浙教版数学八年级上册 第三章:一元一次不等式 综合测试含答案

合集下载

初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。

初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3

初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3

浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。

A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。

甲说:“至少12元。

”乙说“至多10元。

”丙说“至多8元.”小明说:“你们三个人都说错了。

浙教版2022-2023学年八上数学第3章 一元一次不等式专题一次不等式的实际应用培优测试卷解析版

浙教版2022-2023学年八上数学第3章 一元一次不等式专题一次不等式的实际应用培优测试卷解析版

浙教版2022-2023学年八上数学第3章 一元一次不等式专题一次不等式的实际应用 培优测试卷(解析版)解答题1.学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过 400 元,则最多可以购买菊花多少盆?【答案】解:设需要购买菊花 x 盆,则需要购买绿萝 (30−x) 盆,则 16x +8(30−x)≤400 ,解之得: x ≤20 .答:最多可以购买菊花 20 盆.2.一医疗用品厂用于生产的全部劳力为450个工时,原料为400个单位,生产一盒试纸要使用15个工时、20个单位的原料,售价为80元;生产一盒口罩要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产试纸、口罩的盒数,可以使试纸和口罩总售价尽可能高.请你用你所学过的数学知识分析,总售价是否可能达到2200元?【答案】解:设试纸x 个,口罩y 个,总售价为z ,∴z=80x +45y =5(16x +9y )①根据劳力和原材料的限制,x 和y 应满足15x +10y≤450,20x +5y≤400整理得3x +2y≤90②4x +y≤80③当总售价z =2200时,由①得16x +9y =440④③×9得36x +9y≤720⑤⑤−④得20x≤720−440解之:x≤14;②×92得272x +9y≤405⑥ ④−⑥得52x≥440−405, 解之:x≥14∴x=14,解之:y =24当x =14,y =24时,有3x +2y =90,4x +y =80满足工时和原料的约束条件,此时恰有总售价z =80×14+45×24=2200(元)答:只需安排生产试纸14个、口罩24个,就可达到总售价为2200元.3.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器160台,A 型号家用净水器进价是1500元/台,售价是2100元/台;B 型号家用净水器进价是3500元/台,售价是4300元/台.为保证售完这160台家用净水器的利润不低于116000元,求A 型号家用净水器最多能购进多少台?(注:利润=售价-进价)【答案】解:设能购进A 型号家用净水器x 台.600x + 800(160 - x)≥116000解得 x ≤ 60 .答:A 型号家用净水器最多能购进 60 台.4.在“扶贫攻坚”活动中,城南中学计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5020元,通过计算得出共有几种选购方案?【答案】解:①设乙种物品单价为x 元, 则甲种物品单价为(x+10)元,由题意得:500x+10=450x,解得x=90.经检验,x=90是方程的解,∴甲种物品的单价为100元,乙种物品的单价为90元。

浙教版八年级数学上:第三章一元一次不等式单元测试题含答案

浙教版八年级数学上:第三章一元一次不等式单元测试题含答案

【浙教版】八年级数学上:第三章-一元一次不等式单元测试题(含答案)第三章一元一次不等式单元测试题一、单选题(共10题;共30分)1、下列不等式一定成立的是()A、4a>3aB、3-x<4-xC、-a>-3aD、>2、若a>b且c为实数.则()A、ac>bcB、ac<bcC、ac2>b c2D、ac2≥b c23、式子:①3<5;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2≥x+1.其中是不等式的有()A、2个B、3个C、4个D、5个4、已知a,b为实数,则下列结论正确的是()A、若a>b,则a﹣c<b﹣cB、若a>b,则﹣a+c>﹣b+cC、若a>b,则ac2>bc2D、若ac2>bc2,则a>b5、下列式子中,是不等式的有()①2x=7;②3x+4y;③﹣3<2;④2a﹣3≥0;⑤x>1;⑥a﹣b>1.A、5个B、4个C、3个D、1个6、下列说法正确的是()A、x=4是不等式2x>﹣8的一个解B、x=﹣4是不等式2x>﹣8的解集C、不等式2x>﹣8的解集是x>4D、2x>﹣8的解集是x<﹣47、若a<b,则下列各式中不成立的是()A、a+2<b+2B、﹣3a<﹣3bC、2﹣a>2﹣bD、3a<3b8、下列不等式中是一元一次不等式的是()A、x﹣y<1B、x2+5x﹣1≥0C、>3D、x<﹣x9、下列各式不是一元一次不等式组的是()A、 B、 C、 D、10、不等式组的解集是()A、x≥8B、x>2C、0<x<2D、2<x≤8二、填空题(共8题;共25分)11、用不等式表示:5与x的和比x的3倍小________。

12、我市冬季某一天的最高气温为﹣1℃,最低气温为﹣6℃,那么这一天我市气温t(℃)的取值范围是________13、若(m﹣1)x≥m﹣1的解集是x≤1,则m的取值范围是________ .14、幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友能分到玩具,但不足4件,共有小朋友________人,这批玩具共有________ 件.15、若2+ 是一元一次不等式,则m=________.16、不等式19﹣5x>2的正整数解是________.17、若关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围为________.18、关于x的不等式组有三个整数解,则a 的取值范围是________.三、解答题(共5题;共35分)19、当k满足条件时,关于x的一元二次方程kx2+(k﹣1)x+k2+3k=0是否存在实数根x=0?若存在求出k值,若不存在请说明理由.20、嘉年华小区准备新建50个停车位.以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.7万元;新建3个地上停车位和2个地下停车位需1.6万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过15万元而不超过16万元,请提供两种建造方案.21、若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.22、A型轿车每辆15万元,B型轿车每辆10万元,销售一辆A型轿车可获利8 000元,销售一辆B型轿车可获利5 000元.某公司用400万元购进A、B两种型号轿车30辆,且全部售出后总获利不低于20.4万元,问有几种购车方案?这几种方案中分别获利多少万元?23、一堆有红、白两种颜色的球若干个,已知白球的个数比红球少,但白球的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为“60”,那么这两种球各有多少个?四、综合题(共1题;共10分)24、解下列不等式(组)(1)5x>3(x﹣2)+2(2).答案解析一、单选题1、【答案】 B【考点】不等式的性质【解析】【分析】根据不等式的基本性质即可作出判断.【解答】A、当a=0时,4a=3a,故选项错误;B、有3<4,根据不等式的性质可得,正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,<.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2、【答案】 D【考点】不等式的性质【解析】【分析】当c>0时ac>bc,因而ac<bc不成立,反之,c<0时ac<bc成立,ac>bc不成立.当c=0时:ac2>bc2不成立;不论c是什么值,都有c2≥0,因而ac2≥bc2一定成立.【解答】当c>0时,ac>bc;当c<0时,ac<bc;当c=0时,ac2=bc2;又∵c2≥0,∴ac2≥bc2一定成立;故选D.【点评】本题考查了不等式的性质.不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3、【答案】C【考点】不等式的解集【解析】【解答】解:①3<5;②4x+5>0;⑤x≠﹣4;⑥x+2≥x+1是不等式,∴共4个不等式.故选C.【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式进行分析即可.4、【答案】D【考点】不等式的性质【解析】【解答】解:A、在不等式a>b的两边同时减去c,不等式仍成立,即a﹣c>b﹣c,故本选项错误;B、在不等式a>b的两边同时乘以﹣1,不等号方向改变,即﹣a<﹣b,则﹣a+c<﹣b+c,故本选项错误;C、若c=0时,不等式ac2>bc2不成立,故本选项错误;D、ac2>bc2,则c≠0,则在该不等式的两边同时除以正数c2,不等式仍成立,即a>b,故本选项正确.故选:D.【分析】根据不等式的性质进行判断.5、【答案】B【考点】不等式的解集【解析】【解答】解:①2x=7是等式;②3x+4y不是不等式;③﹣3<2是不等式;④2a﹣3≥0是不等式;⑤x >1是不等式;⑥a﹣b>1是不等式,故选B【分析】要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.6、【答案】A【考点】不等式的解集【解析】【解答】解:因为2x>﹣8的解为x>﹣4,所以A、x=4是不等式2x>﹣8的一个解,正确;B、x=﹣4是不等式2x>﹣8的解集,错误;C、不等式2x>﹣8的解集是x>4,错误;D、2x>﹣8的解集是x<﹣4,错误.故选A.【分析】据题意只要解出不等式2x>﹣8的解,再用排除法解题即可.7、【答案】B【考点】不等式的性质【解析】【解答】解:A、a<b,a+2<b+2,故A成立;B、a<b,﹣3a>﹣3b,故B错误;C、a<b,2﹣a>2﹣b,故C正确;D a<b,3a<3b,故D成立;故选:B.【分析】根据不等式的性质1,可判断A、C;根据不等式的性质2,可判断D;根据不等式的性质3,可判断B.8、【答案】D【考点】一元一次不等式的定义【解析】【解答】解:A、x﹣y<1,含有两个未知数,故此选项错误;B、x2+5x﹣1≥0,未知数的次数为2,故此选项错误;C、>3是分式,故此选项错误;D、x<﹣x ,是一元一次不等式.故选:D.【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,进而判断得出即可.9、【答案】C【考点】一元一次不等式组的定义【解析】【解答】解:A、符合一元一次不等式组的定义,不符合题意;B、符合一元一次不等式组的定义,不符合题意;C、含2个未知数,不符合一元一次不等式组的定义,符合题意;D、符合一元一次不等式组的定义,不符合题意;故选C.【分析】根据一元一次不等式组的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可.10、【答案】 D【考点】解一元一次不等式组【解析】【解答】解:∵解不等式①得:x>2,解不等式②得:x≤8,∴不等式组的解集为2<x≤8,故选D.【分析】先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.二、填空题11、【答案】5+x< 3x【考点】一元一次不等式的定义【解析】【解答】可列不等式为:5+x<3x.【分析】5与x的和为:5+x;x的3倍为3x,5与x的和小,用“<”连接即可.12、【答案】﹣6≤t≤﹣1【考点】不等式的解集【解析】【解答】解:∵冬季某一天的最高气温为﹣1℃,∴t≤﹣1;∵最低气温为﹣6℃,∴t≥﹣5,∴﹣6≤t≤﹣1.故答案为:﹣6≤t≤﹣1【分析】根据题意列出关于t的不等式即可.13、【答案】m<1【考点】不等式的性质【解析】【解答】解:∵(m﹣1)x≥m﹣1的解集是x≤1,∴m﹣1<0,则m的取值范围是:m<1.故答案为:m<1.【分析】根据不等式的性质,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进而得出m﹣1的取值范围,进而得出答案.14、【答案】31;152【考点】一元一次不等式组的应用【解析】【解答】解:设共有x个小朋友,则玩具有3x+59个.∵最后一个小朋友不足4件,∴3x+59<5(x﹣1)+4,∵最后一个小朋友最少1件,∴3x+59≥5(x﹣1)+1,联立得解得30<x≤31.5.∵x取正整数31,∴玩具数为3x+59=152.故答案为:31,152.【分析】本题可设共有x个小朋友,则玩具有3x+59个,令其<5(x﹣1)+4,令其≥5(x﹣1)+1,化解不等式组得出x的取值范围,则x即为其中的最小的整数.15、【答案】1【考点】一元一次不等式的定义【解析】【解答】解:根据题意2m﹣1=1,解得m=1.故答案为:1.【分析】根据一元一次不等式的定义,未知数的次数是1,所以2m﹣1=1,求解即可.16、【答案】 1,2,3【考点】一元一次不等式的整数解【解析】【解答】解:不等式的解集是x<3.4,故不等式19﹣5x>2的正整数解为1,2,3.故答案为1,2,3.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.17、【答案】﹣3≤b<﹣2【考点】一元一次不等式的整数解【解析】【解答】解:∵x﹣b>0,∴x>b,∵不等式x﹣b>0恰有两个负整数解,∴﹣3≤b<﹣2.故答案为﹣3≤b<﹣2.【分析】首先解不等式,然后根据条件即可确定b的值.18、【答案】﹣<a≤﹣【考点】一元一次不等式组的整数解【解析】【解答】解:∵解不等式①得:x >2,解不等式②得:x<10+6a,∴不等式组的解集为2<x<10+6a,方程组有三个整数解,则整数解一定是3,4,5.根据题意得:5<10+6a≤6,解得:﹣<a≤﹣.故答案是:﹣<a≤﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.三、解答题19、【答案】解:,解①得:k≤4,解②得:k≥﹣7,则不等式组的解集是:﹣7≤k≤4,把x=0代入方程解得k=0或k=﹣3,∵k=0不满足方程为一元二次方程,∴k=﹣3.【考点】解一元一次不等式组【解析】【分析】首先解不等式求得k的范围,然后把x=0代入方程求得k的值,根据解不等式组得到的k的范围进行判断.20、【答案】解:(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,则依题意得:,解得.答:新建一个地上停车位需0.2万元,新建一个地下停车位需0.5万元;(2)设建a个地上车位,(50﹣a)个地下车位.则15<0.2a+0.5(50﹣a)≤16,解得30≤a<33.则①a=30,50﹣a=20;②a=31,50﹣a=19;③a=32,50﹣a=18;④a=33,50﹣a=17;因此有4种方案.【考点】一元一次不等式组的应用【解析】【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据新建1个地上停车位和1个地下停车位需0.7万元;新建3个地上停车位和2个地下停车位需1.6万元,可列出方程组求解.(2)设新建m个地上停车位,根据小区预计投资金额超过15万元而不超过16万元,可列出不等式求解.21、【答案】解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.【考点】一元一次不等式的整数解【解析】【分析】此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a 的一元一次方程,解方程即可得出a的值.22、【答案】解:设购进A种型号轿车a辆,则购进B 种型号轿车(30﹣a)辆.根据题意得解此不等式组得18≤a≤20.∵a为整数,∴a=18,19,20.∴有三种购车方案.方案一:购进A型号轿车18辆,购进B型号轿车12辆;方案二:购进A型号轿车19辆,购进B型号车辆11辆;方案三:购进A型号轿车20辆,购进B型号轿车10辆.汽车销售公司将这些轿车全部售出后:方案一获利18×0.8+12×0.5=20.4(万元);方案二获利19×0.8+11×0.5=20.7(万元);方案三获利20×0.8+10×0.5=21(万元).答:有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元【考点】一元一次不等式组的应用【解析】【分析】据关键语“用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元”列出不等式组,判断出不同的购车方案,进而求出不同方案的获利的多少即可.23、【答案】解:设白球有x个,红球有y个,由题意得,,由第一个不等式得:3x<3y<6x,由第二个个式子得,3y=60﹣2x,则有3x<60﹣2x<6x,∴7.5<x<12,∴x可取8,9,10,11.又∵2x=60﹣3y=3(20﹣y),∴2x应是3的倍数,∴x只能取9,此时y= =14.答:白球有9个,红球有14个【考点】一元一次不等式组的应用【解析】【分析】设白球有x个,红球有y个,根据白球的个数比红球少,但白球的2倍比红球多,列出不等式,然后根据总数为60,列出方程,综合求解即可.四、综合题24、【答案】(1)解:去括号,得:5x>3x﹣6+2,移项,得:5x﹣3x>﹣6+2,合并同类项,得:2x>﹣4,系数化为1,得:x>﹣2;(2)解:解不等式﹣>﹣1得:x>﹣6,解不等式2(x﹣3)﹣3(x﹣2)>﹣6,得:x<6,∴不等式组的解集为:﹣6<x<6.【考点】解一元一次不等式,解一元一次不等式组【解析】【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.。

第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

浙教版八年级上册第三章一元一次不等式培优一、选择题1.若a>b,则下列各式一定成立的是( )A.a+1<b+1B.―a>―b C.a―2<b―2D.a3>b32.如图,天平右盘中每个砝码的质量都是1g,物体A的质量为m(g),则m的取值范围在数轴上可表示为( )A.B.C.D.3.不等式组x+1>02x≤2的解集在数轴上用阴影表示正确的是( )A.B.C.D.4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论正确的是( )A.a>c>b B.c―a>b―a C.a c2<b c2D.a+b>05.在数学活动课中,小俞同学将某商场促销活动的信息列出不等式为0.7×(2x―100)<1000(其中x为某一商品的定价,单位:元),那么该商场促销活动的信息是( )A.买两件该商品可减100元,再打3折,最后不到1000元B.买两件该商品可打3折,再减100元,最后不到1000元C.买两件该商品可减100元,再打7折,最后不到1000元D.买两件该商品可打7折,再减100元,最后不到1000元6.如图所示,运行程序规定:从“输入一个值x”到“结果是否>79”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x>9B.x≤19C.9<x≤19D.9≤x≤197.若关于x 的不等式组4―(x ―2)≥33x ―a >2x有且只有4个整数解,则a 的取值范围是( )A .―1≤a <0B .―1<a ≤0C .0<a ≤1D .0≤a <18.若x 为实数,则[x ]表示不大于x 的最大整数,例如[1,6]=1,[π]=3,[―2,82]=―3等.[x ]+1是大于x 的最小整数,则方程6x ―3[x ]+9=0的解是( )A .x =―83B .x =―196C .x =―72或x =―3D .x =―83或x =―1969.已知三个实数a ,b ,c 满足a ―2b ―c =0,a +2b ―c <0,则( )A .b <0,b 2+ac ≤0B .b <0,b 2+ac ≥0C .b >0,b 2+ac ≤0D .b >0,b 2+ac ≥010. 已知关于x 的分式方程mx(x ―2)(x ―6)+2x ―2=3x ―6无解,且关于y 的不等式组m ―y >4y ―4≤3(y +4)有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .8二、填空题11.若(m ―1)x >(m ―1)的解集是x <1,则m 的取值范围是  ;12.一罐饮料净重300g ,罐上标注有“蛋白质含量≥0.5%”,其中蛋白质的含量至少为 g .13.若关于x 的不等式组x <1x ≤a 的解集是x <1,则a 的值可以是  (写出一个即可).14.关于x 的方程k ―2x =3(k ―2)的解为非负数,且关于x 的不等式x ―2(x ―1)≤32k +x 3≥x 有解,求符合条件的所有整数k 的值的积为 .15.若关于x 的不等式组―6<x <2x ―m <m无解,那么m 的取值范围是 16.对非负实数x“四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n+12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x =  .三、解答题17.课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.接力游戏老师:3x +12―1>5x ―43甲同学:3(3x +1)―6>2(5x ―4)乙同学:9x+3―6>10x―8丙同学:9x―10x>―8―3+6丁同学:―x>―5戊同学:x>5任务一:①在“接力游戏”中,乙同学是根据______进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是______同学,这一步错误的原因是______.任务二:在“接力游戏”中该不等式的正确解集是______.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.18.解不等式1―x3―x<3―x+24.并把解集表示在数轴上.19.解不等式组:5x―6≤2(x+2) x4―1<x―3320.如图,点A,B均在数轴上,点B在点A的右侧,点A对应的数字是―4,点B对应的数字是m.(1)若AB=2,求m的值;(2)将AB线段三等分,这两个等分点所对应数字从左到右依次是a1,a2,若a2>0,求m的取值范围.21.如图所示的是某大院窗格的一部分,其中“O”代表窗格上所贴的剪纸,设第x个窗格上所贴“O”的个数为y.(1)填写下表.x12345xy581117(用含x的式子表示)(2)若第x个窗格上所贴的“O”的个数大于50,求x的取值范围.22.如图,在平面直角坐标系xOy中,已知A(1,a),B(b,3),E(3―a,0),其中a,b满足|a―5|+b―4=0.平移线AB段得到线段CD,使得C,D两点分别落在y轴和x轴上.(1)①点A的坐标是____________;点B的坐标是____________;②求三角形OCD的面积.(2)将点E向下移动1个单位长度得到点F,连接FC,FD,Q(m,0)是x轴负半轴上一点.若三角形QCD 的面积不小于三角形FCD的面积,求m的取值范围.23.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(a,0),B(0,b),C(2,4),且2a+b+10+|3a―2b+8|=0.(1)求a,b的值;,求t的取值范围;(2)点D(t,0)为x轴上一点,且S三角形ABD≤13S三角形ABC(3)平移三角形ABC到三角形EFG(其中点A,B,C的对应点分别为点E,F,G),设E(m,n),F (p,q),且满足5m―n=43p―q=4,请直接写出点G的坐标.答案解析部分1.【答案】D 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】m <112.【答案】1.513.【答案】2(答案不唯一)14.【答案】015.【答案】m ≤―316.【答案】0或79或149.17.【答案】任务一:①C ;②戊;不等式的两边同时乘以―1,不等号的方向没有改变任务二:x <5任务三:去括号时,括号前面是“―”,去括号后,括号的每一项都要变号,或移项要变号18.【答案】x >―219.【答案】0<x ≤10320.【答案】(1)―2(2)m >221.【答案】(1)14,3x +2(2)x >16.22.【答案】(1)①A (1,5),B (4,3),②3(2)m ≤―7223.【答案】(1)a 的值为―4,b 的值为―2(2)―10≤t ≤2(3)G(8,10)。

浙教版八年级数学上册 第3章 一元一次不等式 单元测试卷(有答案)

浙教版八年级数学上册 第3章 一元一次不等式 单元测试卷(有答案)

浙教版八年级数学上册第3章一元一次不等式单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分)1.下列式子,其中不等式有()①2>0;②4x+y≤1;③x+3=0;④y−7;⑤m−2.5>3.A. 1B. 2C. 3个D. 4个2.已知a<b,则下列不等式变形不正确的是().A. 4a<4bB. −2a+4<−2b+4C. −4a>−4bD. 3a−4<3b−43.已知x>y,则下列不等式成立的是()A. x−1<y−1B. 3x<3yC. −x<−yD. x2<y24.下列说法正确的是().A. x=1是不等式−2x<1的解B. x=1是不等式−2x<1的解集C. x=−12是不等式−2x<1的解 D. 不等式−2x<1的解是x=15.不等式组{2x+13−3x+22>1,3−x≥2的解集在数轴上表示正确的是().A. B.C. D.6.解不等式x+23>1−x−32时,去分母后结果正确的为()A. 2(x+2)>1−3(x−3)B. 2x+4>6−3x−9C. 2x+4>6−3x+3D. 2(x+2)>6−3(x−3)7.不等式−x>1−x2的最大整数解为().A. −2B. −3C. −4D. −58.x的2倍减去7的差不大于−1,可列关系式为()A. 2x−7≤−1B. 2x−7<−1C. 2x−7=−1D. 2x−7≥−1第2页,共17页9. 若不等式组的解集是1<x <2,则a +b =( ) A. −0.5B. −1C. 2D. 410. 某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x 件,则根据题意,可列不等式为( )A. 3×5+3×0.8x ≤27B. 3×5+3×0.8x ≥27C. 3×5+3×0.8(x −5)≤27D. 3×5+3×0.8(x −5)≥27二、填空题(本大题共10小题,共30分)11. x 的2倍与y 的和大于5,用不等式表示为______. 12. 如果(m +1)x |m|>2是一元一次不等式,则m = ______ . 13. 已知x >y ,则2x ______2y(填“>”“<”或“=“)14. 如果a >b ,那么a(a −b) b(a −b)(填“>”或“<”). 15. 12.不等式2x −3≥0的解集是______. 16. 当x 时,代数式6x−14−2x 的值小于−2.17. 已知关于x 的不等式组{2x +5<0x −m >0的整数解有且只有2个,则m 的取值范围是______ .18. 等腰三角形底边为6,则腰长m 范围是_____.19. 一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得________分;若得分不低于60分者获奖,则获奖者至少应答对________道题.20. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文x ,y ,z 对应密文2x +3y ,3x +4y ,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为_________。

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。

浙教版八年级上册数学第3章 一元一次不等式含答案(完整版)

浙教版八年级上册数学第3章 一元一次不等式含答案(完整版)

浙教版八年级上册数学第3章一元一次不等式含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.若a 2>0,则a>0B.若a 2>a,则a>0C.若a<0,则a 2>aD.若a<1,则a 2<a2、不等式组的解集在数轴上表示如图,则该不等式组是()A. B. C. D.3、若x-3<0,则()A.2 x-4<0B.2 x+4<0C.2 x>7D.18-3 x>04、若关于x的不等式组无解,则a的取值范围是()A.a<-2B.a≤-2C.a>-2D.a≥-25、已知关于x的不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.6、若a-b>0,则下列变形正确的是()A.a+3<b+3B.a-3<b-3C.-3a>-3bD.- <-7、已知关于x的不等式组的解集是1≤x<3,则a=( )A.1B.2C.0D.-18、x的2倍减去7的差不大于﹣1,可列关系式为()A.2x﹣7≤﹣1B.2x﹣7<﹣1C.2x﹣7=﹣1D.2x﹣7≥﹣19、已知a>b,则下列不等式中正确的是()A.﹣2a>﹣2bB.C.2﹣a>2﹣bD.a+2>b+210、下列哪个不等式组的解集在数轴上的表示如图所示( )A. B. C. D.11、不等式组的解集在数轴上表示正确的是()A. B. C.D.12、如果点P(3x+9,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A. B. C.D.13、把不等式组的解集表示在数轴上,如下图,正确的是()A. B. C. D.14、不等式组的解在数轴上表示为()A. B. C. D.15、不等式组的解集在数轴上表示正确的是()A. B. C.D.二、填空题(共10题,共计30分)16、若,则x的取值范围是________ .17、某商品的进价是500元,标价是700元,商店要求以不低于5%的利润率打折出售,售货员最低可以打________折.18、在平面直角坐标系中,若点在第二象限,则整数m的值为________.19、若关于x,y的二元一次方程组的解满足2x+y<3,则a的取值范围是________.20、不等式4-x>1的正整数解为________21、不等式2x+4>10的解集是________.22、对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作恰好进行三次才停止,则x的取值范围是________.23、若关于的方程的解为负数,则的取值范围是________24、若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是________.25、规定[x]表示不超过x的最大整数,如[2.3]=2,[-π]=-4,若[y]=2,则y的取值范围是________。

浙教版八年级数学上册第3章 测试卷附答案

浙教版八年级数学上册第3章 测试卷附答案

第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( ) A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B.x 3>y3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( ) A .m >92 B .m <0 C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( )A .14道B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423x <2,则x 的整数值有( ) A .0个 B .1个 C .2个 D .3个 二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm ),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a -1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________. 17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题. 解不等式:2x +5x -3>0.解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示):树苗类型甲种树苗乙种树苗购买树苗数量(单位:棵) x购买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 【点拨】方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 【点拨】不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 【点拨】两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 【点拨】根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 【点拨】由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3. 三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.(2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.(3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0. 不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组 ⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M 5,∴-10≤110-M 5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160.23.解:(1)①500-x ;50x ;80(500-x ) ②50x +80(500-x )=25 600, 解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意, 得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分) 1.4的算术平方根是( )A .±2B. 2C .±2D .22.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。

浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案

浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案

浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.y 与2的差不大于0,用不等式表示为( )A. y −2>0B. y −2<0C. y −2≥0D. y −2≤02.不等式0≤x <2的解( )A. 为0,1,2B. 为0,1C. 为1,2D. 有无数个3.已知a <b ,则下列不等式一定成立的是( )A. a +5>b +5B. 1−2a >1−2bC. 32a >32bD. 4a −4b >0 4.在−1,0,1,12中,能使不等式2x −1<x 成立的数有( )A. 1个B. 2个C. 3个D. 4个5.若不等式组{x −1<1,▫的解集为x <2,则▫表示的不等式可以是( ) A. x <1 B. x >1 C. x <3 D. x >36.下列不等式与x >1的解表示在数轴上无公共部分的是( )A. x ≥1B. x ≤−1C. x ≤2D. x >−27.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某班预计在全部12场比赛中至少要得到16分,才有希望进入总决赛.假设这个班在将要举行的联赛中胜x 场,如果该班要进入总决赛,那么x 应满足的不等式是( )A. 2x+(12−x)≥16B. 2x−(12−x)≥16C. 2x+(12−x)≤16D. 2x≥168.某运行程序如图所示,规定:从“输入一个值x”到“结果是否大于21”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数x的和为( )A. 45B. 50C. 56D. 639.已知△ABC的边长分别为2x+1,3x,5,则△ABC的周长l的取值范围是( )A. 6<l<36B. 10<l≤11C. 11≤l<36D. 10<l<3610.P,Q,R,S四人去公园玩跷跷板,由下面的示意图,对P,Q,R,S四人的轻重判断正确的是( )A. R>S>P>QB. S>P>Q>RC. R>Q>S>PD. S>P>R>Q二、填空题:本题共6小题,每小题3分,共18分。

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)一.选择题(共8小题,满分40分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33B.t≤24C.24<t<33D.24≤t≤333.下列说法中,正确的是()A.x=1是不等式2x<1的解B.x=3是不等式﹣x<1的解集C.x>﹣1是不等式﹣2x<1的解集D.不等式﹣x<1的解集是x>﹣14.不等式组的解集是()A.x<3B.x>5或x<3C.x>5D.无解5.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值6.一个正数m的平方根是a﹣3与1﹣2a,则关于x的不等式ax+>2x的解集为()A.x>B.x<C.x>D.x<7.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.08.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为()A.5B.8C.9D.15二.填空题(共8小题,满分40分)9.若2x﹣y=1,且0<y<1,则x的取值范围为.10.已知关于x的不等式(2a﹣b)x>a﹣2b的解集是,则关于x的不等式ax+b<0的解集为.11.如果关于x的不等式3x﹣a≤0只有3个正整数解,则a的取值范围.12.不等式的负整数解的积是.13.符号表示运算ac﹣bd,对于整数a,b,c,d,已知1<<3,则b+d的值是.14.不等式组的解集是.15.不等式组无解,则m的取值范围为.16.若关于x的不等式组有3个整数解,则m的取值范围是.三.解答题(共6小题,满分40分)17.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.18.已知x=1满足不等式组,求a的取值范围.19.(1)解不等式:x+2﹣3(x+1)>1;(2)解不等式组.20.求不等式组的整数解.21.先阅读理解下面例题,再按要求解答下列问题:例:解不等式x2﹣9<0.解:∵x2﹣9=(x+3)(x﹣3),∴原不等式可化为(x+3)(x﹣3)<0.由有理数乘法法则:两数相乘,异号得负,得:①,或②.解不等式组①得﹣3<x<3,解不等式组②无解,∴原不等式x2﹣9<0的解集为﹣3<x<3.请你模仿例题的解法,解决下列问题:(1)不等式x2﹣4>0解集为;(2)不等式x2+3x≤0解集为;(3)拓展延伸:解不等式.22.某学校计划购进一批电脑和电子白板,购买1台电脑和2台电子白板需要3.5万元;购进2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有哪几种购买方案?(3)请你求出学校在(2)的购买活动中最多需要多少资金?参考答案一.选择题(共8小题,满分40分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.3.解:A、解不等式得到解集是x,则x=1不是不等式2x<1的解,故不符合题意.B、不等式﹣x<1的解集是x>﹣1,∴x=3是它的一个解,而不是解集,故不符合题意.C、不等式﹣2x<1的解集是x>﹣,∴x>﹣1不是它的解集,故不符合题意.D、不等式﹣x<1的解集是x>﹣1,故符合题意.故选:D.4.解:∵比大的大比小的小无解,故选D.5.解:∵a+b=﹣2,∴a=﹣b﹣2,b=﹣2﹣a,又∵a≥2b,∴﹣b﹣2≥2b,a≥﹣4﹣2a,移项,得﹣3b≥2,3a≥﹣4,解得,b≤﹣<0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣;由a≥2b,得≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);A、当a>0时,<0,即的最小值不是,故本选项错误;B、当﹣≤a<0时,≥,有最小值是,无最大值;故本选项错误;C、有最大值2;故本选项正确;D、无最小值;故本选项错误.故选:C.6.解:根据题意得a﹣3+1﹣2a=0∴a=﹣2,∴a﹣3=﹣5,∴m=25,∴不等式为﹣2x+>2x,解得x<,故选:B.7.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.8.解:,解不等式①得x≤k,解不等式②得x<7,由题意得k<7,解关于y的方程2y=3+k得,y=,由题意得,>0,解得k>﹣3,∴k的取值范围为:﹣3<k<7,且k为整数,∴k的取值为﹣2,﹣1,0,1,2,3,4,5,6,当k=﹣2时,y==,当k=﹣1时,y==1,当k=0时,y==,当k=1时,y==2,当k=2时,y==,当k=3时,y==3,当k=4时,y==,当k=5时,y==4,当k=6时,y==,∵为整数,且k为整数,∴符合条件的整数k为﹣1,1,3,5,∵﹣1+1+3+5=8,∴符合条件的所有整数k的和为8.故选:B.二.填空题(共8小题,满分40分)9.解:∵2x﹣y=1,∴y=2x﹣1,∵0<y<1,∴0<2x﹣1<1,解得<x<1.故答案为:.10.解:∵关于x的不等式(2a﹣b)x>a﹣2b的解集是,∴2a﹣b>0,x>∴2a>b,=∴2a﹣4b=10a﹣5b∴8a=b∴2a>8a∴a<0∵ax+b<0∴ax<﹣b∴x>﹣∵8a=b∴x>﹣8故答案为:x>﹣8.11.解:3x﹣a≤0的解集为x≤;其正整数解为1,2,3,则3≤<4,所以a的取值范围9≤a<12.12.解:不等式的解集是x>﹣,因而负整数解是:﹣1,﹣2,则其积是2.13.解:根据题意得:,解得:1<bd<3,∵b、d是整数,∴bd=2,则b、d的值是1和2,或﹣1,﹣2.则b+d=3或﹣3.故答案是:±3.14.解:,解不等式①得:x>﹣1,解不等式②得:x<4,∴不等式组的解集为﹣1<x<4,故答案为:﹣1<x<4.15.解:,解不等式①,得x≥3,∵不等式组无解,∴m<3,故答案为:m<3.16.解:解不等式2x﹣3>5,得:x>4,解不等式x﹣m<1,得:x<m+1,不等式租的解集为4<x<m+1,∵不等式组仅有3个整数解,∴7<m+1≤8,∴6<m≤7,故答案为:6<m≤7.三.解答题(共6小题,满分40分)17.解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∵﹣1<a<1,∴﹣2<2a<2,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.18.解:将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a>﹣.不等式组解集是﹣<a≤1,a的取值范围是﹣<a≤1.19.解:(1)x+2﹣3(x+1)>1,x+2﹣3x﹣3>1,x﹣3x>1﹣2+3,﹣2x>2,x<﹣1;(2)解不等式5x﹣1≤3(x+1),得:x≤2,解不等式≥x﹣1,得:x≤4,则不等式组的解集为x≤2.20.解:由①得,由②得x≤1,所以这个不等式组的的解集是,∴不等式组的整数解是﹣1,0,1.21.解:(1)∵x2﹣4>0,∴(x+2)(x﹣2)>0,则①,②,解不等式组①,得:x>2,解不等式组②,得:x<﹣2,∴不等式x2﹣4>0解集为x>2或x<﹣2,故答案为:x>2或x<﹣2;(2)∵x2+3x≤0,∴x(x+3)≤0,则①,②,解不等式组①,得:不等式组无解;解不等式组②,得:﹣3≤x≤0,故答案为:﹣3≤x≤0;(3)∵≤0,∴①,②,解不等式组①,得:﹣3≤x≤5,解不等式组②,得:不等式组无解;所以原不等式的解集为﹣3≤x≤5.22.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得,,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑m台,则购进电子白板(30﹣m)台,根据题意得:,解得:15≤m≤17,又∵m为正整数,∴m可以为15,16,17,∴共有3种购买方案:方案1:购进电脑15台,电子白板15台;方案2:购进电脑16台,电子白板14台;方案3:购进电脑17台,电子白板13台.(3)选择方案1所需费用为0.5×15+1.5×15=30(万元);选择方案2所需费用为0.5×16+1.5×14=29(万元);选择方案3所需费用为0.5×17+1.5×13=28(万元).∵30万元>29万元>28万元,∴学校在(2)的购买活动中最多需要30万元.。

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为  .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是  .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》单元综合练习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》单元综合练习题(附答案)

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》单元综合练习题(附答案)一.选择题1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33B.t≤24C.24<t<33D.24≤t≤333.已知a<b,下列不等式成立的是()A.a+2<b+1B.﹣3a>﹣2b C.m﹣a>m﹣b D.am2<bm24.比较a+b与a﹣b的大小,叙述正确的是()A.a+b≥a﹣b B.a+b>a﹣bC.由a的大小确定D.由b的大小确定5.不等式组的解集是()A.x<3B.x>5或x<3C.x>5D.无解6.若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x<n﹣m的解集是()A.x<﹣B.x>C.x>﹣D.x<7.不等式的解集在数轴上表示为()A.B.C.D.8.不等式组的解在数轴上表示为()A.B.C.D.9.已知的解满足y﹣x<1,则k的取值范围是()A.k>1B.k<﹣C.k>0D.k<110.不等式x<1﹣的解集为()A.x<2B.x<1C.x<D.x<﹣二.填空题11.已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=.12.比较大小:如果a<b,那么2﹣3a2﹣3b.(填“>”“<”或“=”)13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是.14.已知如图是关于x的不等式2x﹣a>﹣3的解集,则a的值为.15.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.三.解答题16.解下列不等式,并把解集在数轴上表示出来(1)2﹣5x≥8﹣2x(2)17.已知代数式mn+2m﹣2=0(n≠﹣2).(1)①用含n的代数式表示m;②若m、n均取整数,求m、n的值.(2)当n取a、b时,m对应的值为c、d.当﹣2<b<a时,试比较c、d的大小.18.知识阅读:我们知道,当a>2时,代数式a﹣2>0;当a<2时,代数式a﹣2<0;当a=2时,代数式a﹣2=0.基本应用:当a>2时,用“>,<,=”填空.(1)a+50;(2)(a+7)(a﹣2)0;理解应用:当a>1时,求代数式a2+2a﹣15的值的大小;灵活应用:当a>2时,比较代数式a+2与a2+5a﹣19的大小关系.19.请阅读求绝对值不等式|x|<3和|x|>3的解集过程.对于绝对值不等式|x|<3,从图1的数轴上看:大于﹣3而小于3的绝对值是小于3的,所以|x|<3的解集为﹣3<x<3;对于绝对值不等式|x|>3,从图2的数轴上看:小于﹣3而大于3的绝对值是大于3的,所以|x|>3的解集为x<﹣3或x>3.已知关于x,y的二元一次方程组的解满足|x+y|≤3,其中m是负整数,求m的值.20.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.21.2020年春节前夕,突如其来的新型冠状病毒肺炎造成口罩紧缺,为满足社会需求,某一工厂需购买A、B两种材料,用于生产甲、乙两种口罩,每件分别使用的材料和数量如表:A种B种甲型30kg10kg乙型20kg20kg 其中A种材料每千克15元,B种材料每千克25元.(1)若生产甲型口罩的数量比生产乙型口罩的数量多10件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?(2)若工厂用于购买A、B两种材料的资金不超过385000元,且需生产两种口罩共500件,求至少能生产甲种口罩多少件?参考答案一.选择题1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.3.解:A、不等式的两边都减1,不等号的方向不变,故A错误;B、不等式的两边都乘以同一个负数,不等号的方向改变,B选项没有乘以同一个负数,故B错误;C、∵a<b,∴﹣a>﹣b∴m﹣a>m﹣b,故C正确;D、∵m2≥0,a<b∴am2≤bm2,故D错误;故选:C.4.解:∵a+b﹣(a﹣b)=a+b﹣a+b=2b,∴当b≥0时,2b≥0,a+b≥a﹣b;当b<0时,2b<0,a+b<a﹣b.故选:D.5.解:∵比大的大比小的小无解,故选D.6.解:∵mx﹣n>0,∴mx>n,∵关于x的不等式mx﹣n>0的解集是x<,∴m<0,=,∴m=3n,n<0,∴n﹣m=﹣2n,m+n=4n,∴关于x的不等式(m+n)x<n﹣m的解集是x>﹣,故选:C.7.解:不等式两边同乘12得:8x﹣3(x﹣5)>10,去括号,移项,合并同类项得:5x>﹣5,x系数化为1,得:x>﹣1故选:C.8.解:由x+1>2,得x>1;由3﹣x≥1,得x≤2,不等式组的解集是1<x≤2,故选:C.9.解:,①﹣②得:y﹣x=2k﹣1,∴2k﹣1<1,即k<1,故选:D.10.解:去分母,得:3x<6﹣(x﹣2),去括号,得:3x<6﹣x+2,移项,得:3x+x<6+2,合并同类项,得:4x<8,系数化为1,得:x<2,故选:A.二.填空题11.解:因为x≥5的最小值是a,a=5;x≤﹣7的最大值是b,则b=﹣7;则ab=5×(﹣7)=﹣35.故答案为:﹣35.12.解:∵a<b,∴﹣3a>﹣3b∴2﹣3a>2﹣3b.故答案为:>13.解:不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.14.解:解不等式2x﹣a>﹣3,解得x>,由数轴上的解集,可得x>﹣1,∴=﹣1,解得a=1.15.解:∵(m+1)x|m|+2>0是关于x的一元一次不等式,∴m+1≠0,|m|=1.解得:m=1.故答案为:1.三.解答题16.解:(1)2﹣5x≥8﹣2x,移项得﹣5x+2x≥8﹣2,合并得﹣3x≥6,系数化为1得x≤﹣2;在数轴上表示为:(2)去分母得(x+5)﹣2<3x+2,去括号得x+5﹣2<3x+2,移项得x﹣3x<2+2﹣5,合并得﹣2x<﹣1,系数化为1得x>.在数轴上表示为:.17.解:(1)①∵mn+2m﹣2=0,∴(n+2)m=2,∵n≠﹣2,∴m=;②∵m、n均为整数,2=1×2=(﹣1)×(﹣2),∴或或或.解得:或或或;(2)∵当n=a时,m=c=,当n=b时,m=d=,∴c﹣d=﹣==,∵﹣2<b<a,∴a+2>0,b+2>0,b﹣a<0,∴<0,∴c﹣d<0,∴c<d.18.解:(1)∵a>2,∴a+5>0;(2)∵a>2,∴a﹣2>0,a+7>0,(a+7)(a﹣2)>0.理解应用:a2+2a﹣15=(a+1)2﹣16,当a=1时,a2+2a﹣15=﹣12,当a>1时,a2+2a﹣15>﹣12.灵活运用:先对代数式作差,(a2+5a﹣19)﹣(a+2)=a2+4a﹣21=(a+2)2﹣25,当(a+2)2﹣25>0时,a<﹣7或a>3.因此,当a≥3时,a2+5a﹣19≥a+2;当2<a<3时,a2+5a﹣19<a+2.19.解:,①+②得:3x+3y=﹣6m﹣3,∴x+y=﹣2m﹣1,∵|x+y|≤3,∴﹣3≤﹣2m﹣1≤3,∴﹣2≤﹣2m≤4,∴﹣2≤m≤1,∵m为负整数,∴m=﹣2或﹣1.20.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.21.解:(1)设生产甲种口罩x件,则生产乙种口罩(x﹣10)件,(30×15+10×25)x=(20×15+20×25)(x﹣10),解得x=80,∴x﹣10=70,答:生产甲、乙两种口罩分别为80件、70件;(2)设生产甲种口罩a件,则生产乙种口罩(500﹣a)件,∵工厂用于购买A、B两种材料的资金不超过385000元,∴(30×15+10×25)a+(20×15+20×25)(500﹣a)≤385000,解得a≥150,答:至少能生产甲种口罩150件.。

浙教版数学八年级上册 第三章 一元一次不等式 能力提升测试及答案

浙教版数学八年级上册 第三章 一元一次不等式 能力提升测试及答案

浙教版数学八上第三章:一元一次不等式能力提升测试及答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.不等式组1(1)2,2331x x x ⎧+≤⎪⎨⎪-<+⎩的解集在数轴上表示正确的是()2.不等式组⎩⎨⎧≥+>-01012x x 的解集是( )A .21>xB .-1≤x <21C .x <21 D .x ≥-1 3.已知2x =是不等式(5)(32)0x ax a --+≤的解,且1x =不是这个不等式的解,则实数a 的取值范围是( )A.1a > B .2a ≤ C.12a <≤ D.12a ≤≤4.对于不等式组⎪⎩⎪⎨⎧->+-≤-)1(325237121x x x x 下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解集是-25<x ≤2 5.若0a b +>,b a >且0ab <,则a ,b ,a -,b -的大小关系为( )A.a b b a -<-<<B.a b b a -<<-< C .a b a b -<-<< D.a b b a <<-<- 6.若关于x 的不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的范围是( )A .35≤mB .35<mC .35>mD .35≥m 7.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A.10m -≤< B.10m -<≤ C. 10m -≤≤ D.10m -<<8.关于x 的不等式组()⎩⎨⎧-≥->-23320x x m x 无解,那么m 的取值范围为( ) A .3≤m B .3<m C .3>m D .3≥m9.某校团委与社区联合举办“保护地球,人人有责”活动,拟选派20名学生分三组到120个店铺发宣传单,若第一组、第二组、第三组每人分别负责8个,6个,5个店铺,且每组至少有两人,则学生分组方案有( )A .6种B .5种C .4种D .3种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A .39B .36C .35D .34二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式组⎪⎩⎪⎨⎧<->+x x x 4103160103的最小整数解是_______________ 12.若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是___________13.不等式()m m x ->-231的解集为x >2,则m 的值是 14.已知关于x 的不等式组⎩⎨⎧+<-≥-1226b a x a x 的解集为3≤x<5,则a b 的值是__________ 15.使不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215恰有两个整数解,则实数a 的取值范围为________________16.已知不等式03≤-a x 的正整数解恰是1,2,3,则a 的取值范围为________________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解下列不等式(组)()1315.1>--x x ()3(2)4x 2.2513x x x --≥-⎧⎪-⎨<-⎪⎩18.(本题已知关于x ,y 的二元一次方程组⎩⎨⎧+=---=+ay x a y x 317的解,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简:23++-a a .19(本题8分)已知不等式()m m x ->-231.(1)若其解集为3>x ,求m 的值;(2)若满足3>x 的每一个数都能使已知不等式成立,求m 的取值范围.20(本题10分)(1).有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?(2).喷灌是一种先进的田间灌水技术.雾化指标P 是它的技术要素之一.当喷嘴的直径d (mm ).喷头的工作压强为h (kPa )时.雾化指标dh p 100=.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h 的范围.21.(本题10分)(1)已知关于x ,y 的方程组⎩⎨⎧+=+=-42322m y x m y x 的解满足不等式组⎩⎨⎧>+≤+0503y x y x 求满足条件的m 的整数值. (2)当k 满足条件()()⎪⎩⎪⎨⎧-≥+--≥+2311121123k k k k 时,关于x 的一元二次方程()03122=++-+k k x k kx 是否存在实数根0=x ?若存在求出k 值,若不存在请说明理由.22(本题12分)已知关于x 、y 的方程组⎩⎨⎧-=+-=-85212a y x y x 的解都为非负数.(1)求a 的取值范围;(2)已知12=-b a ,2≥a ,求b a +的取值范围;(3)已知m b a =-(m 是大于1的常数),且b ≤1,求2a +b 最大值.(用含m 的代数式表示)23(本题12分)为极大地满足人民生活的需求,丰富市场供应,某区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540 m 2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案,分别是哪几种;(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?答案一.选择题:1.答案:D 解析:解不等式组1(1)2,2331x x x ⎧+≤⎪⎨⎪-<+⎩得:32≤<-x故选择D2.答案:A解析:解不等式组⎩⎨⎧≥+>-01012x x 得:⎪⎩⎪⎨⎧-≥>121x x ∴原不等式组的解为:21>x ,故选择A3.答案:C解析:∵2x =是不等式(5)(32)0x ax a --+≤的解, ∴()023≤--a ,∴2≤a又∵1x =不是这个不等式的解,∴()0224>--a ,∴1>a∴21≤<a ,故选择C4.答案:B 解析:解不等式组⎪⎩⎪⎨⎧->+-≤-)1(325237121x x x x 得:425≤<-x∴此不等式组的整数解为:2-,1-,0,1,2,3,4共7个,故选择B5.答案:B解析:∵0a b +>,b a >且0ab <,∴0,0<>b a ,且b a >,∴a b b a <-<<-,故选择B6.答案:A 解析:解不等式组⎩⎨⎧≥-≥-0035m x x 得:35≤≤x m ∵不等式组⎩⎨⎧≥-≥-0035m x x 有实数解, ∴35≤m ,故选择A7.答案:A解析:∵不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解, ∴112-<-≤-m ,∴01<≤-m ,故选择A8.答案:D解析:解不等式组()⎩⎨⎧-≥->-23320x x m x 得:3≤<x m , ∵不等式组()⎩⎨⎧-≥->-23320x x m x 无解,∴3≥m ,故选择D9.答案:B解析:设第一组x 人,第二组y 人,则第三组()y x --20人, 由题意得:()12020568=--++y x y x ,化简得:203=+y x∵2≥x ,2≥y ,方案一,2人 14人 4人方案二,3人 11人 6人方案三,4人 8人 8人方案四,5人 5人 10人方案五,6人 2人 12人共五种方案,故选择B10.答案:B解析:∵三个连续正整数的和小于39,∴3921<++++n n n ,解得:12<n故最大的一组的和为36131211=++故选择B二.填空题:11.答案:3- 解析:解不等式组⎪⎩⎪⎨⎧<->+x x x 4103160103得:215310<<-x ∴最小整数为3-12.答案:1-≥a解析:解不等式组0,122x a x x +≥⎧⎨->-⎩得:1<≤-x a ,∵不等式组0,122x a x x +≥⎧⎨->-⎩有解,∴1-≥a13.答案:2解析:解不等式()m m x ->-231得:m x 26->, ∵解集为x >2,∴226=-m ,解得:2=m14.答案:67- 解析:解不等式组⎩⎨⎧+<-≥-1226b a x a x 得:126++<≤+b a x a ∵不等式组⎩⎨⎧+<-≥-1226b a x a x 的解集为3≤x<5,∴⎩⎨⎧=++=+51236b a a 解得:⎪⎩⎪⎨⎧=-=273b a , ∴673127327-=⨯-=-=a b15.答案:316317-≤<-a 解析:解不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215得:2132<<-x a , ∵不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215恰有两个整数解, ∴193218<-≤a ,解得:316317-≤<-a16.答案;129<≤a 解析:解不等式03≤-a x 得:3a x ≤, ∵不等式03≤-a x 的正整数解恰是1,2,3,∴433<≤a ,∴129<≤a 三.解答题:17.解析:(1)去分母得: 3315>--x x , 移项合并得:42>x ,∴2>x∴原不等式的解为2>x ,()3(2)4x 2.2513x x x --≥-⎧⎪-⎨<-⎪⎩ 解①得:1<x解②得:2->x∴原不等式组的解为:12<<-x18.解析:(1)解方程组得⎩⎨⎧--=-=423a y a x由题意得⎩⎨⎧<--≤-04203a a 解得32≤<-a , (2)52323=++-=++-a a a a19.解析:(1)解不等式()m m x ->-231得:m x 26->, ∵不等式的解集为3>x∴326=-m ,解得:23=m (2)∵满足3>x 的每一个数都能使已知不等式成立, ∴326≤-m ,∴23≥m20.解析:(1)设宿舍间数为x ,学生人数为y. 由题意得 ()()⎪⎩⎪⎨⎧>--<--+=018818204x y x y x y , 解得: 75<<x∵x 是正整数 ∴ x = 6 故y=44①②答:宿舍间数为6,学生人数为44 .(2)解:把d=4代入公式d h p 100=中得4100h p =,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )21.解析:(1)解方程组⎩⎨⎧+=+=-42322m y x m y x 得:⎪⎪⎩⎪⎪⎨⎧=+=7478y m x , 由题意得:⎪⎪⎩⎪⎪⎨⎧>++≤++0720780747243m m 解得:21284-≤<-m , ∴m 的整数值为:3-,2-(2)解①得:k ≤4,解②得:k ≥﹣7,则不等式组的解集是:﹣7≤k ≤4, 把x=0代入方程解得k=0或k=﹣3, ∵k=0不满足方程为一元二次方程, ∴k=﹣3.22.解析:解:(1)∵关于x 、y 的方程组⎩⎨⎧-=+-=-85212a y x y x 的解都为非负数, 解得⎩⎨⎧-=-=322a y a x ,∴⎩⎨⎧≥-≥-03202a a解得2≥a .(2)由2a -b =1,得21b a +=, 又∵a ≥2,∴221≥+b . 解得b ≥3, ∴a +b ≥5.(3)∵a -b =m ,∴a =m +b.又∵a ≥2,∴m +b ≥2.∴2-m ≤b ≤1.同理可得2≤a ≤1+m.∴6-m ≤2a +b ≤3+2m.∴2a +b 的最大值为3+2m.23.解析:(1)根据题意可知西红柿种了(24)x -垄,则1530(24)540x x +-≤,解得12x ≥. 又因为14x ≤,且x 是正整数,所以x =12,13,14.故共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄.(2)方案一获得的利润:12×50×1.6+12×160×1.1=3072(元),方案二获得的利润:13×50×1.6+11×160×1.1=2976(元),方案三获得的利润:14×50×1.6+10×160×1.1=2880(元).由计算可知,方案一即种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元.。

浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)

浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)

浙教版八年级上册数学第3章一元一次不等式单元测试卷(含答案)一、单选题(共11题;共22分)1.若a<b,则下列结论不一定成立的是()。

A.a-1<b-1B.2a<2bC.D.2.九年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是()A.7x+9-9(x-1)>0B.7x+9-9(x-1)<8C.D.3.x与的差的一半是正数,用不等式表示为()A.(x﹣)>0B.x﹣<0C.x﹣>0D.(x﹣)<04.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A.3种B.4种C.5种D.6种5.关于x的不等式组只有4个整数解,则a的取值范围是()A.5≤a≤6B.5≤a<6C.5<a≤6D.5<a<66.若不等式组无解,则a的取值范围是()A.a≥﹣3B.a>﹣3C.a≤﹣3D.a<﹣37.已知关于x的不等式组仅有三个整数解,则a的取值范围是()。

A.≤a<1B.≤a≤1C.<a≤1D.a<18.不等式组的解集为()A.x>B.x>1C.<x<1D.空集9.下列说法中错误的是()A.如果a<b,那么a﹣c<b﹣cB.如果a>b,c>0,那么ac>bcC.如果m<n,p<0,那么>D.如果x>y,z<0,那么xz>yz10.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.11.不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共8题;共8分)12.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________cm.13.不等式x+1≥0的解集是________.14.不等式组的最小整数解是________.15.不等式组的整数解是x=________.16.已知,,若,则实数的值为________.17.不等式组的解集为________.18.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是________.19.关于x的不等式组只有4个整数解,则a的取值范围是________.三、解答题(共7题;共49分)20.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?21.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版数学八上 第三章:一元一次不等式综合测试含答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.不等式3x ≤2(x -1)的解集为( )A .x ≤-1B .x ≥-1C .x ≤-2D .x ≥-22.不等式x -3≤3x +1的解集在数轴上表示如下,其中正确的是( )3.不等式3(x -1)≤5-x 的非负整数解有( )A. 1个B. 2个C. 3个D. 4个4.若不等式组⎩⎨⎧≤->+0421x a x 有解,则a 的取值范围是( )A .a ≤3B .a<3C .a<2D .a ≤25.不等式03.002.003.0255.014.0x x x -≤---的非负整数解为( ) A.0,1 B.0,1,2 C. 1,2 D. 0,1,2,36.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读( )A .50页B .60页C .80页D .100页7.若方程组⎩⎨⎧=++=+3313y x k y x 的解满足0<x +y <1,则k 的取值范围是 ( ) A .-4<k <0 B .-1<k <0 C .0<k <8 D .k >-48.如果x <0,y >0,x +y <0,那么下列关系式中,正确的是( )A .x >y >-y >-xB .-x >y >-y >xC .y >-x >-y >xD .-x >y >x >-y9.若关于x 的不等式组⎪⎩⎪⎨⎧++>++>++ax a x x x 3)1(44530312恰有三个整数解,则实数a 的取值范围为( ) A. 231≤≤a B. 231≤<a C. 231<≤a D.231<<a 10.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.若不等式2(x+k)-2>k 的解集是x >-1,则k 的值是___________12.两个连续偶数的和不小于49,则较大的偶数最小是__________13.若关于x 的不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3,则a 的值为___________14.已知x -y =3,且x >2,y <1,则x +y 的取值范围是_________________15.五条长度均为整数的线段54321,,,,a a a a a 满足54321a a a a a <<<<,其中9,151==a a ,且这5条线段中任意三条都不能构成三角形,则_______3=a16.幼儿园把新购进的一批玩具分给小朋友,若每人分3件,还剩余59件;若每人分5件,最后一个小朋友分到的玩具不足4件(每个小朋友都分到玩具),则这些玩具共有_____________件三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列不等式(组)(1)5(x -2)+8<6(x-1)+7; (2)解不等式组:()()1025631x x x +≥+⎧->⎪⎨⎪⎩①②并在数轴上表示其解集.18(本题8分)已知关于x 的两个不等式123<+a x 与031>-x . (1)若两个不等式的解相同,求a 的值.(2)若不等式123<+a x 的解都是不等式031>-x 的解,求a 的取值范围.19(本题8分)若关于x 的方程2x -3m =2m -4x +4的解不小于3187m --求m 的最小值.20(本题10分)(1)若代数式()2523+k 的值不大于代数式5k +1的值,求k 的取值范围. (2)已知实数a 是不等于3的常数,解不等式组() 112203322x x a x -+-+≥-<⎧⎪⎨⎪⎩①②并依据a 的取值情况写出其解集.21(本题10分)已知关于x ,y 的二元一次方程组⎩⎨⎧+=---=+a y x a y x 317的解中,x 为非正数,y 为负数. (1)求a 的取值范围.(2)化简:|a -3|+|a +2|.(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x <2a +1的解为x >1?22(本题12分)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?23.(本题12分)(1)已知方程23=-ax x 解是不等式()()815723--<-+x x 的最小整数解,求代数式aa 197-的值. (2)已知a ,b ,c 为三个非负数,且满足3a +2b +c =5,2a +b -3c =1.①求c 的取值范围;②设S =3a +b -7c ,求S 的最大值与最小值.答案一.选择题:1.答案:C解析:解不等式3x ≤2(x -1)得:2-≤x ,故选择C2.答案:B解析:解不等式x -3≤3x +1得:2-≥x ,故选择B3.答案:C解析:解不等式3(x -1)≤5-x 得:2≤x ,∵非负整数解为:0,1,2共3个,故选择C4.答案:B解析:解不等式组⎩⎨⎧≤->+0421x a x 得:21≤<-x a ∵不等式组⎩⎨⎧≤->+0421x a x 有解, ∴3,21<∴<-a a ,故选择B5.答案:B 解析:原不等式可化为323255104x x x -≤---, 去分母,得6(4x -10)-15(5-x )≤10(3-2x )去括号,得24x -60-75+15x ≤30-20x.合并同类项,得59x ≤165.系数化为1,得x ≤59165 所以原不等式的非负整数解是0,1,2.故选择B6.答案:C解析:设从第六天起平均每天至少要读x 页,由题意得:4005≥x ,解得:80≥x ,故选择C7.答案:A解析:把方程组⎩⎨⎧=++=+3313y x k y x 转化为:444+=+k y x ∴44+=+k y x ,∴1440<+<k 解得:04<<-k ,故选择A8.答案:B解析:∵x <0,y >0,x +y <0, ∴y x >,∴x y y x >->>-,故选择B9.答案:B解析:解不等式①,得x >-52. 解不等式②,得x <2a . ∵不等式组恰有三个整数解,∴2<2a ≤3. ∴231≤<a ,故选择B10.答案:B解析:设最多可打x 折, 由题意得:%5100010001500≥-x 解得:7.0≥x ,故最多可打7折,故选择B二.填空题:11.答案:4解析:解不等式2(x+k)-2>k 得:22k x ->, ∵不等式2(x+k)-2>k 的解集是x >-1, ∴122-=-k ,解得:4=k12.答案:26 解析:设较大的偶数是x ,则较小的偶数是x -2.根据题意,得x +x -2≥49.解得x ≥25.5.所以x 的最小值是26,即较大的偶数最小是26.13.答案:4解析:解不等式组⎩⎨⎧>->+1312x a x 得:11-<<a x ∵不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3, ∴4,31=∴=-a a14.答案:1<x +y <5解析:由x -y =3,得x =y +3.∵x >2,∴y +3>2,解得y >-1.又∵y <1,∴-1<y <1.把x =y +3代入x +y ,得x +y =y +3+y =2y +3,而1<2y +3<5,∴1<x +y <5.15.答案:3解析:由题意,得a 1+a 2≤a 3,a 2+a 3≤a 4,a 3+a 4≤a 5,∴当a 1=1时,a 2=2,a 3=3,a 4=5或6,a 5=9,∴a 3=3.16.答案:152解析:设幼儿园共有小朋友x 人,共有玩具y 件,由题意得:⎩⎨⎧<--<=+4)1(50593x y y x 解得:3230<<x ,∴31=x ,即小朋友为31人,共有玩具15259313=+⨯=y三.解答题:17.解析:(1)去括号得:5x -10+8<6x -6+7.移项得:5x -6x <10-8-6+7.合并得:-x <3.系数化为1得:x>-3.(2)解不等式①,得x>-1.解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.解集在数轴上表示为:18.解析:(1)解不等式3x +a 2<1得:32a x -<, 解不等式031>-x 得:31<x ∴3132=-a ,∴1=a . (2)∵不等式123<+a x 的解都是不等式031>-x 的解, ∴3132≤-a ,解得1≥a19.解析:关于x 的方程2x -3m =2m -4x +4的解为645+=m x 根据题意得:3187645m m --≥+ 去分母,得4(5m +4)≥21-8(1-m ).去括号,得20m +16≥21-8+8m.移项、合并同类项,得12m ≥-3.系数化为1,得m ≥-41 所以当m ≥-41时,方程的解不小于3187m --, 所以m 的最小值为-4120.解析:(1)由题意得:()152523+≤+k k 解得k ≥413 (2)解不等式①,得x ≤3.解不等式②,得x<a.∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3;当a<3时,不等式组的解集为x<a.21.解析:(1)解⎩⎨⎧+=---=+a y x a y x 317得:⎩⎨⎧--=-=423a y a x∵x 为非正数,y 为负数,∴⎩⎨⎧<≤00y x 即⎩⎨⎧<--≤-04203a a 解得⎩⎨⎧->≤23a a∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0,∴|a -3|+|a +2|=3-a +a +2=5.(3)不等式2ax +x <2a +1可化简为(2a +1)x <2a +1.∵不等式的解为x >1,∴2a +1<0,∴a <-21. 又∵-2<a ≤3,∴-2<a <-21. ∵a 为整数,∴a =-1.22.解析:(1)设购买平板电脑a 台,则购买学习机(100-a)台,由题意,得 3 000a +800(100-a)≤168 000.解得a ≤40.答:平板电脑最多购买40台.(2)设购买的平板电脑a 台,则购买学习机(100-a)台,根据题意,得 100-a ≤1.7a.解得a ≥37271. ∵a 为正整数,∴a =38,39,40,则学习机依次买:62台,61台,60台. 因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.23.解析:(1)∵()()815723--<-+x x .解得6>x .∴不等式的最小整数解是7.将x =7代入3x -ax =2,得719=a ∴a a 197-=19-7=12.(2)①∵523=++c b a , 132=-+c b a ,解得:37-=c a , c b 117-=,∵0≥a ,0≥b ,∴037≥-c ,0117≥-c , ∴11773≤≤c , ②()()23711737373-=--+-=-+=c c c c c b a S ∵11773≤≤c ,∴1121379≤≤c , ∴1112375-≤-≤-c ∴S 的最大值为111-,最小值为75-。

相关文档
最新文档