一元二次方程知识点复习总结
人教版九年级上册数学第21章一元二次方程知识点复习总结
一元二次方程知识点复习总结1. 一元二次方程的一般形式:a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、c ;其中 a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x ab x x )2(a2ac4bbx )1(212122,1,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式acx x a bx x 2121,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数ab = 0且Δ≥0 b = 0且Δ≥0;(2)两根互为倒数a c =1且Δ≥0 a = c 且Δ≥0;(3)只有一个零根a c = 0且a b ≠0 c = 0且b ≠0;(4)有两个零根a c = 0且a b = 0c = 0且b=0;(5)至少有一个零根a c =0 c=0;(6)两根异号a c <0 a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值a c <0且a b >0a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值a c <0且a b <0a 、c 异号且a 、b 同号;(9)有两个正根a c >0,ab >0且Δ≥0 a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根ac >0,ab <0且Δ≥0 a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x1)(x-x2) 或 ax 2+bx+c=a2ac4bb xa2ac4bb xa 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1)第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x1x(x1x2)x1x(x1xx x 4)x x ()x x (x x 2)x x (xx )1(2121221221212122122121222222212212212122122214x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x Bsin A cos ,1Acos Asin ,90BAB sin x ,A sin x )4(2122212221注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。
一元二次方程知识点总结
一元二次方程1. 一元二次方程的定义及一般形式:(1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法 (1)直接开平方法:形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得x a b +=或者x a b +=-,∴x a b =-±。
注意:若b<0,方程无解 (2)因式分解法: 一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0;②将方程左边分解为两个一次因式相乘的形式; ③令每个因式分别为零,得到两个一元一次方程; ④解这两个一元一次方程,他们的解就是原方程的解。
(3) 配方法:用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为2()(0)x m n n +=≥的形式;④用直接开平方法解变形后的方程。
注意:当0n <时,方程无解 (4) 公式法:一元二次方程20(0)ax bx c a ++=≠ 根的判别式:24b ac ∆=-0∆>⇔方程有两个不相等的实根:242b b acx a -±-=(240b ac -≥)⇔()f x 的图像与x轴有两个交点0∆=⇔方程有两个相等的实根⇔()f x 的图像与x 轴有一个交点0∆<⇔方程无实根⇔()f x 的图像与x 轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax 2+bx+c =0之后,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系:1x +2x =b a -; 1x ∙2x =ca4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
初中数学一元二次方程知识点总结(含习题)
初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
一元二次方程(知识点-考点-题型总结)
一元二次方程专题复习考点一、概念①②③(1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
(2)一般表达式:ax +bx +c =0(a ≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是()211+-2=02xx 222C ax +bx +c =0Dx +2x =x +122变式:当k 时,关于x 的方程kx +2x =x +3是一元二次方程。
A 3(x +1)=2(x +1)B2例2、方程(m +2)x m 2+3mx +1=0是关于x 的一元二次方程,则m 的值为。
针对练习:★1、方程8x =7的一次项系数是,常数项是。
★2、若方程(m -2)x m -1=0是关于x 的一元一次方程,2⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程(m -1)x +m ∙x =1是关于x 的一元二次方程,则m 的取值范围是。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y +y -3的值为2,则4y +2y +1的值为。
例2、关于x 的一元二次方程(a -2)x +x +a -4=0的一个根为0,则a 的值为。
2222例3、已知关于x 的一元二次方程ax +bx +c =0(a ≠0)的系数满足a +c=b ,则此方程必有一根为。
2例4、已知a ,b 是方程x -4x +m =0的两个根,b ,c 是方程y -8y +5m =0的两个根,则m 的值为。
针对练习:★1、已知方程x +kx -10=0的一根是2,则k 为,另一根是。
一元二次方程知识点总结(全章齐全)
一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。
②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。
(2)确定a,b,c的值。
(3)代入中计算其值,判断方程是否有实数根。
(4)若代入求根公式求值,否则,原方程无实数根。
【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。
·步骤:(1)将方程化为一元二次方程的一般形式。
(2)把方程的左边分解为两个一次因式的积,右边等于0。
(3)令每一个因式都为零,得到两个一元一次方程。
(4)解出这两个一元一次方程的解,即可得到原方程的两个根。
根的判别情况判别式:b2-4ac的值x1、x2的关系根的具体值一元二次方程两根与系数的关系:。
一元二次方程章节知识点总结
考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-,二根之积等于,也可以表示为x+x= ,xx= 。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
考点三、一元二次方程根的判别式根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根。
一元二次方程总复习知识点梳理
一元二次方程总复习知识点梳理一元二次方程总复考点1:一元二次方程的概念一元二次方程是只含有一个未知数,未知数的最高次数是2,且系数不为0的方程。
一般形式为ax2+bx+c=0(a≠0)。
判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程,两边直接开平方而转化为两个一元一次方程的方法。
解法为x1=-a+√b,x2=-a-√b。
2.配方法:用配方法解一元二次方程:ax2+bx+c=0(a≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解。
3.公式法:公式法是用求根公式求出一元二次方程的解的方法。
它是通过配方推导出来的。
一元二次方程的求根公式是x=(-b±√(b2-4ac))/2a(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法。
理论根据:若ab=0,则a=0或b=0.步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。
因式分解的方法有提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因为当a=0时,不含有二次项,即不是一元二次方程。
⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解。
⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式。
一元二次方程知识点总结
一元二次方程一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法:2、配方法:移项 化1 配方 开方3、公式法一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆ I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,ac x x =21。
初三数学一元二次方程知识点总结
初三数学一元二次方程知识点总结一、一元二次方程 1、一元二次方程含有 个未知数,并且未知数的 次数是2的 方程叫做一元二次方程。
2、一元二次方程的一般形式: .它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项, 叫做二次项系数; 叫做一次项,b 叫做一次项系数;c 叫做 . 二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b 〈0时,方程 实数根.2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把 移到方程的右边,再把 的系数化为1,再同时加上一次项的 的平方,最后配成 平方公式。
3、公式法公式法是用 公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: 公式法的步骤:就把一元二次方程的 分别代入,二次项的系数为a ,一次项的系数为b ,常数项的系数为c 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程 化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为 的形式三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中, 叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。
初三数学一元二次方程知识点总结
初三数学一元二次方程知识点总结一、一元二次方程 1、一元二次方程含有 个未知数,并且未知数的 次数是2的 方程叫做一元二次方程.2、一元二次方程的一般形式: 。
它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项, 叫做二次项系数; 叫做一次项,b 叫做一次项系数;c 叫做 . 二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b 〈0时,方程 实数根.2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把 移到方程的右边,再把 的系数化为1,再同时加上一次项的 的平方,最后配成 平方公式。
3、公式法公式法是用 公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: 公式法的步骤:就把一元二次方程的 分别代入,二次项的系数为a ,一次项的系数为b,常数项的系数为c 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程 化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为 的形式三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中, 叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,acx x =21。
初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)
初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。
(完整版)一元二次方程知识点总结
一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:,它的特征是:等式左边十一个关)0(02≠=++a c bx ax 于未知数x 的二次多项式,等式右边是零,其中叫做二2ax 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
3.一元二次方程的解法(1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据b a x =+2)(平方根的定义可知,是b 的平方根,当时,,a x +0≥b b a x ±=+,当b<0时,方程没有实数根。
b a x ±-=(2)配方法:配方法的理论根据是完全平方公式,把公式中的a 看222)(2b a b ab a +=+±做未知数x ,并用x 代替,则有。
222)(2b x b bx x ±=+±配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:)0(02≠=++a c bx ax )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式4.一元二次方程根的判别式:一元二次方程中,叫做一)0(02≠=++a c bx ax ac b 42-元二次方程的根的判别式,通常用“)0(02≠=++a c bx ax ”来表示,即∆acb 42-=∆I 当△>0时,一元二次方程有2个不相等的实数根;II 当△=0时,一元二次方程有2个相同的实数根;III 当△<0时,一元二次方程没有实数根5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,)0(02≠=++a c bx ax 21x x ,ab x x -=+21。
一元二次方程 知识点总结
一元二次方程知识点总结一、一元二次方程的概念。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
2. 判断方程是否为一元二次方程。
- 首先看方程是否为整式方程。
- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。
例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。
二、一元二次方程的解法。
1. 直接开平方法。
- 对于方程x^2=p(p≥0),解为x=±√(p)。
- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
2. 配方法。
- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。
- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。
- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。
- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。
- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。
3. 公式法。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 步骤:- 确定a、b、c的值。
- 计算b^2-4ac的值,判断方程是否有实数根。
- 当b^2-4ac≥0时,代入求根公式求解。
一元二次方程知识点总结
考点四、一元二次方程根与系数的关系
两边同时除于 a ,展开后可得:
x2
b c x 0 x 2 ( x1 x2 ) x x1 x2 0 a a
2
b c x1 x2 ; x1 x2 a a
法 3:如果一元二次方程 ax bx c 0 ( a 0) 定的两个根为 x1 , x2 ;那么
(4)因式分解法:提公因式,平方公式,平方差,十字相乘法
步骤:把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字 相乘,如果可以,就可以化为乘积的形式 如: ax bx 0( a, b 0) x( ax b) 0
2
此类方程适合用提供因式,而且其中一个根为 0
b b 2 4ac b b 2 4ac (b) 2 ( b 2 4ac ) 2 4ac c 2 2a 2a a (2a) 2 4a
2
法 2:如果一元二次方程 ax bx c 0 ( a 0) 定的两个根为 x1 , x2 ;那么
ax 2 bx c 0 a ( x x1 )( x x2 ) 0
4 x 2 12 x 9 0 (2 x 3) 2 0 2 x 2 5 x 12 0 (2 x 3)( x 4) 0
考点三、一元二次方程解的情况,即根的判别式
一元二次方程 ax 2 bx c 0(a 0) 中, b 2 4ac 叫做一元二次方程 ax 2 bx c 0(a 0) 的根的 判别式,通常用“ ”来表示,即 b 2 4ac
一元二次方程总复习知识点梳理(学生)
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
一元二次方程(知识点+考点+题型总结)
一元二次方程(知识点+考点+题型总结)类型三、配方法()002≠=++a c bx ax 222442a acb a b x -=⎪⎭⎫ ⎝⎛+⇒※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
例4、 分解因式:31242++x x针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1.★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
类型四、公式法⑴条件:()04,02≥-≠ac b a 且⑵公式: a acb b x 242-±-=,()04,02≥-≠ac b a 且典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。
完整版一元二次方程知识点总结和例题复习
知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。
(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。
根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。
配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。
2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。
(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。
2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。
数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。
(完整版)一元二次方程知识点总结
一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。
其中a为二次项系数,b为一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。
注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。
(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。
注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.知识点二、一元二次方程的解法1.直接开方法;2.配方法;用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方;求出方程的解;如果右边是一个负数,则判定此方程无实数解.3.公式法;(1)一元二次方程求根公式:一元二次方程,当时,.(2)一元二次方程根的判别式.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.(3)用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值;③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.4.因式分解法;(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用因式分解法:提取公因式法,平方差公式、完全平方公式.知识点三、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等); 设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,或将一个量表示两遍,由此得到方程); 解(解方程,注意分式方程需检验,将所求量表示清晰); 答(切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题.知识点四、一元二次方程根与系数的关系如果一元二次方程ax 2+bx+c=0的两个实根是x 1, x 2,那么.注意它的使用条件为a ≠0, Δ≥0.知识点一:一元二次方程的定义及解法只含有一个未知数,且未知数的最高次数是________,这样的整式方程叫做一元二次方程. 一元二次方程的常见解法(1)__________;(2)__________;(3) ;(4) .例1:(2009·新疆建设兵团)解方程:2(3)4(3)0x x x -+-=. 【解析】可以用因式分解法或公式法解一元二次方程. 解法一:2(3)4(3)0x x x -+-=(3)(34)0x x x --+= (3)(53)0x x --=30x -=或530x -=12335x x ==,解法二:22694120x x x x -++-=251890x x -+=x =181210±=12335x x ==,同步测试:1. (2009·浙江省台州市)用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x 2. (2009·四川省南充市)方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =知识点二:一元二次方程的解的应用例2. (2009·山东省日照市).若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( D )(A )1 (B )2 (C )-1 (D )-2同步测试:1.(2009·湖南省长沙市).已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-2. (2009·山东省威海市)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.知识点三:一元二次方程根的判别式:一元二次方程20(0)ax bx c a ++=≠的根的判别式___________.(1)0∆>⇔_________________; (2)0∆=⇔________________; (3)0∆<⇔_________________.例3:(2009·成都市)若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( ) A.k >-1 B. k >-1且k ≠0 C.k <1 D. k <1且k ≠0【解析】因为一元二次方程有两个不相等的实数根,所以必须满足两个条件,⎩⎨⎧≠>∆00k ,解之得,k >-1且k ≠0,故选B. 【答案】B同步测试:1.(2009 芜湖)当m 满足 时,关于x 的方程21402x x m -+-=有两个不相等的实数根. 2.(2009·山东省泰安市)关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,则k 的取值范围是 。
知识点四:一元二次方程的应用:步骤是:设 列 解 验 答例4:(2009·辽宁省本溪市)由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .【解析】第二下降表示为2)1(16x -,然后再列方程. 【答案】216(1)9x -= 同步测试:1.(2009 安徽)某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为%x ,则%x 满足的关系式是( ) A .12%7%%x += B .()()()112%17%21%x ++=+ C .12%7%2%x +=· D .()()()2112%17%1%x ++=+2.(2009·浙江省宁波市)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.类型一、一元二次方程及根的定义1.已知关于的方程的一个根为2,求另一个根及的值.思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可.解:将代入原方程,得即解方程,得当时,原方程都可化为解方程,得.所以方程的另一个根为4,或-1.总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口.举一反三:【变式1】已知一元二次方程的一个根是,求代数式的值.思路点拨:抓住为方程的一个根这一关键,运用根的概念解题.解:因为是方程的一个根,所以,故,,所以..总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验.类型二、一元二次方程的解法2.用直接开平方法解下列方程:(1)3-27x2=0;(2)4(1-x)2-9=0.解:(1)27x2=3.(2)4(1-x)2=93.用配方法解下列方程:(1);(2).解:(1)由,得,,,所以,故.(2)由,得,,,所以故4.用公式法解下列方程:(1);(2);(3). 解:(1)这里并且所以,所以,.(2)将原方程变形为,则,所以,所以.(3)将原方程展开并整理得,这里,并且,所以.所以.总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材.5.用因式分解法解下列方程:(1);(2);(3).解:(1)将原方程变形为,提取公因式,得,因为,所以所以或,故(2)直接提取公因式,得所以或,(即故.(3)直接用平方差公式因式分解得即所以或故.举一反三:【变式1】用适当方法解下列方程.(1)2(x+3)2=x(x+3);(2)x2-2x+2=0;(3)x2-8x=0;(4)x2+12x+32=0. 解:(1)2(x+3)2=x(x+3)2(x+3)2-x(x+3)=0(x+3)[2(x+3)-x]=0(x+3)(x+6)=0x1=-3,x2=-6.(2)x2-2x+2=0这里a=1,b=-2,c=2b2-4ac=(-2)2-4×1×2=12>0x==x1=+,x2=-(3)x(x-8)=0x1=0,x2=8.(4)配方,得x2+12x+32+4=0+4(x+6)2=4x+6=2或x+6=-2x2=-4,x2=-8.点评:要根据方程的特点灵活选用方法解方程.6.若,求的值.思路点拨:观察,把握关键:换元,即把看成一个“整体”.解:由,得,,,所以,故或(舍去),所以.总结升华:把某一“式子”看成一个“整体”,用换元的思想转化为方程求解,这种转化与化归的意识要建立起来.类型三、一元二次方程根的判别式的应用7.(武汉)一元二次方程4x2+3x-2=0的根的情况是( )A.有两个相等的实数根;B.有两个不相等的实数根C.只有一个实数根;D.没有实数根解析:因为△=32-4×4×(-2)>0,所以该方程有两个不相等的实数根.答案:B.8.(重庆)若关于x的一元二次方程x2+x-3m=0有两个不相等的实数根,则m的取值范围是( )A.m>B.m<C.m>-D.m<-思路点拨:因为该方程有两个不相等的实数根,所以应满足.解:由题意,得△=12-4×1×(-3m)>0,解得m>-.答案:C.举一反三:【变式1】当m为什么值时,关于x的方程有实根.思路点拨:题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分和两种情形讨论.解:当即时,,方程为一元一次方程,总有实根;当即时,方程有根的条件是:,解得∴当且时,方程有实根.综上所述:当时,方程有实根.【变式2】若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).思路点拨:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴满足∵ax+3>0即ax>-3∴所求不等式的解集为.类型四、根据与系数的关系,求与方程的根有关的代数式的值9.(河北)若x1,x2是一元二次方程2x2-3x+1=0的两个根,则x12+x22的值是( )A. B. C. D.7思路点拨:本题解法不唯一,可先解方程求出两根,然后代入x12+x22,求得其值.但一般不解方程,只要将所求代数式转化成含有x1+x2和x1x2的代数式,再整体代入.解:由根与系数关系可得x1+x2=,x1·x2=,x12+x22=(x1+x2)2-2x1·x2=()2-2×=.答案:A.总结升华:公式之间的恒等变换要熟练掌握.类型五、一元二次方程的应用考点讲解:1.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.10.(陕西)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-64x-1350=0解析:在矩形挂图的四周镶一条宽为xcm的金边,那么挂图的长为(80+2x)cm,•宽为(50+2x)cm,由题意,可得(80+2x)(50+2x)=5400,整理得x2+65x-350=0.答案:B.11.(海口)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?解:设每千克水果应涨价x元,依题意,得(500-20x)(10+x)=6000.整理,得x2-15x+50=0.解这个方程,x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克应涨价5元.总结升华:应抓住“要使顾客得到实惠”这句话来取舍根的情况.12.(深圳南山区)课外植物小组准备利用学校仓库旁的一块空地,开辟一个面积为130平方米的花圃(如图),打算一面利用长为15米的仓库墙面,三面利用长为33米的旧围栏,求花圃的长和宽.解:设与墙垂直的两边长都为米,则另一边长为米,依题意得又∵当时,当时,∴不合题意,舍去.∴.答:花圃的长为13米,宽为10米.。