数是60︒或90︒或120︒.【名师指导】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.【标准答案】4360BPC ∠-︒【思路点拨】根据三角形角平分线的性质以及三角形内角和定理,即可得到2180BAC BPC ∠=∠-︒;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到2BOC BAC ∠=∠,进而得出BOC ∠和BPC ∠的数量关系.【精准解析】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠ 1180()2ABC ACB =︒-∠+∠ 1180(180)2BAC =︒-︒-∠ 1902BAC =︒+∠, 即2180BAC BPC ∠=∠-︒;如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.【名师指导】本题考查了三角形的垂直平分线与角平分线,熟练掌握三角形的垂直平分线与角平分线的性质是解题的关键.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB 的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.【标准答案】6【思路点拨】连接AQ ,过点D 作DH BC ⊥于H .利用三角形的面积公式求出DH ,由题意得: PB PQ AP PQ AQ +=+≥,求出AQ 的最小值,AQ 最小值是与DH 相等,也就是AQ BC ⊥时,根据面积公式求出DH 的长度即可得到结论.【精准解析】解:连接AQ ,过点D 作DH BC ⊥于H .△DBC △面积为18,BC =6, △1182BC DH =, △6DH =,△MN 垂直平分线段AB ,△PA PB =,△PB PQ AP PQ AQ +=+≥,△当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小,△//AD BC ,△AQ =DH =6,△PB PQ +的最小值为6.故答案为:6.【名师指导】本题考查轴对称最短问题,平行线的性质,三角形的面积,线段的垂直平分线的性质等知识,把最短问题转化为垂线段最短是解题关键.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△【标准答案】△△△【思路点拨】如图,连接AO ,根据等腰三角形的性质得到CE △AB ,求得OA =OB ,根据线段垂直平分线的性质得到OF =OB ,得到点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,根据全等三角形的性质得到△CAO =△CBO ,求得△CAO =△CFJ ,得到△JOB =△JCF =90°,根据垂直的定义得到OF △OB ,故△CE =AC ,AC +CF =AF ,显然AF不一定等于AB 、故△错误;根据等腰直角三角形的性质得到AE =CE =BE =12AB ,CE △AB ,求得△ACE 面积为12AE •CE =12BE 2,得到△BOF 面积为12OF •OB =12OB 2,于是得到S △AEC <S △BOF ,故△正确.【精准解析】解:如图,连接AO ,△CA =CB ,AE =EB ,△CE △AB ,△OA =OB ,△OD 垂直平分线段BF ,△OF =OB ,△OA =OF =OB ,△点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,在△ACO 与△BCO 中,AC BC CO CO AO BO =⎧⎪=⎨⎪=⎩, △△ACO △△BCO (SSS ),△△CAO =△CBO ,△OA =OF ,△△CAO =△CFJ ,△△CFJ =△OBJ ,△△CJF =△OJB ,△△JOB =△JCF =90°,△OF △OB ,故△正确;CE =AC ,AC +CF =AF ,显然AF 不一定等于AB 、故△错误;△△ABC 为等腰直角三角形,E 为AB 中点,△AE =CE =BE =12AB ,CE △AB ,△△ACE 面积为12AE •CE =12BE 2,△OF △OB ,OF =OB ,△△BOF 面积为12OF •OB =12OB 2,在Rt △OBE 中,OB 为斜边,BE 为直角边,△OB >BE , △12BE 2<12OB 2,△S △AEC <S △BOF ,故△正确.故答案为:△△△.【名师指导】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,三角形的面积公式,正确的识别图形是解题的关键.17.如图,反比例函数k y x =的图象经过点(-1,-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC 时,点A 的坐标是____________.【标准答案】)2 【思路点拨】把点(-1,-)代入反比例函数k y x=,求出k . 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,则有△AOE △△OCF ,进而可得出AE =OF 、OE =CF ,根据角平分线的性质及三角形面积可得出AP CP =,易证APE CPF ,利用三角形性质可得出CF AE =即OE AE =A 的坐标为(a (a >0),由OE AE =可求出a 值,进而得到点A 的坐标.【精准解析】解:把点(-1,-k y x=得: k=−1×(-△y = 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,如图所示.△△ABC 为等腰直角三角形,△OA =OC ,OC △AB ,△△AOE +△COF =90°.△△COF +△OCF =90°,△△AOE =△OCF .在△AOE 和△OCF 中,90AEO OFC AOE OCF OA OC ∠∠︒⎧⎪∠∠⎨⎪⎩==== , △△AOE △△OCF (AAS ),△AE =OF ,OE =CF .设点P 到AB 的距离为h ,△BP 平分△ABC ,△h PC =,△1·21·2ABP CBP h AB S AP AB CP S BC PC BC ==== △,APE CPF AEP CFP ∠=∠∠=∠,△APECPF , △CF CP AE AP ==, △OE AE =. 设点A的坐标为(a , 解得:a或a =(舍去),2=, △点A的坐标为)2, 故答案为:)2.【名师指导】本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质、三角形的面积、相似三角形的判定与性质以及等腰直角三角形,构造全等三角形,利用全等三角形的对应边相等是解题的关键.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)【标准答案】△△△△△【思路点拨】△根据45ACB ∠=︒,BE AC ⊥,即可得解;△先证明EH 是AF 的垂直平分线,根据垂直平分线的性质即可得结论;△根据“边角边”即可证明ABD CFD ≌;△根据ABD CFD ≌可得AB CF =,再结合CH CF FH =+进而可以判断CH AB AH =+; △由DF AD AF =-结合△即可得结论.【精准解析】解:△△BE AC ⊥,90BEA BEC ∴∠=∠=︒,45ACB =︒∠,9045EBD ACB ∴∠=︒-∠=︒,故△正确;△EH 是AEB ∠的角平分线,1452HEB HEA AEB ∴∠=∠=∠=︒, 45HEB EBC ∴∠=∠=︒,//EH BC ∴,AD BC ⊥,AD EH ∴⊥,90AOE FOE ∴∠=∠=︒,9045OAE HEA ∴∠=︒-∠=︒,9045OFE HEB ∠=︒-∠=︒,45OAE OFE ∴∠=∠=︒,AE FE ∴=,又EH 平分AEB ∠,EH ∴是AF 的垂直平分线,AH HF ∴=,故△正确;。

八年级丨线段垂直平分线的经典题型解析

八年级丨线段垂直平分线的经典题型解析

八年级丨线段垂直平分线的经典题型解析要点一、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.线段垂直平分线的尺规作图求做线段AB的垂直平分线作法:(1)分别以点A,B为圆心,以大于AB的长为半径作弧,两弧相交于C,D两点;(2)作直线CD,CD即为所求直线.要点诠释:作弧时的半径必须大于AB的长,否则就不能得到交点了.要点二、线段的垂直平分线定理线段的垂直平分线定理线段垂直平分线上的任意一点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线,也就是线段的垂直平分线可以看做是和这条线段两个端点的距离相等的点的集合.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.【典型例题】类型一、线段的垂直平分线定理例一、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离就想等,从而把三角形的边进行转移,求的周长.举一反三:【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 cm.答案】19;∵DE是AC的中垂线,∴AD=DC,AE=CE=3∵△ABD的周长=AB+BD+AD=AB+BD+DC=13∴△ABC的周长=AB+BC+AC=13+6=19.类型二、线段的垂直平分线逆定理例2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC 的垂直平分线.【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC(已证)∴点A和点D都在线段BC的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD是线段BC的垂直平分线。

八年级上第06讲 轴对称及等腰三角形 讲义测试题(含答案)【精品】

八年级上第06讲 轴对称及等腰三角形 讲义测试题(含答案)【精品】

轴对称及等腰三角形【精品】【知识导图】一、导入复习预习提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,•你能比较准备地作出轴对称图形的对称轴吗?2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.[例]如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB【如图(1)】.求作:线段AB的垂直平分线.作法:如图(2)(1).分别以点A、B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;(2).作直线CD.直线CD就是线段AB的垂直平分线.图中的五角星有几条对称轴?作出这些对称轴.作法:1.找出五角星的一对对应点A和A′,连结AA′.2.作出线段AA′的垂直平分线L.则L就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.有两条边相等的三角形叫做等腰三角形相等的两边叫做等腰三角形的腰,第三边叫做底边腰与底边的夹角叫做底角两腰的夹角叫做顶角12考点1二、知识讲解考点2考点3等腰三角形的概念等腰三角形顶角的角平分线、底边的中线、底边上的高互相重合(也称等腰三角形三线合一),它们所在的直线都是等腰三角形的对称轴等腰三角形的两个底角相等根据等腰三角形的定义:有两条边相等的三角形叫做等腰三角形如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A.ED=CD B.∠DAC=∠B C.∠C>2∠B D.∠B+∠ADE=90°【答案】∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°其它选项无法证明其是正确的.故选D【解析】根据线段垂直平分线的性质得等腰三角形ADB,运用等腰三角形的性质得出尽量多的结论,与各选项进行比对,答案可得如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6cm,则线段PB的长度为________431例题2【答案】6cm【解析】∵直线CD是线段AB的垂直平分线,∴PA=PB,而PA=6cm,∴PB=6cm.故答案为6如图,直线CD是线段AB的垂直平分线,则∠AOC=_______【答案】90°【解析】∵直线CD是线段AB的垂直平分线,∴AO⊥CD,∴∠AOC=90°,故答案为:90如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【答案】因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.3例题4【解析】根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD 的度数为°【答案】45【解析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.解:∵△ABC是等腰三角形,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故填45如图,在△ABC中,AB=AC,点D,E分别在AC,AB上,且BC=BD=DE=EA,则∠A的度数为【答案】解:∵AE=ED,∴∠ADE=∠A,∴∠DEB=∠A+∠ADE=2∠A,∵BD=ED,∴∠ABD=∠DEB=2∠A,5例题6∴∠BDC=∠A+∠ABD=3∠A,∵BD=BC,∴∠C=∠BDC=3∠A,∵AB=AC,∴∠ABC=∠C=3∠A,【解析】由已知根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠C与∠A之间的关系,从而再利用三角形内角和定理求解即可等腰三角形的一条边长为6,另一边长为13,则它的周长为多少?【答案】解:①当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;②当6为腰时,其它两边为6和13,∵6+6<13,∴不能构成三角形,故舍去,∴答案只有32【解析】.因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是【答案】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.【解析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.例题7例题8如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.【答案】15【解析】试题分析:因为P点关于OA、OB的对称点P1,P2,所以P1M=PM, P2N=PN,所以△PMN的周长=PM+PN+MN=P1M+P2N+MN= P1P2=15.考点:轴对称的性质如图:将一个长方形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1、D1处,若∠C1BA =50°,则∠ABE的度数为.【答案】20°.【解析】试题分析:设∠ABE=x,根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,所以50°+x+x=90°,解得x=20°.故答案为:20°.已知MN是线段AB的垂直平分线,下列说法正确的是()A.与AB距离相等的点在MN上B.与点A和点B距离相等的点在MN上C.与MN距离相等的点在AB上D.AB垂直平分MN【答案】B【解析】∵MN是线段AB的垂直平分线,∴与点A和点B距离相等的点在MN上,MN垂直平分AB.故B正确;A、C、D错误.P2P1NMOPBA910例题11如图,点D是线段AB与线段BC的垂直平分线的交点,∠B=40°,则∠ADC等于()A.50° B.60° C.70° D.80°【答案】D【解析】连接BD,AC.设∠1=x,∵点D是线段AB与线段BC的垂直平分线的交点,∴AD=BD,BD=CD,∴∠1=∠2=x,∠4=∠ABD=40°+x,根据三角形的内角和定理,得∠ADB=180°-2∠4=100°-2x,∠BDC=180°-2x,∴∠ADC=∠BDC-∠ADB=80°.故选D下列说法中:①P是线段AB上的一点,直线l经过点P且l⊥AB,则l是线段AB的垂直平分线;②直线l经过线段AB的中点,则l是线段AB的垂直平分线;③若AP=PB,且直线l垂直于线段AB,则l是线段AB的垂直平分线;④经过线段AB的中点P且垂直于AB的直线l是线段AB的垂直平分线.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】C12例题13【解析】①P不是AB的中点,则l不平分线段AB,故错误;②直线l经过线段AB的中点,且垂直于AB则l是线段AB的垂直平分线,故错误;③若AP=PB,则P在线段AB的垂直平分线上,但l不一定是线段AB的垂直平分线,故错误;④正确.故选A14下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN 是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个 B.2个 C.3个 D.4个【答案】A【解析】①线段垂直平分线上任一点到线段两端距离相等,是线段垂直平分线的性质,符合逆定理,正确;②错误;这是对线段垂直平分线的误解;③有无数条,错误;④点P在线段AB外且PA=PB,过P作直线MN⊥AB,则MN是线段AB的垂直平分线,错误;⑤错误,这是对线段垂直平分线的误解;故选A1证明等腰三角形三线合一。

垂直平分线的性质定理和判定定理(含答案)

垂直平分线的性质定理和判定定理(含答案)

几何专题1:线段垂直平分线的性质定理和判定定理一、知识点(抄一遍):1.线段垂直平分线的定义:垂直并且平分一条线段的直线.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.二、专题检测题1.证明线段垂直平分线的性质定理.(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.)2.证明线段垂直平分线的判定定理.3.定理的几何语言表示(1)线段垂直平分线的性质定理:∵,∴ .(2)线段垂直平分线的判定定理:∵,∴ .4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.几何专题1:线段的垂直平分线答案1. 证明线段垂直平分线的性质定理.已知:如图,直线l 是线段AB 的垂直平分线,垂足为M ,P 为直线l 上的任意一点,连接PA ,PB.求证:PA=PB.证明:①当P 点不与M 点重合时,∵直线l 垂直平分AB ,∴∠PMA=∠PMB=90°,AM=MB.在△APM 和△BPM 中,AM=BM∠PMA=∠PMBPM=PM∴ △APM ≌△BPM (SAS ).∴ PA=PB. ②当P 点与M 点重合时, ∵AM=MB , ∴PA=PB. 由①②可知,该命题成立.2. 证明线段垂直平分线的判定定理.已知:如图,线段AB ,P 为平面内一点,且PA=PB.求证:点P 在线段AB 的垂直平分线上.证明: ①当P 点不在线段AB 所在的直线上时, 过点P 作PC ⊥AB ,垂足为C.∵PA=PB,∴△PAB 是等腰三角形.∵PC ⊥AB,∴AC=BC.∴点P 在线段AB 的垂直平分线上. ②当P 点在线段AB 所在的直线上时, ∵PA=PB, ∴点P 是线段AB 的中点. ∴点P 在线段AB 的垂直平分线上. 由①②可知,该命题成立. 3. 定理的几何语言表示(1)线段垂直平分线的性质定理:∵直线l 垂直平分AB ,∴AP=BP.(2)线段垂直平分线的判定定理:∵PA=PB,∴点P在线段AB的垂直平分线上.4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.证明:∵CD垂直平分线段AB,∴AC=BC,∴∠CAB=∠B.∵AB平分∠CAD,∴∠CAB=∠DAB,∴∠B=∠DAB,∴AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.证明:连接AE.∵AD是BC边上的高,BD=DE∴AD垂直平分BE,∴AB=AE.∵点E在AC的垂直平分线上,∴AE=CE,∴AB=CE,∴AB+BD=CE+DE,即AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.证明:连接AP,BP,CP.∵点P在AB的垂直平分线上,∴AP=BP同理可证:BP=CP∴AP=CP∴点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.证明:∵∠1=∠2,∴BE=CE.∴点E在线段BC的垂直平分线上.同理可证:点A在线段BC的垂直平分线上∴AE垂直平分BC.即AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.证明:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠FEC=∠FEB=90°,∴∠B+∠BDE=90°,∠C+∠F=90°.∴∠BDE=∠F.∵∠BDE=∠FDA,∴∠F=∠FDA.∴AF=AD,∴点A在DF的垂直平分线上.。

简单的轴对称图形——垂直平分线和角平分线(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

简单的轴对称图形——垂直平分线和角平分线(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第03讲简单的轴对称图形—垂直平分线和角平分线(7类热点题型讲练)1.理解线段的垂直平分线的概念;2.掌握线段的垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)4.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)5.能运用角的平分线性质定理解决简单的几何问题.(难点)知识点01线段的垂直平分线(简称中垂线)定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.作法:作已知线段的垂直平分线.知识点02角平分线的性质1.角是轴对称图形,角平分线所在的直线是它的对称轴.2.性质:角平分线上的点到这个角的两边的距离相等.3.作已知角的角平分线.题型01根据线段垂直平分线的性质求解【例题】(2024八年级下·全国·专题练习)如图,在()ABC AB AC < 中,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,15cm AC =,ABE 的周长为24cm ,则AB 的长为.【变式训练】1.(2024·山东滨州·一模)如图,在ABC 中,90A ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若16AB =,8AC =,则BE 长为.2.(23-24八年级下·四川雅安·阶段练习)如图所示,在ABC 中,DM EN 、分别垂直平分AB 和AC ,交BC 于D E 、.(1)若50DAE ∠=︒,求BAC ∠的度数;(2)若ADE V 的周长为19cm ,求BC 的长度.题型02线段垂直平分线的实际应用【例题】(23-24八年级下·河北保定·阶段练习)如图,政府计划在,,A B C 三个村庄附近建立一所小学,且小学到三个村庄的距离相等,则小学应建在()A .ABC 三边垂直平分线的交点B .ABC 三条角平分线的交点C .ABC 三条高所在直线的交点D .ABC 三条中线的交点【变式训练】1.(23-24八年级下·河南郑州·阶段练习)如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A .AC ,BC 两边垂直平分线的交点处B .AC ,BC 两边中线的交点处C .AC ,BC 两边高线的交点处D .A ∠,B ∠两内角平分线的交点处题型03作垂线(尺规作图)【例题】(23-24八年级下·广东佛山·期中)如图,在ABC 中,90C ∠=︒.(1)尺规作图:作边AB 的垂直平分线,交BC 与点D ,交AB 于点E (保留作图痕迹,不写作法)(2)若38ABC ∠=︒,求CAD ∠的度数.【变式训练】1.(23-24八年级上·江苏徐州·期中)如图,某社区要在居民区A ,B 所在的直线上建一图书室E ,并使图书室E 到本社区两所学校C 和D 的距离相等.已知CA AB ⊥,DB AB ⊥,垂足分别为A ,B ,且 2.5km AB =,1.5km CA =, 1.0km BD =.(1)请用直尺和圆规在图中作出点E (不写作法,保留作图痕迹);(2)求图书室E 到居民区A 的距离.2.(23-24八年级上·辽宁鞍山·阶段练习)如图,某居民小区在三栋住宅楼A ,B ,C 之间修建了供居民散步的三条绿道,小区物业打算在绿道内部修建一个凉亭,按照设计要求,凉亭到三条绿道的距离相等,请在图中标注凉亭的位置,保留作图痕迹,并说明设计理由.题型04根据角平分线的性质定理求解【例题】(23-24八年级下·广东茂名·期中)如图,OP 平分AOB ∠,PC OB ⊥,如果6PC =,那么点P 到OA 的距离等于【变式训练】1.(23-24八年级下·江西吉安·阶段练习)如图,AD 是ABC 的角平分线,DE AB ⊥于点E ,若6,2AC DE ==,则ACD 的面积为.2.(23-24八年级下·河南郑州·阶段练习)如图,已知P 是AOB ∠平分线上一点,15AOP ∠=︒,CP OB ∥交OA 于点C ,PD OB ⊥,垂足为D ,且6PC =,则OPC 的面积等于.题型05根据角平分线的性质定理证明【例题】(23-24八年级上·广东广州·期中)如图,四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 上一点,DE 平分ADC ∠,且AE 平分BAD ∠.(1)求证:ED AE ⊥;(2)求证:点E 为BC 的中点.【变式训练】1.(23-24八年级上·湖北恩施·期末)教材第56页拓广探索12题:(1)如图,在ABC 中,AD 是它的角平分线①求证:ABD ACD S AB S AC=△△;②另一方面,我们进一步探索,可以证明ABDACD S BD S CD= .请你选择上述两结论中的其中一个进行证明;(2)由(1)的探索我们可以得到关于ABC 的角平分线AD 的一个性质,请你总结这个性质(结合图1表述);(3)运用你所得到的结论完成下列证明:如图2,AD 是BAC ∠的平分线,CE AD ∥交BA 的延长线于点E .求证:BD BA CD EA=.2.(22-23八年级上·上海普陀·期中)如图,在ABC 中,AD 是BAC ∠的平分线.(1)在线段AD 上任意取一点F ,过点F 作MN AD ⊥,交AB 于点M ,交AC 于点N ,通过这样的作图能得到结论MF FN =,那么依据是_________.(2)如果=60B ∠︒,CE 平分ACB ∠交AB 于点E ,且AD 、CE 相交于点F ,求证:FE FD =.(3)如果100ACB ∠=︒,在边AB 上截取一点E ,连接CE ,使20ACE ∠=︒,连接DE .请直接写出ADE ∠的度数.题型06角平分线的性质实际应用【例题】(23-24八年级下·陕西西安·阶段练习)如图,某市有一块由三条马路围成的三角形绿地,现决定在其中修建一个亭子,使亭子中心到三条马路的距离相等,则亭子应建在()A .在边AC ,BC 两条高的交点处B .在边AC ,BC 两条中线的交点处C .在边AC ,BC 两条垂直平分线的交点处D .在ABC ∠和ACB ∠两条角平分线的交点处【变式训练】1.(23-24八年级下·陕西西安·阶段练习)如图,直线a ,b ,c ,表示三条相互交叉的公路,交点为三个小区,现拟建一个超市,要求它到三个小区的距离都相等,则可以供选择的地址有()A .1处B .2处C .3处D .4处题型07作角平分线(尺规作图)【例题】(23-24八年级下·辽宁沈阳·阶段练习)如图1,两条交叉马路OM ,ON 中间区域建有A ,B 两个温室花房.现要在两条马路OM ,ON 之间的空场处建鲜花交易中心P ,使得交易中心P 到两条马路OM ,ON 的距离相等,且到两个温室花房A ,B 的距离也相等.如何确定交易中心P 的位置?如图2,利用尺规作图求作点P (不写作法,保留作图痕迹).【变式训练】1.(2024·广东茂名·一模)如图,已知ABC ,CA CB =,ACD ∠是ABC 的一个外角.(1)请用尺规作图法,求作射线CP ,使CP 平分ACD ∠.(保留作图痕迹,不写作法)(2)证明:CP AB ∥.2.(23-24九年级下·湖北恩施·阶段练习)如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若110ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,求证:ACN MCN △≌△.一、单选题1.(23-24八年级上·浙江温州·阶段练习)如图,100,BAC AB AC ∠=︒>.若MP 和NQ 分别垂直平分AB 和AC ,则PAQ ∠的度数是()A .20︒B .60︒C .50︒D .40︒2.(22-23八年级上·湖北武汉·期末)如图,ABC 中,90BAC ∠=︒,534BC AC AB ===,,,点D 是ABC ACB ∠∠,的角平分线的交点,则点D 到BC 的距离为()A .1B .2C .3D .3.53.(22-23九年级上·浙江杭州·期中)如图在ABC 中,边AB ,AC 的垂直平分线交于点P ,连结BP ,CP ,若50A ∠=︒,则BPC ∠=()A .100︒B .95︒C .90︒D .50︒4.(2024·海南省直辖县级单位·模拟预测)如图,在ABC 中,AB AC =,54B ∠=︒,以点C 为圆心,CA 长为半径作弧交AB 于点D ,分别以点A 和点D 为圆心,大于12AD 长为半径作弧,两弧相交于点E ,作直线CE ,交AB 于点F ,则ACF ∠的度数是()A .25︒B .20︒C .18︒D .15︒5.(23-24七年级下·江苏苏州·阶段练习)如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是()①ABE 的面积BCE =△的面积;②=AFG AGF ∠∠;③2FAG ACF ∠=∠;④AF FB =.A .①③④B .①②④C .①②③D .③④二、填空题6.(22-23八年级上·甘肃平凉·期末)如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长.7.(23-24九年级下·北京·阶段练习)如图,在Rt ABC 中,90B Ð=°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG 的面积为8.(23-24八年级上·山东日照·期末)如图,ABC 的面积是12,8AB =,CAB ∠的平分线交BC 于点D ,M ,N 分别是线段AD ,AC 上的动点,则CM MN +的最小值是.9.(23-24八年级下·陕西咸阳·阶段练习)如图,在ABC 中,100A ∠=︒,点D 是BC 上的一点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,则EDF ∠=.10.(2023·四川泸州·二模)如图,已知线段6AB =,点P 为线段AB 上一动点,以PB 为边作等边PBC ,以PC 为直角边,CPE ∠为直角,在PBC 同侧构造Rt PCE △,点M 为EC 的中点,连接AM ,则AM 的最小值为三、解答题11.(23-24九年级上·山东青岛·阶段练习)A 、B 是两个村庄,12L L 、是两条马路.为发展经济,提高农民收入,镇政府决定建立一个蔬菜批发市场,选址要使市场到两条马路和两个村庄的距离都相等.请你用尺规在图中找出市场的位置.(不用写作法,但是要保留作图痕迹)12.(23-24八年级上·重庆江津·期中)如图,在ABC 中,AD BC ⊥,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD DE =,连接AE .(1)求证:AB EC =;(2)若ABC 的周长为42cm ,16cm AC =,求DC 的长.13.(23-24八年级下·广东深圳·阶段练习)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,BE AC =.(1)求证:AD BC ⊥.(2)若75BAC ∠=︒,求B ∠的度数.14.(22-23八年级上·辽宁营口·期中)感知:如图1,AD 平分BAC ∠,180B C ∠+∠=︒.90B Ð=°探究:如图2,AD 平分BAC ∠,180B C ∠+∠=︒.90B ∠<︒,求证:DB DC =.15.(23-24八年级下·河南郑州·阶段练习)如图,在ABC 中,AC CB ≠,DM 、EN 分别垂直平分AC 和BC ,交AB 于点M 、N ,垂足分别为点D 、E ,分别延长DM 和EN ,相交于点F .八年级的小明同学非常喜欢钻研数学问题,在学习线段垂直平分线时,他发现MCN ∠与ACB ∠存在一定的数量关系,于是他通过举例的方式进行研究:(1)当100ACB ∠=︒时,MCN ∠=________;当80ACB ∠=︒时,MCN ∠=________.(2)当ACB m ∠=时,求MCN ∠的度数(用含m 的代数式表示,写出推理过程).(3)当50DFE ∠=︒时,MCN ∠=________°.16.(23-24八年级上·湖北武汉·阶段练习)已知等边ABC ,点N 是边AB 上一点,以BN 为边向外作等边BNM ,连AM 、CN .(1)如图1,求证:AM CN =;(2)如图2,若CN AB⊥,判断BC与MN的关系并证明;(3)如图3,在(2)下,连MC,以MC为边向下作等边MCP,设MC交AB于G,连PG,求证:12PMG PCGS S=△△.。

八年级数学线段的垂直平分线的性质和判定(人教版)(基础)(含答案)

八年级数学线段的垂直平分线的性质和判定(人教版)(基础)(含答案)

线段的垂直平分线的性质和判定(人教版)(基础)一、单选题(共11道,每道9分)1.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的一条直线垂直平分线段AB.其中不正确的个数有( )A.1个B.2个C.3个D.4个答案:A解题思路:根据线段垂直平分线的性质定理和判定定理,①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB,符合性质定理,是正确的;②若PA=PB,EA=EB,则直线PE垂直平分线段AB,符合判定定理,是正确的;③若PA=PB,则点P必是线段AB的垂直平分线上的点,符合判定定理,是正确的;④若EA=EB,则点E在AB垂直平分线上,但是平面内过一点的直线有无数条,不能确定是垂直平分线,所以错误;综上④错误,故选A试题难度:三颗星知识点:略2.如图,AC=AD,BC=BD,则有( )A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB答案:B解题思路:AC=AD,根据到线段两个端点距离相等的点在这条线段的垂直平分线上,所以A在CD的垂直平分线上;BC=BD,所以B在CD的垂直平分线上.两点确定一条直线,则AB垂直平分CD.故选B.试题难度:三颗星知识点:略3.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,下列结论不一定成立的是( )A.DE=CEB.OE平分∠DECC.OE垂直平分CDD.CD垂直平分OE答案:D解题思路:A:因为OE平分∠AOB,EC⊥OA,ED⊥OB,所以DE=CE成立;B:由题可知∠DOE=∠COE,∠ODE=∠OCE=90°,可证△DOE≌△COE(AAS)所以∠OED=∠OEC,故OE平分∠DEC成立;C:由选项A,B可知DE=CE,OD=OC,所以点E和点O分别在线段CD的垂直平分线上,所以OE垂直平分CD成立;D:点C和点D均不在线段OE的垂直平分线上,所以CD垂直平分OE不成立;故选D试题难度:三颗星知识点:略4.平面内,过直线外一点作已知直线的垂线最终都转化为下列哪一种基本作图( )A.作一个角等于已知角B.作一条线段等于已知线段C.作已知角的角平分线D.作已知线段的垂直平分线答案:D解题思路:过直线外一点作已知直线的垂线可以先在直线上作一条线段,使直线外的一点在这条线段的垂直平分线上,再作这条线段的垂直平分线.故选D.试题难度:三颗星知识点:略5.如图1,已知A为直线MN外一点,求作直线AB,使AB⊥MN.如图2用尺规作图作出直线AB,下列叙述:①任取一点P;②以点A为圆心,AP长为半径作弧,交MN于C,D两点;③分别以点C,点D为圆心,以大于长为半径作弧,两弧交MN下方于一点B;④作直线AB.直线AB即为所求.其中错误的是( )A.①B.②C.③D.④答案:A解题思路:过点A作直线AB,使AB⊥MN的作法为:①任取一点P,使点P和点A位于直线MN的异侧;②以点A为圆心,AP长为半径作弧,交MN于C,D两点;③分别以点C,点D为圆心,以大于长为半径作弧,两弧交MN下方于一点B;④作直线AB.直线AB即为所求.要保证以AP为半径的弧与直线MN有交点,点P与点A应位于直线MN异侧,①错误.故选A.试题难度:三颗星知识点:略6.如图1,已知线段MN,在MN上求作一点O,使OM=ON.如图2用尺规作图作出了点O,下列作图语言叙述正确的是( )A.分别以点M,点N为圆心,任意长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求.B.分别以点M,点N为圆心,以大于长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求.C.以点M为圆心,任意长为半径作弧,再以点N为圆心,大于长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求.D.分别以点M,点N为圆心,任意长为半径作弧,两弧相交于点A和点B;作直线AB,直线AB即为所求.答案:B解题思路:在MN上求作一点O,使OM=ON可以转化为作线段MN的垂直平分线,与MN的交点即为点O.正确作法为:分别以点M,点N为圆心,以大于长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求;要找到MN垂直平分线上的两点,需要保证以相同长为半径作弧,且两弧有交点,所以此半径应大于,故选项A,C,D错误.故选B.试题难度:三颗星知识点:略7.如图,以C为圆心,以大于点C到AB的距离为半径作弧交AB于点D,E,再以D,E为圆心,以大于DE为半径作弧,两弧交于点F,作射线CF,则( )A.CF平分∠ACBB.CF垂直平分DEC.CF平分ABD.CF垂直平分AB答案:B解题思路:由题意可知,点C到D,E两点的距离相等,点F到D,E两点的距离相等,所以点C和点F 均在线段DE的垂直平分线上,所以CF垂直平分DE;故选B试题难度:三颗星知识点:略8.如图,某地由于居民增多,要在公路边增加一个公共汽车站,A,B是路边两个新建小区,要使两个小区到车站的路程一样长,这个公共汽车站C应建在( )A.点A到l的垂线与l的交点处B.线段AB的垂直平分线上任意某点处C.线段AB的垂直平分线和l的交点处D.点B到l的垂线与l的交点处答案:C解题思路:由题意可得,点C到A,B两点的距离相等,所以C在AB的垂直平分线上,因为C在l上,所以这个公共汽车站C应建在线段AB的垂直平分线和l的交点处.故选C试题难度:三颗星知识点:略9.如图,某公园的三个出口A,B,C构成△ABC,想要在公园内修建一个公共厕所,要求到三个出口距离都相等,则公共厕所应该在( )A.三条边的垂直平分线的交点B.三个角的角平分线的交点C.三角形三条高的交点D.三角形三条中线的交点答案:A解题思路:∵公共厕所到出口A,B的距离相等∴公共厕所在线段AB的垂直平分线上,同理,公共厕所在线段BC的垂直平分线上所以,公共厕所应该在三条边的垂直平分线的交点故选A试题难度:三颗星知识点:略10.电信部门要在S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在( )A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处答案:D解题思路:由题意可得,发射塔到两个城镇A,B的距离相等,所以发射塔要建在AB的垂直平分线上,又因为发射塔到两条高速公路OC,OD的距离也相等,所以发射塔要建在∠COD的平分线上,所以发射塔应建在线段AB垂直平分线和∠COD的平分线的交点处;故选D试题难度:三颗星知识点:略11.如图,△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB,下列描述正确的是( )A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点答案:B解题思路:因为PA+PB=AB,要使PA+PC=AB即PB=PC,即点P在BC的垂直平分线上所以点P为线段BC的垂直平分线与AB的交点故选B试题难度:三颗星知识点:略。

第03讲 线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)(原卷版)

第03讲 线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)(原卷版)

第03讲线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)考点考向一.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C 在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE二.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.三.作图—基本作图基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.四.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.五.作图—应用与设计作图应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.六.作图—代数计算作图代数计算作图是实际问题中要求所作图形具备一定的条件,如角的度数或边的长度.(1)根据题意计算出图形所具备的条件,边长,角度等,在网格纸上作图或利用圆规和直尺作图.(2)直接利用尺规作图做出符合题意的图形.如在数轴上找到表示无理数的点.要熟悉几何图形的性质和5种基本作图的步骤,才能灵活运用熟练作图.考点精讲一.角平分线的性质(共5小题)1.(2021秋•温岭市期末)如图,OP平分∠AOB,E为OA上一点,OE=4,P到OB的距离是2,则△OPE 的面积为()A.2B.3C.4D.82.(2021秋•北仑区期中)如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC的长是()A.2B.3C.4D.53.(2021秋•东阳市期末)如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N 为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC 于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.54.(2021秋•新昌县期末)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为()A.16B.20C.40D.805.(2021秋•诸暨市校级月考)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.二.线段垂直平分线的性质(共8小题)6.(2021秋•海曙区期末)如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠EAG=40°,则∠BAC的度数是()A.140°B.130°C.120°D.110°7.(2021秋•温州期末)如图,已知线段AB,以点A,B为圆心,5为半径作弧相交于点C,D.连结CD,点E在CD上,连结CA,CB,EA,EB.若△ABC与△ABE的周长之差为4,则AE的长为()A.1B.2C.3D.48.(2021秋•余杭区月考)如图,在△ABC中,DE是AC的中垂线,分别交AC、AB于点D、E,若△BCE 的周长为8,BC=3,求AB的长.9.(2021秋•义乌市期中)如图,已知△ABC中,边AB、AC的垂直平分线分别交BC于E、F,若∠EAF =90°,AF=3,AE=4.(1)求边BC的长;(2)求出∠BAC的度数.10.(2021秋•柯桥区月考)已知:如图,△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.11.(2021秋•余杭区期中)如图,△ABC中,∠BAC=130°,AB,AC的垂直平分线分别交BC于点E,F,与AB,AC分别交于点D,G,则∠EAF的度数为()A.65°B.60°C.70°D.80°12.(2021秋•上城区期中)如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC 于点E,F.(1)若∠DAC=20°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.13.(2021秋•西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=()A.50°B.80°C.90°D.100°三.作图—基本作图(共4小题)14.(2021秋•鄞州区期中)如图,在△ABC中,∠B=65°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.45°B.55°C.60°D.65°15.(2021秋•诸暨市期末)下列尺规作图分别表示:①作一个角的平分线,②作一条线段的垂直平分线.其中作法正确的是()A.①B.②C.①②D.无16.(2021秋•新昌县期末)如图,已知△ABC.(1)请用直尺和圆规作∠ABC的角平分线BD,交AC于点D.(保留作图痕迹,不写作法)(2)在(1)的条件下,若∠A=100°,∠C=28°,求∠BDA的度数.17.(2021秋•余姚市期末)如图,在△ABC中,CE⊥AB于点E.(1)用尺规作BD⊥AC,垂足为点D.(不写作法,保留痕迹)(2)在(1)所画的图中,若BE=CD.求证:AB=AC.四.作图—复杂作图(共5小题)18.(2021秋•临海市期末)如图,已知△ABC,点D在边AB上.(1)求作点D,使点D到点B,C的距离相等;(尺规作图,保留作图痕迹,不写作法)(2)连接DC,已知∠B=32°,求∠ADC的度数.19.(2021秋•缙云县期末)(拓展创新)如图所示,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点以顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,;(在图①中画一个即可)(2)使三角形为钝角三角形且面积为4.(在图②中画一个即可)20.(2021秋•新昌县期中)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.(1)则MN是BC的线.(2)若AB=8,AC=4,求△ACD的周长.21.(2021秋•西湖区校级期中)如图,已知△ABC.(1)尺规作图:①作出△ABC的角平分线CD;②作出BC的中垂线交AB于点E.(2)连结CE,若∠ABC=60°,∠A=40°,则∠DCE=.22.(2021秋•拱墅区期中)如图,△ABC中,AC>AB.(1)作AB边的垂直平分线交BC于点P,作AC边的垂直平分线交BC于点Q,连接AP,AQ.(尺规作图,保留作图痕迹,不需要写作法)(2)在(1)的条件下,若BC=14,求△APQ的周长.五.作图—应用与设计作图(共6小题)23.(2021秋•临海市期末)如图,在5×5的网格纸中,△ABC的三个顶点都在格点上.请仅用直尺,按要求画图.(1)在图1中画出过点B的直线l,使其平分△ABC的面积;(2)在图2中画出线段BD,使其平分∠ABC,且点D在格点上.24.(2021秋•椒江区期末)如图,两条公路OA,OB相交于点O,在∠AOB内部有两个村庄C,D.为方便群众接种新冠疫苗,该地决定在∠AOB内部再启动一个方舱式接种点P,要求同时满足:(1)到两条公路OA,OB的距离相等.(2)到两村庄C,D的距离相等.请你用直尺和圆规作出接种点P的位置(保留作图痕迹).25.(2021秋•宁波期末)定义:如果三角形的两个内角α和β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.如图,在△ABC中,∠C=90°,AC=8,BC=6.请把这个三角形分割成两个三角形,使得其中一个为“类直角三角形”,并求出这个“类直角三角形”的面积.(备注:要求尺规作图)26.(2021秋•婺城区校级月考)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.27.(2021春•南岗区校级月考)如图,网格中的每个小正方形的边长都是2,线段交点称做格点.(1)画出△ABC的高CD;(2)连接格点,用一条线段将图中△ABC分成面积相等的两部分;(3)直接写出△ABC 的面积是.28.(2021春•鼓楼区校级月考)我们知道,三角形具有性质:三条角平分线相交于一点,三条中线相交于一点.事实上,三角形还具有性质:三条高所在直线相交于一点.如图,在由小正方形组成的4×3的网格中,三角形的顶点都在小正方形的格点上.请运用上述三角形的性质,在该网格中,仅用无刻度的直尺,作出AC边上的高BH,再作出BC边上的高AK.(不写作法,保留作图痕迹)六.作图—代数计算作图(共1小题)29.(2021秋•诸暨市期中)如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中解答下面问题.(1)图中线段AB的两端点都落在格点(即小正方形的顶点)上,求出AB的长度;(2)再以AB为一边画一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)请直接写出符合(2)中条件的等腰三角形ABC 的顶点C的个数.巩固提升一、单选题1.(2021·衢州市实验学校教育集团(衢州学院附属学校教育集团)八年级期末)如图,在,OA OB 上分别截取,OD OE ,使OD OE =,再分别以点,D E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线,OC OC 就是AOB ∠的角平分线.这是因为连结,CD CE ,可得到COD COE ≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ≌的条件是( )A .SASB .AASC .ASAD .SSS2.(2021·浙江八年级期末)如图是用直尺和圆规作一个角等于已知角的示意图,说明O O ∠'=∠的依据是( )A .SASB .SSSC .AASD .ASA3.(2020·浙江八年级期末)ABC 内找一点P ,使P 到B 、C 两点的距离相等,并且P 到C 的距离等于A 到C 的距离.下列尺规作图正确的是( )A .B .C .D .4.(2020·浙江八年级期末)如图,在AOB ∠的两边上,分别取OM ON =,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分AOB ∠的依据是( )A .SSSB .SASC .AASD .HL5.(2020·浙江八年级期末)如图,已知ABC ,求作一点P ,使P 到A ∠的两边的距离相等,且PA PB =、下列确定P 点的方法正确的是( )A .P 为AB ∠∠、两角平分线的交点B .P 为AC AB 、两边上的高的交点 C .P 为AC AB 、两边的垂直平分线的交点D .P 为A ∠的角平分线与AB 的垂直平分线的交点二、填空题 6.(2019·浙江八年级期末)如图,依据尺规作图的痕迹,计算∠α=________°.7.(2019·浙江杭州·八年级月考)用直尺和圆规作一个角等于已知角的示意图如下,则要说明D O C DOC '''∠=∠,需要证明D O C DOC '''∆∆≌,则两个三角形全等的依据是________(写出全等简写).8.(2018·浙江全国·)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是_______.9.(2020·浙江高照实验学校八年级月考)如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=_____度.10.(2019·浙江杭州市·)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是_________.三、解答题11.(2019·浙江八年级期中)如图,在△ABC中,AB=AC,∠ABC=76°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.12.(2021·浙江八年级期末)电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A,B的电网必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置,从图中标出.(保留作图痕迹,说明理由)13.(2020·浙江)已知ABC ,用尺规作图:(1)作AC 边上的中线;(2)画AB 边上的高.14.(2019·浙江宁波·八年级期中)某小区为方便M 、N 两幢住宅楼的住户投放分类后的垃圾,拟在小区主路AB AC 、的交叉区域内设置一个垃圾投放点P ,现要求P 点到两条道路的距离相等,且使PM PN =,请你通过尺规作图找出这一P 点(不写作法,保留作图痕迹)15.(2020·浙江八年级期末)已知:线段c 和αβ∠∠,求作:ABC ,使得AB c A B αβ=∠=∠∠=∠,,(不写作法,但保留作图痕迹)16.(2020·浙江)已知线段a 及锐角α,用直尺和圆规作ABC ,使B α∠=∠,AB BC a ==.17.(2020·浙江)如图,线段a ,利用直尺和圆规按照下列要求作出图形.(保留作图痕迹,不要求写作法)(1)作一个等边三角形,边长为a ;(2)在第(1)题的图中,作一个α∠,使30︒=α.18.(2020·浙江八年级期末)如图,BAC ∠和点D .在BAC ∠内部,试求作一点P ,使得点P 到BAC ∠两边的距离相等,同时到点A ,D 的距离也相等.(不写作法,保留作图痕迹)19.(2021·浙江八年级期末)如图,已知ABC ,请按下列要求作图:(1)作BC边上的中线.(2)用直尺和圆规作ABC的角平分线CG.≌(使点D与A对应,点E与B对应,点F与C对应).(3)用直尺和圆规作DEF,使DEF ABC20.(2020·浙江八年级期中)如图,已知ABC(1)用直尺和圆规按下列要求作图:(保留作图痕迹)在BC上作点D,使点D到AB和AC的距离相等;过BE AD交CA的延长线于E;点B作//(2)若AF BE⊥,垂足为F,证明BF EF.。

线段垂直平分线的有关作图(分层作业)(原卷版)

线段垂直平分线的有关作图(分层作业)(原卷版)

13.1.3线段垂直平分线的有关作图夯实基础篇一、单选题:1.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线。

则对应作法错误的是()A.①B.②C.③D.④2.下列选项中的尺规作图,能推出PA=PC的是()A.B.C.D.3.已知点P在 ABC的边BC上,且满足PA=PC,则下列确定点P位置的尺规作图,正确的是()A.B.C.D.4.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=B C.则下列四种不同方法的作图中正确的是()A.B.C.D.5.如图,在Rt△AB C中,∠B=90°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点E,点F,作直线EF交BC于点D,连接AD,若AB=3,BC =5,则△ABD的周长为()A.5B.6C.7D.8 6.如图,在△AB C中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5B.6C.7D.87.在△AB C中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接B D.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°二、填空题:8.如图,在△AB C中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.9.如图,在平行四边形ABC D中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是.10.如图,在已知的△AB C中,按以下步骤作图:若CD=AC,∠A=50°,则∠ACB的度数为°.①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接C D.11.如图,在Rt△AB C中,∠C=90°,∠A=30°,分别以点A,B为圆心,大于线段AB 长度一半的长为半径画弧交于M,N两点,连结MN分别交AB,AC于点E,D,若AD=8,则AB的长为.12.如图,在△AB C中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接C D.若CD =AC,∠B=25°,则∠ACB的度数为.13.如图,在△AB C中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接A D.若△ADC的周长为10,AB=7,则△ABC的周长为三、解答题:14.已知点M在直线l上,A、B是直线l外的两点,按照下面要求完成作图:①过点M作直线l的垂线;②在已作出的垂线上确定一点P,使得点P到A、B两点的距离相等.(注意:要求用尺规作图,画图必须用铅笔,不要求写作法,但要保留作图痕迹并给出结论)15.已知∠AOB,点M、N,在∠AOB的内部求作一点P.使点P到∠AOB的两边距离相等,且PM=PN(要求:尺规作图,保留作图痕迹,不写作法).16.如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=33°,则∠CAD=°.17.作图题:要求保留作图痕迹,不写作法(1)作线段AC的垂直平分线,分别交AC、BC于E、F.在直线EF上找一点P,使得点P到射线AB,AC的距离相等.(2)若AB=6,BC=8,连接AF,求△ABF的周长.能力提升篇一、单选题1.下面三个基本作图的作图痕迹.关于三条弧①,②,③,有以下三种说法,⑴弧①是以点O 为圆心,以任意长为半径所作的弧;⑵弧②是以点A 为圆心,以任意长为半径所作的弧;⑶弧③是以点O 为圆心,以大于12DE 的长为半径所作的弧.其中正确说法的个数为()A .3个B .2个C .1个D .0个2.如图,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若6AC =,2AD =,则BD 的长为()A .2B .3C .4D .63.如图,依据尺规作图的痕迹,计算∠α=()A .68°B .56°C .28°D .34°二、填空题:4.如图,在Rt △AB C 中,∠B =90°,按如下步骤作图:①分别以点B 、C 为圆心,大于12AB 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,③连接BD ,若AC =8,则BD 的长为5.如图,△AB C 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 和N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为.6.如图,在ABC ∆中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若6AC =,2AD =,则BD 的长为.7.如图,已知钝角ABC ∆,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②;步骤3:连接AD ,交BC 延长线于点H ;下列结论:①BH 垂直平分线段AD ;②AC平分BAD ∠;③12ABC S BC AH =⋅ ;④AH DH =.其中一定正确的有(只填序号)三、解答题:8.如图:△AB C 中,AC >A B .(1)作AB 边的垂直平分线交BC 于点P ,作AC 边的垂直平分线交BC 于点Q ,连接AP ,AQ .(尺规作图,保留作图痕迹,不需要写作法)(2)在(1)的条件下,若BC =14,求△APQ 的周长.9.如图,在ABC 中,AM 平分BAC ∠.(1)尺规作图(不写作法,保留作图痕迹),作BC 的垂真平分线HG ,与BC 相交于点H ,与AM 相交于点G ;(2)在(1)条件下,连接BG ,CG ,BAC ∠和BGC ∠有何数量关系?并证明你的结论.。

线段的垂直平分线的性质和判定(1)

线段的垂直平分线的性质和判定(1)

ABPCl A B C D E P A BABA 课题:线段的垂直平分线的性质和判定(一)主备:黎虎 审核: 第13章 轴对称 总第3课时 学生姓名:学习目标:1.探索与证明线段的垂直平分线的性质和判定,2.能运用线段垂直平分线的性质和判定解决实际问题。

一、自主学习:(一)1、 直线与线段AB 相交于点C,当满足什么条件,直线是AB 的垂直平分线?2、 在纸上画出一条线段AB ,如果只有一把有刻度的直角三角板,你能画出AB 的垂直平分线吗?如果没有工具,你有什么方法可找到它的垂直平分线?(二)如图,直线l 垂直平分线线段AB ,垂足为C ,P 是l 上一点,连结PA 、 PB (1) 量一量:P 到点A 与点B 的距离,你有什么发现? (2)折一折:把线段AB 沿直线l 对折,你又有什么发现? (3) 在直线l 在找一些点P 1、P 2﹍试一试,你得到什么规律? (4) 证一证,你能证明这个结论: 已知: 求证:证明:通过上面的证明,你能得到线段的垂直平分线有怎样的性质?_______________________________________________________________________________ 二、展示交流:如图,A D ⊥BC ,BD=DC ,点C 在AE 的垂直平分线上, (1) AB 、AC 、CE 的长度有什么关系?(2) AB+BD 与DE 什么关系?三、合作探究:1、如果PA=PB ,那么点P 是否在线段AB 的垂直平分线上呢?2、思考:(1)你还有其它方法证明吗?(2)根据上面的证明,你又可以得到什么结论?___________________________________________________________________________ (3)你还能找到这样的点吗?有多少个?会组成一个怎样的图形?3、如图:AC=BC ,AD=BD ,AE 与BE 相等吗?为什么?四、点评小结:1、线段的垂直平分线有什么性质?又有怎样的判定?2、怎样证明一条直线垂直平分一条线段?五、达标检测: 评价等级: 批阅时间: 1、 教材第65页第6题2、 教材第66页第9题3、 教材第66页第13题AB D O D AB E C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点06 线段垂直平分线的性质和判定
一.选择题(共10小题)
1.(2020·重庆南开中学)如图,在ABC ∆中,DE 垂直平分BC ,
分别交BC AB 、于D E 、,连接CE BF ,平分ABC ∠,交CE 于F ,若,12BE AC ACE ︒
=∠=,则F E B ∠的度数为( )
A .58︒
B .63︒
C .67︒
D .70︒
2.(2020·四川彭州期末)如图,在ABC 中,BC 的垂直平分线分别交BC ,AB 于点D 、E ,7BE =,则CE 的长是( )
A .5
B .6
C .7
D .8
3.(2020·四川开江期末)如图,AD 是BAC ∠的平分线,EF 垂直平分AD 交BC 的延长线于点F ,若55FAC ∠=︒,则B 的度数为( )
A.45°B.50°C.55°D.60°4.(2020·四川郫都期末)如图,在△ABC中,△C=31°,△ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么△A的度数为()
A.31°B.62°C.87°D.93°5.(2020·江苏宿豫期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()
A.12B.10C.8D.6 6.(2020·江苏如皋期中)如图,DE△BC,BE=EC,且AB=5,AC=8,则△ABD的周长为()
A .21
B .18
C .13
D .9
7.(2020·山东金乡期中)如图,在Rt△ABC 中,△B=90°,△C=20°,分别以点A 、C 为圆心,大于12
AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则△BAE=( )
A .20°
B .40°
C .50°
D .60°
8.(2020·尚志市田家炳中学期中)如图,点K 在AOB ∠的内部,点K 关于OA 、OB 的对称点分别为P 、R ,连接PR 交OA 、OB 于点C 、D ,若70POR ∠=,则下列结论错误的是( )
A .35AO
B ∠=
B .110CKD ∠=
C .PK RK =
D .OA 垂直平分PK
9.(2020山东滨州期中)如图,AD 是ABC 的角平分线,,DE AB DF AC ⊥⊥,垂足分别为点,E F ,连接EF 与AD 相交于点O .下列结论不一定成立的是( )
A .DE DF =
B .AE AF =
C .DE AE =
D .AD EF ⊥ 10.(2020·河南洛宁期中)如图,在△ABC 中,△C=90°,AB 的垂直平分线交BC 于点D ,交AB 于点
E ,已知△CAD :△DAB=1:2,则△B=( )
A .34°
B .36°
C .60°
D .72°
二.填空题(共5小题)
11.(2020·常州市同济中学月考)如图,已知AD 是BC 的垂直平分线,垂足为D ,ABC 的周长为32,ACD 的周长为24,那么AD 的长为_____.
12.(2020·山东昌乐期末)如图,在△ABC 中,DE 是AB 的垂直平分线,且分别交AB 、AC 于点D 和E ,△A =50°,△C =60°,则△EBC 等于_____度.
13.(2020·四川巴州期末)如图,ABC ∆中,BC 边的垂直平分线交AC 于点D ,若100,50A ABC ︒︒∠=∠=,则ADB ∠的度数为_________________
14.(2020·山西月考)如图,在ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若60A ∠=︒,△ACF=36°,则ABC ∠的大小为___.
15.(2020·四川双流期末)如图,在ABC ∆中, AB AC =,36BAC DE ︒∠=,是线段AB 的垂直平分线,若CD a AD b ==,,则用含,a b 的代数式表示ABC ∆的周长为____.
三.解析题(共5小题)
16.(2020·福建宁化期末)如图,四边形ABCD 是长方形,E 是边CD 的中点,连接AE 并延长交边BC 的延长线于F ,过点E 作AF 的垂线交边BC 于M ,连接AM .
(1)请说明ΔADE △ ΔFCE;
(2)试说明AM = BC + MC;
(3)设S△AEM = S1,S△ECM = S2,S△ABM = S3,试探究S1,S2,S3三者之间的等量关系,并说明理由.
17.(2020·山东商河期末)如图,已知△BAC=60° ,△B=80° ,DE垂直平分AC交BC于点D,交AC于点E.
(1)求△BAD的度数;
(2)若AB=10,BC=12,求△ABD的周长.
18.(2020·江苏南通期中)如图,已知△ABC,AB、AC的垂直平分线的交点D恰好落在BC 边上
(1)判断△ABC的形状
(2)若点A在线段DC的垂直平分线上,求AC
BC
的值
19.(2020·四川广安期末)如图,在△ABC中,,
AB AC
DE是边AB的垂直平分线,交AB 于E、交AC于D,连接BD.
(1)若40A ∠=︒,求DBC ∠的度数;
(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长.
20.(2020·仪征市第三中学月考)如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD .
(1)若△A =40°,求△DBC 的度数.
(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长.。

相关文档
最新文档