统计与概率精典例题解析(含答案)
小升初数学专题3:统计与概率(2)概率 经典题型及详细解析
![小升初数学专题3:统计与概率(2)概率 经典题型及详细解析](https://img.taocdn.com/s3/m/a50be3bb551810a6f5248652.png)
小升初数学专题三:统计与概率--概率一、选择题(共10题;共20分)1.(2分)天气预报中“明天的降水概率为20%”,表示明天()A.一定下雨B.不可能下雨C.可能下雨2.(2分)一枚硬币投掷3次,有2次正面朝上,1次反面朝上,投第4次时,反面朝上的可能性是()。
A. B. C. D.3.(2分)淘气和笑笑做摸球游戏,每次从袋子里任意摸出一个球,然后放回摇匀。
每人摸了30次,记录如下:红球蓝球黄球淘气19101笑笑18200袋子里各种颜色球的数量,下面不可能的情况是()。
A.红球19个,蓝球10个,黄球1个B.红球18个,蓝球12个,黄球0个C.红球18个,蓝球10个,黄球2个D.红球20个,蓝球10个,黄球2个4.(2分)一天早上8时下起了大雪,再过12时()。
A.可能出太阳B.一定出太阳C.不可能出太阳5.(2分)下列说法正确的是()A.彩票中奖的机会是1%,买100张一定能中奖。
B.从1、2、3、4、5这五个数字中任取一个数,取得奇数的可能性大。
C.可能性很小的事情在一次实验中一定不会发生。
D.一枚硬币,小明抛掷5次有4次正面向上,则抛掷一枚硬币正面向上的概率为0.8。
6.(2分)下面的事情能用“可能”描述的是()A.太阳绕着地球转。
B.小明骑车经过某个十字路口时遇到红灯。
C.地球上海洋面积大于陆地面积。
D.李刚的生日是2月30日。
7.(2分)下图是一个由形状大小相同的黑白小方块组成的长方形,李飞用一个小球在上面随意滚动,落在黑色方块的可能性为()A. B. C. D.8.(2分)有8瓶牛奶,其中只有2瓶过了保质期,现在从中任意取一瓶,取到没过期的牛奶的可能性是()。
A. B. C. D.9.(2分)小红和小芹做转盘游戏,如果停在黄色的区域算小红赢,停在红色的区域算小芹赢。
下面的()转盘是公平的。
A. B. C.10.(2分)丽丽和美美下象棋时,要选一种公平的游戏规则决定谁先走。
下面的游戏规则()不公平。
高考数学复习专题训练—统计与概率解答题(含解析)
![高考数学复习专题训练—统计与概率解答题(含解析)](https://img.taocdn.com/s3/m/8ef44f274b7302768e9951e79b89680203d86b7f.png)
高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
统计有关经典例题解析、及高考题50道,带答案
![统计有关经典例题解析、及高考题50道,带答案](https://img.taocdn.com/s3/m/36315b89f12d2af90342e652.png)
【经典例题】【例1】(2008广东).为了调查某厂工人生产某种产品的能力,随机抽 查了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)55,75的 人数是 . 【答案】13【解析】20(0.06510)13⨯⨯=,故答案为13.【例2】(2009山东)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).A. 90B.75C. 60D.45【答案】A【解析】产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为n ,则300.036=n,所以120=n ,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.故选A. 【例3】(2009上海)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。
根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A. 甲地:总体均值为3,中位数为4B. 乙地:总体均值为1,总体方差大于0C. 丙地:中位数为2,众数为3D. 丁地:总体均值为2,总体方差为3 【答案】D【解析】根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A 中,中位数为4,可能存在大于7的数;同理,在选项C 中也有可能;选项B 中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D 中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故答案选D. 【例4】(2009湖北)下图是样本容量为200的频率分布直方图。
初三数学统计与概率试题答案及解析
![初三数学统计与概率试题答案及解析](https://img.taocdn.com/s3/m/7c438b25abea998fcc22bcd126fff705cc175cf7.png)
初三数学统计与概率试题答案及解析1.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?【答案】(1)三年级有12名志愿者,两幅统计图补充完整见解析;(2)两名队长都是二年级志愿者的概率为.【解析】(1)设三年级有x名志愿者,由题意可列得方程 x=(18+30+x)×20%,求解此方程即可得到结果,二年级所占的百分比为1-50%-20%=30%,然后根据这些数据将两幅统计图补充完整即可;(2)首先根据题意画出树状图,然后由树状图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,从而求出两名队长都是二年级志愿者的概率.试题解析:(1)设三年级有x名志愿者,由题意得 x="(18+30+x)×20%" .解得x=12.答:三年级有12名志愿者.····························1分如图所示:···········································3分(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,树形图为··············5分从树形图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,所以P(两名队长都是二年级志愿者)=.···········································7分【考点】条形统计图;扇形统计图;概率公式.2.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)补图见解析;(3)3200;(4).【解析】(1)用B小组的频数除以B小组所占的百分比即可求得结论;(2)分别求得C小组的频数及其所占的百分比即可补全统计图;(3)用总人数乘以D小组的所占的百分比即可;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;(列表方法略,参照给分).P(C粽)=.答:他第二个吃到的恰好是C粽的概率是.考点: 1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.3.为迎接中招体育加试,需进一步了解九年级学生的身体素质,体育老师随机抽取九年级一个班共50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下图所示:请根据图表信息完成下列问题:(1)直接写出表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该班学生进行一分钟跳绳不合格的概率是多少?【答案】(1)18,(2)画图见解析;(3).【解析】分析:(1)用总数分别减去其它组的频数即可,(2)根据频数分布表把直方图补充完整即可,(3)用少于跳120次的人数除以总人数即可.试题解析:(1)根据题意得:a=50-6-8-12-6=18;(2)补充完整后的分数分布直方图如图所示(3)该班测试不合格的概率是;答:该班学生进行一分钟跳绳不合格的概率是.考点:1.频数(率)分布直方图;2.频数(率)分布表.4.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【答案】解:(1)∵较好的所占的比例是:,∴本次抽样共调查的人数是:70÷=200(人)。
统计和概率经典例题(含答案解析和解析)
![统计和概率经典例题(含答案解析和解析)](https://img.taocdn.com/s3/m/a7e828b810a6f524ccbf85a6.png)
统计与概率经典例题(含答案及解析)1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中a和b所表示的数分别为:a= .,b= .;⑵请在图中补全频数分布直方图;⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。
统计和概率(全)(知识点习题与答案解析
![统计和概率(全)(知识点习题与答案解析](https://img.taocdn.com/s3/m/d0dc47e180eb6294dc886c05.png)
统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。
初三数学概率与统计练习题及答案
![初三数学概率与统计练习题及答案](https://img.taocdn.com/s3/m/4054dc5dfe00bed5b9f3f90f76c66137ee064f87.png)
初三数学概率与统计练习题及答案1. 问题描述:已知一筒有12只红球、8只蓝球,从中任意取出一球,求取出红球的概率。
解析:首先计算出总共的球数,即12只红球加上8只蓝球等于20只球。
然后计算红球的数量,即12只红球。
最后,将红球的数量除以总球数,即12/20=0.6。
答案:取出红球的概率为0.6。
2. 问题描述:一只袋子中有5个红球、3个黄球和2个绿球,从中连续取出2个球,不放回,求取出红球后再取出黄球的概率。
解析:根据题意,第一次取出红球的概率为5/10,然后从剩下的球中取出黄球的概率为3/9。
因为两次抽取是连续进行的,所以需要将两次的概率相乘,即(5/10) * (3/9) = 1/6。
答案:取出红球后再取出黄球的概率为1/6。
3. 问题描述:一张桌子上有6本数学书和4本英语书,从中任意取出3本书,求其中至少有2本是数学书的概率。
解析:首先计算出总共的书的数量,即6本数学书加上4本英语书等于10本书。
然后计算出选出2本数学书和1本非数学书的情况数,即C(6, 2) * C(4, 1)。
接着计算出选出3本数学书的情况数,即C(6, 3)。
最后,将两种情况的情况数相加,并除以总的情况数,即[C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。
答案:取出至少有2本是数学书的概率为([C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。
4. 问题描述:一桶中有10个红球和10个蓝球,从中连续取出3个球,不放回,求取出的3个球颜色相同的概率。
解析:计算取出红球的情况数,即C(10, 3)。
然后计算取出蓝球的情况数,即C(10, 3)。
最后,将两种情况的情况数相加,并除以总的情况数,即[C(10, 3) + C(10, 3)] / C(20, 3)。
答案:取出3个球颜色相同的概率为([C(10, 3) + C(10, 3)] / C(20, 3)。
5. 问题描述:甲、乙、丙三人赛跑,根据过去的表现,甲获得第一的概率为0.4,乙获得第一的概率为0.3,丙获得第一的概率为0.3。
初中数学有关统计与概率的综合题历年真题及解析
![初中数学有关统计与概率的综合题历年真题及解析](https://img.taocdn.com/s3/m/4557102577c66137ee06eff9aef8941ea76e4b9e.png)
解答题1.(2019四川自贡,22,8分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛,收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下:(单位:分)90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人获得表彰;(3)“创文知识竞赛”中,收到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.【思路分析】(1)根据题目中所给的30个数据,分别找出70≤x<80和90≤x<100的数据个数填入相应的表格,并根据这一数值画出直方图即可;(2)先算出样本中90分及其以上同学所占百分比,估计总体表彰人数的百分比,再乘以总人数即可;(3)用列表法或树形图法列举出所有可能结果,找出符合条件的结果数,利用概率公式计算即可.【解题过程】解:(1)成绩x(单位:分)频数(人数)60≤x<70 170≤x<80 280≤x<901790≤x<10010(2)∵30名同学中90分及其以上所占比例为=,、∴估计360名学生中90分及其以上人数为360×=120(人).答:约有120人获得表彰.(3)答案:.将所有结果列举如下:龚扇剪纸彩灯恐龙龚扇(剪纸,龚扇)(彩灯,龚扇)(恐龙,龚扇)剪纸(龚扇,剪纸)(彩灯,剪纸)(恐龙,剪纸)彩灯(龚扇,彩灯)(剪纸,彩灯)(恐龙,彩灯)恐龙(龚扇,恐龙)(剪纸,恐龙)(彩灯,恐龙)共有12中等可能的结果,其中恰好有恐龙图案的结果由6种,∴恰好有恐龙图案的概率为.【知识点】频数分布表、频数分布直方图、样本估计总体和概率公式.2.(2019四川攀枝花,19,6分)某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表最受欢迎兴趣班调查问卷统计表选项兴趣班请选择兴趣班频数频率A 绘画 A 0.35B 音乐 B 18 0.30C 舞蹈 C 15 bD 跆拳道 D 6你好!请选择一个(只能选一个)你最喜欢的兴趣班,在其后空格内打“√”,谢谢你的合作.合计a 1请你根据统计表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣的人数;(3)王姝和李要选择参加兴趣班,若他们每人从A、B、C、D四类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类的概率.【思路分析】(1)由统计表知,喜欢B类的频数是18,对应的频率是0.30,所以a=18÷0.30=60,b=15÷60=0.25.(2)用样本估计总体,得最喜欢绘画的人数:2000×0.35=700(人).【解题过程】解:(1)a=60,b=0.25;(2)2000×0.35=700(人),答:最喜欢绘画的人数为700人.(3)如下表:由上表得,共有16种等可能的情况,其中两人恰好选中同一类的情况有4种,所以两人恰好选中同一类的概率是14164÷=.李要王姝 A B C DA AA AB AC ADB AB BB CB DBC AC BC CC DCD AD BD CD DD【知识点】统计表;概率3.(2019四川省眉山市,23,9分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选两2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.【思路分析】(1)利用获得参与奖的人数÷所占的比例求出总人数,用获得三等奖的人数除以总人数求出三等奖所占的比例,再乘360°即可;(2)用总人数减去获得二等奖、三等奖、参与奖的人数即可;(3)用画树状图或列表的方法求出概率即可.【解题过程】(1)16÷40%=40,360°×12×100%40=108°;(2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1,八年级一等奖人数为2,画树状图如下:列表如下:七八1 八2 九七八1,七八2,七九,七八1 七,八1 八2,八1 九,八1八2 七,八2 八1,八2 九,八2九七,九八1,九八2,九由图可知共12种等可能的结果,其中选出的两名同学既有八年级又有九年级的结果共有4种,∴P(既有八年级又有九年级)=412=13.【知识点】数据的整理与描述,概率4.(2019四川省凉山市,21,8)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.第21题图(1)参加此次诗词大会预选赛的同学共有▲人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为▲;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【思路分析】(1)根据样本容量=鼓励奖人数÷鼓励奖百分率为求样本容量;(2)根据三等奖所对应的圆心角=样本数10÷样本容量×360°求圆心角;(3)先求二等奖人数,再得一等奖人数,最后画出条形图;(4)求出七年级、八年级、九年级的人数,画出树状图,再根据树状图求出概率.【解题过程】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人)(2)三等奖所对应的圆心角=4010×360°=90°; (3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:第21题答图①(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:第21题答图②由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.【知识点】扇形统计图;条形统计图;列表法与树状图法5.(2019四川巴中,21,10分)如图表示的是某班部分同学衣服上口袋的数目:①从图中给出的信息得到学生衣服上口袋数目的中位数为________,众数为________;②根据上图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.第21题图【思路分析】①分析数据,根据中位数,众数的概念即可得出;②根据数据完成统计图,由样本中5≤x<7的频数和总人数,可得到相应的概率.【解题过程】①中位数为4,众数为4:②在抽取的21人中,口袋数5≤x<7的人数有6人,所以P =621=27,答:该班学生衣服上口袋数目为5≤x<7的概率为27.第21题答图【知识点】中位数,众数,条形统计图,样本估计总体,概率6.(2019山东省潍坊市,21,9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:口袋数 10 9 8 7 6 5 4 3 2 1次数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次数字35233435(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程,若不可能,说明理由.(指针指向盘面等分线时视为无效转次) 【思路分析】(1)利用平均数公式直接计算即可;(2)计算出前8次数字的和,根据总平均数不小于3.3,且不大于3.5,确定后两次转盘数字之和的范围,画树状图或列表求出概率即可. 【解题过程】(1)34+52+2+4=3.58⨯⨯答:前8次的指针所指数字的平均数为3.5. (2)能发生若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次的所指数字之和为28,所以最后两次的所指数字之和应不小于5,且不大于7. 第9次和第10次指针所指数字如下表所示:2 3 4 5 2 (2,2) (2,3) (2,4) (2,5) 3 (3,2) (3,3) (3,4) (3,5) 4 (4,2) (4,3) (4,4) (4,5) 5(5,2)(5,3)(5,4)(5,5)第9次和第10次指针所指数字树状图如下:一共有16种等可能结果,其中指针所指数字之和不小于5,且不大于7的有9种结果,其概率为:916P =. 【知识点】统计与概率,平均数,事件发生的可能性,概率的计算7.(2019山东聊城,19,8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率,九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查,并将抽查 组别 课前预习时间t/min 频数(人数) 频率 1 0≤t<10 2 2 10≤t<20 a 0.10 320≤t<30160.32第10次第9次4 30≤t<40 b c 5t ≥403第19题图请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为______,表中的a =______b,=______,c =______; (2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数.【思路分析】(1)用第3组的人数和频率求出样本容量,然后根据每组的已知信息得到a,b,c 的值;(2)扇形圆心角=360°×频率;(3)计算每天课前预习时间不少于20min 的频率,得到概率,进而求得人数.【解题过程】(1)第3组人数为16人,频率为0.32,故样本容量为16÷0.32=50,a =50×0.10=5,b =50-2-5-16-3=24,c =24÷50=0.48;(2)第4组频率为0.48,∴圆心角度数=360°×0.48=172.8°;(3)由数据知每天课前预习时间不少于20min 的人数的频率为1-250-0.10=0.86,∴1000×0.86=860(人).答:九年级每天课前预习时间不少于20min 的学生约有860人. 【知识点】频数,频率,扇形统计图,频率估计概率.8.(2019山东省济宁市,题号17,分值7)某校为了了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:阅读时间 t (小时) 人数 占女生人数百分比 0≤t <0.5 4 20% 0.5≤t <1 m 15% 1≤t <1.5 5 25% 1.5≤t <2 6 n 2≤t <2.5210%根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m =__________,n =__________;(2)此次抽样调查中,共抽取了__________名学生,学生阅读时间的中位数在__________时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少? 【思路分析】:单项人数÷单项百分率=总人数;单项人数=总人数×单项百分比;单项百分比=单项人数÷总人数;中位数是从小到达排列最中间的一个数或者两个数的平均数;五选二就是先选一个,在剩余的人里再选一次. 【解题过程】 【答案】(1)3,30%; (2)50,1≤t <1.5 (3)65124 3阅读时间/小时共有20种等可能,“一男一女”的占12种 ∴男女生各一名的概率P =123205= 【解析】(1)5÷25%=20,m =15%×20=3,n =6÷20=30%; (2)20+6+12+5+4+3=50; 阅读时间 t (小时) 女生人数 男生人数 合计 0≤t <0.5 4 6 10 0.5≤t <1 3 5 8 1≤t <1.5 5 12 17 1.5≤t <2 6 4 10 2≤t <2.5235学生阅读时间的中位数是第25名和第26名,恰在1≤t <1.5时间段. (3)共有20种等可能,“一男一女”的占12种,∴男女生各一名的概率P =123205=. 【知识点】单项人数、总人数、百分率之间的关系;中位数;概率;9.(2019山东滨州,1,3分)某体育老师统计了七年级甲、乙两个班女生的身高,并绘制了以下不完整的统计图.请根据图中信息,解决下列问题:男男男女女男男女女 男男女女 男男女女 男男男女 男男男女 开始男男男女女男男女女 男男女女 男男女女 男男男女 男男男女开始(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中E部分所对应的扇形圆心角度数;(4)身高在170≤x<175(cm)的5人中,甲班有3人,乙班有2人,现从中随机抽取两人补充到学校国旗队.请用列表法或画树状图法,求这两人来自同一班级的概率.【思路分析】(1)根据D部分学生人数除以它所占的百分比求得总人数,(2)用总人数乘以C、E所占的百分比求得C、E部分人数,从而补全条形图;(3)用360°乘以E部分所占百分比即可求解;(4)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.【解题过程】解:(1)13÷26%=50(人),……………………………………………………2分答:两个班共有女生50人;(2)补全频数分布直方图,如图所示:……………………………………………………4分(3)1050×360°=72°;………………………………………………………………………6分(4)画树状图:………………9分共有20种等可能的结果数,其中这两人来自同一班级的情况占8种,所以这两人来自同一班级的概率是=.…………………………………………………12分【知识点】扇形统计图;频数分布直方图;列举法求概率10.(2019湖南省岳阳市,21,8分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分100分,得分为正整数且无满分,最低75分)分成五组,并绘制了下列不完整的统计图表.(1)表中m=,n=.(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.【思路分析】(1)根据选手总数40和频率、频数求m,n的值;(2)根据m的值补全图形即可;(3)确定40名选手最中间两名的位置,即可确定中位数的分数段;(4)列举出所有等可能的结果,从中找出一男一女的个数计算概率或先画出树状图,再求概率.【解题过程】(1)m=40×0.2=8,n=14÷40=0.35(2)补全频数直方图如下:(3)成绩从小到大排序后,第20名和第21名同学的成绩都落在84.5~89.5之间,故甲的成绩落在84.5~89.5分数段内.(4)成绩在94.5分以上的选手共有4名,故男生两名、女生两名列举如下:(男1,男2)、(男1,女1)、(男1,女2)、(男2,女1)、(男2,女2)、(女1,女2)共6种可能,恰好一名男生和一名女生的有4种情况,所以P(一男一女)=42 63 =.或列树状图如下:由树状图知,共有12种等可能结果,其中恰好选中1男1女的结果共有8种,故P=82. 123=【知识点】统计与概率,统计表,频数直方图,中位数11.(2019安徽省,21,12分)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格: 编号 ①②③④⑤⑥⑦⑧⑨⑩ ⑪ ⑫ ⑬ ⑭ ⑮ 尺寸()cm8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a9.03 9.04 9.06 9.07 9.08b按照生产标准,产品等次规定如下:尺寸(单位:)cm产品等次 8.979.03x特等品 8.959.05x 优等品 8.909.10x合格品 8.90x <或9.10x >非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由. (2)已知此次抽检出的优等品尺寸的中位数为9cm .()i 求a 的值;()ii 将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【思路分析】(1)由1580%12⨯=,不合格的有15123-=个,给出的数据只有①②两个不合格可得答案; (2)()i 由8.9892a+=可得答案;()ii 由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得.【解题过程】解:(1)不合格.因为1580%12⨯=,不合格的有15123-=个,给出的数据只有①②两个不合格; (2)()i 优等品有⑥~⑪,中位数在⑧8.98,⑨a 之间,∴8.9892a+=, 解得9.02a =()ii 大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率49P=.【知识点】概率;统计表12.(2019广东广州,20,10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【思路分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解题过程】解:解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°45°,C组的圆心角=360°或90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为.【知识点】频数(率)分布表;扇形统计图;概率13.(2019广东省,20,7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD 2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【思路分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生).【解题过程】解:(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°36°.故答案为4,40,36;(2)画树状图如下:P(同时抽到甲,乙两名学生).【知识点】频数(率)分布表;扇形统计图;列表法与树状图法14..(2019湖北鄂州,19,8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E类型新闻体育动画娱乐戏曲人数11 20 40 m 4请你根据以上信息,回答下列问题:(1)统计表中m的值为,统计图中n的值为,A类对应扇形的圆心角为度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.【思路分析】(1)先根据B类别人数及其百分比求出总人数,再由各类别人数之和等于总人数求出m,继而由百分比概念得出n的值,用360°乘以A类别人数所占比例即可得;(2)利用样本估计总体思想求解可得.【解题过程】解:(1)∵样本容量为20÷20%=100,∴m=100﹣(11+20+40+4)=25,n%100%=25%,A类对应扇形的圆心角为360°39.6°,故答案为:25、25、39.6.(2)1500300(人)答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,所以所选2名同学中有男生的概率为.【知识点】用样本估计总体;统计表;扇形统计图;列表法与树状图法。
概率与统计测试题及详解
![概率与统计测试题及详解](https://img.taocdn.com/s3/m/92899ad1ad51f01dc281f1fd.png)
统计与概率一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011·淄博一中期末)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数分别是( )A .15,16,19B .15,17,18C .14,17,19D .14,16,20[答案] B [解析]50600+680+720=140,600×140=15,680×140=17,720×140=18,故选B.2.(文)(2011·山东实验中学期末)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是( )A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样[答案] B[解析] ①总体中高收入、中等收入、低收入家庭有明显差异,故用分层抽样;②总体容量与样本容量都较小,故采用简单随机抽样.(理)(2011·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为( )A .10%B .15%C .30%D .45%[答案] D[解析] ∵正态曲线对称轴为μ=90,P(x<60)=0.05, ∴P(90<x<120)=12(1-2P(x<60))=0.45,故选D.3.(文)(2011·四川资阳市模拟)对总数为m 的一批零件抽取一个容量为25的样本,若每个零件被抽取的概率都为14,则m 的值为( )A .200B .150C .120D .100 [答案] D[解析] ∵25m =14,∴m =100. (理)(2011·黄冈期末)某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A.156 B.17 C.114D.314[答案] C[解析] 从9块试验田中选3块有C 39种选法,其中每行每列都有一块试验田种植水稻的选法有6种,∴p =6C 39=114.4.(文)连掷两次骰子得到的点数分别为m 和n ,向量a =(m ,n)和向量b =(1,-1)的夹角为θ,则θ为锐角的概率是( )A.56B.16C.712D.512[答案] D[解析] ∵夹角θ为锐角,∴错误!,∴错误!, 又∵m ,n ∈{1,2,3,4,5,6},∴满足条件的结果数为15. 而连掷两次骰子得到的结果数为36, ∴满足条件的概率是P =1536=512. (理)(2011·福州市期末)如图所示,正方形的四个顶点分别为O(0,0)、A(1,0)、B(1,1)、C(0,1),曲线y =x 2经过点B ,现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是( )A.12B.14C.13D.25[答案] C[解析] 阴影部分的面积S =⎠⎛01x 2dx =13x 3|10=13,正方形面积为1,∴p =13,故选C.5.(文)(2011·福州市期末)如图是歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1、a 2的大小不确定[答案] B[解析] ∵甲、乙分数在70、80、90各分数段的打分评委人数一样多,故只须看个位数的和,乙的个位数总和37,甲的个位数字和为20+m<37,∴a 2>a 1,故选B.(理)(2011·巢湖质检)在如图所示的茎叶图中,若甲、乙两组数据的中位数分别为λ1,λ2,平均数分别为μ1,μ2,则下列判断正确的是( )A.λ1>λ2,μ1<μ2 B .λ1>λ2,μ1>μ2 C .λ1<λ2,μ1<μ2 D .λ1<λ2,μ1>μ2[答案] B[解析] 由茎叶图知λ1=20.5,λ2=18.5,μ1=19.9,μ2=18.9,∴λ1>λ2,μ1>μ2,故选B.6.(文)(2011·温州八校期末)已知α,β,γ是不重合平面,a ,b 是不重合的直线,下列说法正确的是( )A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件B .“若a ∥b ,a ⊂α,则b ∥α”是必然事件C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件D .“若a ⊥α,a∩b=P ,则b ⊥α”是不可能事件 [答案] D[解析]⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α,故A 错;⎭⎪⎬⎪⎫a ∥b a ⊂α⇒b ∥α或b ⊂α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题.(理)(2011·丰台区期末)有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有( )A .24种B .48种C .96种D .120种[答案] B[解析] 先安排甲有2种方法,其余4名同学可安排余下4天的任意一天值日,∴共有2A 44=48种不同安排方法.7.(文)已知函数f(x)=sin aπ3x ,a 等于抛掷一颗骰子得到的点数,则y =f(x)在[0,4]上至少有5个零点的概率是( )A.13B.12C.23D.56 [答案] C[解析] 抛掷一颗骰子共有6种情况.当a =1,2时,y =f(x)在[0,4]上的零点少于5个;当a =3,4,5,6时,y =f(x)在[0,4]上的零点至少有5个,故P =46=23,选C.(理)(2011·蚌埠二中质检)(3y +x)5展开式的第三项为10,则y 关于x 的函数图象的大致形状为( )[答案] D[解析] T 3=C 25(3y)5-2(x)2=10xy =10,∴y =1x(x>0),故选D.8.(2011·咸阳模拟)样本容量为100的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[2,10)内的频率为a ,则a 的值为( )A .0.1B .0.2C .0.3D .0.4[答案] D[解析] 样本数据落在[2,10)内的频率为a =(0.02+0.08)×4=0.4.9.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,则复数P 1+P 2i 所对应的点P 与直线l 2:x +2y =2的位置关系是( )A .点P 在直线l 2的右下方B .点P 在直线l 2的右上方C .点P 在直线l 2上D .点P 在直线l 2的左下方[答案] D[解析] 易知当且仅当a b ≠12时,两条直线只有一个交点,而a b =12时有三种情况:a =1,b =2(此时两直线重合);a =2,b =4(此时两直线平行);a =3,b =6(此时两直线平行).而投掷一颗骰子两次的所有情况有6×6=36种,所以两条直线相交的概率P 2=1-336=1112;两条直线平行的概率为P 1=236=118,P 1+P 2i 所对应的点为P(118,1112,易判断点P(118,1112在直线l 2:x +2y =2的左下方,选D.10.(2011·河北冀州期末)某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y|的值为( )A .1B .2C .3D .4[答案] D[解析] 由条件知⎩⎪⎨⎪⎧x +y +10+11+9=50x -102+y -102+1+1=10,∴⎩⎪⎨⎪⎧x =12y =8或⎩⎪⎨⎪⎧x =8y =12,∴|x -y|=4.11.(2011·北京学普教育中心联考版)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12 C.π6D .1-π6[答案] B[解析] 以点O 为圆心,半径为1的半球的体积为V =12×43πR 3=2π3,正方体的体积为23=8,由几何概型知:点P 到点O 的距离大于1的概率为P(A)=1-238=1-π12B.12.(2011·江西吉安质检)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产品x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A.4.5 C .3.15 D .3[答案] D[解析] 线性回归直线过样本点的中心(x -,y -),∵x -=4.5,y -=11+t4,∴11+t 4=0.7×4.5+0.35,∴t =3,故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·浙江宁波八校联考)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.[答案] 1211[解析] 抽样比150 3000=1 20,第1组抽出号码为11,故第61组抽出号码为11+20×(61-1)=1211.14.(文)设集合A ={x|x 2-3x -10<0,x ∈Z},从集合A 中任取两个元素a ,b 且a·b≠0,则方程x 2a +y 2b=1表示焦点在x 轴上的椭圆的概率为________.[答案]310[解析] A ={x|-2<x<5,x ∈Z}={-1,0,1,2,3,4},由条件知,(a ,b)的所有可能取法有:(-1,1),(-1,2),(-1,3),(-1,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,-1),(2,-1),(3,-1),(4,-1),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共20种,方程x 2a +y 2b =1表示焦点在x 轴上的椭圆,应有a>b>0,∴有(2,1,),(3,1),(4,1),(3,2),(4,2),(4,3)共6种,∴所求概率P =620=310. (理)如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是________.[答案]115[解析] 6个数任意填入6个小正方形中有6!=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法6×2×2×2=48种,故所求概率P =48720=115. 15.(文)(2011·浙江宁波八校联考)已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率是________.[答案]37[解析] ∵|AB →|=k 2+1≤4,∴-15≤k≤15, ∵k ∈Z ,∴k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由AB →·AC →=0得2k +4=0,∴k =-2,∵BC →=AC →-AB →=(2-k,3),由AB →·BC →=0得k(2-k)+3=0,∴k =-1或3, 由AC →·BC →=0得2(2-k)+12=0,∴k =8(舍去),故使△ABC 为直角三角形的k 值为-2,-1或3,∴所求概率p =37.(理)(2011·豫南九校联考)(1-ax)2(1+x)6的展开式中,x 3项的系数为-16,则实数a的值为________.[答案] 2或3[解析] 展开式中x 3的系数为1×C 36-2aC 46+a 2C 56=-16,∴a 2-5a +6=0,∴a =2或3.16.(文)(2011·山西太原调研)在圆O 上有一定点A ,则从这个圆上任意取一点B ,使得∠AOB≤30°的概率是________.[答案]16[解析] 如图∠AOE =∠AOF =30°,当点B 落在EAF 上时,∠AOB≤30°, ∵∠EOF =60°,∴所求概率p =60°360°=16.(理)(2011·河北冀州期末)从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于...1,则取出这样的子集的概率为________. [答案]835[解析] 从8个数中任取4个共有C 48=70种取法,两数之和为1的取法有:-1+2,-2+3,-3+4,0+1共4种,要使取出的四个数中任何两数之和不等于1,则每组中的两个数只能取1个,故共有24种取法,故所求概率p =1670=835.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·山西太原调研)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;(2)经过计算知甲、乙两人预赛的平均成绩分别为x -甲=85,x -乙=85,甲的方差为S 2甲=35.3,S 2乙=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A ,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B ,其概率为P(B).则P(A)+P(B)=P(A +B)成立吗?请说明理由.[解析] (1)作出如图所示茎叶图,易得乙组数据的中位数为84.(2)派甲参赛比较合适,理由如下: ∵x -甲=85,x -乙=85,S 2甲=35.5,S 2乙=41, ∴x -甲=x -乙,S 2甲<S 2乙,∴甲的成绩较稳定,派甲参赛比较合适. (3)不成立.由已知可得P(A)=68,P(B)=78,P(A)+P(B)=138.而0<P(A +B)<1.所以P(A)+P(B)=P(A +B)不成立.[点评] P(A +B)=P(A)+P(B)成立的条件是A 和B 互斥,而此问题中的A 和B 是不互斥的,故P(A)+P(B)=P(A +B)不成立.18.(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人.(1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组,若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求出的两人为“黄金搭档组”的概率.[解析] (1)设90~140分之间的人数是n ,由130~140分数段的人数为2人,可知0.005×10×n=2,得n =40.(2)设中位数为x,则0.35+(x-110)×0.045=0.2+(120-x)×0.045,解得x=3403≈113,即中位数约为113分.(3)依题意,第一组共有40×0.01×10=4人,记作A1、A2、A3、A4;第五组共有2人,记作B1、B2从第一组和第五组中任意选出两人共有下列15种选法:{A1,A2}、{A1,A3}、{A1,A4}、{A2,A3}、{A2,A4}、{A3,A4};{A1,B1}、{A2,B1}、{A3,B 1}、{A4,B1};{A1,B2}、{A2,B2}、{A3,B2}、{A4,B2};{B1,B2}设事件A:选出的两人为“黄金搭档组”,若两人成绩之差大于20,则两人分别来自于第一组和第五组,共有8种选法,故P(A)=815.19.(本小题满分12分)(文)(2011·湖南长沙一中期末)某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,100]之间的概率是915=0.6.(理)某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:表1:甲系列 表2:乙系列(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;(2)若该运动员选择乙系列,求其成绩ξ的分布列及其数学期望E(ξ). [解析] (1)若该运动员希望获得该项目的第一名,应选择甲系列 理由如下:选择甲系列最高得分为100+40=140>115可能获得第一名 而选择乙系列最高得分为90+20=110<115,不可能获得第一名 记“该运动员完成K 动作得100分”为事件A “该运动员完成D 动作得40分”为事件B 则P(A)=34,P(B)=34记“该运动员获得第一名”为事件C 依题意得P(C)=P(AB)+P(A -B) =34×34+14×34=34. ∴运动员获得第一名的概率为34.(2)若该运动员选择乙系列,ξ的可能取值是50,70,90,110,则P(ξ=50)=110×110=1100,P(ξ=70)=110×910=9100,P(ξ=90)=910×110=9100;P(ξ=110)=910×910=81100ξ的分布列为∴E(ξ)=50×1100+70×100+90×100+110×100=104.20.(本小题满分12分)(文)(2011·广东佛山市质检)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽样进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图,并求p 、x 的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选到的领队中恰有1人年龄在[40,45)岁的概率.[解析] (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06,频率直方图如下:第一组的人数为1200.6=200,频率为0.04×5=0.2,所以n =2000.2=1000.由上可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以p =195300=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以x =150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60 30=2 1,所以采用分层抽样法抽取6人,[40,45)岁中抽取4人,[45,50)岁中抽取2人.设[40,45)岁中的4人为a 、b 、c 、d ,[45,50)岁中的2人为m 、n ,则选取2人作为领队的有(a ,b)、(a ,c)、(a ,d)、(a ,m)、(a ,n)、(b ,c)、(b ,d)、(b ,m)、(b ,n)、(c ,d)、(c ,m)、(c ,n)、(d ,m)、(d ,n)、(m ,n),共15种;其中恰有1人年龄在[40,45)岁的有(a ,m)、(a ,n)、(b ,m)、(b ,n)、(c ,m)、(c ,n)、(d ,m)、(d ,n),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为P =815.(理)(2011·河北冀州期末)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和期望E(ξ)的值. [解析] (1)设甲、乙两人同时到A 社区为事件E A ,则 P(E A )=A 22C 24A 33=118,即甲、乙两人同时到A 社区的概率是118.(2)设甲、乙两人在同一社区为事件E ,那么 P(E)=3A 22C 24A 33=16,所以,甲、乙两人不在同一社区的概率是 P(E -)=1-P(E)=56.(3)随机变量ξ可能取的值为1,2,事件“ξ=i(i =1,2)”是指有i 个同学到A 社区,则P(ξ=2)=C 24A 22C 24A 33=13.所以P(ξ=1)=1-P(ξ=2)=23,ξ的分布列是∴E(ξ)=1×23+2×13=43.21.(本小题满分12分)(文)(2011·巢湖市质检)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,下图是对这80人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图完成下表:(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.[解析] (1)(3)因为血液酒精浓度在[70,80)范围内有12人,[80,90)范围内有8人,要抽取一个容量为5的样本,[70,80)内范围内应抽3人,记为a ,b ,c ,[80,90)范围内应抽2人,记为d ,e ,则从总体中任取2人的所有情况为(a ,b),(a ,c),(a ,d),(a ,e),(b ,c),(b ,d),(b ,e),(c ,d),(c ,e),(d ,e),恰有一人的血液酒精浓度在[80,90)范围内的情况有(a ,d),(a ,e),(b ,d),(b ,e),(c ,d),(c ,e),共6种,设“恰有1人属于醉酒驾车”为事件A ,则P(A)=610=35.(理)(2011·黄冈市期末)为预防“甲型H1N1流感”的扩散,某两个大国的研究所A 、B 均对其进行了研究.若独立地研究“甲型H1N1流感”疫苗,研究成功的概率分别为13和14;若资源共享,则提高了效率,即他们合作研究成功的概率比独立研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功获得经济效益a 万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A 研究所参谋:是否应该采取与B 研究所合作的方式来研制疫苗,并说明理由.[解析] 若A 研究所独立地研究“甲型H1N1流感”疫苗,则其经济效益的期望为 0×23+a×13=a3万元.而两个研究所独立地研究时至少有一个研制成功的概率为 1-⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12所以两个研究所合作研究成功的概率为 12×(1+50%)=34于是A 研究所采用与B 研究所合作的方式来研制疫苗,所获得的经济效益的期望为0×14+12a×34=38a 万元,而38a>13a ,故应该建议A 研究所采用与B 研究所合作的方式来研制疫苗. 22.(本小题满分12分)(2011·辽宁铁岭六校联考)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i-n x -2=∑i =1nx i-x -y i-y -∑i =1nx i-x -2,a ^=y --b ^x -)[解析] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)=1-410=35. 故选取的2组数据恰好是不相邻2天数据的概率是35(2)由数据,求得x -=13(11+13+12)=12,y -=13(25+30+26)=27,3x -y -=972.∑i =13x iy i=11×25+13×30+12×26=977,∑i =13x 2i=112+132+122=434,3x -2=432. 由公式求得b ^=∑i =1nx iy i-n·x -·y -∑i =1nx 2i-n x -2=977-972434-432=52,a ^=y --b ^x -=27-52×12=-3,所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10时,y ^=523=22,|22-23|<2;同样,当x =8时,y ^=52×8-3=17,|17-16|<2.所以,该研究所得到的线性回归方程是可靠的.。
高中数学经典概率与统计(解析版)
![高中数学经典概率与统计(解析版)](https://img.taocdn.com/s3/m/561fc4f24bfe04a1b0717fd5360cba1aa8118c23.png)
概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
高考数学-概率与统计(含22年真题讲解)
![高考数学-概率与统计(含22年真题讲解)](https://img.taocdn.com/s3/m/e9cb841f30126edb6f1aff00bed5b9f3f90f72a0.png)
高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
![中考数学专题复习《统计与概率》经典例题及测试题(含答案)](https://img.taocdn.com/s3/m/f4c1a444b94ae45c3b3567ec102de2bd9705de50.png)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
概率统计精选练习题及答案
![概率统计精选练习题及答案](https://img.taocdn.com/s3/m/82a3ecaf9a89680203d8ce2f0066f5335a8167d3.png)
概率统计精选练习题及答案练题一- 问题:有一袋子里面装有5个红球和3个蓝球,从袋子里随机取两个球,求取出的两个球颜色相同的概率。
- 解答:首先,我们计算取两个红球的概率。
从5个红球中取出2个红球的组合数为C(5, 2) = 10。
总的取球组合数为C(8, 2) = 28。
所以,取两个红球的概率为10/28。
同理,取两个蓝球的概率为C(3, 2)/C(8, 2) = 3/28。
因为取球的过程是相互独立的,所以取出的两个球颜色相同的概率等于取两个红球的概率加上取两个蓝球的概率,即(10/28) + (3/28) = 13/28。
练题二- 问题:某商场每天的顾客数量服从均值为100,标准差为20的正态分布。
求该商场下一个月(30天)的总顾客数量的期望值和标准差。
- 解答:下一个月的总顾客数量等于每天顾客数量的总和。
因为每天的顾客数量服从正态分布,所以总顾客数量也服从正态分布。
总顾客数量的期望值等于每天顾客数量的期望值的总和,即30 * 100 = 3000。
标准差等于每天顾客数量的标准差的总和,即sqrt(30) * 20 ≈ 109.544。
练题三- 问题:某城市的交通事故发生率为每年100起。
求在下一个月内该城市发生至少一起交通事故的概率。
- 解答:在下一个月内,发生至少一起交通事故的概率等于1减去没有发生交通事故的概率。
没有发生交通事故的概率可以用泊松分布来计算。
假设一个月内发生交通事故的平均次数为100/12 ≈ 8.333,那么没有发生交通事故的概率为P(X = 0),其中X服从参数为8.333的泊松分布。
计算得到P(X = 0) ≈ 0.。
所以,在下一个月内该城市发生至少一起交通事故的概率为1 - P(X = 0) ≈ 0.。
以上是概率统计的精选练习题及答案,希望能对您的学习有所帮助。
统计概率与数列综合经典题(含详解答案)
![统计概率与数列综合经典题(含详解答案)](https://img.taocdn.com/s3/m/41158688ad02de80d5d84032.png)
统计概率与数列综合经典题(含详解答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March高考数学热点难点:统计概率与数列综合经典题1.随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):(1)试根据表中的数据,求出y 关于x 的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。
遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从k 到1k +)若掷出偶数遥控车向前移动两格(从k 到2k +),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。
设遥控车移到第(119)n n ≤≤格的概率为n P ,试证明{}1n n P P --是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.附:在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. 2.冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年出现新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n (n *∈N )份血液样本,有以下两种检验方式: 方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中k (k *∈N 且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +. 假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (01p <<).现取其中k (k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ. (1)若()()12E E ξξ=,试求p 关于k 的函数关系式()p f k =; (2)若p 与干扰素计量n x 相关,其中12,,,n x x x (2n ≥)是不同的正实数,满足11x =且n N *∀∈(2n ≥)都有1222113221121n n n i i i x x x e x x x x --=+-⋅=-∑成立. (i )求证:数列{}n x 等比数列; (ii)当1p =的期望值比逐份检验的总次数的期望值更少,求k 的最大值3.在读书活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为12,市民之间选择意愿相互独立.(1)从问卷市民中随机抽取4人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)(i )若从问卷市民中随机抽取(N )m m +∈人,记总分恰为m 分的概率为m A ,求数列{}m A 的前10项和;(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,N n +∈),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.4.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.A 市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了100人,并将这100人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过3000元):()1由频数分布表可以认为,该市大学生网络外卖消费金额Z (单位:元)近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x (每组数据取区间的中点值,660σ=).现从该市任取20名大学生,记其中网络外卖消费金额恰在390元至2370元之间的人数为X ,求X 的数学期望;()2A 市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值100元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第0格、第1格、第2格、…、第60格共61个方格.棋子开始在第0格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是12,其中01P =),若掷出正面,将棋子向前移动一格(从k 到1k +),若掷出反面,则将棋子向前移动两格(从k 到2k +).重复多次,若这枚棋子最终停在第59格,则认为“闯关成功”,并赠送500元充值饭卡;若这枚棋子最终停在第60格,则认为“闯关失败”,不再获得其他奖励,活动结束.①设棋子移到第n 格的概率为n P ,求证:当159n ≤≤时,{}1n n P P --是等比数列;②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<+=,()330.9973P μσξμσ-<+=.5.在某次世界新能源汽车大会上着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<+≈,(22)0.9545P μσξμσ-<+≈,(33)0.9973P μσξμσ-<+≈.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到1k +),若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n 格的概率为n P ,试说明{}1n n P P --是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.6.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.7.一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、…、第100站,共100站,设棋子跳到第n 站的概率为n P ,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束. (1)求1,P 2,P 3P ;(2)求证:数列{}1n n P P +-(1,2,3,,98)n =⋯为等比数列; (3)求玩该游戏获胜的概率.8.某市不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来该市参观旅游的人数不胜数.其中,名人园与梦岛被称为该市的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立. (1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列与数学期望;(2)若从游客中随机抽取m 人,记总分恰为m 分的概率为m A ,求数列{}m A 的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n 分的概率为n B ,探讨n B 与1n B -之间的关系,并求数列{}n B 的通项公式.参考答案1.解:(1)123453,5x ++++==20501001501801005y ++++==511202503100415051801920i ii x y==⨯+⨯+⨯+⨯+⨯=∑522222211234555,ii x==++++=∑故19205310042,5559b -⨯⨯==-⨯ 从而10042326,a y bx =-=-⨯=-所以所求线性回归方程为4226y x =-, 令*4226300,x x N ->∈,解得8x ≥.故预计到2022年该公司的网购人数能超过300万人(2)遥控车开始在第0格为必然事件,01P =,第一次掷骰子出现奇数,遥控车移到第一格,其概率为12,即112P =.遥控车移到第n (219n )格的情况是下列两种,而且也只有两种.①遥控车先到第2n -格,又掷出奇数,其概率为212n P -②遥控车先到第1n -格,又掷出偶数,其概率为112n P -所以211122n n n P P P --=+,1121()2n n n n P P P P ---∴-=--∴当119n 时,数列1{}n n P P --是公比为12-的等比数列 2312132111111,(),(),()2222nn n P P P P P P P -∴-=--=--=-⋅⋅⋅-=- 以上各式相加,得2311111()()()()2222nn P -=-+-+-+⋅⋅⋅+-=11()1()32n ⎡⎤---⎢⎥⎣⎦1211()32n n P +⎡⎤∴=--⎢⎥⎣⎦(0,1,2,,19n =⋅⋅⋅),∴获胜的概率2019211()32P ⎡⎤=--⎢⎥⎣⎦失败的概率1920181111232P P ⎡⎤==+⎢⎥⎣⎦() ∴设参与游戏一次的顾客获得优惠券金额为X 元,200X =或500 ∴X 的期望201919211115001()2001()1004()32322EX ⎡⎤⎡⎤⎡⎤=⨯-+⨯+=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∴参与游戏一次的顾客获得优惠券金额的期望值为1911004()2⎡⎤-⎢⎥⎣⎦,约400元.2.(1)解:由已知,1k ξ=,()11P ξ=,得()1E k ξ=,2ξ的所有可能取值为1,1k +,∴()()211kP p ξ==-,()()2111kP k p ξ=+=--.∴()()()()()2111111k k kE p k p k k p ξ⎡⎤=-++--=+--⎣⎦. 若()()12E E ξξ=,则()11kk k k p =+--,()11kp k -=,∴111kp k ⎛⎫-= ⎪⎝⎭,∴111kp k ⎛⎫=- ⎪⎝⎭.∴p 关于k 的函数关系式为()111kf k k ⎛⎫=- ⎪⎝⎭,(k *∈N ,且2k ≥).(2)(i )∵证明:当2n =时,12222213221221x x x e x x x x --⋅=-,∴1231x e x =,令12310x q e x ==>,则1q ≠,∵11x =,∴下面证明对任意的正整数n ,13n n x e -=.①当1n =,2时,显然成立; ②假设对任意的n k =时,13k k x e-=,下面证明1n k =+时,31k k x e +=;由题意,得12221113221121kk k i i i x x x e x x x x -++=+-⋅=-∑,∴12213121223113111111k k k k k k x e xx x x x x x x x e -++-+⎛⎫-⋅++++= ⎪⎝⎭-,∴11233122131212333111111k k k k k e e x e x e e x e ----++--+⎧⎫⎡⎤⎛⎫⎪⎪⎢⎥- ⎪⎪⎪⎢⎥⎝⎭-⎪⎪⎣⎦⋅+=⎨⎬⎪⎪-⋅-⎪⎪⎪⎪⎩⎭,()21231213122331111k k k k k xe x e xe e --+-++⎛⎫- ⎪ ⎪-⎝⎭+⋅=--,∴()212233331110k k k k k exe e x ----+++⎛⎫⋅+-⋅-= ⎪⎝⎭,233311110k k k k e x e x --+++⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭. ∴31k k x e +=或2331k k x e -+=-(负值舍去).∴31k k x e +=成立.∴由①②可知,{}n x 为等比数列,13n n x e -=.(ii )解:由(i)知,11p ==,()()12E E ξξ>,∴()11kk k k p >+--,得()11kkp k <-=,∴1ln 3k k >.设()1ln 3f x x x =-(0x >),()33xf x x-'=,∴当3x ≥时,0fx ,即()f x 在[)3,+∞上单调减.又ln 4 1.3863≈,4 1.33333≈,∴4ln 43>;ln5 1.6094≈,5 1.66673≈.∴5ln 53<. ∴k 的最大值为4.3.解(1)ξ的可能取值为4,5,6,7,8,04411(4)C (),216P ξ=== 1134111(5)C (),24(2)P ξ=== 2224113(6)C ,2()()28P ξ===,3314111(7)C ,2()()24P ξ===4404111(8)C 2()()216P ξ=== 所有ξ的分布列为所以数学期望11311()4567861648416E ξ=⨯+⨯+⨯+⨯+⨯=. (2)(i )总分恰为m 分的概率为1()2mm A =,所以数列{}m A 是首项为12,公比为12的等比数列,前10项和101011(1)1023221102412S -==-. (ii )已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为1111,22n B B -=.因为1112n n B B -+=,即1112n n B B -=-+,所以1212()323n n B B --=--,则{23}n B -是首项为12136B -=-,公比为12-的等比数列, 所以1211()362n n B --=--,所以211()332n n B =+-. 4.解:()12500.27500.3512500.2517500.1x =⨯+⨯+⨯+⨯22500.05+⨯+27500.051050⨯=,因为Z 服从正态分布()21050,660N ,所以()()0.95450.6827390237020.95450.81862P Z P Z μσμσ-<≤=-<≤+=-=.所以()20,0.8186XB ,所以X 的数学期望为()200.818616.372E X =⨯=.()2①棋子开始在第0格为必然事件,01P =.第一次掷硬币出现正面,棋子移到第1格,其概率为12,即112P =. 棋子移到第()259n n ≤≤格的情况是下列两种,而且也只有两种:棋子先到第2n -格,又掷出反面,其概率为212n P -;棋子先到第1n -格,又掷出正面,其概率为112n P -,所以211122n n n P P P --=+,即112(1)2n n n n P P P P ----=--,且1012P P -=-, 所以当159n ≤≤时,数列{}1n n P P --是首项1012P P -=-,公比为12-的等比数列.②由①知1112P -=-,12212P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭,,112nn n P P -⎛⎫-=- ⎪⎝⎭,以上各式相加,得21111222n nP ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21111222nn P ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12110,1,2,,5932n n +⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以闯关成功的概率为6060592121113232P ⎡⎤⎡⎤⎛⎫⎛⎫=--=-⎢⎥⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 闯关失败的概率为5959605811211111223232P P ⎡⎤⎡⎤⎛⎫⎛⎫==⨯--=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.60595859602111111110323232P P ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--+=->⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以该大学生闯关成功的概率大于闯关失败的概率. 5.解:(1)0.002502050.004502550.009503050.004503550.00150405300x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(千米).(2)由~(300X N ,250).0.95450.6827(250400)0.95450.81862P X -∴<=-=.(3)遥控车开始在第0 格为必然事件,01P=.第一次掷硬币出现正面,遥控车移到第一格,其概率为12,即112P=.遥控车移到第(249)n n 格的情况是下面两种,而且只有两种:①遥控车先到第2n -格,又掷出反面,其概率为212n P -.②遥控车先到第1n -格,又掷出正面,其概率为112n P -.211122n n n P P P --∴=+. 1121()2n n n n P P P P ---∴-=--.149n ∴时,数列1{}n n P P --是等比数列,首项为1012P P -=-,公比为12-的等比数列.1112P ∴-=-,2211()2P P -=-,3321()2P P -=-,⋯⋯,11()2n n n P P --=-. 1112100111()()()()()1222n n n n n n n P P P P P P P P ----∴=-+-+⋯⋯+-+=-+-+⋯⋯-+ 1111()212[1()]1321()2n n ++--==----(0n =,1,⋯⋯,49). ∴获胜的概率504921[1()]32P =--,失败的概率49495048112111[1()][1()]223232P P ==⨯--=+.5049484950211111[1()][1()][1()]0323232P P ∴-=---+=->. ∴获胜的概率大.∴此方案能成功吸引顾客购买该款新能源汽车.6.解(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯= (i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7i i i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为,乙药治愈率为时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.7.(1)棋子开始在第1站是必然事件,11P ∴=; 棋子跳到第2站,只有一种情况,第一次掷硬币正面向上,其概率为1,2212P ∴=;棋子跳到第3站,有两种情况,①第一次掷硬币反面向上,其概率为12;②前两次掷硬币都是正面向上,其概率为111,224⨯=3113244P ∴=+=; (2)棋子棋子跳到第2n +()*197,n n N ≤≤∈站,有两种情况:①棋子先跳到第n 站,又掷硬币反面向上,其概率为12nP;②棋子先跳到第1n +站,又掷硬币正面向上,其概率为112n P +.故211122n n n P P P ++=+.()21112n n n n P P P P +++∴-=--又2112P P -=-, 数列()1(1,2,3,n nP P n +-=…,98)是以12-为首项,12-为公比的等比数列. (3)由(2)得112nn n P P +⎛⎫-=- ⎪⎝⎭.()()9999989897P P P P P =-+-+…()211P P P +-+98971122⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭ …112⎛⎫+-+ ⎪⎝⎭99112112⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭9821332=+⋅ 所以获胜的概率为9998111332P -=-⋅ 8.解(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫===⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,故6611(1)36433172913S -==-. (3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =,故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-,所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.。
高中数学概率与统计真题(解析版)
![高中数学概率与统计真题(解析版)](https://img.taocdn.com/s3/m/18b9720cdf80d4d8d15abe23482fb4daa58d1da9.png)
高中数学专题23 概率与统计真题汇编1.在1,2,3…,10中随机选出一个数a,在-1,-2,-3.…,-10中随机选出一个数b,则a2+b被3整除的概率为.【答案】【解析】若a∈{1,2,4,5,7,8,10},.若.若a∈{3,6,9},.若.∴a2+b为3的倍数的概率为.2.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为.【答案】【解析】先考虑abc+def为奇数的情况,此时abc,def一奇一偶,若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样有3!×3!=36种情况,由对称性可知,使abc+def为奇数的情况数为36×2=72种.从而abc+def为偶数的概率为.3.袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为________.【答案】【解析】一种取法符合要求,等价于从A中取走的两张纸币的总面值a小于从B中取走的两张纸币的总面值b,从而,.故只能从A中取走两张1元纸币,相应的取法数为.又此时,即从B中取走的两张纸币不能均为1元纸币,相应有种取法.因此,所求的概率为.4.在正方体中随机取三条棱,它们两两异面的概率为______.【答案】【解析】设正方体为,共12条棱,从中任意取出三条棱的方法有种.下面考虑使三条棱两两异面的取法数.由于正方体棱共确定三个互不平行的方向(即的方向),具有相同方向的四条棱两两共面,因此,取出的三条棱必属于三个不同的方向.可先取定方向的棱,这有四种取法.不妨设取的棱为.则方向只能取棱,共两种可能.当方向取棱时,方向取棱分别只能为.综上,三条棱两两异面的取法数为8.故所求概率为.5.设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_______.【答案】【解析】每对点之间是否连边有2种可能,共有种情形.考虑其中点A、B可用折线连接的情形数.(1)有边AB:共种情形.(2)无边AB,但有边CD:此时,点A、B可用折线连接当且仅当点A与C、D中至少一点相连,且点B与C、D中至少一点相连,这样的情形数为.(3)无边AB,也无边CD:此时,AC与CB相连有种情形,AD与DB相连也有情形,但其中AC、CB、AD、DB均相连的情形被重复计了一次,故点A与B可用折线连接的情形数为.综上,情形数的总和为.故点A与B可用折线连接的概率为.6.从1,2,…,20中任取五个不同的数,其中至少有两个是相邻数的概率是______.【答案】【解析】设取自1,2, (20)若互不相邻,则.由此知从1,2,…,20中取五个互不相邻的数的选法与从1,2,…,16中取五个不同的数的选法相同,即种.于是,所求的概率为.7.某情报站有四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第一周使用种密码.那么,第七周也使用种密码的概率是______(用最简分数表示).【答案】.【解析】用表示第周用种密码本的概率.则第周末用种密码的概率为.故.8.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一人投掷.则先投掷人的获胜概率是________.【答案】【解析】同时投掷两颗骰子点数和大于6的概率为,从而,先投掷人的获胜概率为.9.某车站每天早上8:00~9:00、9:00~10:00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律见表1.一旅客8:20到站.则他候车时间的数学期望为______(精确到分).表1到站时刻8:10~9:10 8:30~9:30 8:50~9:50概率【答案】27【解析】旅客候车时间的分布如下表.候车时间(分)10 30 50 70 90 概率候车时间的数学期望为.1.从1,2,…,20这20个数中,任取三个不同的数.则这三个数构成等差数列的概率为(). A.B.C.D.【答案】D【解析】从这20个数中任取三个数,可构成的数列共有个.若取出的三个数a、b、c成等差数列,则a+c=2b.故a与c的奇偶性相同,且a、c确定后,b随之而定.从而,所求概率为.选D.2.掷两次色子,用X记两次掷得点数的最大值.则下列各数中,与期望最接近的数为( ) A.4B.C.5D.【答案】B【解析】易知,,,,,,,故,与最接近.3.将1,2,3,4,5,6,7,8,9这9个数随机填入的方格表中,每个小方格恰填写一个数,且所填数各不相同,则使每行、每列所填数之和都是奇数的概率是________.【答案】.【解析】要使每行、每列所填数之和都是奇数,必须使每行或每列中要么只有一个奇数,要么三个全为奇数,故满足条件的填法共有种.因此所求的概率为.故答案为:4.从正九边形中任取三个顶点构成三角形,则正九边形的中心在三角形内的概率________.【答案】【解析】如图,正9边形中包含中心的三角形有以下三种形状:对于(1),有3种情况;对于(2),有9种情况:对于(3);有18种情况;故所求概率为,故答案为:5.从1,2,…,10中随机抽取三个各不相同的数字,其样本方差的概率=_________.【答案】【解析】的样本方差,当且仅当是连续的正整数.故.故答案为:6.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由某电视台举办的知识类答题闯关活动,活动共有四关,设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.(1)求男生闯过四关的概率;(2)设表示四人冲关小组闯过四关的人数,求随机变量的分布列和期望.【答案】(1);(2)见解析【解析】分析:(1)利用相互独立事件的概率计算公式即可得出;(2)记女生四关都闯过为事件,则的取值可能为0,1,2,3,4,利用相互独立事件的概率公式即可得出.详解:(1)记男生四关都闯过为事件,则;(2)记女生四关都闯过为事件,则,因为,,,,所以的分布如下:.点睛:本题考查了相互独立与互斥事件的概率计算公式,随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力.7.设n为给定的大于2的整数。
高一数学统计与概率试题答案及解析
![高一数学统计与概率试题答案及解析](https://img.taocdn.com/s3/m/15c65731a22d7375a417866fb84ae45c3b35c2be.png)
高一数学统计与概率试题答案及解析1.甲,乙两人在相同条件下练习射击,每人打发子弹,命中环数如下【答案】甲稳定【解析】略2.从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有个红球D.恰有个黒球与恰有个黒球【答案】D【解析】A中至少有一个黒球包括都是黑球,不是互斥的;B中至少有一个黒球包括都是黑球,不是互斥的;C中两个事件都可能是1黑球1红球;D中是互斥事件但不对立【考点】互斥事件与对立事件3.在一块并排10垄的土地上,选择2垄分别种植A、B两种植物,每种植物种植1垄,为有利于植物生长,则A、B两种植物的间隔不小于6垄的概率为()A. B. C. D.【答案】B【解析】任意种植的方法数,间隔不小于6垄的方法数为12,所以概率【考点】古典概型概率4.(本题满分14分)一个包装箱内有6件产品,其中4件正品,2件次品。
现随机抽出两件产品,(1)求恰好有一件次品的概率。
(2)求都是正品的概率。
(3)求抽到次品的概率【答案】(1);(2);(3)【解析】本题中三个小题考察的都是古典概型概率,求解时需找到所有基本事件总数和满足题意要求的基本事件的个数,求其比值即可,在求解时当情况比较多可首先考虑其对立事件试题解析:将六件产品编号,ABCD(正品),ef(次品),从6件产品中选2件,其包含的基本事件为:(AB)(AC)(AD)(Ae)(Af)(BC)(BD)(Be)(Bf)(CD)(Ce)(Cf)(De)(Df)(ef).共有15种, 2分(1)设恰好有一件次品为事件A,事件A中基本事件数为:8则P(A)= 6分(2)设都是正品为事件B,事件B中基本事件数为:6则P(B)= 10分(3)设抽到次品为事件C,事件C与事件B是对立事件,则P(C)=1-P(B)=1- 14分【考点】古典概型概率5.欧阳修《卖油翁)中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌漓沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为4 cm的圆,中间有边长为l cm的正方形孔.若随机向铜钱上滴一滴油(设油滴整体落在铜钱上).则油滴(设油滴是直径为0.2 cm的球)正好落入孔中(油滴整体落入孔中)的概率是.【答案】【解析】油滴(设油滴是直径为0.2 cm的球),所以油滴的球心必须落在边长为的正方形边界或其内部(如图中红色的正方形),而随机向铜钱上滴一滴油且油滴整体落在铜钱上即油滴的球心必须落在以铜钱的中心为球心以为半径的圆上或内部(如图中红色的小圆)。
概率与统计初步习题答案及分析
![概率与统计初步习题答案及分析](https://img.taocdn.com/s3/m/45cb8da0227916888486d7c9.png)
概率与统计初步§ 9.1计数原理(1)某人到S城出差,在解决住宿问题时发现只有甲、乙两间旅社还有空房,其中甲旅社还剩4间单人房、6间双人房,乙旅社剩下 9间单人房、2间双人房,则现在住宿有种不同的选择;解:共有4 • 6 • 9 • 2 = 21不同的选择;(分析:只需要订一间房,“一步可以做完”,应该用加法计数原理)(2)一家人到S城旅游,入住旅社的空房只剩下12间单人房和8间双人房,现需要订一间单人房和一间双人房,有___________________________________ 种不同的选择;解:共有:12 8 =96种不同选择;(分析:要订两间房,可以分成两步完成:第一步, 先订一间单人房,有 12种不同选择;第二步,再订一间双人房,有 8种不同选择;用乘法计数原理,共有12 8 =96种不同选择;)(3)4封不同的信,要投到 3个不同的信箱中,共有_______________ 种不同的投递的方法;分析:“投递的是信件”,从信件入手考虑问题;本题没有其它限制条件,一共有四封信,分成四步完成:第一步,投递第一封信,投入3个信箱中的1个,有3种不同的投递方法;第二步考虑第二封信的投递方法,同样是投入3个信箱中的1个,有3种不同的投递方法;第三步考虑第三圭寸信、第四步考虑第四圭寸信,同样都有3种不同的投递方法所以完成这件事情共有: 3 3 3 3 = 34 =81种不同的投递方法;(4)4封不同的信,要投到 3个不同的信箱中,并且每个信箱中至少有一封信,不同的投递方法共有 _____________ 种;2分析:(捆绑法)分两步:第一步在四封信中抽出两封,有 C 4种不同的方法;第二步把这两圭寸信捆绑,看成一圭寸信,和剩下的另外两圭寸信构成三圭寸信,按排列的方法放入三3个邮箱(即:三个位置),有A3种不同的方法;所以完成这件事情共有:c4 A3二 g 3 2 1 = 36种不同的投递方法;2沢1(5)3封不同的信,要投到 4个不同的信箱中,共有种不同的投递的方法;分析:从信件入手考虑问题;共 3封信,每封信都可以投入 4个信箱中的任意一个,即每封信均有4种不同的投递方法,分四步投递四封信,方法同题 3 ,,所以共有34 4 4 =4 =64种不同的投递方法;⑹ 一个学生从7本不同的科技书、8本不同的文艺书、6本不同的外语书中任选一本阅读,不同的选法有 _______________________________________________________ 种;解:共有:7 8 6 21种不同的选法;(只选一本书,“一步可完成”,用加法原理)⑺ 一个学生从7本不同的科技书、8本不同的文艺书、6本不同的外语书中任选一本文艺书和一本科技书回家阅读,不同的选法有__________________________________ 种; 解:共有:8 7 =56种不同的选法;(分析:需要选两本不同的书,可以两步完成,用乘法原理:第一步,从 8本不同的文艺书中任选一本,有8种不同的选法;第二步,从7本不同的科技书中任选一本,有 7种不同的选法)(8) ____________________________________________________________________ 由1,2,3,4,5五个数字组成的三位数,共有_____________________________________________ 个;一 3解:共有5 5 5 =5 =125个三位数;(分析组成三位数的各个位数上的数字可以重复,分三步完成:第一步,填写百位上的数字,从5个数字中任取一个,有 5种选法;第二步,填写十位上的数字,由于数字允许重复,仍然从5个数字中任取一个,同样有5种选法;第三步,填写个位上的数字,与第二步相同,有5种选法;所以完成这件事情,共有5 5 5 =53 =125个三位数,如图:方法数: 5 5 5 )百位十位个位(9) ____________________________________________________________________ 由1,2,3,4,5五个数字组成没有重复数字的三位数,共有_________________________________ 个; 解:共有5 4 3 =60个三位数;(组成三位数的各个位数上的数字不可以重复,可以分三步完成:第一步,填写百位上的数字,从5个数字中任取一个,有 5种选法;第二步,填写十位上的数字,由于数字不允许重复,只能从剩下的4个数字中任取一个,有4种选法;第三步,填写个位上的数字,从剩下的3个数字中任取一个,有 3种选法;完成这件事情,共有5 4 3 = 60个三位数,如图:方法数: 5 4 3百位十位个位§ 9.2排列组合(10)7人站成一排,一共有_____________ 种不同的排法;解:共有Aj =765432 1 =5040种;(分析:与顺序有关,是排列问题)(11)7人中选出3人排成一排,一共有_________________ 种不同的排法;3解:共有A;7 6 5 = 210种不同的排法;(分析:与顺序有关,是排列问题)(12)7人中选出3人组成一组,代表班级参加辩论比赛,一共有_________ 种不同的选法;37汇6汇5解:共有C7 35种不同的选法;(分析:与顺序无关,是组合问题)3汉2汉1(13)5人站成一排,若甲必须站在第一位,一共有________________ 种不同的排法;解:共有1 A:=24种不同的排法;(分析:分两步完成:第一步,先排头,把甲放到第一位,有1种排法;第二步,将剩下的四个人排在后面,有A: =4 3 2 1 =24种4不同的排法;所以共有:1 A4 =24种不同的排法;)小结:若某些元素或某些位置有特殊要求的时候,那么,一般先安排这些特殊元素或位置,然后再安排其它元素或位置,这种方法叫特殊元素(位置)分析法,计算方法用分步乘法原理;(14)___________________________________________________________ 8人排成一排,其中 A、B 两人必须排在一起,一共有________________________________________ 种不同的排法;7 2解:共有A7 A2 =5040 2 =10080种不同的排法;(分析:分两步完成:第一步,将A、B两人捆绑,看成一个人,则原来的8个人可以看成是 7个人排成一排,共有A;=765432 1 =5040种不同的排法;第二步,将A、B两人在队伍中进2行排列,不同的排法有 A 2 =2 1=2种;用分步乘法计算,完成这件事情共有:A7 A2 = 5040 2 = 10080种不同的排法)小结:如果排列中有某些元素需要排在一起,可以先将它们捆绑,看成一个元素与其它元素进行排列后,再松绑,将需要排在一起的元素在队伍里进行第二步排列,这种方法称为"捆绑法”;(15)_________________________________________________________________________ 8人排成一排,其中 A、B、C三人不在排头并且要互相隔开,一共有________________________________________________________________________________________ 种不同的排法;5 3解:共有:A A =120 60 =7200种不同的排法;(分析:分两步完成:第一步,先不排A、B、C三人,把剩下的5个人进行排列,共有A5 ^5 4 3 2 1=120种不同的排法;第二步,将 A、B、C三人放入5个人排好的队伍间隔中,由于 A、B、C 三人不能排头并且互相要隔开,只能从如下图箭头所示的5个位置中任取3个位置进行排列,共有A =5 4 3 =60种不同的5 = 7200种不同排法)排法;共有:A5 AA B C小结:当某几个元素要求不相邻(即有条件限制)时,可以先排没有条件限制的元素,再将不能相邻的元素按要求插入已排好元素的空隙之中,这种方法叫插入法。
专题15 概率与统计专项高考真题(带答案及解析)
![专题15 概率与统计专项高考真题(带答案及解析)](https://img.taocdn.com/s3/m/380f9e1ebdd126fff705cc1755270722192e59ed.png)
专题15概率与统计(解答题)1.【2021·全国高考真题(理)】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y s s ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==.(2)依题意,0.320.15y x -==⨯=,=,y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2.【2021·北京高考真题】为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X );(2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【答案】(1)①20次;②分布列见解析;期望为32011;(2)()()E Y E X >.【分析】(1)①由题设条件还原情境,即可得解;②求出X 的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出()E Y ,即可得解.【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X 可以取20,30,()12011P X ==,()1103011111P X ==-=,则X 的分布列:X2030P1111011所以()1103202030111111E X =⨯+⨯=;(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为232981510020499C C P C ==,不在同一组的概率为19599P =,则()()49529502530=999999E Y E X =⨯+⨯>.3.【2021·全国高考真题】某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为X020100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.4.【2021·全国高考真题】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤,故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>.此时()()20300f p p p '=-++<,()230120f p p p '=+->,故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞ 时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.5.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为111178168816+++=.6.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)8(0ii x x =-=∑,2021)9000(i iy y =-=∑,201)()800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)((iinx y r x y --=∑1.414≈.【解析】(1)由已知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000.(2)样本(,)i i x y (1,2,,20)i =的相关系数20220.943(iix y y x r --=∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.【2020年高考全国III 卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K 2=()()()()2) n ad bc a b c d a c b d -++++,P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828.【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:人次≤400人次>400空气质量好3337空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.8.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO [0,50](50,150](150,475]PM 2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.8416.63510.828【解析】(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=.(2)根据抽查数据,可得22⨯列联表:2SO PM 2.5[0,150](150,475][0,75]6416(75,115]1010(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯.由于7.484 6.635>,故有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关.9.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313((1)()3433436C -+-=;(Ⅲ)01p p <【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.10.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.12.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243.【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k k P X k k -===.所以,随机变量X 的分布列为X0123P 1272949827随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y ===== .由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立,从而由(1)知()({3,1}{2,0})P M P X Y X Y ===== (3,1)(2,0)P X Y P X Y ===+==(3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.13.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=.(2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====.所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==()()()()P C P D P C P D =+0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X012P 0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得33011()C 4060P E ==.答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,P (E )比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.14.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)45 127p =,解释见解析.【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1-01P (1)αβ-(1)(1)αβαβ+--(1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-,即114()i i i i p p p p +--=-.又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-= 为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+ 877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=.4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率精典例题解析在新课标理念指导下,预计2011年考查有关统计与概率的知识点将着重数据的分析和事件发生机会大小的确定以及统计与概率知识的实际应用,对统计中涉及的计算将趋向简单.试题将会继续结合社会热点,创设一些新的情境来涉及有关统计与概率的知识,突出收集、整理、描述信息,建立数学模型(概率模型),进而解决问题.中考中会适当设置一些把统计、概率知识和方程、不等式、函数等知识结合在一起的开放型问题和探索问题,或者出现与其他学科、生活知识等综合的题型,注重考查学生的创新意识与实践能力.本文就精典例题的解析,并以此作为预测,仅供复习参考.【例1】下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解中央电视台“星光大道”栏目的收视率,采用普查方式C.要保证“神舟六号”载人飞船成功发射,对重要零部件的检查采用抽查方式D.要了解外地游客对吉林雾凇冰雪节的满意度,采用抽查方式【分析】要了解一批灯泡的使用寿命必须采用抽查,所以选项A错误;了解电视节目的收视率采用普查虽然能够得出详细结论,但普查范围太大不容易实现,所以采用抽查方式合适,所以选项B错误;“神舟六号”载人飞船是高科技产品,要保证它发射成功任何一个重要零部件都要求完好,所以必须普查,所以选项C错误.解:D.【点评】普查是为了一定目的对考察对象进行的全面调查;抽样调查是从总体中抽取部分个体进行的调查.明确调查的问题,弄清普查和抽样调查所适合的对象和各自的含义是解题的关键.【例2】班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家学习时间如下表所示,那么这六位学生学习时间的众数与中位数分别是()A. 4小时和4.5小时B.4.5小时和4小时C. 4小时和3.5小时D.3.5小时和4小时【分析】理解众数、中位数的概念,掌握它们的求法,根据表中数据求解.解:A.【点评】掌握众数、中位数这两个概念含义是关键,众数是重复出现次数最多的数据,但注意不是重复出现的次数,而中位数仅与数据排列的位置有关.【例3】一次期中考试中A、B、C、D、E五位同学的数学、英语成绩等有关信息如下表所示:(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好.友情提示:一组数据的标准差计算公式是S=,其中x n个数据x1,x2,…,x n的平均数.【分析】在求英语成绩的标准差时先找出英语成绩的平均成绩;求标准分时根据标准分的计算公式代入数据求解.解:(1)数学考试成绩的平均分=51(71+72+69+68+70)=70. 英语考试成绩的标准差=6(2)设A 同学数学考试成绩标准分为P 数学,英语考试成绩标准分为,英语考试成绩标准分为P 英语.从标准分看,A 同学数学比英语考得更好.【点评】 本题考查标准差的计算以及分析图表获取信息的能力图表信息题主要考查同学们的识图能力,根据表中的数据、由统计图的直观性获得信息解决问题.【例4】某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图1和图2是图书管理员整理采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)填充图1频率分布表中的空格;(2)在图2中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.【分析】 结合统计表和统计图,寻找表示相同意义部分即可求解.解:(1)100,0.05;(2)图略(提示:根据统计表中自然科学类书籍的频数为400画图);(3)500册;( 4)答案不惟一,如:适当增加数学类书籍.【点评】本题中既有统计表,又有统计图,通过文字叙述联系在一起,图、表、文字之间所表达的信息需要相互转化,才能顺利解题.【例5】将分别标有数字1,2,3的二张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (奇数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成的两位数恰好是“32”的概率为多少?错解:(1)P (奇数)=32;(2)P (“32”)=91. 错误分析:对于第一个问题一共有三个数,分别是1,2,3.那么任取一个,所有可能的结果数有三种,其中是奇数的可能的结果有二种,所以P(奇数)=32,这个没有错,那么第二个问题我们看一下所有可能的结果有哪些,因为它是不放回抽取,当抽取的是1时,有2或3与它对应,当抽取是2时,有1或3与它对应,当抽取是3时,有1或2与它对应,所有可能的结果有六种,其中是“32”只有一种,那么它的概率为61. 【点评】对于不放回的事件的概率,要把所有可能的结果都要列出,不能与放回事件相混淆.本题的错误就是对不放回事件理解不够造成的.【例6】四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的机会是___.(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.【思考与分析】 四张扑克牌中有2张是5,那么我们即可求出从中抽出1张是5的机会的大小;(2)每次同时随机抽取两张扑克牌,看抽到两张牌的牌面数字之和的奇偶性,可以先求出所有的可能性,然后找出和是偶数的数,再求出出现和为偶数的机会大小.解:(1)因为四张扑克牌中有2张牌面数字为5,所以随机抽取一张扑克牌,牌面数字恰好为5的机会是2142=; (2)不公平.理由:因为随机抽取两张扑克牌,抽到两张牌的牌面数字之和的结果有下列几种情况:2+4=6,2+5=7,2+5=7,4+5=9,4+5=9,5+5=10.显然,这6种结果中和是偶数的有2种,和是奇数的有4种,所以和为偶数的机会是3162=,和为奇数的机会是3264=,因为3231≠,所以这个游戏不公平. 【点评】概率均等的游戏才是公平的,否则就是不公平的,所以要判断一个游戏是否公平的关键要将它们所有出现的可能结果一一列举出来,再从中找出所含不同的结果,从而分别求出不同结果的概率【例7】北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”。
现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子。
(1)小玲从盒子中任取一张,取到印有:“欢欢“图案的卡片的机会是多少?(2)小玲从盒子中任取一张卡片,记下名字后放回,再从盒子中任取第二张卡片,记下名字。
用列表或画树状图列出小玲取到的卡片的所有可能情况,并求出小玲两次都取到印有“欢欢”图案的卡片的机会。
【解析】 (1)三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片,即有三种等可能的结果,小玲从盒子中任取一张,取到印有:“欢欢“图案的卡片的机会是31。
(2)画树状图如下:故小玲两次都取到印有“欢欢”图案的卡片的机会是91。
练一练1、(北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( )A .50,20B .50,30C .50,50D .135,502、(金华市)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( )A.甲B.乙C.丙D.不能确定3、(安徽)如图是我国2003~2007年粮食产量及其增长速度的统计图,下列说法不正确...的是 ( )A .这5 年中,我国粮食产量先增后减B .后4年中,我国粮食产量逐年增加C .这5 年中,我国粮食产量年增长率最大D .这5 年中,我国粮食产量年增长率最小4、(白银等九市州)张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出( )A.一周支出的总金额B.一周各项支出的金额C.一周内各项支出金额占总支出的百分比;D.各项支出金额在一周中的变化情况5、(白银等九市州)如图2,小红和小丽在操场上做游戏,她们先在地上画出一个圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是()A.必然事件(必然发生的事件)B.不可能事件(不可能发生的事件)C.确定事件(必然发生或不可能发生的事件)D.不确定事件(随机事件)6、(北京市)如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A.15B.25C.12D.357、(河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数8、(重庆市)今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )A 、21B 、31C 、41D 、61 9、(武汉)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:⑴典典同学共调查了 名居民的年龄,扇形统计图中a = ,b = ; ⑵补全条形统计图;⑶若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的0~14 15~40 41~59 60岁以上 年龄 人数人数.10、(连云港)甲、乙两人玩“锤子、石头、剪子、布”游戏,他们在不透明的袋子中放入形状、大小均相同的15张卡片,其中写有“锤子”、“石头”、“剪子”、“布”的卡片张数分别为2,3,4,6.两人各随机摸出一张卡片(先摸者不放回)来比胜负,并约定:“锤子”胜“石头”和“剪子”,“石头”胜“剪子”,“剪子”胜“布”,“布”胜“锤子”和“石头”,同种卡片不分胜负.(1)若甲先摸,则他摸出“石头”的概率是多少?(2)若甲先摸出了“石头”,则乙获胜的概率是多少?(3)若甲先摸,则他先摸出哪种卡片获胜的可能性最大?参考答案1、C解析:众数是一组数据中次数出现最多的那个数据,即为50,中位数即为排在中间的两个数的平均数五502、A解析:甲的方差最小3、A.解析:这5 年中,我国粮食产量先增后减4、C.解析一周内各项支出金额占总支出的百分比5、D6、B7、A8、A9、⑴500,20%,12%;⑵略;⑶11900;10、10、解:(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张,故甲摸出“石头”的概率为31 155=.(2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84 147=.(3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71 142=;若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42 147=;若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63 147=;若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为5 14.故甲先摸出“锤子”获胜的可能性最大.11。