初中数学复习——分段函数习题

合集下载

初中数学复习——分段函数习题

初中数学复习——分段函数习题

65150O y x 1.A 、B 两地相距630千米,客车、货车分别从A 、B 两地同时出发,匀速相向行驶.货车2小时可到达途中C 站,14小时到达A 地,客车需6小时到达C 站.已知客车、货车到.C .站的距离....与它们行驶时间x (小时)之间的函数关系如图1所示,A 、B 两地与C 站的位置如图2所示,则图中的a = ,b = ,客车的速度为 千米/小时.2.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A 、B 两地之间的距离为 千米.3.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y (件)与工作时间t (时)的函数图象.图②分别表示甲完成的工作量y 甲(件)、乙完成的工作量y 乙(件)与工作时间t (时)的函数图象,则甲每小时完成 件,乙提高工作效率后,再工作 个小时与甲完成的工作量相等.4.某市在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,根据图象提供的信息,则该公路的总长度为 .5.有甲,乙两个形状完全相同的容器都装有大小分别相同的一个进水管和一个出水管,两容器单位时间进、出的水量各自都是一定的.已知甲容器单开进水管第10分钟把空容器注满;y (吨)x (小时)126210然后同时打开进、出水管,第30分钟可把甲容器的水放完,甲容器中的水量Q (升)随时间t (分)变化的图象如图1所示.而乙容器内原有一部分水,先打开进水管5分钟,再打开出水管,进、出水管同时开放,第20分钟把容器中的水放完,乙容器中的水量Q (升)随时间t (分)变化的图象如图2所示,则乙容器内原有水 升.6.一个生产、装箱流水线,生产前没有积压产品,开始的2小时只生产,2小时后安排装箱(生产没有停止),6小时后生产停止只安排装箱,第12小时时生产流水线上刚好又没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y 吨与流水线工作时间x (小时)之间的函数关系如图所示,则流水线上产品装箱的速度为 吨/小时.7.某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元) 与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26和18元,则三月份比四月份节约用水_______吨.8..小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。

初二分段函数试题及答案

初二分段函数试题及答案

初二分段函数试题及答案一、选择题1. 下列哪个选项表示分段函数?A. y = x^2B. y = 3x + 1C. y = |x|D. y = x/x答案:C2. 若分段函数f(x)的定义为:\[f(x) = \begin{cases}x + 1 & \text{if } x < 0 \\x^2 & \text{if } x \geq 0\end{cases}\]则f(-1)的值为多少?A. 0B. 1C. 2D. -2答案:A二、填空题1. 函数y = \begin{cases}x - 3 & \text{if } x > 2 \\\end{cases} 在x = 2时的值为______。

答案:52. 给定分段函数g(x) = \begin{cases}x^2 - 4x + 3 & \text{if } x < 2 \\-x + 5 & \text{if } x \geq 2\end{cases},若g(3) = 2,则g(1)的值为______。

答案:0三、解答题1. 已知分段函数h(x) = \begin{cases}x^2 - 2x + 1 & \text{if } x \leq 1 \\x + 2 & \text{if } x > 1\end{cases},求h(0)和h(2)的值。

答案:h(0) = 1,h(2) = 42. 定义分段函数f(x) = \begin{cases}x + 3 & \text{if } x < 0 \\2x & \text{if } 0 \leq x \leq 2 \\x - 1 & \text{if } x > 2\end{cases},求f(-1)、f(1)和f(3)的值。

答案:f(-1) = 2,f(1) = 2,f(3) = 2四、综合题1. 函数p(x) = \begin{cases}x^3 & \text{if } x < 0 \\\end{cases},求p(-2)和p(4)的值,并讨论函数在x = 0处的连续性。

分段函数初二数学练习题

分段函数初二数学练习题

分段函数初二数学练习题题目一:已知分段函数f(x)如下:f(x) = 3x + 1, x ≤ 1f(x) = 2x - 2, x > 1问题一:求f(-2)的值。

解答一:根据给定的分段函数,当x ≤ 1时,f(x) = 3x + 1。

因此,在问题一中,由于-2 ≤ 1,我们需要计算f(-2)的值。

代入x = -2到第一个分段函数中,得到f(-2) = 3(-2) + 1 = -6 + 1 = -5。

因此,f(-2)的值为-5。

问题二:求f(2)的值。

解答二:根据给定的分段函数,当x > 1时,f(x) = 2x - 2。

因此,在问题二中,由于2 > 1,我们需要计算f(2)的值。

代入x = 2到第二个分段函数中,得到f(2) = 2(2) - 2 = 4 - 2 = 2。

因此,f(2)的值为2。

题目二:已知分段函数g(x)如下:g(x) = x^2, x < 2g(x) = 2x + 1, x ≥ 2问题一:求g(0)的值。

解答一:根据给定的分段函数,当x < 2时,g(x) = x^2。

因此,在问题一中,由于0 < 2,我们需要计算g(0)的值。

代入x = 0到第一个分段函数中,得到g(0) = 0^2 = 0。

因此,g(0)的值为0。

问题二:求g(3)的值。

解答二:根据给定的分段函数,当x ≥ 2时,g(x) = 2x + 1。

因此,在问题二中,由于3 ≥ 2,我们需要计算g(3)的值。

代入x = 3到第二个分段函数中,得到g(3) = 2(3) + 1 = 6 + 1 = 7。

因此,g(3)的值为7。

总结起来,通过以上两个问题的解答可以看出,在计算分段函数的值时,我们需要根据给定的条件来选择合适的分段函数进行代入计算。

只要根据给定的条件,正确选择对应的分段函数进行计算,就可以得到分段函数在给定点的值。

这样的练习题有助于我们熟悉和掌握分段函数的概念和计算方法。

初二分段函数练习题

初二分段函数练习题

初二分段函数练习题题目一:已知分段函数为:\[ \begin{cases}x+1 & (x\leqslant -2) \\-2x & (-2<x\leqslant 0) \\x^2-4 & (x>0) \\\end{cases} \]试求以下值:1. \( f(-3) \)2. \( f(-1) \)3. \( f(1) \)4. \( f(2) \)解答:1. \( f(-3) \):根据给定的分段函数,当 \( x\leqslant -2 \) 时, \( f(x) = x+1 \),代入 \( x = -3 \) ,得到:\[ f(-3) = (-3) + 1 = -2 \]2. \( f(-1) \):根据给定的分段函数,当 \( -2<x\leqslant 0 \) 时, \( f(x) = -2x \),代入 \( x = -1 \) ,得到:\[ f(-1) = -2(-1) = 2 \]3. \( f(1) \):根据给定的分段函数,当 \( x>0 \) 时, \( f(x) = x^2-4 \),代入 \( x = 1 \) ,得到:\[ f(1) = 1^2-4 = -3 \]4. \( f(2) \):根据给定的分段函数,当 \( x>0 \) 时, \( f(x) = x^2-4 \),代入 \( x = 2 \) ,得到:\[ f(2) = 2^2-4 = 0 \]综上所述,根据给定的分段函数,求得以下值:1. \( f(-3) = -2 \)2. \( f(-1) = 2 \)3. \( f(1) = -3 \)4. \( f(2) = 0 \)题目二:已知分段函数为:\[ \begin{cases}2x+1 & (x\leqslant 1) \\x^2-1 & (x>1) \\\end{cases} \]试求以下值:1. \( f(-2) \)2. \( f(0) \)3. \( f(1) \)4. \( f(2) \)解答:1. \( f(-2) \):根据给定的分段函数,当 \( x\leqslant 1 \) 时, \( f(x) =2x+1 \),代入 \( x = -2 \) ,得到:\[ f(-2) = 2(-2) + 1 = -3 \]2. \( f(0) \):根据给定的分段函数,当 \( x\leqslant 1 \) 时, \( f(x) =2x+1 \),代入 \( x = 0 \) ,得到:\[ f(0) = 2(0) + 1 = 1 \]3. \( f(1) \):根据给定的分段函数,当 \( x>1 \) 时, \( f(x) = x^2-1 \),代入 \( x = 1 \) ,得到:\[ f(1) = 1^2-1 = 0 \]4. \( f(2) \):根据给定的分段函数,当 \( x>1 \) 时, \( f(x) = x^2-1 \),代入 \( x = 2 \) ,得到:\[ f(2) = 2^2-1 = 3 \]综上所述,根据给定的分段函数,求得以下值:1. \( f(-2) = -3 \)2. \( f(0) = 1 \)3. \( f(1) = 0 \)4. \( f(2) = 3 \)题目三:已知分段函数为:\[ \begin{cases}-2x-3 & (x\leqslant -1) \\3 & (-1<x\leqslant 0) \\x^2-1 & (x>0) \\\end{cases} \]试求以下值:1. \( f(-2) \)2. \( f(-1) \)3. \( f(0) \)4. \( f(1) \)解答:1. \( f(-2) \):根据给定的分段函数,当 \( x\leqslant -1 \) 时, \( f(x) = -2x-3 \),代入 \( x = -2 \) ,得到:\[ f(-2) = -2(-2) - 3 = 1 \]2. \( f(-1) \):根据给定的分段函数,当 \( -1<x\leqslant 0 \) 时, \( f(x) = 3 \),代入 \( x = -1 \) ,得到:\[ f(-1) = 3 \]3. \( f(0) \):根据给定的分段函数,当 \( -1<x\leqslant 0 \) 时, \( f(x) = 3 \),代入 \( x = 0 \) ,得到:\[ f(0) = 3 \]4. \( f(1) \):根据给定的分段函数,当 \( x>0 \) 时, \( f(x) = x^2-1 \),代入 \( x = 1 \) ,得到:\[ f(1) = 1^2-1 = 0 \]综上所述,根据给定的分段函数,求得以下值:1. \( f(-2) = 1 \)2. \( f(-1) = 3 \)3. \( f(0) = 3 \)4. \( f(1) = 0 \)通过以上练习题,我们进一步熟悉了分段函数的求值方法,并学会了根据给定的函数表达式求取特定值的技巧。

分段函数习题大全

分段函数习题大全

分段函数习题大全1. 问题描述分段函数是数学中常见的一种函数类型,它在不同的区间内有不同的定义。

本文将提供一些分段函数的题,帮助读者更好地理解和掌握分段函数的概念和应用。

2. 题示例2.1 问题一已知函数 f(x) 在区间 (-∞, 1] 上定义如下:$$ f(x) = \begin{cases}x^2 & x \leq 0 \\2x+1 & x > 0\end{cases}$$求函数 f(x) 的定义域、值域以及所有的奇点。

2.2 问题二已知函数 g(x) 在区间[0, +∞) 上定义如下:$$ g(x) = \begin{cases}\frac{1}{x} & x \geq 1 \\x^2 - 1 & 0 \leq x < 1\end{cases}$$求函数 g(x) 的最值以及所有的零点。

3. 解答和说明3.1 问题一的解答根据函数 f(x) 的定义,我们可以得知:- 函数 f(x) 的定义域为 (-∞, +∞),因为 x 可以取任意实数。

- 函数 f(x) 的值域为$[0, +∞)$,因为当 x 小于等于 0 时,$f(x) = x^2$ 的值为非负实数,而当 x 大于 0 时,$f(x) = 2x+1$ 的值可大于等于 1。

- 函数 f(x) 的奇点即为在函数定义区间上不连续的点,对于本题中的分段函数 f(x),奇点为 x = 0。

3.2 问题二的解答根据函数 g(x) 的定义,我们可以得知:- 函数 g(x) 的定义域为[0, +∞),因为 x 可以取大于等于 0 的实数。

- 函数 g(x) 的最大值为 $+\infty$,当 x 趋近于 0 时,$g(x)$ 无上界,没有最小值。

- 函数 g(x) 的零点即为满足 $g(x) = 0$ 的 x 值,根据定义可求得 x = 1。

4. 小结本文提供了两个分段函数的题,旨在帮助读者更好地理解和掌握分段函数的概念和应用。

分段函数练习题

分段函数练习题

分段函数练习题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1、分段函数1、已知函数)(x f = ,则 )1()0(-+f f =( ) A . 9 B . C . 3 D .提示:本题考查分段函数的求值,注意分段函数分段求。

解析:0代入第二个式子,-1代入第一个式子,解得)1()0(-+f f =3,故正确答案为C.902、函数的图象为下图中的( )提示:分段函数分段画图。

解析:此题中x ≠0,当x>0时,y=x+1,当x<0时,y=x-1, 故正确答案为C.1203、下列各组函数表示同一函数的是( )①f(x)=|x|,g(x)=⎩⎨⎧<-≥)0()0(x x x x ②f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2④f(x)=1122-+-x x ,g(x)=0 ,x ∈{-1,1}A.①③B.①C.②④D.①④267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩71101110||x y x x=+提示:考察是否是同一函数即考察函数的三要素:定义域、值域、对应关系,此题应注意分段函数分段解决。

解析:此题中①③正确,故正确答案为A.1204、设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2D.3提示:此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.考查对分段函数的理解程度。

解析:因为 f (2)=log 3(22﹣1)=1,所以f (f (2))=f (1)=2e 1﹣1=2.因此f (f (2))=f (log 3(22﹣1))=f (1)=2e 1﹣1=2,故正确答案为C.905、定义在R 上的函数)(x f 满足)(x f =, 则)3(f 的值为( )A .1- B. 2- C. 1D. 2提示:本题主要考查分段函数的求值,同时考查了递推关系,属于基础题.解析:将3代入相应的分段函数进行求值,则f (3)=f (2)﹣f (1),f (2)=f (1)﹣f (0)从而f (3)=f (1)﹣f (0)﹣f (1)=﹣f (0),将0代入f (x )=log 2(4﹣x )进行求解.∴f(3)=f (1)﹣f (0)﹣f (1)=﹣f (0)=﹣log 2(4﹣0)=﹣2, 故正确答案为B .⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x1806、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 若00()8,f x x ==则( ) A .232 C. 4D. 1提示:本题主要考查分段函数的求值,但是直接分段函数分段作图就将这道题做麻烦了,不如直接代入求解。

分段函数专题(含答案)

分段函数专题(含答案)

分段函数专题一.选择题(共7小题)1.下列关于分段函数的描述正确的是()①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f(x)=|x|是一个分段函数;③f(x)=|x﹣2|不是分段函数;④分段函数的定义域都是R;⑤分段函数的值域都为R;⑥f(x)={x,x≥0−x,x<0,则f(1)=−1.A.①②⑥B.①④C.②D.③④⑤2.设f(x)={2e x−1,x<2log3(x2−1),x≥2,则f(f(2))的值为()A.0B.1C.2D.33.已知函数f(x)={|log x|,0<x≤10−12x+6,x>10,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)4.已知f(x)={x+2,x≤−1x2,−1<x<22x,x≥2,若f(x)=3,则x的值是()A.1 B.1或32C.1,32或±√3D.√35.函数f(x)={x2+bx+c,x≤02,x>0,若f(−4)=f(0),f(−2)=−2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.46.已知函数f(x)={(a−2)x−1,x≤1log a x,x>1,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为()A.(1,2)B.(2,3)C.(2,3]D.(2,+∞)7.已知函数f(x)={x2+1,x≤0−2x,x>0使函数值为5的x的值是()A.﹣2B.2或﹣C.2或﹣2D.2或﹣2或﹣二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 . 三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.12.已知函数f(x)={x+2,x≤−1x2,−1<x<22x,x≥2(1)在坐标系中作出函数的图象;(2)若f(a)=12,求a的取值集合.13.已知函数f(x)=2x−1,g(x)={x2,x≥0−1,x<0求f[g(x)]和g[f(x)]的解析式.14.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.分段函数专题答案一.选择题(共7小题)1.下列关于分段函数的描述正确的是( )①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f (x )=|x |是一个分段函数;③f (x )=|x ﹣2|不是分段函数;④分段函数的定义域都是R ;⑤分段函数的值域都为R ;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1. A .①②⑥ B .①④ C .② D .③④⑤【答案】①分段函数在每段定义域内都是一个独立的函数,但这几段组合在一起是一个函数,故错误;②f (x )=|x |={x,x ≥0−x,x <0是一个分段函数,正确; ③f (x )=|x −2|={x −2,x ≥22−x,x <2是一个分段函数,错误; ④分段函数的定义域不都是R ,错误;⑤分段函数的值域不都为R ,错误;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1,错误. 故正确的命题为:②,故选:C2.设f (x )={2e x−1,x <2log 3(x 2−1),x ≥2,则f(f (2))的值为( ) A .0 B .1 C .2 D .3【答案】f(f (2))=f [log 3(22−1)]=f (1)=2e 1−1=2,故选C .3.已知函数f (x )={|log x |,0<x ≤10−12x +6,x >10,若a,b,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)【答案】作出函数f (x )的图象如图,不妨设a <b <c ,则−log a =log b =−12c +6∈(0,1)ab =1,0<−12c +6<1则abc =c ∈(10,12).故选C .4.已知f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2,若f (x )=3,则x 的值是( )A .1B .1或 32C .1, 32或±√3D .√3【答案】该分段函数的三段各自的值域为(−∞,1],[0,4),[4,+∞),而3∈[0,4),故所求的字母x 只能位于第二段.∴f (x )=x 2=3,x =±√3,而﹣1<x <2,∴x =√3故选D .5.函数f (x )={x 2+bx +c,x ≤02,x >0,若f (−4)=f (0),f (−2)=−2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4【答案】由题知(−4)2+b (−4)+c =c,(−2)2+b (−2)+c =−2,解得b =4,c =2故f (x )={x 2+bx +c,x ≤02,x >0, 当x ≤0时,由f (x )=x 得x 2+4x +2=x ,解得x =−1,或x =−2,即x ≤0时,方程f (x )=x 有两个解.又当x >0时,有x =2适合,故方程f (x )=x 有三个解.故选C .6.已知函数f (x )={(a −2)x −1,x ≤1log a x ,x >1,若f (x )在(﹣∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)【答案】对数函数在x >1时是增函数,所以a >1,又f (x )=(a −2)x −1,x ≤1是增函数,∴a >2,并且x =1时(a −2)x −1≤0,即a −3≤0,所以2<a ≤3故选C7.已知函数f (x )={x 2+1,x ≤0−2x,x >0使函数值为5的x 的值是( ) A .﹣2 B .2或﹣ C .2或﹣2 D .2或﹣2或﹣【答案】由题意,当x ≤0时,f (x )=x 2+1=5,得x =±2,又x ≤0,所以x =﹣2; 当x >0时,f (x )=−2x =5,得x =−52,舍去.故选A二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .【答案】∵函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点, ∴a >0 且y =x 2+2x +1在(﹣2,0)上有2个零点,∴{ a >0a (−2)2+2(−2)+1>02<1a <0∆=4−4a >0, 解得34<a <1,故答案为:(34,1).9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 .【答案】因为:f (x )={x +4,x <0x −4,x >0, ∴f (−3)=−3+4=1 f [f (−3)]=f (1)=1−4=−3.故答案为:−3.三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.【答案】【(1)∵f (x )=−x 2+|x |={−x 2−x,x <0−x 2+x,x ≥0 ∴函数f (x )的图象如下图所示:(2)由(1)中函数图象可得:函数f (x )的单调递增区间为:(−∞,−12]和[0,12],函数f (x )的单调递减区间为:[−12,0]和[−12,+∞).(3)(2)由(1)中函数图象可得:函数f (x )的最大值为14.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.【答案】(1)当0<t≤1时,如图,设直线x=t与△OAB分别交于C、D两点,则|OC|=t,又CDOC =BCOE=√3,∴|CD|=√3t,∴f(t)=12|0C|∙|CD|=12∙t∙√3t=√32t2(2)当1<t≤2时,如图,设直线x=t与△OAB分别交于M、N两点,则|AN|=2−t,又MNAN =BEAE=√3,∴MN=√3(2−t)∴f(t)=12∙2∙√3−12|AN|∙|MN|=√3−√32(2−t)2=−√32t2+2√3t−√3(3)当t>2时,f(t)=√3综上所述f(t)={√32t2,0<t≤1−√32t2+2√3t−√3,1<t≤2√3,t>212.已知函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2(1)在坐标系中作出函数的图象;(2)若f (a )=12,求a 的取值集合.【答案】-(1)函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2的图象如下图所示:(2)当a ≤−1时,f (a )=a +2=12,可得:a =−32;当−1<a <2时,f (a )=a 2=12,可得a =±√22; 当a ≥2时,f (a )=2a =12 ,可得:a =14(舍去);综上所述,a 的取值构成集合为{−32,−√22} 13.已知函数f (x )=2x −1,g (x )={x 2,x ≥0−1,x <0求f[g (x )]和g[f (x )]的解析式. 【答案】当x ≥0时,g (x )=x 2,f [g (x )]=2x 2−1,当x <0时,g (x )=−1,f [g (x )]=−3,∴f [g (x )]={2x 2−1,x ≥0−3,x <0∵当2x−1≥0,即x≥12时,g[f(x)]=(2x−1)2,当2x−1<0,即x<12时,g[f(x)]=−1,∴g[f(x)]={(2x−1)2,x≥12−1,x<1214.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.【答案】(1)∵f(−4)=f(0),f(−2)=−1,∴16−4b+c=3,4−2b+c=−1,解得:b=4,c=3,∴f(x)={x2+4x+3,−4≤x<0−x+3,0≤x≤4,(2)函数的定义域为[−4,4],当x<0时,y=x2+4x+3=(x+2)2﹣1由x<0可得,y≥﹣1当x≥0时,y=−x+3≤3∴﹣1≤y≤3∴函数的值域为[−1,3].其图象如图所示15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.【答案】(1)函数f(x)的对称轴为x=a,①当a<−2时,∵函数f(x)在[−2,4]上单调递减,∴y=g(a)=f(−2)=−4a−1,②当﹣2≤a≤4时,y=g(a)=f(a)=a2+3,③当a>4时,∵函数f(x)在[−2,4]上单调递增,∴y=g(a)=f(4)=8a−13,综上有y=g(a)={−4a−1,a<−2a2+3,−2<a≤4 8a−13,a>4,(2)作出y=g(a)的草图如右,观察知当a=1时y=g(a)有最小值4.。

八年级分段函数练习

八年级分段函数练习

分段函数的单调性
定义
分段函数在其定义域内某区间的 单调性是指在该区间内,函数值 随自变量的增大而增大或减小。
判断方法
分别检查各段函数在各自定义域 内的单调性,并注意连接点处的
变化趋势。
举例
分段函数$f(x) = begin{cases} x, & x leq 0 x, & x > 0
end{cases}$在$(-infty, 0]$上单 调递减,在$(0, +infty)$上单调
分段函数的计算方法
方法一
方法二
方法三
举例
分段处理:根据自变量所在 的区间选择相应的函数表达 式进行计算。
连续性处理:利用连续性, 将分段函数视为一个整体进 行计算。
极限和连续性处理:在连接 点处利用极限和连续性的性 质进行计算。
计算分段函数$f(x) = begin{cases} x^2 - 2x, & x leq 1 x^2 + 2x, & x > 1 end{cases}$在$x=1$处的 值,由于连续性,可以直接 代入$x=1$得到结果1。
题目三解析与答案
根据题目三给出的分段函数,当$x = 0$时,属于$x < 2$的范围,所以应该使用第二个 分段进行计算。代入得$f(0) = 0 + 1 = 1$。
THANKS FOR WATCHING
感谢您的观看
它根据不同的x值范 围,有不同的函数表 达式。
分段函数的特点
分段函数具有不连续性。 在分段点上,分段函数可能不连续、不光滑或者不可微。
分段函数在定义域内可以有多个不同的函数表达式。
分段函数的应用场景
分段函数在现实生活中有着广 泛的应用,例如气温变化、股 票价格波动、人口统计等。

分段函数习题

分段函数习题

分段函数习题(共12页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分段函数解析式、求值一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数2,0()31,0x x f x x x ⎧<=⎨-≥⎩,则(1)(2)f f -+的值为( )A .6B .5C .1D .02.已知函数2log ,0,()3,0,xx x f x x >⎧=⎨≤⎩则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( ) A .27B .9C .127D .193.已知函数21log (2),1()2,1xx x f x x +-<⎧=⎨≥⎩,则2(2)(log 6)f f -+=( ) A .3B .6C .9D .124.已知函数()()()log 0 10a x x x f x b x ⎧>⎪=⎨+≤⎪⎩,且()92f =,()13f -=,则()3f f -=⎡⎤⎣⎦( )A .12B .12-C .2D .-25.设函数3,10,()((5)),10,x x f x f f x x -≥⎧=⎨+<⎩则(7)f 的值为( )A .5B .6C .7D .86.函数4,0()(),0x t x f x g x x ⎧+≥=⎨<⎩为定义在R 上的奇函数,则21log 3f ⎛⎫ ⎪⎝⎭等于( ) A .23B .-9C .-8D .13-7.设函数()()22,03,0x x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()9f 的值为( )A .7-B .1-C .0D .128.已知函数()()21log 4,4{12,4x x x f x x --<=+≥则()()20log 32f f +=( ) A .19B .17C .15D .139.已知函数()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .32B .74C .2D .9410.若函数()()f x x R ∈是周期为4的奇函数,且在[]0,2上的解析式为()()()1,01cos ,12x x x f x x x π⎧-≤≤=⎨<≤⎩,则112223f f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的值为( ) A .49-B .49C .19-D .29-11.已知函数()f x 的定义域为(),-∞+∞,如果()2sin ,02016lg(),0x x f x x x ⎧≥⎪+=⎨-<⎪⎩,那么(2016)(7984)4f f π+⋅-=( )A .2016B .14C .4D .1201612.已知函数()f x 满足()()6f x f x =+,当(]0,6x ∈时,()2cos ,0335log ,362x x f x x x π⎧<≤⎪⎪=⎨⎛⎫⎪-<≤ ⎪⎪⎝⎭⎩,则32f f ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭等于( ) A .12B .12-C .32-D .32二.填空题13.若函数21,0()241,0xx f x x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-+≥⎩,则((2))f f =_______. 14.若函数lg ,0(),0x x x f x a b x >⎧=⎨+≤⎩且(0)3f =,(1)4f -=,则((3))f f -=______15.如图所示,已知函数在区间(1,2]-上的图象,则此函数的解析式()f x =_____16.定义在R 上的函数()f x 满足()()6.f x f x +=当[)3,3x ∈-时,()()22,31,13x x f x x x ⎧-+-≤<-⎪=⎨-≤<⎪⎩,(1)(2)(3)(2018)(2019)f f f f f +++⋯++=_______三.解答题(解答应写出文字说明、证明过程或演算步骤)17.设函数22,1(),122,2x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,(1)求3(2),2f f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)若()3f x =,求x 的值.18.已知(2)(0),()(2)(0).x x x f x x x x -⎧=⎨+<⎩求(4),[(4)],(1)f f f f m -,并解不等式(1)0f x -<.19.已知函数()21,22,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求()(55,,2f f f f ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的值; (2)若()3f a =,求实数a 的值.20.已知cos (1)()(1)1(1)x x f x f x x π<⎧=⎨-->⎩,sin (0)()(1)1(0)x x g x g x x π<⎧=⎨-->⎩,求1411113366⎛⎫⎛⎫⎛⎫⎛⎫++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭f fg g 的值.21.已知()y f x =是定义在(,)-∞+∞上的偶函数,当0x ≥时,2()23f x x x =--. (1)用分段函数形式写出()y f x =的解析式; (2)写出()y f x =的单调区间; (3)求出函数的最值.《分段函数》(一)解析1.【解析】10-<,()()2111f ∴-=-=,20>,()23215f ∴=⨯-=,.(1)(2)=6f f ∴-+.故选:A.2.【解析】由函数2log ,0,()3,0,xx x f x x >⎧=⎨≤⎩则211log 244f ⎛⎫==- ⎪⎝⎭,又()21239f --==,即1149f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故选:D. 3.【解析】由21log (2),1()2,1x x x f x x +-<⎧=⎨≥⎩,所以()2log 622(2)(log 6)1log 2221269f f -+=+++=++=.故选:C4.【解析】由()92f =,即log 92a =,得3a =, 由()13f -=,得113b -+=, 得12b =,于是()()392f f f -==⎡⎤⎣⎦.故选:C . 5.【解析】由已知(7)((12))(9)((14))(11)8f f f f f f f =====.故选:D .6.【解析】根据题意,()()4,0,0x m x f x g x x ⎧+≥⎪=⎨<⎪⎩为定义在R 上的奇函数,则有()0040f t =+=,解可得:1t =-, 则()24log 3log 92log 341418f =-=-=,则()()2221log log 3log 383f f f ⎛⎫=-=-=- ⎪⎝⎭;故选:C.7.【解析】()()()()()()()209936633330021f f f f f f f =-==-==-==-=-,故选:B.8.【解析】()()()()()51220log 3205log 40+12=211619.f f f f -+=+=-+++=选A.9.【解析】()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,222log 4log 7log 8<<,即()2log 72,3∈()()()22log 7log 72222227log 7log 71log 72224f f f -∴=-=-===,故选:B 10.【解析】因为()f x 的周期为4,且为奇函数,所以11333(4)()cos 02222f f f π⎛⎫=+=== ⎪⎝⎭,2210102222(4)()(4)()()3333339f f f f f f ⎛⎫=+==-+=-=-=- ⎪⎝⎭,所以112223f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭29-.故选:D.11.【解析】(),02016lg(),0x x f x x x ≥+=-<⎪⎩,∴ (2016)(7984)(2016)(100002016)44f f f f ππ+⋅-=+⋅-+4lg10000lg1044π=⋅==.故选:C .12.【解析】因为函数()f x 满足()()6f x f x =+,所以3362292f f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为9(3,6]2∈,所以2295log log 212922f ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭, 因为1(0,3]∈,所以1(1)cos32f π==, 所以31(1)2292f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A13.【解析】因为(2)4813f =-+=-,所以31((2))(3)82f f f -⎛⎫=-== ⎪⎝⎭.14.【解析】根据条件可知0134a b a b -⎧+=⎨+=⎩,解得:12a =,2b =即()lg ,122xx f x ⎧⎪=⎨⎛⎫+ ⎪⎪⎝⎭⎩ 00x x >≤ , ()310f -=,()()()310lg101f f f -===15.【解析】由图象可知,每一段都是一次函数,设(),0f x kx b k =+≠,当(1,0)x ∈-时,直线过点(1,0),(0,1)-,所以11b k =⎧⎨=⎩,所以()1f x x =+,当[]0,2x ∈时,直线过点(0,0),(2,1)-,所以210k b b +=-⎧⎨=⎩,解得120k b ⎧=-⎪⎨⎪=⎩, 所以()12f x x =-,所以()1((1,0))1([0,2])2x x f x x x +∈-⎧⎪=⎨-∈⎪⎩ 16.【解析】()()6f x f x +=故函数()f x 是6T =的周期函数.(1)(2)(3)(4)(5)(6)1210101f f f f f f +++++=+-+-+=故(1)(2)(3)(2018)(2019)3361(1)(2)(3)338f f f f f f f f +++⋯++=⨯+++=17.【解析】(1)(2)220f -=-+=;2339()()224f ==,399922442f f f ⎡⎤⎛⎫⎛⎫==⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)由题意123x x ≤-⎧⎨+=⎩,或2123x x -<<⎧⎨=⎩,或223x x ≥⎧⎨=⎩,解得x 18.【解析】()()()()()44248,4882848f f f f ⎡⎤=⨯-=-=-=--=⎣⎦ 当10,1m m -≥≤时2(1)(1)(21)1f m m m m -=--+=- 当10,1m m -<>时2(1)(1)(21)43f m m m m m -=-+-=-+所以221(1),(1)43(1);m m f m m m m ⎧--=⎨-+>⎩ (1)0f x -<∴2110x x ≤⎧⎨-<⎩或21430x x x >⎧⎨-+<⎩ 所以1x <-或13x <<,即不等式(1)0f x -<解集为(,1)(1,3)-∞-⋃19.【解析】(1)由](()](55,2,2,2,,22-∈-∞---∈-∞-,知2()(2((55143f f ⨯-=-+=-,+=-5531222f ⎛⎫- ⎪⎝⎭=-+=-,而3222<<--,253339323222244f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴---⨯- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭==+=-=-. (2)当2a ≤-时,13a +=,即22a >=-,不合题意,舍去, 当22a <<-时,223a a +=,即2230a a +-=,整理得:0(13)()a a -+=,解得1a =或3a =-, 2()()1222∈∉-,,-3-,,1a ∴=符合题意,当2a ≥时,213a -=,即2a =符合题意,综上可得,当()3f a =时,1a =或2a =. 20.【解析】1411111115cos 1sin 133663366f f g g f g ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++-+=+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111122226g ⎛⎫=+-++-- ⎪⎝⎭1sin 226π⎛⎫=+-- ⎪⎝⎭11222=--2=- 21.【解析】(1)()y f x =是定义在(,)-∞+∞上的偶函数,当0x ≥时,2()23f x x x =--,∴当0x <时,设0x <,则0x ->, ∴22()()()2()323f x f x x x x x =-=----=+- 即0x <时,2()23f x x x =+-.故2223,0()23,0x x x f x x x x ⎧--≥=⎨+-<⎩. (2)如图所示:当0x ≥时,2()23f x x x =--,对称轴为1x =,∴增区间为[1,)+∞,减区间为[0,1];当0x <时,2()23f x x x =+-,对称轴为1x =-,∴增区间为[1,0)-,减区间为(,1]-∞-.综上,()f x 的增区间为[1,0)-,[1,)+∞,减区间为(,1]-∞-,[0,1]. (3)由(2)知,当0x ≥时,2()23f x x x =--,min ()(1)1234f x f ==--=-,无最大值; 当0x <时,2()23f x x x =+-,min ()(1)1234f x f =-=--=-,无最大值. 综上,函数的最小值为-4,无最大值.。

初三数学分段函数练习题

初三数学分段函数练习题

初三数学分段函数练习题一、题目描述本文是一份数学练习题,题目主要涵盖了初三数学中的分段函数练习题。

1. 定义分段函数f(x)如下:当x < 2时,f(x) = x - 1;当2 ≤ x < 4时,f(x) = x^2 - 4x + 5;当x ≥ 4时,f(x) = 5 - x;请完成以下计算。

a) 求f(-1)的值;b) 求f(3)的值;c) 求f(4)的值。

2. 已知函数y = mx + b,横坐标x1 = 1,纵坐标y1 = 3,x2 = 4,y2 = 6,请求该线段的斜率m和截距b的值。

二、求解过程1. 求f(-1)的值:f(x) = x - 1,代入x = -1,得到:f(-1) = -1 - 1 = -2。

因此,f(-1)的值为-2。

2. 求f(3)的值:f(x) = x^2 - 4x + 5,代入x = 3,得到:f(3) = 3^2 - 4(3) + 5 = 9 - 12 + 5 = 2。

因此,f(3)的值为2。

3. 求f(4)的值:f(x) = 5 - x,代入x = 4,得到:f(4) = 5 - 4 = 1。

因此,f(4)的值为1。

4. 求解线段的斜率m和截距b的值:已知函数y = mx + b,根据已知点(x1, y1) = (1, 3)和(x2, y2) = (4, 6),将这两个点代入直线方程,得到如下方程组:3 = m(1) + b (1)6 = m(4) + b (2)通过求解方程组(1)(2),我们可以得到斜率m和截距b的值。

(2)式减去(1)式得到:6 - 3 = m(4 - 1)3 = 3mm = 1将m = 1代入(1)式或(2)式,得到:3 = 1 + bb = 2因此,该线段的斜率m = 1,截距b = 2。

三、总结本文通过解答初三数学分段函数练习题,涵盖了求解函数值和线段的斜率和截距的过程。

希望通过这些练习题的解答,能够提升大家对分段函数和线段斜率截距的理解和应用能力。

分段函数初二数学练习题

分段函数初二数学练习题

分段函数初二数学练习题题目一:求解分段函数的定义域与值域给定函数:$$f(x) =\begin{cases}2x+1, & x\leq2 \\x^2, & x>2 \\\end{cases}$$要求:1. 求解函数$f(x)$的定义域与值域;2. 绘制函数$f(x)$的图像。

解答:根据题目已给条件,我们可以得出下面的结论:1. 定义域的求解:首先考虑分段函数中第一段$2x+1$的定义域。

由于没有限制$x$的取值范围,所以该段函数$2x+1$在整个实数域上都有定义。

即第一段部分的定义域为$(-\infty, +\infty)$。

接下来考虑第二段$x^2$的定义域。

该函数要求$x$的取值必须大于2,因为$x^2$在$x\leq2$的时候没有实数解。

所以第二段部分的定义域为$(2, +\infty)$。

综合第一段和第二段的定义域,得到函数$f(x)$的定义域为$(-\infty, +\infty)$。

2. 值域的求解:首先考虑第一段$2x+1$的值域。

根据该函数的定义,我们可以发现无论$x$取多大,函数值$2x+1$总是大于等于1的。

所以第一段部分的值域为$[1, +\infty)$。

接下来考虑第二段$x^2$的值域。

该函数要求$x$的取值必须大于2,所以$x^2$的值域也必须大于$2^2=4$。

即第二段部分的值域为$(4,+\infty)$。

综合第一段和第二段的值域,得到函数$f(x)$的值域为$(1, +\infty)$。

至此,我们已经求解出了函数$f(x)$的定义域和值域。

下面我们绘制函数$f(x)$的图像:【插入图像】图中蓝色的部分代表函数$f(x)=2x+1$,红色的部分代表函数$f(x)=x^2$。

可以看出两段函数在$x=2$处连接。

从图中可以清晰地看出函数$f(x)$的定义域和值域。

综上所述,函数$f(x)$的定义域为$(-\infty, +\infty)$,值域为$(1, +\infty)$。

分段函数练习题(打印版)

分段函数练习题(打印版)

分段函数练习题(打印版)### 分段函数练习题(打印版)#### 一、选择题1. 下列分段函数中,哪一个是奇函数?- A. \( f(x) = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x< 0 \end{cases} \)- B. \( f(x) = \begin{cases} x^3, & x \geq 0 \\ -x^3, & x< 0 \end{cases} \)- C. \( f(x) = \begin{cases} x^2 + 1, & x \geq 0 \\ -x^2 + 1, & x < 0 \end{cases} \)- D. \( f(x) = \begin{cases} x + 1, & x \geq 0 \\ -x - 1,& x < 0 \end{cases} \)2. 给定分段函数 \( f(x) = \begin{cases} x + 2, & x < 1 \\ 3x- 1, & x \geq 1 \end{cases} \),求 \( f(-1) \) 和 \( f(2) \)。

3. 判断下列分段函数的连续性:- A. \( f(x) = \begin{cases} 2x, & x < 2 \\ 4 - x, & x\geq 2 \end{cases} \)- B. \( f(x) = \begin{cases} x^2, & x \neq 1 \\ 2, & x = 1 \end{cases} \)#### 二、填空题1. 若分段函数 \( f(x) = \begin{cases} x + 1, & x \leq 0 \\ x^2, & x > 0 \end{cases} \),求 \( f(-2) \) 和 \( f(1) \)。

2020年中考复习——分段函数专题训练(三)(有答案)

2020年中考复习——分段函数专题训练(三)(有答案)

2020中考复习——分段函数专题训练(三)班级:___________姓名:___________ 得分:___________一、选择题1.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(ℎ),两车之间的距离为y(km)图中的折线表示y与x之间的函数关系,下列说法中错误的是()A. B点表示快车与慢车出发4小时两车相遇B. B−C−D段表示慢车先加速后减速最后到达甲地C. 快车的速度为200km/ℎD. 慢车的速度为100km/ℎ2.小明某天放学后,17时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A. 17时15分B. 17时14分C. 17时12分D. 17时11分3.华润万家在“元旦”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款多少元()A. 838B. 924C. 924或838D. 838或9104.如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为√2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A. B.C. D.5.甲、乙两名同学在一段2000m长的笔直公路上进行自行车比赛,开始时甲在起点,乙在甲的前方200m处,他们同时同向出发匀速前进,甲的速度是8m/s,乙的速度是6m/s,先到达终点者在终点处等待.设甲、乙两人之间的距离是y(m),比赛时间是x(s),整个过程中y与x之间的函数关系的图象大致是()A. B.C. D.6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.下图描述了他上学的情景,下列说法中错误的是()A. 到达学校时共用时间20分钟B. 自行车发生故障时离家距离为1000米C. 学校离家的距离为2000米D. 修车时间为15分钟7.在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A. 4.80B. 3.60C. 2.40D. 1.20二、填空题8.为了增强居民的节水意识,某市城区水价执行“阶梯式”计费,每月应交水费y(元)与用水量x(吨)之间的函数关系如图所示.若某用户5月份交水费18.05元,则该用户该月用水_________吨.9. 根据图中的程序,当输入x =3时,输出的结果y =____.10. 若函数y ={x 2+3(x ≤3),3x(x >3),则当函数值y =15时,自变量x 的值是________. 11. 为鼓励居民节约用电,某市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.该市一位同学家2015年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.如果该同学家4月份用电410千瓦时,那么电费为______ 元.12. 某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系____.13. 某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的进度均保持不变),储运部库存物资s(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是___________小时.14. 为鼓励市民绿色低碳方式出行,县政府开通了公共自行车出租服务,每次租车1个小时内免费,若超过1小时,将按以下标准收费:第一个小时为1元,第二个小时为2元,第三个小时及以上,按每小时3元计费,不足1小时按1小时计算,一天收取的费用最高不超过10元.如果小明上午9:00租车,当天11:30还车,那么小明应付租车费______元.15. 小强粉刷他的卧室花了10小时,他完成的工作量的百分数记录如下:时间(时)12345完成的百分数(%)525355050时间(时)678910完成的百分数(%)65708095100(1)第6时时,他已完成工作量的________%.(2)小强在________时间内完成的工作量最大.(3)如果小强从上午8时开始工作,那么他在________时完成所有工作.三、解答题16.若函数y={x−2(x>2)x2+2(x≤2).(1)求当自变量x=√3时,函数y的值;(2)求当函数y=8时,自变量x的值.17.已知函数y={(x−2)2−3(x>0) (x+2)2−3(x≤0).(1)在下面的平面直角坐标系中画出该函数的图象.(2)使y=1成立的x的值有_______个.(3)使y=k成立的x的值恰好有4个,则k的取值范围为___________.(4)使y=k成立的x的值恰好有2个,则k的取值范围为___________.18.为扶持大学生自主创业,市政府提供了80万元的无息贷款,用于某大学生开办公司,生产并销售自主研发的一种电子产品,并约定用该公司的经营利润逐步偿还无息贷款,一盒子该产品的生产成本为每件40元;员工每人每月工资是2500元,公司每月支出其它费用15万元,该产品每月销售量y(万件)与销售单价x(元)之间的函数关系式如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元,该公司应安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月内还清无息贷款?19.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市对居民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示.图中x 表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按_____元收取;超过5吨的部分,每吨按_____元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?20.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶的时间为x(ℎ),两车之间的距离为s(km),y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.根据图中信息回答下列问题:(1)慢车的速度为________km/ℎ;快车的速度为________km/ℎ;(2)a=________,b=________;(3)求线段CD所表示的函数表达式,以及自变量x的取值范围;(4)当x为________h时,两车相距200km.21.某公司给出两种上宽带网的收费方式.收费方式月使用费/元上网计费A00.05元/minB30不超过25ℎ不另收费,超过25ℎ后0.05元/min 设月上网时间为xh,A,B两种收费金额分别为y 1,y 2,函数y 2的图象如图所示.(1)求函数y 1的解析式,并在图中画出函数的图象;(2)求函数y 2的解析式,并写出自变量x的取值范围;22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200−2x200−2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数表达式;(2)销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天的销售利润不低于4800元?23.一辆轿车匀速从A地开往B地,同时,一辆客车从B地出发,开往A地,途中,在C站停留了20分钟,然后以相同的速度继续开往A地.图1表示轿车离A地的距离S(单位:km)与时间t(单位:ℎ)之间的关系,图②表示客车离A地的距离S(单位:km)与时间t(单位:ℎ)之间的关系.观察图像,回答下列问题:(1)A、B两地相距_______km,轿车的速度为__________km/ℎ;(2)求出图②中线段AB的函数关系式;(3)图③表示两车之间的距离d(单位:km)与时间t(单位:ℎ)的部分函数图像:①点C的坐标为(_________,_________);②说明线段CD所表示的实际意义.答案和解析1.B解:A、B点表示快车与慢车出发4小时两车相遇;故本选项正确;B、B−C−D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=12004−120012=200(km/ℎ);故本选项正确;D、慢车的速度=120012=100(km/ℎ);故本选项正确;2.C解:前段的速度为(1.8−1.5)÷3=0.1,所以6分钟走了0.6km.后段有1.8−0.6=1.2km,速度为(1.2−0.8)÷(8−6)=0.2,所需时间1.2÷0.2=6.所以途中共用时6+6=12分钟,到家时间是17时12分.3.D解:由题意知付款480元,实际标价为480或480×108=600(元),付款520元,实际标价为520×108=650(元),如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130−800)×0.6=838(元).如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250−800)×0.6=910(元).4.A解:当0≤x≤1时,y=2√2x,当1<x≤2时,y=2√2,当2<x≤3时,y=−2√2x+6√2,∴函数图象是A,5.B解:当甲跑到终点时所用的时间为:2000÷8=250(秒),此时甲乙间的距离为:2000−200−6×250=300(米),乙到达终点时所用的时间为:(2000−200)÷6=300(秒),∴最高点坐标为(250,300).设y关于x的函数解析式为y=kx+b,当0≤x≤100时,有{b=200 100k+b=0,解得:{k=−2 b=200此时y=−2x+200;当100<x≤250时,有{100k+b=0 250k+b=300解得:{k=2 b=−200,此时y=2x−200;当250<x≤300时,有{250k+b=300 300k+b=0解得:{k=−6 b=1800,此时y=−6x+1800.∴y关于x的函数解析式为y={−2x+200(0≤x≤100) 2x−200(100<x≤250) −6x+1800(250<x≤300)∴整个过程中y与之间的函数图象是B.6.D7.D解:由题可得,当0<m≤20时,邮资y=1.20元,∴同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是1.20元,8.9解:当x ≥8时,设y =kx +b ,将点(8,15.2),(11,23.75)代入可得:{8k +b =15.211k +b =23.75, 解得:{k =2.85b =−7.6, 故y =2.85x −7.6,由题意得,2.85x −7.6=18.05,解得:x =9,即该用户该月用水9吨.9. 2解:当输入x =3时,因为x >1,10. −2√3或5解:当y =x 2+3=15,解得:x =−2√3或x =2√3(舍去);当y =3x =15,解得:x =5.11. 269解:设基本单价为a 元,提高单价为b 元,由题意,得{180a +(330−180)b =213180a +(240−180)b =150, 解得{a =0.6b =0.7. 180×0.6+(410−180)×0.7=269元,12. y ={25x(0≤x ≤20)20x +100(x >20)解:根据题意得:y ={25x(0≤x ≤20)25×20+0.8×25(x −20)(x >20),整理得:y={25x(0≤x≤20)20x+100(x>20);则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y={25x(0≤x≤20)20x+100(x>20);13.4.414.6解:由题意得:11:30−9:00=2.5小时,故第一个小时为1元,第二个小时为2元,第三个不足1小时按1小时计算应该交3元,故小明应付租车费为:1+2+3=6元,15.(1)65;(2)第2时;(3)18解:(1)6小时他完成工作量的百分数是65%;(2)由图表可知,在第二小时完成的百分数最大是20%,所以,在第二小时时间里工作量最大;(3)开始工作4~5小时工作量都是50%没有发生变化,∵早晨8时开始工作,∴8+10=18(时).16.解:(1)∵x=√3<2,∴当x=√3时,y=(√3)2+2=5;(2)①当x≤2时,x2+2=8,解得x=−√6;②当x>2时,x−2=8,解得:x=10.综上,当函数y=8时,自变量x=−√6或10.17.解:(1)函数图象如图所示:(2)3;(3)−3<k <1;(4)k >1或k =−3.18. 解:(1)当40≤x ≤60时,令y =kx +b ,则{40k +b =460k +b =2, 解得{k =−0.1b =8. 故y =−0.1x +8,同理,当60<x ≤80时,y =−0.05x +5.故y ={−0.1x +8(40≤x ≤60)−0.05x +5(60<x ≤80); (2)设公司可安排员工a 人,定价50元时,由5=(−0.1×50+8)(50−40)−15−0.25a ,得30−15−0.25a =5,解得a =40.所以公司可安排员工40人;(3)当40≤x ≤60时,利润w 1=(−0.1x +8)(x −40)−15−20=−0.1(x −60)2+5,则当x =60时,w 最大=5万元;当60<x ≤80时,w 2=(−0.05x +5)(x −40)−15−0.25×802∴x=70时,w最大=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.19.解:(1)1.6,2.4;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=85∴y=85x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得{5k+b=810k+b=20,解得k=125,b=−4,∴y=125x−4,∴y={85x(0≤x≤5) 125x−4(x>5)(3)∵5个人五月份的生活用水费是76元,∴平均每个人的生活用水费是765元,∵765>5,∴125x−4=765,解得,x=8.∴5×8=40(吨),答:该家庭这个月共用了40吨生活用水.解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;20.解:(1)60,100(2)3;158;(3)由图像可知,点C表示快车到达乙地,设线段CD 所在直线解析式为:s =kx +b (3≤x ≤5),把点C(3,180),D(5,300)代入,得{180=3k +b 300=5k +b ,解得{k =60b =0, ∴线段CD 所表示的函数表达式为s =60x(3≤x ≤5) (4)58或103.解:(1)(2)由S 与x 之间的函数的图象可知:当位于C 点时,两车之间的距离增加变缓, ∴由此可以得到a =3,∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为300km ,(2)∴b =300÷(100+60)=158; 故答案为(1)60,100(2)3,158;(4)①当两车相遇前相距200km ,辆车相距200km 的时间为x =(300−200)÷(100+60)=58ℎ ②当两车相遇后相距200km ,当x =3时,快车到达乙地此时相距180km ,两车相距200km 的时间为x =20÷60+3=103ℎ综上当x 为58ℎ或103ℎ时,辆车相距200km 。

初二数学分段函数练习题

初二数学分段函数练习题

初二数学分段函数练习题1. 函数f(x)如下,求定义域:2x+1, x < 2f(x) =x-1, x ≥ 2答案:函数f(x)的定义域为(-∞, 2)∪[2, +∞)2. 函数g(x)如下,求解不等式g(x) ≤ 3:-x+3, x < -1g(x) =2x-5, x ≥ -1解答:首先确定不等式两边的取值范围。

当x < -1时,g(x) = -x + 3,不等式变为 -x + 3 ≤ 3,解得 -x ≤ 0,即x ≥ 0。

当x ≥ -1时,g(x) = 2x - 5,不等式不变,解得 2x - 5 ≤ 3,即x ≤ 4。

综合以上,解不等式g(x) ≤ 3得到定义域为x ≥ 0 且x ≤ 4。

3. 函数h(x)如下,求解方程h(x) = 1:3x+4, x < 2h(x) =解答:根据方程h(x) = 1,分别求解 x < 2 和x ≥ 2 两种情况下的方程。

当 x < 2 时,3x + 4 = 1,解得 x = -1。

当x ≥ 2 时,-2x + 7 = 1,解得 x = 3。

综合两组解,方程h(x) = 1的解为 x = -1, 3。

4. 函数k(x)如下,求解不等式k(x) > -2:-x+3, x < -1k(x) =2x-5, x ≥ -1解答:首先确定不等式两边的取值范围。

当x < -1时,k(x) = -x + 3,不等式变为 -x + 3 > -2,解得 -x > -5,即 x < 5。

当x ≥ -1时,k(x) = 2x - 5,不等式不变,解得 2x - 5 > -2,即 x > 1.5。

综合以上解集,不等式k(x) > -2的解为 x < 5 且 x > 1.5。

5. 函数m(x)如下,求解方程m(x) = -1:4x+1, x < 3m(x) =解答:根据方程m(x) = -1,分别求解 x < 3 和x ≥ 3 两种情况下的方程。

2020年中考专题复习——分段函数专题训练(一)(解析版)

2020年中考专题复习——分段函数专题训练(一)(解析版)

2020中考复习——分段函数专题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示图象描述了他上学的情景,下列说法中错误的是().A. 修车时间为13minB. 自行车发生故障时离家距离为1000mC. 学校离家的距离为2000mD. 到达学校时共用时间20min2.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()A. B.C. D.3.小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.右图描述了他上学的情景,下列说法中正确的个数为()(1)学校离家的距离为2000米(2)到达学校时共用时间20分钟(3)修车时间为15分钟(4)自行车发生故障时离家距离为1000米A. 4个B. 3个C. 2个D. 1个.他估计步行不能准时到达,于是改4.一名考生步行前往考场,10分钟走了总路程的14乘出租车前往考场.这名考生的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A. 26分钟B. 24分钟C. 20分钟D. 16分钟5.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶路程随时间变化的图象如图所示,下列结论错误的是()A. 轮船的速度为20千米/时B. 快艇的速度为40千米/时C. 轮船出发3.9小时后与快艇相遇D. 快艇比轮船早到2小时6.下图①是某一数值转换流程图,图②是反映图①中y与x函数关系的图象:根据如上的流程图,若想输出y=9,则输入x的值为()A. 4B. 3或4C. 4或8D. 3或4或87. 定义新运算:则函数y =3@x 的图象大致是( )A. B.C. D.8. 已知函数y ={x 2−x (x ≥0)−x 2−x (x <0),当a ≤x ≤b 时,−14≤y ≤2,则b −a 的最大值为( )A. 52B. 52+√22C. 32D. 2二、填空题9. 根据图中的程序,当输入x =3时,输出的结果y =______.10. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法: ①兔子和乌龟同时从起点出发; ②“龟兔再次赛跑”的路程为1000米; ③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是______.(把你认为正确说法的序号都填上)11.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是.12.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),行驶的时间为x(ℎ),两车之间的距离为s(km),y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示,则当x=________时,两车相距60km.13.已知y1=x+1,y2=−2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最小值是______ .14.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物的总额,规定相应的优惠方法:①若不超过500元,则不给予优惠;②若超过500元,但不超过800元,则按购物总额给予8折优惠;③若超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元.若合并付款,则她们总共只需付款_______________元.15.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则小明这次行程的平均速度是______.三、解答题16.某星期天早晨,小华从家出发步行前往体育馆锻炼,途中在报亭看了一会儿报,如图所示是小华从家到体育馆这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)体育馆离小华家_______米,从出发到体育馆,小华共用了______分钟;(2)小华在报亭看报用了多少分钟?(3)小华看完报后到体育馆的平均速度是多少?17.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是______米,小红在商店停留了______分钟;(2)本次去舅舅家的行程中,小红一共行驶了______米;一共用了______分钟.18.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m,则应缴费______ 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?19.如图是小明的爸爸骑一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)小明的爸爸从出发到最后停止共经过了多少分钟?离家最远的距离是多少千米?(3)摩托车在哪一段时间内速度最快?最快速度是多少千米/小时?20.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示。

必修1-分段函数--专题与解析

必修1-分段函数--专题与解析

必修1 分段函数-----专题与解析一.选择题(共16小题)1.(2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A.﹣4或﹣2 B.﹣4或2 C.﹣2或4 D.﹣2或2考点:分段函数的解析式求法及其图象的作法。

专题:计算题。

分析:分段函数分段处理,我们利用分类讨论的方法,分a≤0与a>0两种情况,根据各段上函数的解析式,分别构造关于a的方程,解方程即可求出满足条件的a值.解答:解:当a≤0时若f(a)=4,则﹣a=4,解得a=﹣4当a>0时若f(a)=4,则a2=4,解得a=2或a=﹣2(舍去)故实数a=﹣4或a=2故选B点评:本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.2.(2010•宁夏)已知函数若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)考点:分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质。

专题:作图题;数形结合。

分析:画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.解答:解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.点评:本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.3.若,则f(log23)=()A.﹣23 B.11 C.19 D.24考点:分段函数的解析式求法及其图象的作法;函数的值;对数的运算性质。

分析: f(x)为分段函数,要求f(log23)的值,先判断log23的范围,代入x<4时的解析式,得到f (log23+1),继续进行直到自变量大于4,代入x≥4时的解析式求解.解答:解:∵1<log23<2,4<log23+3<5∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=故选D点评:本题考查分段函数求值、指数的运算法则、对数恒等式等难度一般.4.已知函数若,则实数a=()A.B.C.D.考点:分段函数的解析式求法及其图象的作法。

初中一次函数分段函数典例题

初中一次函数分段函数典例题

识别分段函数,解决收费问题 刘运明 李晓一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费 元; (2)当x ≥100时,求y 与x 之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?图1二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y (元)与用水量x (吨)的函数关系如图2.(1) 分别写出当0≤x ≤15和x ≥15时,y 与x 的函数关系式; (2)若某户该月用水21吨,则应交水费多少元?图2 三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图31.1正比例函数与一次函数构成的分段函数例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?解析:设正比例函数的解析式为:y=k 1x , 图象经过点(3,41),所以,41= k 1×3,所以k 1=121,所以y=121x ,0<x <3 设一次函数的解析式(合作部分)是y=k 2x+b ,(0k k b ≠,,是常数) 因为图象经过点(3,41),(5,21),得:⎪⎪⎩⎪⎪⎨⎧=+⨯=+⨯21541322b k b k ,解得:81,812-==b k .∴一次函数的表达式为8181-=x y ,所以,当1y =时,11188x -=,解得9x =∴完成此房屋装修共需9天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

65150O y x 1.A 、B 两地相距630千米,客车、货车分别从A 、B 两地同时出发,匀速相向行驶.货车2小时可到达途中C 站,14小时到达A 地,客车需6小时到达C 站.已知客车、货车到.C .站的距离....
与它们行驶时间x (小时)之间的函数关系如图1所示,A 、B 两地与C 站的位置如图2所示,则图中的a = ,b = ,客车的速度为 千米/小时.
2.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A 、B 两地之间的距离为 千米.
3.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y (件)与工作时间t (时)的函数图象.图②分别表示甲完成的工作量y 甲(件)、乙完成的工作量y 乙(件)与工作时
间t (时)的函数图象,则甲每小时完成 件,乙提高工作效率后,再工作 个小时与甲完成的工作量相等.
4.某市在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,根据图象提供的信息,则该公路的总长度为 .
5.有甲,乙两个形状完全相同的容器都装有大小分别相同的一个进水管和一个出水管,两容器单位时间进、出的水量各自都是一定的.已知甲容器单开进水管第10分钟把空容器注满;
y (吨)x (小时)
126210
然后同时打开进、出水管,第30分钟可把甲容器的水放完,甲容器中的水量Q (升)随时间t (分)变化的图象如图1所示.而乙容器内原有一部分水,先打开进水管5分钟,再打开出水管,进、出水管同时开放,第20分钟把容器中的水放完,乙容器中的水量Q (升)随时间t (分)变化的图象如图2所示,则乙容器内原有水 升.
6.一个生产、装箱流水线,生产前没有积压产品,开始的2小时只生产,2小时后安排装箱(生产没有停止),6小时后生产停止只安排装箱,第12小时时生产流水线上刚好又没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y 吨与流水线工作时间x (小时)之间的函数关系如图所示,则流水线上产品装箱的速度为 吨/小时.
7.某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元) 与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26和18元,则三月份比四月份节约用水_______吨.
8..小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。

销售金额与买瓜的千克数之间的关系 如图所示,那么小李赚了________元。

9.某油库有一储油量为40吨的储油罐。

在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示。

现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是_________分钟
习题:
例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装
修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完
成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000
元.
(1)完成此房屋装修共需多少天?
(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?
例2一名考生步行前往考场, 10分钟走了总路程的1
4
,估计步行不能
准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2
所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了
()
A.20分钟B.22分钟C.24分钟 D.26分钟
例3某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.
(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;
(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?
例4如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()
例5星期天,小强骑自行车到郊外与同学一起游玩,从家出发2
小时到达目的地,游玩3小时后按原路以原速返回,小强离家4
小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他
们离家的路程y(千米)与时间x(时)的函数图像。

已知小强骑车
的速度为15千米/时,妈妈驾车的速度为60千米/时。

(1)小强家与游玩地的距离是多少?
(2)妈妈出发多长时间与小强相遇?。

相关文档
最新文档