学而思五年级计算拓展题目+解析
第一讲五年级学而思答案解析
第一讲 金字塔的影子
4 6 k 5 7 k 885 24 k 35k 885 59 k 885 k 15
5 2 k 4 3k 3 5k 91 10 k 12 k 15k 91 7 k 91 k 13
x 26 z 65
2 1 : 4:5 5 2 1 2 2 y, 5 14 5 , ; (2) 10 : 7 ; (3) 4 : 5 13 9
【例 4】 (难度等级 ※※※)
解下列方程 (1) x :111 99 : 37 (2) (2 x 3) : (4 x 5) 6 : 7 (3) (本题提高班、基础班选做)
第一讲 金字塔的影子
(3) 五年级一班的男生占一半, 五年级二班的男生占五分之二. 已知两个班男生人数相等, 那么一班和二班的总人数之比是________. 【答案】 (1)18,25,15,12.5, 【解析】 (1)略; (2)略; (3)设一班总人数为 x 人,二班总人数为 y 人,则可得: x 那么 x : y
【解析】 (1)
x :111 99 : 37 37 x 111 99 x 111 99 37 x 297
x 8 101 99 99 x 808 x 808 9
(2)
(2 x 3) : (4 x 5) 6 : 7 6(4 x 5) 7(2 x 3) 24 x 30 14 x 21 10 x 51 x 5.1 x y 78
(2)求比值
72 : 24 ________ 2.015 : 4.03 ________ 135 : 60 ________
6 8 : ________ 5 7
31 32 : ________ 32 33
学而思网校5年级 超难奥数
数列找规律【例1】一块白白的豆腐,帅帅“咣咣咣···咔咔咔”切了六刀,最多能切成多少块?【例2】有一个国家的钱币仅有六元和七元两种,在这个国家里人们买东西时会出现找不开钱的情况。
⑴出现这种情况的价格共有多少种?⑵其中最贵的价格是多少元?【例3】“不好吃”肉串店老板送给帅帅十张优惠券(从1到10分各1张)。
在一个风雨交加的下午,帅帅拿着优惠券喜滋滋的去吃肉串了,结果看见了老板在店门口给帅帅留了一个牌子:【例4】下列⑴~(20)的二十个加法算式是按一定规律排出的,得数最小的算式是哪个?请写出它的得数。
组合专题:超难组合数学㈠1.一棱柱以五边形A1A2A3A4A5与B1B2B3B4B5为上、下底,这两个多边形的每一条边及每一条线段A i B j(i,j=1,2,3,4,5)分别涂上红色或绿色。
若每一个以棱柱顶点为顶点的、以已涂色的线段为边的三角形均有两条边颜色不同。
证明上、下底10条边颜色一定相同。
2.设在空间给出20个点,其中某些点涂黄色,其余点涂红色。
已知在任何一个平面上同色点不超过3个。
求证:存在一个四面体,它的四个顶点同色,且至少有一个侧面内不含异色点。
3.某一天有若干读者去过图书馆。
他们是单独去的,但是在任何三个读者中,至少有两个人这天在图书馆相遇。
证明:一定可以找到这样两个时刻,使得在这一天到过图书馆的任何一个读者,至少在这两个时刻中的一个时刻是在图书馆的。
4.每一个参加循环赛的人和其余参加比赛的人都要比赛一次。
已知任何一次比赛都没有出现平局。
证明:可以找到这样的运动员,其他人或被他战胜,或被他胜过的人战胜。
测试题1.一棱柱以四边形F1I1H1G1与K1L1J1E1为下、上底,这两个多边形的每一条边及每一条线段(所有连接顶点的线段)分别涂上红色或绿色。
若每一个以棱柱顶点为顶点的、以已涂色的线段为边的三角形均有两条边颜色不同。
证明上、下底8条边颜色一定相同。
答案及解析证明:先证明上底下底分别同色假如底边有不同色线段,那么假设F1I1为红F1G1为绿,由F1点连三条线段分别为F1E1,F1J1,F1L1,三条线段中必然有两条颜色相同,假设F1J1,F1L1都为红色,那么三角形L1I1J1为全绿三角形,矛盾,假设F1J1,F1L1都为都为绿色,那么三角形G1L1J1为全红三角形,矛盾,所以下底边颜色全部相同。
2012学而思杯数学解析(5年级)74
x
厘米,则
80 - x 200 - x
=
1 3
,解得
x
=
20
,所以还需升高
20
厘米的水.
三、填空题(每题 10 分,共 40 分)
9. 下图为学而思标志中的字母“ S ”,被分成 52 个完全相同的小正方形,那么,在右下图中共有_______
个“ ”.
【考点】图形计算 【难度】☆☆☆ 【答案】88
6 / 10
.
2 4 503 1006 2012
35
3. 水泊梁山共聚 108 名将领,受招安后奉命征讨“方腊”(人名).征讨过程中战死将领占总人数的 ,
54
1
征讨得胜后辞官将领占总人数的 ,那么,队伍中还有
18
名将领.
4. 如右图,是一个由 2 个半圆、2 个扇形、1 个正方形组成的“心型”.已知半圆的直径为 10,那么“心
以 11 的余数是_______. 【考点】11 的整除特征 【难度】☆ 【答案】10 【解析】由 11 的整除特征,一个数除以 11 的余数,等于它奇数位数字和与偶数位数字和之差除以 11
的余数, ( 7 + 4 + 2 ) - ( 0 + 0 + 1 + 2 ) = 1 0 ,所以余数为 10.
11. 如右图,已知长方形 ABCD 的面积为 120,图示阴影的面积是 13,那么,长方形内部五角星 AEBFC 的
面积是_______.
A
F
D
E
B
C
【考点】容斥原理
【难度】☆☆☆☆
【答案】47
【解析】由容斥原理可知:
S五角星 =(S∆AEB + S∆BFC ) − (S阴影 +S∆ABC )
2015年学而思杯五年级解析
G
A
F
B
H
C
E
【考点】等积变形、勾股定理 【难度】☆☆☆ 【答案】98
1 1 1 【分析】连接 BD,有 SVBHD SVAHC SVAHG SVAGF ,所以 S SVBHD SVBED a 2 b2 c 2 98 2 2 2
D
(其中 a、b、c 代指直角三角形三边) 15. 我们知道分母是 7 的真分数化成小数时,循环节由 1、4、2、8、5、7 这六个数字组成,这六个数 字还能组成一个恰好有 28 个因数的六位完全立方数.那么,这个六位数的后五位是__________. 【考点】数论综合 【难度】☆☆☆☆ 【答案】21875 【分析】这个数的数字和为 27,必然为 9 的倍数; 完全立方数由于是三个一样的数乘出,指数是 3 的倍数,在此基础上逆用因数个数定理,
3 2 8 1 2 2 0 5 2 4 3 6 7 9 2 2
四.填空题Ⅳ(每题 8 分,共 32 分) 13. 两对夫妇约好下班后一起吃饭. 他们预定了一家饭店的某张饭桌, 饭桌的桌椅分布如下图所示. 已 知他们四人先后入座,座位可自选,但要求同一对夫妇两人必须坐在桌子的同一侧.那么,这四 人的入座方法有__________种. (坐的位置不同,或者入座顺序不同,都算不同的入座方法)
过 22. 12. 下面的加法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么,四位数
喜气羊羊 的最大值是__________.
3 羊 开 泰 羊 羊 得 意 羊 年 大 吉 喜 气 羊 羊
【考点】数字谜 【难度】☆☆☆☆ 【答案】7922
【分析】一共出现了 10 个不同汉字,所以 10 个不同数字均出现了,接下来极端分析: 若喜=9,则羊可以是 2 或 3,若羊=3,上下总数字和为 45 5 3 3 63 ,而上下数字和差 9 的倍数,结合题目,百位不能向千位进位,和又是奇数,所以上下方数字和的差是 3 9 27 或 9, 此时下方数字和为 18 或 27,气=3 或 12,均不成立; 若喜=9,羊=2,上下总数字和为 45 5 2 3 58 ,而上下数字和差 9 的倍数,结合题目,百 位向千位进 2 位,和又是偶数,所以上下方数字和的差可以为 18 或 36,此时下方数字和为 20 或 11,气=7,经验证无法向千位进两位; 若喜=8,则羊=2,上下总数字和为 45 5 2 3 58 ,而上下数字和差 9 的倍数,结合题目, 百位向千位进 1 位,和又是偶数,所以上下方数字和的差可以为 18 或 36,此时下方数字和为 20 或 11,气均没有合适的取值; 若喜=7,则羊可以是 1 或 2,若羊=2,类似喜=8 时的分析,得出可能合理的四位数“7922” , 经验证成立,如图,则其在喜取得最大值的前提下后三位均为合理的最大值,必然为最大值
学而思杯五年级数学
隔是 4 分钟. 【答案】4 分钟.
15. 在 5 5 的棋盘的左下角的格子中放置一个“国王”,规定“国王”每一步只能向右、向上或向右上方走一格,那
么走到棋盘右上角的格子的方法一共有________种. 【解析】标数法,如图. 1 9 7 5 3 1 41 25 13 5 1 129 63 25 7 1 321 129 41 9 1
6.
二、 填空题Ⅱ(每题 6 分,共 30 分,将答案填在下面的空格处) 7. 图中有________个三角形.
2.
答 题
10 个棱长为 2 的小立方体堆成如下图形,表面积为________.
禁 止
线 内
年级____________________
密
封
【解析】前后各 10 个小正方形,左右各 4 个正方形,上下个 4 个正方形,表面积相当于 36 个小正方形,每个小 正方形的面积是 4,表面积共 144. 【答案】144.
解析边长为1的三角形有16个边长为2的三角形有7个边长为3的三角形有3个边长为4的三角形有一个三位数的2倍它的数字和是原来三位数数字和的一半这样的三位数最小是
绝密※启用前 2015 年学而思综合能力测评(深圳) 五年级 数学
座位号____________________
【解析】倒数第二行的 6 说明第一行的空格可以是 1,可以是 6,枚举尝试, 31 65=2015 或 36 67=2412 . 【答案】2015 或 2412. 动物王国中有一个奇怪的猫村.已知猫村共有 60 只猫,其中有漂亮尾巴的 27 只,漂亮毛色的 45 只.所有猫 毛色或尾巴至少一项漂亮,则两样都漂亮的有________只. 【解析】 27 45 60 12 . 【答案】12.
第九届学而思综合能力测评五年级数学试卷及答案解析
量为: (20 + 10) × 5 = 150 ;10 天吃完需要牛的头数是:150 ÷10 −10 = 5 (头).
第二大题(解答题共 4 道,其中两题为必做题,两题为附加题选做.请同学们把解题过程写清楚)
1. (10 分)8 个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光 和大亮必须相邻,满足要求的站法一共有多少种? 答案:2400 提示:冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留 给冬冬,而两边的位置可以任意地分配给小悦和阿奇. 小慧和大智不能相邻的互补事件是小慧和大智必须相邻 小光和大亮必须相邻,则可以将两人捆绑考虑 只满足第一、三个条件的站法总数为:
S+ BFD
=
1 16
S, ABCD
=
1 16
×10 ×10
=
6.25
(平方厘米).
8. 在新年联欢会上,某班组织了一场飞镖比赛.如右图,飞镖的靶子分为三块区域,分别对应17 分、11
分和 4 分.每人可以扔若干次飞镖,脱靶不得分,投中靶子就可以得到相应的分数.若恰好投在两块(或
三块)区域的交界线上,则得两块(或三块)区域中分数最高区域的分数.如果比赛规定恰好投中120 分才能
平方厘米
答案:74
提示:要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑
色小正方体尽量不露出来. 在整个大正方体中,没有露在表面的小正方体有 (4 − 2)3 = 8 (个),用黑色的;在面上但不在边上的小正方
体有 (4 − 2)2 × 6 = 24 (个),其中 30 − 8 = 22 个用黑色.
【解析】 log2 4+ log2 16 = log2 64 , loga (M ⋅ N ) = loga M + loga N ,
-学而思杯五年级数学试题汇总
一、填空题(每题7分,共28分)1.今天是2012年4月7日,欢迎同学们参加“第二届全国学而思综合能力测评(学而思杯)”。
请先计算20120407 除以11的余数是___________。
(张宇鹏老师供题)2.算式:11111201212450310062012×−+−+− 的计算结果是___________。
(齐志远老师供题)3.水泊梁山共聚108名将领,受招安后奉命征讨“方腊”(人名)。
征讨过程中战死将领占总人数的3554,征讨得胜后辞官将领占总人数的118,那么,队伍中还有___________名将领。
(董博聪老师供题)3.如图,是一个由2个半圆、2个扇形、1个正方形组成的“心型”。
已知半圆的直径为10,那么,“心型”的面积是___________。
(注:π取3.14 )(胡浩老师供题)二、填空题(每题9分,共36分)5.定义:A □B 为A 和B 乘积的约数个数,那么,1□8+2□7+3□6+4□5=___________。
(崔梦迪老师供题)6.由24个棱长为1的小正方体组成一个大的长方体,那么,组成后长方体的表面积最大为___________。
(刘斌老师供题)7.“2012A”是一个最简真分数,那么,满足条件的 有___________个。
(贺赓帆老师供题)8.在一个盛有部分水的长方体容器中,插有两根木棒,木棒露在外面的长度比是3∶7,当水面的高度升高10厘米后,木棒露在外面长度比变成2∶5。
当木棒露在外面长度比变成1∶3时,还需要升高_______厘米的水。
(郭忠秀老师供题)三、填空题(每题10分,共40分)9.下图为学而思标志中的字母“S”,被分成52个完全相同的小正方形。
那么,在右下图中共有___________个“”。
(注:“L”型可旋转)(李响老师供题)10.北京某水族馆饲养鲨鱼,偶数颗牙齿的鲨鱼总说实话,奇数颗牙齿的鲨鱼总说谎话。
一天,绿鲨鱼、蓝鲨鱼、紫鲨鱼、白鲨鱼在一起聊天。
2016年10月学而思杯五年级数学解析.pdf
1
4.
如下图,艾迪从家到学校的最短路线共有__________条.
学校
家
【考点】计数,标数法 【难度】☆☆ 【答案】5 【分析】最短路线问题可以应用标数法,如下:
1 1 1
2 1 2 1
5 3 1
所以艾迪从家到学校的最短路线共有 5 条.
5.
五年一班 41 名同学去公园秋游,他们排成一列,前后两人之间相距 1 米.整个队列以 2 米每秒的速度行进.途中经过一座 60 米长的桥,那么这列同学完全通过这座桥共需 __________秒.
启用前★绝密
2016 年北京市五年级综合能力测评(学而思杯)
数学试卷
考试时间:90 分钟 满分:150 分
考生须知:请将填空题答案填涂在答题卡 上,解答题答写在答题纸 上 ... ... 第Ⅰ卷(填空题
一、 填空题(共 10 道小题,每题 5 分,共 50 分) 1. 2016 年 8 月 21 日,历时 17 天的第 31 届夏季奥林匹克运动会在巴西里约热内卢圆满落 幕.中国体育代表团在本届奥运会上发挥出色,共获得了 70 枚奖牌.那么,在 8,21, 17,31,70 这 5 个数中,有__________个数是 2016 的因数. 【考点】数论,因数与倍数 【难度】☆ 【答案】2 【分析】 2016 = 25 ´ 32 ´ 7 ,所以只有 8 和 21 是 2016 的因数.
= 5 + 2 + 4 ,4 种;
所以一共有 1 + 2 + 2 + 3 + 2 + 2 + 3 + 3 + 2 + 4 = 24 种.
第Ⅱ卷(解答题
16. 计算:
5 1 9 4 (1) 6 3 14 3 【考点】计算,分数计算
2016年学而思秋季五年级选拔考试试卷普通答案_98
2.
解方程: (1) 2(2 x 10) ( x 5) 45 ,则 x (2) y6 1 ,则 y y4 2 ▲ .
▲
;
【答案】 (1)x=20(2)y=16 【解析】 (1)去括号得到 4x-20-x+5=45 整理得到 3x-15=45 移项得到 3x=60 所以 x=20 (2)交叉相乘得到 2(y-6)=y+4 去括号得到 2y-12=y+4 移项得到 y=16 3. 将下面的比化简为最简整数比: (1) 32 : 24 ▲ : ▲
【答案】20 【解析】分类数,由一个组成的有 12 个; 由四个组成的有 6 个; 由九个组成的有 2 个; 所以一共有 20 个.
2 / 8
二、提高题(每题 8 分)
11. 桌上有 0~9 的卡片各一张,甲乙丙从中各挑两张. 甲说: “我的两张卡片上数之和是 7. ” 乙说: “我的两张卡片上数之差是 7. ” 丙说: “我的两张卡片上数之积是 7. ” 那么剩余四张卡片上的数之和是 ▲ . 【答案】19 【解析】从丙说的话可以得到丙的两张卡片是 1 和 7,所以乙的卡片就只能是 9-2,甲的卡 片就只能是 4+3,所以剩余的数是 0,5,6,8,所以和为 19. 12. 2016 2015 2014 2013 2012 2011 2010 2009 4 3 2 1 ▲ . 【答案】0 【解析】每连续 4 个分为 1 组,每一组的计算结果都是 0,所以答案是 0. 13. 一个长宽都是自然数的长方形,面积为 2016,那么长和宽一共有 ▲ 种不同 的情况. 【答案】18 【解析】长×宽=2016,而且长和宽都是自然数,所以长和宽都是 2016 的因数.而 2016 分 解质因数得到 2016 25 32 7 ,所以 2016 有 6×3×2=36 个因数,所以对应的长和 宽有 36÷2=18 组(注意,由于 1×2016 和 2016×1 是同一种,所以要除以 2) . 14. 食堂有一桶油,第一天吃掉一半多 1 千克,第二天吃掉剩下的油的一半多 2 千克,第三 天又吃掉剩下的油的一半多 3 千克,最后桶里还剩下 2 千克油, 问桶里原有油 ▲ 千克. 【答案】50 2 1 2 2 2 3 2千克 , 【解析】用流程图表示 所以原本有{ [(2+3)×2+2]×2+1}×2=50 千克. 15. 下图是一个正六边形, 连接了四条对角线形成如图所示的阴影部分, 已知正六边形的面 积是 36,那么阴影部分的面积是 ▲ .
学而思杯五年级数学解析pdf
2015年北京市五年级综合能力测评(学而思杯)考试时间:90分钟满分:150分第Ⅰ卷(填空题共90分)一、填空题A(每题5分,共50分)1.为纪念中国人民抗日战争暨世界反法西斯战争胜利70周年,2015年9月3日在天安门广场举行了盛大的阅兵式.整个阅兵式上参加的方(梯)队有:2个抗战老兵乘车方队,11个徒步方队,27个装备方队和10个空中方队,此外还首次邀请了一些外国军队方队代表参加,已知整个阅兵式上所有受阅方队为67个,那么共有__________个外国军队方队参加检阅.【考点】应用题,基础应用题【难度】☆【答案】17【分析】67(2112710)17-+++=(个).2.君君、嘉嘉、旭旭、宇宇四位同学这次考试的平均分是70分,如果去掉宇宇的成绩,则其他三位同学的平均分是75分,那么宇宇这次考了__________分.【考点】应用题,平均数【难度】☆【答案】55【分析】四个人的总分为704280⨯=分,去掉宇宇后三个人的总分为753225⨯=分,所以宇宇这次考的分数为28022555-=分.3.把""∆定义为一种运算符号,其意义为:ba ba∆=,则213161∆+∆+∆=__________.【考点】计算,定义新运算【难度】☆【答案】1【分析】111 2131611236∆+∆+∆=++=.4.如下图,正方形ABCD的面积是16,点F是BC上任意一点,点E是DF中点,则阴影部分面积为__________.【考点】几何,一半模型【难度】☆☆【答案】4【分析】三角形ADF 的面积是正方形ABCD 面积的一半,所以11682ADF S ∆=⨯=,又因为E 是DF 的中点,所以1=2ADF S S ∆阴影=18=42⨯.5.今天是2015年10月6日星期2,如果要使九位数20151062□恰好是9的倍数,那么□内的数应该填__________.【考点】数论,整除特征【难度】☆☆【答案】1【分析】设□填入a ,则九位数20151062a 的数字和是215162=17a a +++++++920151062917=1a a a ⇒+⇒.6.某幼儿园有三个小班,一班有6个小朋友,二班有9个小朋友,三班有10个小朋友.老师给每个班都买了相同数量的苹果,平均分给班里的小朋友,发现每个班的苹果都恰好够分.那么老师给每个班买的苹果数至少是__________个.【考点】数论,最小公倍数【难度】☆☆【答案】90【分析】每个班里的苹果数都恰好够分,说明这个苹果数分别是6,9,10的倍数,所以至少是[]6,9,1090=个.7.数一数,下图中一共有__________个三角形.【考点】计数,几何计数【难度】☆☆【答案】11【分析】可以分为几类:由一块组成:6个;由两块组成:2个;由三块组成:2个;由六块组成:1个.一共有622111+++=个三角形.8.一个三角形三条边的长度都是整数,如果它的周长是16,那么,这三条边乘积的最大值是___________.【考点】组合,最值【难度】☆☆【答案】150【分析】设三条边分别为a 、b 、c ,则有16a b c ++=,由和一定差小积大可知,当a 、b 、c 分别为5、5、6时,556150a b c ⨯⨯=⨯⨯=最大.9.老师组织五年级同学去图书馆搬书,第一次搬了全部书的25,第二次搬了全部书的37还多10本,两次搬完后还剩下50本书没有搬.那么一共有__________本书要搬.【考点】应用题,分数应用题【难度】☆☆【答案】350【分析】量率对应:23(1050)(1)35057+÷--=本10.掷一大一小两个骰子(骰子是一种正方体形状的玩具,有6个面,每个面上的点数分别是1、2、3、4、5、6),每次掷出的点数之和恰好为质数的的情况有__________种.【考点】计数,枚举法【难度】☆☆【答案】15【分析】两个骰子每次掷出的点数和在2~12之间,其间的质数有2,3,5,7,11,分别枚举得到:211=+312=21=++514233241=+=+=+=+7162534435261=+=+=+=+=+=+115665=+=+所以每次掷出的点数之和恰好为质数的的情况共有15种.二、填空题B (每题8分,共40分)11.请将下面的乘法竖式补充完整,那么,最后一行的五位数是__________.51250⨯ □□□□□□□□□□ □□□【考点】组合,乘法数字谜【难度】☆☆☆【答案】30975【分析】根据题意:0e =,252,5,1abc d fa c d ⨯=⇒===;1109b b +=⇒= 5 1 25 0 a b cd e f ⨯⇒□ □ □ □ □ □ □ 2 5 1 0 5 1 25 0 b b ⨯⇒□ □ □ □ □ □ □ 2 9 5 1 0 51 475 29530 97 5⨯ 12.如果一个五位数能被9整除,且其各个数位上的数字乘积是质数,那么,满足条件的最大五位数和最小五位数之和是__________.【考点】数论,质合与整除【难度】☆☆☆【答案】62226【分析】一个五位数的各个数位上的数字乘积是质数,根据质数的定义可知,这五个数位上只能是4个1和1个质数;又因为这个五位数能被9整除,所以这个质数只能是5.则这个五位数的最大值为51111,最小值为11115,最大值与最小值之和为62226.13.从1~20这20个数中随机选出2个不同的数,并且使这两个数的乘积是偶数,那么,一共有__________种取数的方法.【考点】计数,排列组合【难度】☆☆☆【答案】145【分析】两个数的乘积是偶数有两种情况:奇数⨯偶数,偶数⨯偶数奇数⨯偶数:111010100C C ⨯=种偶数⨯偶数:21045C =种所以一共有10045145+=种.14.如下图,在长方形ABCD 中,30AB =,阴影部分面积是120,那么,CF =__________.【考点】几何,等积变形【难度】☆☆☆【答案】8【分析】连接AC ,因为AB DE ∥,所以由等积变形得:BCE ACE S S ∆∆=,两个三角形有共同部分三角形FCE ,所以120BCE FCE ACE FCE ACF BEF S S S S S S ∆∆∆∆∆∆-=-⇒==,302120ACF S CF ∆=⨯÷=,所以8CF =.15.甲、乙两人同时从A 地出发开车前往B 地.初始时,甲的速度是乙的1.2倍.在距中点还有20千米的C 地设有一处补给站,甲到达补给站时会休息一段时间,并且在甲刚开始休息和刚结束休息这两个时刻,甲乙两人之间的距离刚好是一样的(乙到达C 处时不休息).如果甲到达C 地后速度会提升三分之一,乙到达C 地后速度会提升二分之一,结果甲乙两人同时到达B 地.那么,A 、B 两地的距离是__________千米.【考点】行程,方程法解行程【难度】☆☆☆☆【答案】88【分析】可以设AB 之间的距离为2S ,初始时甲的速度为12,则乙的速度为10;过了C 地之后甲的速度提升为1121=163⨯+(),乙的速度提升为1101=152⨯+().因为甲乙两人同时到达B 地,所以两人所用时间相同.乙不休息,全程开车用的时间为:20201015S S -++;甲休息了一段时间,所以甲全程时间分为开车时间和休息时间,其中开车的时间为20201216S S -++;休息时间较为复杂,因为甲乙初始的速度比为6:5,所以甲乙的路程比也为6:5.当甲到达C 地开始休息时,甲、乙之间距离为1(20)6S -;当甲结束休息时,甲、乙之间距离仍然为1(20)6S -.所以甲休息的时间为11(20)(20)661015S S --+根据甲乙所用时间相等可列方程:20201216S S -++11(20)(20)661015S S --++20201015S S -+=+,解得:44S =,所以AB 之间的距离为24488⨯=千米.,第Ⅱ卷(解答题共60分)三、解答题:(请将解答过程写在答题纸上,试卷作答无效)16.计算:(每题4分,共16分)(1)12233344445555666778+++++++【考点】整数计算,凑整【难度】☆☆【答案】11106【分析】原式=18227733366644445555+++++++()()()()=9999999999+++=101001000100004+++-=11106(2)3511273164474712⨯+⨯+÷【考点】分数混合运算,提取公因数【难度】☆☆【答案】24【分析】原式31211212=36447477⨯+⨯+⨯1231=364744⨯++()12=147⨯=24(3)3(5)177(2)x x +-=-【考点】解方程,一元一次方程【难度】☆☆【答案】3【分析】去括号:31517714x x +-=-移项:14151773x x+-=-合并同类项:124x=系数化1:3x =(4)(32):3(92):5x x +=-【考点】解方程,比例方程【难度】☆☆【答案】43或113【分析】内项积等于外项积:5(32)3(92)x x +=-去括号:1510276x x +=-移项:6102715x x+=-合并同类项:1612x=系数化1:43x =17.列方程(组)解应用题(6分)今年大强的年龄是小强的4倍,8年后大强的年龄比小强年龄的2倍还大2岁,求今年大强和小强分别是多少岁?【考点】列方程解应用题【难度】☆☆【答案】大强20岁,小强5岁【分析】解:设今年小强的年龄是x 岁,则大强的年龄是4x 岁.根据题意有:482(8)2x x +=++解得:5x =则今年大强年龄为:5420⨯=岁答:今年小强是5岁,大强是20岁.18.如下图,三角形ABC 的面积是1,且有2BE AE =,BF FD DC ==,G 是AD 中点.请求出:(1)三角形ADC 的面积.(3分)(2)三角形BFE 的面积.(3分)(3)三角形EFG 的面积.(4分)【考点】,几何,鸟头模型【难度】☆☆☆【答案】(1)13;(2)29;(3)16【分析】(1)根据等高模型:1111333ADC ABC S S ∆∆==⨯=;(2)根据鸟头模型:122339BFE BCA S BF BE S BC BA ∆∆⨯⨯===⨯⨯,所以2221999BFE ABC S S ∆∆==⨯=(3)2221333ABD ABC S S ∆∆==⨯=根据鸟头模型:111326AEG ABD S AE AG S AB AD ∆∆⨯⨯===⇒⨯⨯11216639AEG ABD S S ∆∆==⨯=111224DFG DBA S DF DG S DB DA ∆∆⨯⨯===⇒⨯⨯11214436DFG ABD S S ∆∆==⨯=12111139966EFG S ∆=----=19.我们发现,6、10、15是3个很神奇的数,它们中任意两个数的最大公因数都不是1,但3个数放在一起,最大公因数就变成了1.(1)请你在1~25之间选出另外3个互不相同的数,也满足上述条件.(4分)(2)请你在1~120之间选出4个互不相同的数,满足这4个数中任意三个数的最大公因数都不是1,但这4个数放在一起的最大公因数是1.(4分)(3)在1~30中,挑选出若干个互不相同的数排成一排,并满足:任意相邻两个数的最大公因数不是1,但任意相邻的三个数的最大公因数都是1.那么,最多可以挑选出多少个数?(4分)【考点】数论,分解质因数【难度】☆☆☆☆【答案】见分析【分析】将6、10、15分解质因数:623=⨯,1025=⨯,1535=⨯,发现每个数都是由2,3,5这三个质因数中的两个组成,即只要三个数的分解质因数形式分别为23⨯□□,25⨯□□,35⨯□□,就可以满足任意两个数的最大公因数都不是1,但是三个数的最大公因数却是1.下面按照这个方法来构造即可.(1)在1~25之间选取三个数,所以三个不同的质因数可以取2,3,5或2,3,7①当三个质因数为2,3,5时,三个数的分解质因数形式分别为23⨯□□,25⨯□□,35⨯□□,满足条件的三个数有8组,分别为:(6,10,15)(12,10,15)(18,10,15)(24,10,15)(6,20,15)(12,20,15)(18,20,15)(24,20,15)②当三个质因数为2,3,7时,三个数的分解质因数形式分别为23⨯□□,27⨯□□,37⨯□□,满足条件的三个数有4组,分别为:(6,14,21)(12,14,21)(18,14,21)(24,14,21).因为是要选出另外三个互不相同的数,所以含有6、10、15的数组都不能取,只能取(12,14,21)(18,14,21)(24,14,21)这三组.(2)在1~120之间选出4个互不相同的数,需要4个不同质因数,可以取2,3,5,7,四个数的分解质因数形式分别为235⨯⨯□□□,237⨯⨯□□□,257⨯⨯□□□,357⨯⨯□□□,满足条件的四个互不相同的数有8组,分别是:(30,42,70,105)(60,42,70,105)(90,42,70,105)(120,42,70,105)(30,84,70,105)(60,84,70,105)(90,84,70,105)(120,84,70,105)(3)根据前面的思路,要想满足条件,这一排数除了前后两端的两个数,其他所有数都应该至少含有2个质因数.在1~30中有6,10,12,14,15,18,20,21,22,24,26,28,30.又因为不能有三个相邻的数都是偶数,所以要想最多中间应该多排奇数,上面的数中只有15和21是奇数,所以两个都选且要隔在中间以保证没有三个连续偶数,排列情况如下:_____,_____,15,_____,_____,21_____,_____但其实还可以排的更多,因为这一排数的两端都可以各自放一个质数,同样可以满足条件,所以最多的情况是可以挑选出10个数.给出一组满足条件的构造如下:11,22,12,15,10,14,21,6,28,7四、阅读材料并回答下列问题(每小题4分,共16分)20.如果一个数列的第n 项n a 与其项数n 之间的关系可用式子来表示,这个式子就称为该数列的通项公式.①通项公式通常不是唯一的,一般取其最简单的形式;②通项公式以数列的项数n 为唯一变量;③并非每个数列都存在通项公式.如果一个数列的第n 项n a 与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式.例如:对于数列1,3,5,7,9,11……它的通项公式是21n a n =-它的递推公式是12n n a a -=+(其中的n 都表示项数)根据上述材料:(1)请判断下列公式是通项公式还是递推公式(4分,每空2分)n a n =是_________公式.12n n n a a a --=+是_________公式.(2)请根据下面的通项公式,写出这个数列的第2015项(4分)21n a n n =+-(3)请根据下面的递推公式,分别求出这个数列的第2、3、4、6项(4分,每空1分)11a =,11n n a a n -=+-2a =________,3a =________,4a =________,6a =________(4)请写出下面这个数列的通项公式和递推公式(4分)2、5、10、17、26、37、50、65、82、101……【考点】阅读材料【难度】☆☆☆【答案】(1)通项公式;递推公式(2)4062239(3)22a =,34a =,47a =,616a =(4)通项公式:21n a n =+;递推公式:121n n a a n -=+-【分析】(1)通项公式;递推公式(2)22201512015201514062239n a n n a =+-⇒=+-=【分析】(3)21211212a a =+-=+-=32312314a a =+-=+-=43414417a a =+-=+-=545175111a a =+-=+-=6561116116a a =+-=+-=(4)通项公式:21n a n =+;递推公式:121n n a a n -=+-。
2016学而思杯数学解析(5年级)_81
若数字中缺 9,则 9 9n=36 , n=3 ,此时四位数 二零一六 的最大值是 1768 或者 1584.
4 2 + 11 2 71 0 0 61 1 3 5 8 6 + 11 2 3 52 0 6 7 80 1 0 2 4 6
所以,四位数 二零一六 的最大值是 1768.
第二部分 解答题 考生须知:请将第二部分试题解题过程及答案书写在答题纸 上 ...
5 1 1 1 【分析】 (1) 1.6 ( ) 6 2 3 4 1 1 1 (2) 2016 +2016 +2016 6 10 15
8 5 1 = 4 5 6 6 4 2 = + 3 3 =2
1 = 2 0 16 6 1 = 2 0 16 3 =672
【考点】几何,圆与扇形 【难度】☆☆☆☆ 【答案】40
1 2 【分析】由题意得: r 100 ,可得 r 2 =200 ,设小圆的半径为 a ,则根据勾 2
2 1 2 股定理可以列得方程: a 2 +(2a )2 =r 2 ,化简得: a = r ,所以阴影面积为 5
a 2 = r 2 = 200=40 .
【考点】计数,几何计数 【难度】☆☆☆☆ 【答案】22 【分析】如图,剥离出里面的长方形,左图中有 6 2 1=11 (个)长方形,所以 长方形的数量是 11 2=22 (个) .
6
14. 如图,等边三角形跑道全长 2016 米.甲从 A 点出发,沿逆时针方向跑步, 与此同时,乙、丙分别从 A、C 两点出发,沿顺时针方向跑步.当甲丙第一 次相遇时,乙刚好跑到 C 点;当甲乙第一次相遇时,丙刚好跑到 A 点.那么 当丙第一次追上乙的时候,甲跑了__________米.
学而思杯数学试题(五年级)答案解析
2013 年第三届全国学而思综合能力测评(学而思杯)数学试卷(五年级)详解一.填空题(每题5 分,共20 分)1. 两个质数的和是9,那么这两个质数的乘积是.【考点】数论,质数性质【难度】☆【答案】14【分析】两质数和为奇数,必有偶质数2,另一质数为7,故答案为2 ⨯ 7 = 14 .2. 如右图,共有个正方形.【考点】组合,几何计数【难度】☆【答案】10【分析】1⨯1的正方形有4 个,2 ⨯ 2 的正方形有5 个,4 ⨯ 4 的正方形有1 个,共10 个.3. 学而思教研部一共购买了300 本书,其中有五分之二是数学书,三分之一是语文书,其余是英语书.那么,英语书共有本.【考点】应用题,分数应用题【难度】☆【答案】80【分析】300 ⨯ (1 - 2-1) = 300 - 120 - 100 = 80 (本).5 34. 如右图,正方形ABCD 边长为40 厘米,其中M、N、P、Q 为所在边的中点;分别以正方形的顶点为圆心,以边长的一半为半径做直角扇形,那么形成图中阴影部分的面积是平方厘米.(π取3.14)【考点】几何,圆与扇形面积【难度】☆☆【答案】344【分析】阴影面积的实质是整体减空白:边长40 厘米的正方形面积减去半径为20 厘米的圆的面积(4 个扇形刚好拼成一个整圆),故答案为402 - 3.14 ⨯ 202 = 400 ⨯ (4 - 3.14) = 344 平方厘米.5. 对一个大于1 的自然数进行如下操作:如果是偶数则除以2,如果是奇数则先减去1 再除以2,如此进行直到得数为1,操作停止.那么,所有经过3 次操作结果为1 的数中,最大的数是.【考点】数论,奇偶性,倒推【难度】☆☆【答案】15【分析】从1 向前倒推,寻找原数的最大值;但发现若上一步是偶数,则须本数⨯2 ;若上一步是奇数,则须本数⨯2 + 1 ;明显每次向前推出奇数可使原数更大,倒推过程为:1→3→7→15;故15 为原数的可能达到的最大值.6. 定义:∆( A, B,C, D) = A ⨯ 4 + B ⨯ 3 + C ⨯ 2 + D ⨯1 ,那么,∆(2, 0,1, 3) =_ .【考点】计算,定义新运算【难度】☆【答案】13【分析】按定义式,∆(2, 0,1,3) = 2 ⨯ 4 + 0 ⨯ 3 + 1⨯ 2 + 3 ⨯1 = 13 .7. 一项工程,由甲队单独做10 天后,乙队加入,甲、乙两队又合作了8 天完成;这项工程,如果全部由乙队单独做,20 天可以完成.那么,如果全部由甲队单独做,天可以完成.【考点】应用题,工程问题【难度】☆☆【答案】30【分析】把总工作量看做单位“1”,则乙队的工作效率为每天做120,故可在甲乙合作的条件中求出甲队的工作效率为每天做(1 - 1⨯ 8) ÷ (10 + 8) =3÷18 =1;故答案为30.20 5 308. 如右图,大正方体的棱长为2 厘米,两个小正方体的棱长均为1厘米,那么,组合后整个立体图形的表面积为平方厘米.【考点】几何,立体几何,表面积【难度】☆☆【答案】32【分析】三个立方体原总表面积为12 ⨯ 6 + 12 ⨯ 6 + 22 ⨯ 6 = 36 平方厘米,之后放在一起时缺失了4 个1⨯1 的表面,故答案为36 - 12 ⨯ 4 = 32 平方厘米;或者可用三视图法求表面积:(5 + 5 + 6) ⨯ 2 = 32 平方厘米.9.甲、乙、丙 3 人共有 2013 块巧克力,甲拿走了乙、丙各 3 块巧克力后,甲、乙、丙 3 人的巧克 力数比为 4: 2: 5 ,那么,甲原.有.【考点】应用题,比例应用题 【难度】☆☆☆ 【答案】726块巧克力.【分析】之后甲的巧克力块数易由 3 人的块数比求得,为 2013 ⨯732 - 3 ⨯ 2 = 726 块.4 4 + 2 + 5= 732 块,故甲原有巧克力10. 在 5×5 的方格中,将其中的一些小方格染成红色,使得对于图中任意的2×2 的方格中,均有至少 1 个小方格是红色的.那么,至少要将个小方格染成红色. 【考点】组合,构造与论证 【难度】☆☆ 【答案】4【分析】论证:为了保证 4 个角上的互不重叠的 4 个 2 ⨯ 2 的方格中都至少有 1个红色方格,可知答案必不小于 4; 构造:如右图,4 是可能的; 综上,答案为 4.11. 一个五位数,各.位.数.字.互.不.相.同.,并且满足:从左往右,第一位是 2 数是 3 的倍数,前三位组成的三位数是 5 的倍数,前四位组成的四位数是 7 的倍数,这个五位数 是 11 的倍数.那么,这个五位数最小是 .【考点】数论,整除特征,最值 【难度】☆☆☆ 【答案】21076【分析】考虑最值确定各位数字:万位是 2 的倍数,故万位最小应为 2; 前两位组成的数是 3 的倍数,故前两位最小应为 21; 前三位组成的数是 5 的倍数,故前三位最小应为 210;前四位组成的数是 7 的倍数,最小为 2100,但要求各位数字不同,故应为 2107; 这个五位数是 11 的倍数,故此数应为 21076.12. 右边的乘法竖式中,相.同.汉字代表相.同.数字,不.同.汉字代表不.同.数字,那么,“大自然”代表的三位数是.【考点】数论,数字谜【难度】☆☆☆☆【答案】958我爱大自然⨯ 4 大自然爱我【分析】由个位可知“我”为偶数,再分析最高位即可知“我”只能为2;故“然”为3 或8;(还可分析知五个汉字所代表的数字之和必为3 的倍数,这个小结论可以辅助之后的分析)若“然”= 8,①则分析万位知“大”只能为9,故千位“爱”乘以4 后向万位进1,可知“爱”为3 或4;②若“爱”= 4,此时十位:“自⨯4 + 3 ”的末位数字为4,这表示“自⨯4 ”的末位数字为1,奇偶性矛盾!故确定“爱”只能为3;③若“爱”= 3,此时十位:“自⨯4 + 3 ”的末位数字为3,这表示“自⨯4 ”的末位数字为0,“自”为0或5;若“自”= 0,千位要接受进位8,这不可能;若“自”= 5,则有答案23958 ⨯ 4 = 95832 ;若“然”= 3,①分析万位知“大”为9 或8;②若“大”= 9,则千位“爱”乘以4 后向万位进1,可知“爱”只能为4;此时十位:“自⨯4 + 1 ”的末位数字为4,这表示“自⨯4 ”的末位数字为3,奇偶性矛盾!故知只能“大”= 8;③若“大”= 8,分析十位可知“爱”为奇数,再分析千位可知“爱”= 1;④此时无论十位的“自”为0 还是为5,式子的百位和千位都是错误的(21803 ⨯ 4 = 80312 错误;21853 ⨯ 4 = 85312 错误),故知“然”= 3 时无解;综上,本数字谜只有唯一解:23958 ⨯ 4 = 95832 ,本题答案为958.四.填空题(每题8 分,共32 分)13. 有A、B、C、D、E、F 六个人围坐在圆桌吃饭,A 会讲英语,1B 会讲汉语、英语和法语,C 会讲汉语、英语和德语,D 会讲6 2汉语和德语,E 会讲汉语,F 会讲法语和德语.如果每个人都能与他相邻的两个人交流,那么,共有种不同的排座位方式.(经过旋转、对称后重合的方式不.算.做.一.种.)【考点】组合,逻辑推理 5 3【难度】☆☆☆4【答案】24【分析】本题突破口在于A,由于A 只会说英语,英语也只有A、B、C 三人会说,故座位顺序中必然有紧邻的BAC(或CAB),此时分析F 可知F 必须与B 或C 中的一个相邻,E 必须在D、F 的中间;综上,得到两种圆排列方式:①BACEDF;②BACFDE;每种圆排列方式都有旋转、对称的12 种排座方式,故答案为12 ⨯ 2 = 24 种.⎨ ⎩ Q14. A 、B 两地相距 120 千米.甲、乙从 A 地,丙从 B 地同时出发,相向而行.当甲、丙相遇时,乙行了 20 千米.甲到达 B 地后立即原路返回,当乙、丙相遇在途中 C 地时,甲也恰好到达 C 地. 那么,当丙到达 A 地时,乙共行了 千米.【考点】行程问题,比例法解行程问题 【难度】☆☆☆ 【答案】72【分析】本题关键点在于甲丙速度之和与乙的速度之比为 120 : 20 = 6 :1 ;设甲、乙、丙三人到达 C 点⎧z + y = 120时各走了 x 、y 、z 千米,则有方程组:⎪x - z = 120,解得 y = 3 (可以解出 x 、y 、z 的具体值, ⎪(x + z ) : y = 6 :1 z 5但其实不必要);故丙走了 120 千米时,乙走了120 ⨯ 3= 72 千米.515. 如右图,三角形 ABC 是直角三角形,M 是斜边 BCA 的中点,MNPQ 是正方形,N 在 AB 上,P 在 AC 上. NP如果,AB 的长度是 12 厘米,AC 的长度是 8 厘米. 那么,正方形 MNPQ 的面积是 平方厘米.Q【考点】几何,面积,弦图 BMC【难度】☆☆☆ 【答案】20【分析】如下图,过 M 点作 AB 的垂线,垂足为 D ;以 AD 为外围正方形的一边,做出以 MNPQ 为内含正方形的弦图,;则 MD 为△ABC 的中位线, MD = AC = 4cm , AD = AB= 6cm ;故弦图中外2 2围正方形边长为 6cm , AN = MD = 4cm , DN = 6 - 4 = 2cm ;故所求面积为 62 - 2 ⨯ 4⨯ 4 = 20cm 2 .2AANP NPDD FBMCMQE16. 有一个自然数A,它的平方有9 个约数,老师把9 个约数写在9 张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3 .”思思说:“我手中的三个数乘积就是A2 ,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是.【考点】数论,约数个数定理,幻方【难度】☆☆☆☆☆【答案】55【分析】A2 有9 个约数,故由约数个数定理可逆推出:A 的质因数分解形式为p4 或pq (p、q 为不相同的质数);若A = p4 ,那么可把A2 的9 个约数写成如下的表格形式(幻方):学学手中必拿到了一行或一列或一条对角线;思思手中拿到的可能是(1、p 、p7 )(1、p2 、p6 )(1、p3 、p5 )(p 、p2 、p5 )(p 、p3 、p4 );只有后两组才能确定学学手中的牌,但后两组所确定的数需要1 + p4 + p8 = 625 或1 + p5 + p7 = 625 ,可是这两种情况p 均无解;故知A 的质因数分解形式不能为p4 ,只能为pq ;若A = pq ,那么可把A2 的9 个约数写成如下的表格形式思思手中拿到的可能是(1、p 、pq2 )(1、q 、p2 q )(1、p2 、q2 )(p 、q 、pq );经分析可知,只有当思思拿到(p、q、pq)时,才一定能确定学学手中的牌,此时学学手中的牌为(1、p2 q 、pq2 ),故1 + p2 q + pq2 = 625 ,(可用枚举法,或因数分析)解得A 的两个质因数p、q 为3 和13,故思思手中的牌为(3、13、39),所求答案为3 + 13 + 39 = 55 .五. 解答题(每题 8 分,共 16 分)17. 计算:(1) 0.27 ⨯103 + 0.19 (4 分)(2) 2013⨯ 2.3+ 201 3÷ 0.4 - 2013 ⨯ 1(4 分) 10 4 【考点】计算、巧算 【难度】☆☆ 【答案】28;4697【分析】(1)原式 = 0.27 ⨯100 + (0.27 ⨯ 3 + 0.19) = 27 + 1 = 28 ;(2)原式 = 2013 ⨯ 7 + 2013 ÷ 4 - 2013 ÷ 4 = 2013 ⨯ 7= 4697 .3 318. 解方程:(1) 4(2x - 1) - 3(x - 2) = 7 (4 分) (2) 2 x + 5 = 4 x - 7 (4 分) 3 5【考点】计算、解方程【难度】☆☆ 【答案】 x = 1 ; x = 23【分析】(1)注意去第 2 个括号时要变号;原方程化为: 8x - 4 - 3x + 6 = 7 ,即 5x = 5 ,解得 x = 1 ;(2)通分,原方程化为:5(2x + 5) = 3(4x - 7) ,即10x + 25 = 12x - 21 ,即 2x = 46 ,解得 x = 23 .六.解答题(每题 15 分,共 30 分)19. 如图,将 1、2、3……按规律排成一个沙漏型的数表,那么,12 13 14 15上 3 行(1)下 5 行从左向右数的第 5 个数是多少?(4 分) (2)上 6 行最左边的数是多少?(4 分)(3)2013 排在哪一行的从左向右数的第多少个?(7 分) 【考点】计算、数列与数表6 7 82 3 1 5 4 11 10 9上 2 行 上 1 行 0 行下 1 行下 2 行 【难度】☆☆☆☆【答案】37;42;上 44 行从左向右第 34 个19 18 17 16下3 行【分析】(1)下 n 行从左向右第 (n + 1) 个数(即最右数)为 (n + 1)2 ;故下 5 行从左向右第 6 个数为 36,下 5 行从左向右第 5 个数为 37;(2)上 n 行从左向右第 1 个数(即最左数)为 n (n + 1) ;故上 6 行最左数为 42; (3)上 44 行从左向右第 1 个数为 44 ⨯ 45 = 1980 ,故 2013 为上 44 行从左向右第2013 - 1980 + 1 = 34 个数.20. 思思编了一个计算机程序,在屏幕上显示所有由0、1、2、3 组成的四位编码(数字可以重复使用),每个四位编码都是红、黄、蓝、绿四种颜色中的一种.并且,如果两个编码的每一位数字均不相同,那么这两个编码的颜色也不相同.如果,0000 是红色的、1000 是黄色的、2000 是蓝色的,那么:(1)下列编码中,一定不是红色的是()(2 分)A. 0102B. 0312C. 2222D. 0123(2)编码3111 是什么颜色的?(5 分)(3)编码2013 是什么颜色的?(8 分)【考点】组合,构造与论证【难度】☆☆☆☆【答案】C;绿色;蓝色【分析】(1)2222 与0000 的每一位数字均不相同,故2222 一定不是红色的,选C;(2)3111 与0000、1000、2000 的每一位数字均不相同,故3111 不是红色的,不是黄色的,也不是蓝色的,故3111 是绿色的;(3)0222 与1000、2000、3111 的每一位数字均不相同,故0222 是红色的;1222 与0000、2000、3111 的每一位数字均不相同,故1222 是黄色的;3222 与0000、1000、2000 的每一位数字均不相同,故3222 是绿色的;2013 与0222、1222、3222 的每一位数字均不相同,故2013 是蓝色的.。
学而思奥数5年级秋季班:第5讲《分数的加法和减法》讲义
10
五年级秋季
基础
第 5 讲
【巩固 2】 (例 6 巩固) 5 1 小白兔家里有大白菜 千克,比小白菜多 千克.请问小 8 4 白兔一共有多少千克的蔬菜? 【解析】 方法一: 5 1 5 2 3 小白菜有 (千克) , 8 4 8 8 8 5 3 8 蔬菜共有 1(千克) ; 8 8 8 5 5 1 方法二: 1. 8 8 4 【学案 7】 (例 6 巩固)
⑴ 用分数表示下面各图中阴影部分占整体的几分之几, 并说出各分数的分数单位.
⑵ 把1个月饼平均分给 5 个小朋友,每个小朋友分得___ 个,占整个月饼的________. ⑶ 7 块巧克力平均分给 4 个小朋友,每个小朋友分得___ 块,占全部巧克力的________. ⑷ 3 块月饼,每块都平均分成两半,这样,每一块占是整 体 3 块月饼的________. ⑸ 5 除以 3 ,结果可以用分数表示为________;这个结果 的分数单位是________. 【解析】 1 1 ⑴ 左: ,分数单位: ; 8 8 1 1 中: ,分数单位 ; 4 4 8 1 右: ,分数单位 . 15 15 1 1 7 1 1 5 1 ⑵ , ;⑶ , ;⑷ ;⑸ , . 5 5 4 4 6 3 3
学而思寒扩展题五年级
学而思寒假拓展练习第一讲小升初必考专题之数论【拓1】:六位数是27的倍数,请算出a+b+c。
【拓2】:(其中1、2各有100个,a是一个自然数)能被13整除。
那么,a的值是多少?【拓3】:M,N为非0的自然数,能被7整除,M+N最小值为多少?【家庭作业1】:求除以7的余数。
【家庭作业2】:求出437×309×1993被7除的余数。
第二讲小升初必考专题之应用题【拓1】:刘老师的年龄是刘备,关羽,张飞三位同学年龄和。
9年后刘老师的年龄是刘备的年龄和关羽的年龄和,又过3年,刘老师的年龄是刘备的年龄和关羽的年龄的和,再过3年,刘老师的年龄是关羽的年龄和张飞的年龄的和。
求刘备,关羽,张飞,刘老师四个人的年龄。
【拓2】:刘师傅生产一批零件,他把零件分为甲乙二堆,从甲堆取9个到乙堆,则两堆数量一样;从乙堆取12个到甲堆,甲是乙的2倍。
问:甲堆原有个多少零件?刘师傅这一天共生产零件多少个?【拓3】:12年前父亲是儿子的11倍,今年父亲是儿子的3倍,问:多少年后父亲是儿子的2倍?【拓4】:五一班有12人,小红考试缺考,其余11人分数平均为85分,小红补考分数比全班12人平均分高出11分,问小红补考多少分?【拓5】:已知:那独角龙有多少只?【拓6】:苹果和梨各有若干个,如果把1个苹果和3个梨放入一袋,就多了2个梨;如果将半个苹果和2个梨放入一袋,多半苹果。
问:有多少个苹果,有多少梨?【拓7】:甲乙两册书,两书共用2010个数码,甲册比乙册多28页,问:甲册有多少页,乙册多少页?【拓8】:2013年,父母共78岁,兄弟共17岁。
四年后,父亲是弟弟的4倍,母亲是哥哥的3倍。
问:父亲是哥哥的3倍是几年?【拓9】:爸、姐姐妹妹三人现在的年龄和是64岁,当爸爸年龄是姐姐的年龄3倍时,妹妹9岁;当妹妹年龄是姐姐一半时,爸爸34岁。
现在三人的年龄各是多少?【家庭作业1】:一本书被撕裂成了两部分,每一部分的页数都是连续的,如果该书一共687个数字,并且第一页的第一部分比第二部分多5页,那么第一部分有几页?第三讲小升初必考专题之行程【拓1】:甲乙两列火车火车速度比是5:4,乙车先走,从B站到A站。
2016年学而思年测五年级数学解析
110011323 340 191,余 191 也可以看成不足 323 191 132 。
所以当132 323n 是 100 的倍数时,才能保证只改动 110011 的千位、百位数字,而得
到 3223 的倍数。
所以有 323n 的末位只能是10 2 8 ,所以 n 只能是 6,16,26, 验证有 n 16 时,132 32316 5300 ,所以原题的方框内填入 5,3 得到的 115311
2016 年第六届学而思年度质量监测五年级解析
一、填空题(共 5 道小题,每题 6 分,共 30 分) 1. 今天是 2016 年 8 月 23 日,以上出现的所有数字和能被两位质数__________整除.(例
如:2015 年 7 月 29 日,数字和 26 能被两位质数 13 整除) 【考点】质数合数 【难度】☆ 【答案】11
3
12. 甲已知 Y 分解质因数后,只有两个质因数 a 和 b,且因数个数为 24,则 8Y 分解质因数 后,因数个数最少有__________个.
【考点】因倍质合 【难度】☆☆☆ 【答案】30 【分析】Y= ambn ,且 (m 1)(n 1) 24 ,则 Y = a1b11 、 a2b7 或 a3b5 .则 8Y= 23 a1b11 、 23 a2b7
【考点】容斥原理 【难度】☆☆ 【答案】16
【分析】画出韦恩图,容易得到带了和其正的人中有 50 14 8 12 16 人没有带王老吉.
王老吉 8
12
14
加多宝
?
和其正
2
9. 从 0,1,2,3,4,5,6 中选出 4 个数组成四位数,每个数只能选一次,那么一共可以
第15讲 必胜策略
四年级 2019 第15讲 必胜策略3.1第15讲 必胜策略一、基本前提游戏双方足够聪明,目的都是获胜。
二、方法:倒推 三、游戏类型(一)拿火柴棍/抢数 如:桌子上放着10根火柴,二人轮流每次取走1—2根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗?分析:如果从开始分析,“局面”太大,有太多种取法要讨论。
所以我们尝试从结果倒推。
如上图,要必胜,也就是要让自己拿到10号火柴,那就应给对方留下8,9,10三根火柴供他取,这样对方不管取一根还是两根,自己都能拿到最后的10号火柴。
照这样分析,自己应该拿到7号火柴(这样就是给对方留下了8,9,10号三根)就必胜。
同理分析,要想取7号,就应该取4号,要想取4号,就应该取1号。
那么,本题的制胜点就是1,4,7,10号火柴,对于足够聪明的人来说,拿到第一个制胜点1号火柴,一定能拿到其余的制胜点。
所以本题要必胜,就要抢先取1根,然后对方取a 根,自己就取3-a 根,这样保证自己能取到每一个制胜点,最终取到10号火柴。
总结一下,同学们应该能看出,这里面有周期现象(只是周期是从后往前排布的),周期是几呢?是可取的最大限度2再加1等于3,制胜点是哪些呢?是每个周期的最后一根。
掌握此规律,就不难总结出这类题的解题方法了: 解题方法:(1)找周期:周期等于可拿最大限度+1 (2)总数÷周期1 桌子上放着60根火柴,聪明昊、神奇涛二人轮流每次取走1—3根,规定谁取走最后一根火柴谁获胜。
你知道必胜的方法吗? 解析: 周期为 3+1=4(根)60÷4=15(组) (整除,应该抢后) 制胜点:4,8,12……60 做法:1、让对方先取2、对方取a 根,自己就取4-a 根 2 有一种抢数游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜。
如“抢50”,规定每次必须报1或2个1 2 3 4 5 6 7 8 9 10有余数:抢先拿余数 整除(余数为0):抢后假3.2自然数,从1开始,谁抢报到50为胜。
2014年10月6日学而思杯五年级真题及详解(数学)
7 7 1 1 1 35 1 (3) SBEHF S△BEF S△HEF ,其中 S△BEF , S△HE 9 2 198 9
S BEHF
35 1 19 198 9 66
四、阅读材料并回答下列问题(每小题 4 分,共 16 分)
(4)解方程: 4(2 x 3) 5 9 x 2 【考点】计算,整数计算,分数计算,解一元一次整式方程 【难度】☆ 【答案】 (1)165; (2)5; (3)1; (4) x 5 【分析】 (1)原式 1 9 25 49 81 165 ;
38 1 15 (2)原式 190 190 5 ; 2014 2014 38
(3)原式
17 4 3 13 1; 3 13 4 17
(4) 8x 12 5 9 x 2 17. 列方程解应用题(6 分)
7 2 9 x 8x
x5
学而思学校某年级共有学生 400 人,新学期开始后,这个年级男生人数变成原来的 2 倍,而女生 人数变成原来的一半,此时,这个年级共有学生 560 人.那么,这个年级现在男、女学生各有多 少人? 【考点】应用题,列方程解应用题 【难度】☆☆ 【答案】男生 480 人,女生 80 人 【分析】设原有男生 x 人,则原有女生 400 x 人. 有方程 2 x 有男生 240 2 480 人,现在有女生 560 480 80 人. 18. 下图是一张把 4 6 的方格纸去掉两个角所得的图形. (1)请把其中的一些格子涂上阴影,使得每个 1 2 小长方形(不论横竖)的 2 个方格中都恰有 1 个阴影方格和 1 个空白方格; (4 分) (2)能否用 11 个 1 2 小长方形恰好拼满这张方格纸?如果能,请给出一种方法;如果不能,请 说明理由. (6 分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
7.8 + 2.3 = _________ 1.49 _ 1 = _________
5 × 0.8 = _________
0.3 × 0.078 = _________
35.92 + 1.357 = _________ 60 _ 13.46 = _________ 0.04 × 9 = _________
0.98 × 0.07 = _________
★★黄金高手★★
0.5 × 0.725 = _________ 0.35 × 0.03 = _________ 0.8 × 0.79 = _________ 0.392 ÷ 0.8 = _________
0.45 × 0.54 = _________ 0.08 × 0.09 = _________ 0.93 × 0.92 = _________ 0.51 ÷ 0.85 = _________
★★★王者大神★★★
4.9 + 5.9 _ 3.992 = _________
19.7 + 0.56 × 3.25 = _________
0.36 ÷ 0.72 × 2 = _________
解方程: x + 0.9 =
4.9
x = _________
27.4 _ 2.96 _ 5.004 = _________ 0.48 × 2.55 _ 0.33 = _________ 0.0943 ÷ 0.23 × 6 = _________ 解方程: 9 × x = 306
0.2 × 0.019 = _________
27.1 + 4.226 = _________ 65.99 _ 18.06 = _________ 0.61 × 9 = _________
0.67 × 0.05 = _________
★★黄金高手★★
0.6 × 0.502 = _________ 0.5 × 0.03 = _________ 0.7 × 0.864 = _________ 0.424 ÷ 0.8 = _________
0.19 × 0.08 = _________
★★黄金高手★★
0.4 × 0.51 = _________ 0.17 × 0.06 = _________ 0.7 × 0.338 = _________ 0.259 ÷ 0.7 = _________
0.29 × 0.54 = _________ 0.18 × 0.105 = _________ 0.88 × 0.35 = _________ 0.576 ÷ 0.64 = _________
x = _________
第5天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
7.2 + 1.1 = _________ 2.24 _ 0.66 = _________
4 × 0.2 = _________
0173 = _________ 56.63 _ 17.63 = _________ 0.77 × 9 = _________
★★★王者大神★★★
4.9 + 4.9 _ 3.997 = _________
24.2 + 0.64 × 4.25 = _________
0.532 ÷ 0.76 × 5 = _________
解方程: x + 0.6 =
9.1
x = _________
29.2 _ 1.99 _ 6.008 = _________ 0.64 × 3.25 _ 0.44 = _________ 0.1794 ÷ 0.39 × 9 = _________ 解方程: 7 × x = 273
第1天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
2.9 + 1.5 = _________ 1.51 _ 0.71 = _________
4 × 0.3 = _________
0.4 × 0.073 = _________
30.94 + 4.144 = _________ 58.7 _ 21.64 = _________ 0.94 × 8 = _________
0.83 × 0.08 = _________
★★黄金高手★★
0.5 × 0.416 = _________ 0.93 × 0.04 = _________ 0.8 × 0.978 = _________ 0.552 ÷ 0.8 = _________
0.37 × 0.44 = _________ 0.16 × 0.045 = _________ 0.74 × 0.55 = _________ 0.688 ÷ 0.86 = _________
0.51 × 0.3 = _________ 0.06 × 0.12 = _________ 0.72 × 0.44 = _________ 0.252 ÷ 0.28 = _________
★★★王者大神★★★
4.7 + 8.8 _ 4.995 = _________
23.3 + 0.16 × 4.25 = _________
0.364 ÷ 0.91 × 4 = _________
解方程: x + 0.9 =
9.8
x = _________
29.2 _ 2.99 _ 7.001 = _________ 0.16 × 1.9 _ 0.36 = _________ 0.2585 ÷ 0.47 × 9 = _________ 解方程: 7 × x = 147
★★★王者大神★★★
3.7 + 8.9 _ 3.991 = _________
20.1 + 0.48 × 3.75 = _________
0.128 ÷ 0.32 × 5 = _________
解方程: x + 0.4 =
5.2
x = _________
28.1 _ 1.96 _ 7.004 = _________ 0.16 × 2.7 _ 0.3 = _________ 0.119 ÷ 0.35 × 9 = _________ 解方程: 4 × x = 152
0.86 × 0.07 = _________
★★黄金高手★★
0.6 × 0.631 = _________ 0.26 × 0.09 = _________ 0.7 × 0.871 = _________ 0.322 ÷ 0.7 = _________
0.13 × 0.45 = _________ 0.18 × 0.09 = _________ 0.85 × 0.74 = _________ 0.216 ÷ 0.24 = _________
0.4018 ÷ 0.98 × 9 = _________
解方程: 3 × x =
48
x = _________
第4天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
7.9 + 2 = _________ 2.06 _ 0.54 = _________
5 × 0.7 = _________
★★★王者大神★★★
4.7 + 8.9 _ 4.991 = _________
17.1 + 0.4 × 4.75 = _________
0.546 ÷ 0.91 × 3 = _________
解方程: x + 0.2 =
4.6
x = _________
27.5 _ 3.97 _ 7.005 = _________ 0.4 × 3.45 _ 0.3 = _________ 0.0648 ÷ 0.54 × 9 = _________ 解方程: 5 × x = 190
0.63 × 0.09 = _________
★★黄金高手★★
0.3 × 0.731 = _________ 0.44 × 0.09 = _________ 0.8 × 0.414 = _________ 0.32 ÷ 0.8 = _________
0.49 × 0.55 = _________ 0.16 × 0.09 = _________ 0.63 × 0.89 = _________ 0.768 ÷ 0.96 = _________
x = _________
第6天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
2.3 + 1.1 = _________ 2.53 _ 0.38 = _________
3 × 0.7 = _________
0.2 × 0.086 = _________
38.45 + 0.609 = _________ 55.67 _ 18.01 = _________ 0.34 × 8 = _________
x = _________
第2天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
5.8 + 2.2 = _________ 2.28 _ 1.25 = _________
4 × 0.3 = _________
0.4 × 0.053 = _________
47.07 + 0.146 = _________ 62.72 _ 19.2 = _________ 0.75 × 6 = _________
x = _________
第3天
挑战时间 ______ 分钟 错 ______ 题 ★青铜新人★
3.7 + 1.1 = _________ 1.4 _ 0.44 = _________ 5 × 0.4 = _________