高二物理选修3-2第四章《电磁感应》知识复习提纲

合集下载

人教版高中物理选修3-2高三知识点总结:第四章电磁感应.docx

人教版高中物理选修3-2高三知识点总结:第四章电磁感应.docx

高中物理学习材料(灿若寒星**整理制作)高三物理选修3-2知识点总结:第四章电磁感应(人教版)第四章:电磁感应本章的主要内容是实验探究,通过亲身实验,理解法拉第是如何发现电磁感应现象的,进而通过实验探究产生感应电流的条件、感应电流的方向及大小,通过实验认识自感现象,并分析其原因援在深刻认识实验现象的基础上,总结相关的物理规律,并结合实际情况灵活应用。

知识构建:新知归纳:●电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

●电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

●电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

●对电磁感应的理解:电和磁有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:①变化的电流。

②变化的磁场。

③运动的恒定电流。

④运动的磁场。

⑤在磁场中运动的导体。

●磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

●产生感应电流的条件:一是电路闭合。

高中物理选修3-2复习提纲

高中物理选修3-2复习提纲

选修3-2知识点复习提纲一、电磁感应现象利用磁场产生电流的现象叫电磁感应,是1831年______________发现的。

1、产生感应电流的条件:(1)___________________ (2)______________________ 2、感应电动势:(1)概念:在电磁感应现象里产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源。

(2)规律:在电磁感应现象中,既然闭合回路中有电流,这个电路就一定有电动势,电路断开时,虽然没有感应电流,但电动势依然存在。

(3)感应电动势E 的大小决定于穿过电路的磁通量的变化率的大小,而与线圈的大小、磁感应强度的大小没有必然联系,与电路的电阻无关;感应电流的大小与E 和回路总电阻R 有关。

(4)磁通量的变化率 ,是Φ-t 图象上某点切线的______________。

(5)磁通量发生变化的三种方式一是磁感应强度B 不变,垂直与磁场的回路面积发生变化,此时E=_____________ 二是垂直于磁场的回路面积S 不变,磁感应强度发生变化,此时E=_______________ 三是磁感应强度和线圈面积均不变,而是线圈绕平面内的某一轴转动即θ发生变化。

3、法拉第电磁感应定律(1)内容:_______________________________________________________________。

(2)公式:①______________②______________ 注意:①式普遍适用于求______感应电动势。

2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

严格区别磁通量Φ, 磁通量的变化量ΔΦ, 磁通量的变化率 , 磁通量φ=B S ·, 表示__________________________________ 磁通量的变化量∆φφφ=-21, 表示__________________________________ 磁通量的变化率 表示__________________________________②式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。

物理选修3---2第四章电磁感应知识点汇总

物理选修3---2第四章电磁感应知识点汇总

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式物理选修3--2第四章电磁感应知识点汇总(训练版)知识点一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化。

开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流。

知识点二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。

....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。

(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。

(3)磁场强度B变化或有效面积S变化。

(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

知识点三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。

从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。

人教版高二物理选修3-2 第四章_ 电磁感应 总复习

人教版高二物理选修3-2 第四章_ 电磁感应 总复习

第四章 总复习1、(2004年新老课程内蒙、海南、西藏、陕西等地区试题)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图12-1所示.磁感应强度B 随时间t 变化的规律如图12-1所示.以I 表示线圈中的感应电流,以图12-1中线圈上箭头所示方向的电流为正,则以下的I -t 图12-2中正确的是【解析】本题主要考查学生应用楞次定律判断感应电流方向的能力,以及法拉第电磁感应定律具体应用的能力.根据法拉第电磁感应定律tB nS t B S n t n E ∆∆=∆∆=∆∆=φ及磁场的变化情况可知:0到1磁场的磁感应强度是均匀增大的,所以产生的感应电动势是恒定的,由于电阻是恒定的,故感应电流是恒定不变的;同理,1到2、3到4、5到6感应电流都是恒定不变的;而2到3和4到5由于磁场的磁感应强度没有变化,所以感应电流为零.感应电流的方向可以根据楞次定律进行判断.在应用楞次定律进行判断的时候要注意感应电流产生的磁场总要阻碍原磁场的磁通量的变化,即原磁场的磁通量要增加,那么感应电流产生的磁场就要阻碍它增加,反之要阻碍它减小.0到1内磁场的磁感应强度是增大的,由于线圈的面积不变,故磁通量增加,所以感应电流产生的磁场与原磁场方向相反.由此可知感应电流的方向是逆时针方向,与规定的方向相反,所以是负的.同理可得1到2是正的、3到4是负的、5到6是正的.综上所述正确答案是A【答案】A2、如图12-3所示,磁带录音机既可用作录音,也可用作放音,其主要部件为可匀速行进的磁带a 和绕有线圈的磁头b ,不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象.下面对于它们在录音、放音过程中主要工作原理的描述,正确的是( )A 、放音的主要原理是电磁感应,录音的主要原理是电流的磁效应B 、录音的主要原理是电磁感应,放音的主要原理是电流的磁效应C 、放音和录音的主要原理都是磁场对电流的作用D 、录音和放音的主要原理都是电磁感应【解析】录音是声音信号通过话筒转化为电信号,电信号再通过磁头转化为磁信号记录在磁带上的过程,所以录音的过程主要原理是电流的磁效应.放音是记录在磁带上的磁信号通过绕在磁头上的线圈产生感应电流,转化为电信号,然后电信号再通过扬声器转变为声音信号,所以放音过程的主要原理是电磁感应.【答案】A3、如图12-4所示的电路,1D 和2D 是两个相同的小电珠,L 是一个自感系数很大的线圈,其电阻与R 相同.由于存在自感现象,在电键S 接通和断开时,小电珠1D 和2D 先后亮暗的次序是( )A 、接通时1D 先达最亮,断开时1D 先暗B 、接通时2D 先达最亮,断开时2D 先暗C 、接通时1D 先达最亮,断开时1D 后暗D 、接通时2D 先达最亮,断开时2D 后暗【解析】当电键S 接通时,由于自感现象的存在,流过线圈的电流由零变大时,线圈上产生自感电动势的方向是左边正极,右边负极,使通过线圈的电流从零开始慢慢增加,所以开始瞬时电流几乎全部从1D 通过,而该电流又将同时分路通过2D 和R ,所以1D 先达最亮,经过一段时间电路稳定后,1D 和2D 达到一样亮.当电键S 断开时电源电流立即为零,因此2D 立即熄灭,而对1D ,由于通过线圈的电流突然减弱,线圈中产生自感电动势(右端为正极,左端为负极),使线圈L 和1D 组成的闭合电路中有感应电流,所以1D 后暗.【答案】C4、如图12-5所示,甲图中线圈A的a、b端加上如图乙所示的电压时,在0~t0时间内,线圈B中感应电流的方向及线圈B的受力方向情况是( )A、感应电流方向不变; B、受力方向不变;C、感应电流方向改变; D、受力方向改变.【解析】在前一段过程由乙图可知线圈A 中的电流逐渐增大,所以线圈的磁通量也逐渐增大.由楞次定律可以判断感应电流的方向从左往右看是逆时针方向,安培力的方向向右.在后一段过程由乙图可知线圈A 中的电流逐渐减小,所以线圈的磁通量也逐渐减小,但磁场方向与前一段过程相反.由楞次定律可以判断感应电流的方向从左往右看也是逆时针方向,但安培力的方向向左.故感应电流方向不变;受安培力的方向改变.【答案】AD5、如图12-6所示,ab 是一个可绕垂直于纸面的轴O 转动的闭合矩形导线框.当滑动变阻器的滑片P 自左向右滑动时,从纸外向纸内看,线框ab 将( )A 、保持静止不动B 、逆时针转动C 、顺时针转动D 、发生转动,但电源极性不明,无法确定转动方向.【解析】无论电源的极性如何,在两电磁铁中间的区域内应产生水平的某一方向的磁场,当滑片P 向右滑动时,电流减小,两电磁铁之间的磁场减弱,即穿过ab 线圈的磁通量减小.虽然不知ab 中感应电流的方向,但由楞次定律中的“阻碍”可直接判定线框ab 应顺时针方向转动(即向穿过线框的磁通量增加的位置――竖直位置转动).【答案】C6、如图12-7所示的整个装置放在竖直平面内,欲使带负电的油滴P在两平行金属板间静止,导体棒ab 将沿导轨运动的情况是( )A 、向右匀减速运动B 、向右匀加速运动C 、向左匀减速运动D 、向左匀加速运动【解析】对油滴有mg qE =,电场力向上.又由于油滴带负电,故电场强度方向向下,电容器上极板带正电,下极板带负电,线圈感应电动势正极在上端,负极在下端.由楞次定律得知ab 向右减速运动或向左加速运动.【答案】AD7、如图12-8所示,MN 是一根固定的通电长直导线,电流方向向上.今将一金属线框abcd 放在导线上,让线框的位置偏向导线的左边,两者彼此绝缘.当导线中的电流突然增大时,线框整体受力情况为( )A 、受力向右B 、受力向左C 、受力向上D 、受力为零【解析】导线中的电流突然增大时,金属框abcd 中的磁通量增加,由楞次定律可得,线框中的感应电流将阻碍它的增加,而导线在金属框中间位置时金属框内的磁通量为零.故金属框有向右运动的趋势.【答案】A8、如图12-9所示,要使金属环C 向线圈A 运动,导线ab 在金属导轨上应( )A 、向右做减速运动;B 、向左做减速运动;C 、向右做加速运动;D 、向左做加速运动.【解析】要使金属环C 向线圈A 运动,由楞次定律可得金属环C 中的磁通量必定减少,由此判定螺线管的感应电流减小.而螺线管的感应电流是由于ab 导线做切割磁感线运动产生的,所以ab 导线的运动将越来越慢,即减速运动.【答案】AB9、如图12-10所示,有一电阻不计的光滑导体框架,水平放置在磁感应强度为B 的竖直向上的匀强磁场中,框架宽为l .框架上放一质量为m 、电阻为R的导体棒.现用一水平恒力F 作用于棒上,使棒由静止开始运动,当棒的速度为零时,棒的加速度为________;当棒的加速度为零时,速度为_______.【解析】速度为零时,水平方向只受水平恒力F 作用,故m F a =;由于加速度为零时,受力平衡,可得方程:F l R l B B=υ 得:22l B FR =υ 【答案】m F 22lB FR 10、金属导线AC 垂直于CD ,AC 、CD 的长度均为1m ,电阻均为Ω5.0,在磁感应强度为1T 的匀强磁场中以s m /2的速度匀速向下运动,如图12-11所示,则导线AC 中产生的感应电动势大小是_______V ,导线CD中的感应电动势大小是________V .【解析】AC 中产生的感应电动势,由于金属导线与磁感应强度及速度都垂直,所以由L B E υ=得:V V E 2121=⨯⨯=而CD 中由于金属导线与运动速度平行,即CD 金属导线没有作切割磁感线运动,所以感应电动势为零.【答案】2V ;011、如图12-12所示,导轨与一电容器的两极板C 、D 连接,导体棒ab 与导轨接触良好,当ab 棒向下运动时,带正电的小球将向_____________板靠近.【解析】ab 棒向下作切割磁感线运动,由右手定则得b 端电势高,所以D 板带正电,故带正电的小球向C 板靠近.【答案】向C 板靠近12、如图12-13所示,两块水平放置的金属板间距为d ,用导线与一个n 匝的线圈连接,线圈置于方向竖直向上的均匀磁场B 中.两板间有一个质量为m 、电量为+q 的微粒,恰好处于静止状态,则线圈中磁场B 的变化情况是正在_________;其磁通量的变化率为____________.【解析】由于带电粒子恰好处于静止状态,所以有电场力与重力平衡.而两板间的电势差与线圈产生的感应电动势相等.带电粒子受到一个向上的电场力和向下的重力,所以下板电势高.由楞次定律可以判断出线圈的磁通量在减少,故磁感应强度B 在减小.由平衡条件得:q E mg 电= 所以q mg E =电 而dE d U E ==电 得qmgd d E E ==电 根据法拉第电磁感应定律得:t nE ∆∆=φ nq mgd n E t ==∆∆φ 【答案】减小;nqmgd 13、如图12-14所示,不计电阻的U 形导轨水平放置,导轨宽m 5.0,左端连接阻值为0.4Ω的电阻R ,在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m =2.4g 的重物,图中m L 8.0=,开始重物与水平地面接触并处于静止,整个装置处于竖直向上的匀强磁场中,磁感强度T B 5.00=,并且)/(1.0s T TB =∆∆的规律在增大,不计摩擦阻力,求至少经过多长时间才能将重物吊起?(2/10s m g =)【解析】根据题意可知:开始导体棒没有运动时U 形导轨和导体棒所构成的闭合回路的面积保持不变,而磁感应强度B 在增大,由法拉第电磁感应定律得V V S tB t E 04.08.05.01.0=⨯⨯=⋅∆∆=∆∆=φ 而磁场的磁感应强度的变化规律)(1.05.00T t t t B B B +=⋅∆∆+= 要把重物吊起来,则绳子的拉力必须大于或等于重力.设经过时间t 重物被吊起,此时磁感应强度为)(1.05.0T t B +=所以安培力为)1.05.0(04.05.01.04.004.0)1.05.0()1.05.0(t t L r R E t BIL F +=⨯+⨯+=++== 根据平衡条件得:mg t F =+=)1.05.0(04.0 解得:t =1s【答案】t =1s14、如图12-15所示,长为L 、电阻Ω=3.0r 、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计.导轨左端接有Ω=5.0R 的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场垂直向下穿过平面.现以向右恒定外力F 使金属棒右移.当金属棒以s m /2=υ的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由;(2)拉动金属棒的外力多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电荷量.【解析】(1)若电流表满偏,则I =3A ,U =IR =1.5V ,大于电压表的量程,故是电压表满偏.(2)由功能关系:)(2r R I F +=υ,而R U I =,故N R r R U F 6.1)(22=+=υ (3)由动量定理:t IBL m ∆⋅=∆υ,两边求和得到BLq m =υ由电磁感应定律得:L B E υ= )(r R I E +=代入解得:C r R I m q 25.0)(2=+=υ 15、匀强磁场的磁感应强度为B ,方向竖直向上,在磁场中有一个总电阻为R 、每边长为L 的正方形金属框abcd ,其中ab 、cd 边质量均为m ,其它两边质量不计,cd 边装有固定的水平轴.现将金属框从水平位置无初速释放,如图12-16所示,若不计一切摩擦,金属框经时间t 刚好到达竖直面位置cd b a //.(1)ab 边到达最低位置时感应电流的方向;(2)求在时间t 内流过金属框的电荷量;(3)若在时间t 内金属框产生的焦耳热为Q ,求ab 边在最低位置时受的磁场力多大?【解析】(1)感应电流的方向由/a 到/b . (2)由t RE t I q ∆=∆= t E ∆∆=φ 20BL BS =-=∆φ 整理得:R BL q 2=(3)由能的转化与守恒定律得:Q m mgL +=221υ 又由L B E υ=,R E I =,BIL F = 整理得:m Q gL RL B F 2222-= 【答案】(1)由/a 到/b (2)R BL q 2= (3)m Q gL R L B F 2222-= 16、有足够长的平行金属导轨,电阻不计,导轨光滑,间距m l 2=.现将导轨沿与水平方向成030=θ角倾斜放置.在底部接有一个Ω=3R 的电阻.现将一个长为m l 2=、质量kg m 2.0=、电阻Ω=2r 的金属棒自轨道顶部沿轨道自由滑下,经一段距离后进入一垂直轨道平面的匀强磁场中(如图12-17所示).磁场上部有边界,下部无边界,磁感应强度T B 5.0=.金属棒进入磁场后又运动了m S 30/=后开始做匀速直线运动,在做匀速直线运动之前这段时间内电阻R 上产生了J Q 36=的内能(2/10s m g =).求:(1)金属棒进入磁场后速度s m /15=υ时的加速度a的大小及方向;(2)磁场的上部边界距顶部的距离S .【解析】(1)金属棒从开始下滑到进入磁场前由机械能守恒得:221sin υθm S mg =⋅ 进入磁场后棒上产生感应电动势l B E υ=,又有rR E I += 金属棒所受的安培力沿轨道向上,大小为 BIl F =安由牛顿第二定律得: ma F mg =安-θsin整理得:ma l rR l B Bmg =+-υθsin 代入得:2/10s m a -=负号表示其方向为沿轨道向上.(2)设匀速运动时的速度为t υ,金属棒做匀速运动时根据平衡条件得: r R l B mg t +=υθ22sin 即s m l B r R mg t /5)(sin 22=+=θυ 自金属棒进入磁场到做匀速运动的过程中由能的转化与守恒得:)(21sin 22/υυθ--⋅t m E S mg =电 又有电功率分配关系E r R RE Q +=电 J Q Rr R E 60=+=电代入解得:S =32.5m【答案】(1)2/10s m 方向为沿轨道向上;(2)32.5m。

(完整版)高二物理--选修3-2知识点复习

(完整版)高二物理--选修3-2知识点复习

2018年高二物理 选修3-2知识点复习知识点一:电磁感应现象Ⅰ 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

知识点二:感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。

如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。

从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

三、法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

人教版高中物理选修3-2第四章电磁感应章节复习(共53张PPT)

人教版高中物理选修3-2第四章电磁感应章节复习(共53张PPT)
无论回路是否闭合,只要穿过线 圈平面的磁通量发生变化,线圈中 就有感应电动势.产生感应电动势 的那部分导体相当于电源
课堂练习
线圈在长直导线电流的磁场中,作如图的运
动: A.向右平动
B.向下平动
C.绕轴转动(ad边向外)
D.从纸面向纸外作平动
E.向上平动(E线圈有个缺口)
判断线圈中有没有感应电流?
3.感应电流方向的判断
结论:感应电动势与线圈的形状和转动轴的具体 位置无关(但是轴必须与B垂直)
课堂练习
如图所示,矩形线圈同n=50匝导线组成,ab边长 L1=0.4m,bc边长L2=0.2m,在B=0.1T的匀强磁场中, 以两短边中点的连线为轴转动,ω=50rad/s,求: (1)线圈从图甲位置转过180o过程中的平均电动势 (2)线圈从图乙位置转过30o时的瞬时电动势
向、同强度的电流,导线框ABCD和两导线在同一 平面内,导线框沿着与两导线垂直的方向自右向 左在两导线间匀速运动.在运动过程中,导线框 中感应电流的方向( )
A.沿ABCD方向不变.
B.由ABCD方向变成ADCB方向.
C.沿ADCB方向不变.
D.由ADCB方向变成ABCD方向.
课堂练习
如图所示,一磁铁用细线悬挂,一闭合铜环用
B.电键S由闭合到断开瞬间
C.电键S是闭合的,变阻器滑片P向左迅速 滑动
D.电键S是闭合的,变阻器滑片P向右迅速 滑动
如图(a),圆形线圈P静止在水平桌面上, 其正上方悬挂一相同的线圈Q,P和Q共轴.Q 中通有变化电流,电流随时间变化的规律如 图(b)所示.P所受的重力为G,桌面对P的 支持力为N,则 A.t1时刻N>G B.t2时刻N>G C.t3时刻N<G D.t4时刻N=G

高中物理选修3-2:电磁感应知识点归纳

高中物理选修3-2:电磁感应知识点归纳

高中物理选修3-2:电磁感应知识点归纳展开全文高中知识搜索小程序一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,;沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

物理选修3-2人教新课标第四章电磁感应单元复习汇总

物理选修3-2人教新课标第四章电磁感应单元复习汇总
1
2
(1)楞次定律揭示了判断感应电流方向的规律, 即“感应电流的磁场”总是要阻碍引起感应电流的磁通 量的变化,其核心思想是阻碍,楞次定律提供了判断 感应电流方向的基本方法。
3
(2)楞次定律说明电磁感应现象是符合能量守恒定律 的,因此我们可以将楞次定律的含义推广为“感应电流的 效果,总是要反抗产生感应电流的原因”。这些原因包括 外磁场变化、相对位置变化、相对面积变化和导体中电 流变化。这样运用推广的含义解题,特别是判断闭合导 体的运动要比应用楞次定律本身去判断简便得多。
7
(2)这些图像问题大体上可分为两类: ①由给定的电磁感应过程选出或画出正确图像。 ②由给定的有关图像分析电磁感应过程,求解相应的 物理量。 不管是何种类型,电磁感应中的图像问题常需利用右 手定则、左手定则、楞次定律和法拉第电磁感应定律等规 律分析解决。
8
[例证2]
(2012· 新课标全国卷)如图4-2,
9
图 4- 3
10
[解析]
因通电导线周围的磁场离导线越近磁场
越强,而线框中左右两边的电流大小相等,方向相反,
所以受到的安培力方向相反,导线框的左边受到的安 培力大于导线框的右边受到的安培力,所以合力与左
边导线框受力的方向相同。因为线框受到的安培力的
合力先水平向左,后水平向右,根据左手定则,导线 框处的磁场方向先垂直纸面向里,后垂直纸面向外, 根据右手螺旋定则,导线中的电流先为正,后为负, 所以选项A正确,选项B、C、D错误。
21
(2)而当线框的 ab 边到达 gg′与 ff′的正中间位置(如图中的位置③所 示)时,线框又恰好做匀速运动,说 明 mgsin θ=4BI2L 1 故 I2= I1 4 BLv′ BLv 1 由 I1= R 及 I2= R 可知,此时 v′= v 4

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结第四章电磁感应4.1划时代的发现一、奥斯特的“电生磁”1820年,丹麦物理学家奥斯特发现了电流的磁效应它揭示了电现象与磁现象之间存在着某种联系。

二、法拉第的“磁生电”(1)、“磁生电”的发现英国物理学家法拉第经过10年的不懈努力,在1831年8月29日发现由磁场得到电流的现象,叫做电磁感应。

[(2)、产生电流的原因在电磁感应现象中产生的电流叫做感应电流。

法拉第把产生这种电流的原因概括为五类:变化的电流,变化的磁场,运动的恒定的电流,运动的磁铁,在磁场中运动的导体。

4.2探究电磁感应的产生条件一、相关实验及分析论证实验装置运动方式部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化):磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变)线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变)磁通量是否发生变化磁通量发生变化实验结论有感应电流产生只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。

;4.3楞次定律一.相关实验相关实验规律总结:(1)、原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用(2)、原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用!即:(增反减同)二、楞次定律——感应电流的方向(1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)、理解:①、阻碍既不是阻止也不等于反向(增反减同)“阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化..②、注意两个磁场:原磁场和感应电流磁场强调: a、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

]b、从导体和磁体的相对运动的角度来看,感应电流总要阻碍相对运动。

③、阻碍的过程中,即一种能向另一种转化的过程例:若条形磁铁是自由落体,则磁铁下落过程中受到向上的阻力,即机械能→电能→内能(3)、应用楞次定律步骤:①、确定原磁场的方向;②、搞清穿过闭合回路的磁通量是增加还是减少;③、根据楞次定律判定感应电流的磁场方向;④、利用感应电流的磁场方向判定感应电流的方向。

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结

第四章 电磁感应知识点总结1.两个人物:a.________:磁生电 b.________:电生磁2.感应电流的产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当 于电源③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则(2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同)④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律:A. 内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

B. 表达式:tn E ∆∆=φ(2)磁通量发生变化情况 ①B 不变,S 变,S B ∆=∆φ ②S 不变,B 变,BS ∆=∆φ ③B 和S 同时变,12φφφ-=∆ (3)计算感应电动势的公式①求平均值:tn E ∆∆=φ②求瞬时值:BLv E =(导线切割类)③导体棒绕某端点旋转:ω221BL E =5.感应电流的计算:瞬时电流:总总R BLvR E I ==(瞬时切割) 6.安培力的计算:瞬时值:rR vL B BIL F +==227.通过截面的电荷量:rR n t I q +∆=∆=φ注意:求电荷量只能用平均值,而不能用瞬时值 8.自感:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。

另外,有铁芯的线圈自感系数比没有铁芯时大得多。

(3)类型:通电自感和断电自感(4)单位:亨利(H )、毫亨(mH )、微亨(H μ)(5)涡流及其应用①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿第五章 交变电流知识点总结一、交变电流的产生 1.原理:电磁感应2.两个特殊位置的比较: 中性面:线圈平面与磁感线垂直的平面。

高二物理选修3-2第四章《电磁感应》知识复习提纲

高二物理选修3-2第四章《电磁感应》知识复习提纲

高三物理选修3-2知识点总结:第四章电磁感应(人教版)第四章:电磁感应本章的主要内容是实验探究,通过亲身实验,理解法拉第是如何发现电磁感应现象的,进而通过实验探究产生感应电流的条件、感应电流的方向及大小,通过实验认识自感现象,并分析其原因援在深刻认识实验现象的基础上,总结相关的物理规律,并结合实际情况灵活应用。

知识构建:新知归纳:●电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

●电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

●电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在了解的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

●对电磁感应的理解:电和磁有着必然的了解,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:①变化的电流。

②变化的磁场。

③运动的恒定电流。

④运动的磁场。

⑤在磁场中运动的导体。

●磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

●产生感应电流的条件:一是电路闭合。

二是磁通量变化。

●楞次定律:内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理选修3-2知识点总结:第四章电磁感应(人教版)第四章:电磁感应
本章的主要内容是实验探究,通过亲身实验,理解法拉第是如何发现电磁感应现象的,进而通过实验探究产生感应电流的条件、感应电流的方向及大小,通过实验认识自感现象,并分析其原因援在深刻认识实验现象的基础上,总结相关的物理规律,并结合实际情况灵活应用。

知识构建:
新知归纳:
●电流的磁效应:
把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

●电流磁效应现象:
磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒
偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,
当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:
同向电流相吸,异向电流相斥。

●电磁感应发现的意义:
①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

●对电磁感应的理解:
电和磁有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:
①变化的电流。

②变化的磁场。

③运动的恒定电流。

④运动的磁场。

⑤在磁场中运动的导体。

●磁通量:
闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:
虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

●产生感应电流的条件:
一是电路闭合。

二是磁通量变化。

●楞次定律:
内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

●楞次定律的理解:
①感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。

②“阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。

③定律本身并没有直接给定感应电流的方向,只是给定感应电流的磁场与原磁场间存在“阻碍”关系,要注意区分这两个磁场及其间的相互关系。

●应用楞次定律判断感应电流方向的步骤:
①明确所研究的闭合回路。

②判断原磁场方向。

③判断闭合回路内原磁场的磁通量变化。

④依据楞次定律判断感应电流的磁场方向。

利用安培定则(右手螺旋定则)根据感应电流的磁场方向,判断出感应电流方向。

●右手定则:
内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在一个平面内让磁感线从手心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

●楞次定律与右手定则的关系:
导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判断感应电流方向的右手定则也是楞次定律的特例援能用右手定则判断的,一定也能用楞次定律判断,只是不少情况下不如右手定则来得方便简单援反过来,用楞次定律能判断的,并不是用右手定则都能判断出来。

注意适用范围:
①楞次定律可应用于由磁通量变化引起感应电流的各种情况,右手定则只适用于一段导体在磁场中切割磁感线运动的情况,导体不动时不能用。

②注意研究对象:楞次定律研究的是整个闭合电路,右手定则研究的是闭合电路的一部分即一段导体做切割磁感线运动。

●感应电动势:
在电磁感应现象中产生的电动势叫做感应电动势,产生感应电动势的那部分导体就相当于电源。

●法拉第电磁感应定律:
内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比感应电动势的大小与磁通量的变化率成正比,与磁通量和磁通量的变化量没有关系。

公式:E=∆Φ∆t
●反电动势:
定义:电动机转动时,线圈中也会产生感应电动势,这个电动势总要削弱电源电动势的作用,我们把这个电动势称为反电动势。

●电磁感应规律的应用:
感生电动势的产生由感应电场使导体产生的电动势叫感生电动势,感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势,由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用。

●感生电场的应用:
电子感应加速器是应用感生电场对电子的作用来加速电子的一种装置,主要用于核反应研究。

●互感和自感:
互感现象:两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫做互感现象。

●对互感的三点理解:
①、互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

②、互感现象可以把能量由一个电路传到另一个电路援变压器就是利用互感现象制成的。

③、在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要求设法减小电路间的互感。

自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象。

互感现象是一种常见的电磁感应现象,不仅仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何两个相互靠近的电路之间,由于是一种电磁感应现象,所以可以用安培定则、楞次定律去分析。

自感电流的方向可用楞次定律判断,当导体中电流增加时,自感电流的方向与原来的方向相反;当电流减小时,自感电流的方向与原来电流的方向相同,在分析自感现象时,除了要定性分析通电和断电自感
现象外,还应半定量地分析电路中的电流变化,分析时主要抓住通过自感线圈的电流不能突变这一特点,其次是要注意电路结构在稳定和不稳定时的变化。

●涡流:
把块状的金属放在变化的磁场中,或者让它在磁场中运动时金属块内将产生感应电流,这种电流在金属块内组成闭合回路,很像水的漩涡,因此叫做涡流。

整块金属电阻很小,所以涡流常常很大。

●涡流的热效应:
线圈接入反复变化的电流,某段时间内,若电流变大,则其磁场变强,根据麦克斯韦理论,变化的磁场激发出感生电场,导体可以看做是由许多闭合线圈组成的,在感生电场作用下,这些线圈中产生了感生电动势,从而产生涡旋状的感应电流,由于导体存在电阻,当电流在导体中流动时,就会产生电热,这就是涡流的热效应。

●电磁阻尼和电磁驱动:
电磁阻尼:导体与磁场相对运动时,感应电流受到的安培力总是阻碍它们的相对运动,利用安培力阻碍导体与磁场间的相对运动就是电磁阻尼,磁电式仪表的指针能够很快停下,就是利用了电磁阻尼。

电磁驱动:导体与磁场相对运动时,感应电流受到的安培力总是阻碍它们的相对运动,应该知道安培力阻碍磁场与导体的相对运动的方式是多种多样的,当磁场以某种方式运动时导体中的安培力为阻碍导体与磁场间的相对运动使导体跟着磁场动起来(跟着转动),这就是电磁驱动。

●电磁驱动与磁悬浮列车:
磁悬浮列车是利用超导体产生抗磁作用使列车向上浮起而离开轨道,利用周期性地变换磁极方向产生运动的磁场,从而使车获得推动力,磁悬浮列车是目前世界上技术最先进、已经投入使用阶段的新型列车,具有的优点有:
①速度高。

②安全、平衡、舒适。

③列车与轨道间冲击小,寿命长,节能。

④基本上无噪音和空气污染。

●扩展阅读:
电磁感应现象的应用:动圈式话筒的原理
在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒、扩音器和扬声器三部分,如左下图。

话筒是把声音转变为电信号的装置,如上图是动圈式话筒的构造原理图,它是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永磁铁的磁场里振动,其中就产生感应电流(电信号)援感应电流的大小和方向都变化,振幅和频率的变化由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。

相关文档
最新文档