福州大学大学物理习题解答-第8章气体动理论

合集下载

大学物理 气体动理论 热力学基础 复习题及答案详解

大学物理 气体动理论 热力学基础 复习题及答案详解

第12章 气体动理论一、填空题:1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的压强是 。

(设内胎容积不变)2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -⨯的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。

(取大气压强为50 1.01310p pa =⨯)3、一容器内储有氧气,其压强为50 1.0110p pa =⨯,温度为27.0℃,则气体分子的数密度为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为 。

(设分子均匀等距排列)4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率为 。

5、在压强为51.0110pa ⨯下,氮气分子的平均自由程为66.010cm -⨯,当温度不变时,压强为 ,则其平均自由程为1.0mm 。

6、若氖气分子的有效直径为82.5910cm -⨯,则在温度为600k ,压强为21.3310pa ⨯时,氖分子1s 内的平均碰撞次数为 。

7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .8、试说明下列各量的物理物理意义: (1)12kT , (2)32kT , (3)2i kT , (4)2i RT , (5)32RT , (6)2M i RT Mmol 。

参考答案:1、54.4310pa ⨯ 2、536.1110m -⨯ 图12-13、25332192.4410 1.30 6.2110 3.4510m kg m J m ----⨯⋅⨯⨯ 4、2121121.6910 1.8310 1.5010m s m s m s ---⨯⋅⨯⋅⨯⋅ 5、6.06pa 6、613.8110s -⨯ 7、(2) ,(2)8、略二、选择题:教材习题12-1,12-2,12-3,12-4. (见课本p207~208)参考答案:12-1~12-4 C, C, B, B.第十三章热力学基础一、选择题1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 ( )(A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:(1)该理想气体系统在此过程中作了功;(2)在此过程中外界对该理想气体系统作了正功;(3)该理想气体系统的内能增加了;(4)在此过程中理想气体系统既从外界吸了热,又对外作了正功。

大学物理2-1第八章(气体动理论)习题答案

大学物理2-1第八章(气体动理论)习题答案

大学物理2-1第八章(气体动理论)习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第 8 章8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V N P =,kT PVN =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。

(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。

(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。

[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V =则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V =3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求:10203040(1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少? [解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。

大学物理第八章习题及答案

大学物理第八章习题及答案

V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。

福州大学大物规范作业(下)参考答案

福州大学大物规范作业(下)参考答案

A2 E __ຫໍສະໝຸດ __________ 。解:等温过程 ET 0 绝热过程
QT AT QTa A1
放热
Q0
E A A2
所以,整个过程吸热为0,放热为|A1|
E ET E绝热= A2
16
3.一定量的某种理想气体,从A状态经历如图所示的直线过程
4
2.图示是相同温度下的氢气和氦气的速率分布曲线,则该温度下
氦气分子的最概然速率为_____________ ,氢气分子的最概然速率为 1000m/s
1414m / s 。 _____________
最概然速率
f (v )
vp
2 RT

0 pHe 2 /1 pH
2
可知氦气分子的最概然速率为:1000m/s
已知:
MO2 32g / mol
m 64g
T 50K
2 mol
i 5
(1)保持体积不变;
A0
i 5 E RT 2 8.31 50 2077 .5 J 2 2
Q E A E 2077 .5J
18
(2)保持压强不变
7 Q C p T 2 8.31 50 2908 .5 J 2
又因为:
1000
v( m / s )
v pH 2 / v pHe

v pH 2 1000 2 1414m / s
5
3. 某理想气体,压强P=7.0104Pa,质量密度ρ =1.4kg/m3, 则该气体方均根速率
。 3.873 10 m / s v 2 _________________________

《大学物理》第8章气体动理论练习题及答案

《大学物理》第8章气体动理论练习题及答案

《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。

A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。

3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。

二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。

2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。

练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。

2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。

3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。

气体动理论习题答案

气体动理论习题答案

气体动理论习题答案气体动理论习题答案气体动理论是热力学的基础之一,它研究气体的性质和行为,涉及到很多习题和问题。

在学习过程中,我们常常会遇到一些难以解答的问题,因此有一份气体动理论习题答案的指导是非常有帮助的。

在本文中,我将为大家提供一些常见气体动理论习题的答案,希望能对大家的学习有所帮助。

1. 一个气体分子的平均动能与其温度成正比。

这一结论是根据哪个基本假设得出的?答案:这一结论是根据气体动理论的基本假设之一——理想气体分子是质点,其运动符合经典力学的运动规律,即分子之间相互无相互作用力,分子体积可以忽略不计。

2. 一个容器内有氧气和氮气两种气体,它们的分子质量分别为32g/mol和28g/mol。

假设两种气体的温度和压强相同,哪种气体的分子速率更大?答案:根据气体动理论,分子速率与分子质量成反比。

因此,氧气的分子速率更小,而氮气的分子速率更大。

3. 在一个密封的容器中,有两种气体A和B,它们的分子质量分别为16g/mol 和32g/mol。

气体A的分子数是气体B的两倍,两种气体的温度和压强相同。

那么,气体A的体积是气体B的几倍?答案:根据理想气体状态方程PV=nRT,气体的体积与分子数成正比。

由于气体A的分子数是气体B的两倍,所以气体A的体积也是气体B的两倍。

4. 一个容器中有氧气和氢气两种气体,它们的分子质量分别为32g/mol和2g/mol。

如果两种气体的温度和压强相同,哪种气体的密度更大?答案:根据理想气体状态方程PV=nRT,气体的密度与分子质量成正比。

因此,氧气的密度更大。

5. 一个容器中有两种气体,它们的摩尔质量分别为16g/mol和32g/mol。

如果两种气体的温度和压强相同,哪种气体的分子数更多?答案:根据理想气体状态方程PV=nRT,气体的分子数与摩尔质量成正比。

因此,摩尔质量较小的气体的分子数更多。

6. 一个容器中有氧气、氮气和二氧化碳三种气体,它们的分子质量分别为32g/mol、28g/mol和44g/mol。

第八、九章 热力学基础 气体动理论 南京大学出版社 习题解答

第八、九章  热力学基础 气体动理论 南京大学出版社 习题解答

第八章 气体动理论8-6 目前,真空设备内部的压强可达101001.1-⨯Pa ,在此压强下温度为27℃时1m 3体积中有多少个气体分子?解:由 nKT p =得10103231011024510(m )13810300p n KT ---⋅⨯===⋅⨯⋅⨯⨯8-7 每秒有1023个氧分子以500m·s -1的速度沿与器壁法线成45º角的方向撞在面积为4102-⨯m 2的器壁上,问这群分子作用在器壁上的压强为多大?解:每个分子对器壁碰撞时,对器壁的作用冲量为 02cos45f t mv ∆= 每秒内全部N 个分子对器壁的作用冲量,即冲力为02cos 45F N mv =⋅根据压强定义式得:233023442cos 451023210500cos 456021021018810(Pa)F N mv p S S --===创创?=状创=状8-8 有N 个粒子,其速率分布函数为 d ()d Nf v C N v== (0<v <0v ) 0)(=v f (v >0v ) (1) 画出该粒子的速率分布曲线 (2) 由0v 求出常量C (3) 求粒子的平均速率解: (1)粒子的速率分布曲线如图2-2所示 (2) 由于0100()d d v f v v C v Cv ==⎰⎰由分布函数的归一化条件()0d 1f v v ∞=⎰,得01Cv =则1C v =(3) 粒子平均速率为0001()d d 2V v v vf v v vv v ∞===⎰⎰8-9 某些行星的温度可达到81.010K ⨯,这是发生核聚变(热核反应)所需的温度,在此温度下的恒星可视为由质子组成。

试求:(1)质子的平均动能;(2)质子的方均根速率。

(大量质子可视为由质点组成的理想气体) 解(1)将质子视为理想气体,2381533kT 1.3810110 2.0710(J)22ε--==⨯⨯⨯⨯=⨯(2)质子的方均根速率为:61.5810(m/s)===⨯8-10. 储有氧气的容器以速度s /m 100v =运动,假设该容器突然停止,全部定向运动的动能都变为气体分子热运动的动能,容器中氧气的温度将会上升多少? 解: 容器作匀速运动,由于体积和压强不变,所以容器内的温度不变。

《大学物理》第8章 气体动理论-讲简

《大学物理》第8章 气体动理论-讲简
同的质量为 m 的气体分子,计算 A1壁面所受压强 .
y
A2 o
z
- mmvvvxx
x
v y A1 y
z x vz o
vv x
y
A2 o
z
- mmvvvxx
x
分子运动速度
A1 y
zx
vi
vixi
viy
j
viz k
由气体在平衡态时,分子热运动的统计假设
v2x
v2y
v2z
1 v2 3
单个分子遵循力学规律
能之和)之和.
1摩尔理想气体内能
EA
NA
i 2
kT
i 2
RT
质量为M,摩尔质量为 的理想气体内能:
E M i RT
2
说明: 理想气体内能是态温度的函数,E= f (T) 物体的内能与机械能不同. 内能永不为0 .
例1 一容器内贮有理想气体氧气,压强 p=1.0atm, 温度t=27.0℃,体积V=1.0×10-2m3. 求: (1)氧分子的平均平动动能、平均转动动能与分子的 平均能量; (2)内能;
? 8.2 统计假设 理想气体分子的微观模型
8.2.1 统计规律性与统计假设
宏观物体都是由大量的分子或原子组成 . 分子间频繁的碰撞,导致 分子无规则地运动. 布朗运动.swf
对于由大量分子组成的热 力学系统从微观上加以研究 时, 必须用统计的方法.
统计单方个法分:子在的大运量动偶遵然从事牛件顿中定运律用。几本率章(用概统率计)方的法概,念 结找合出牛所顿存力在学规研律究的宏方观法热。现象的微观本质。
v
2 x
1 3
v2
分子平均平动动能
t
1 2

大学物理参考答案(白少民)第8章 气体动理论

大学物理参考答案(白少民)第8章 气体动理论

λ=

d=
1 (λ 2π n)
1/ 2
=
1 1.66 ×10 −7 × 2 × 3.14 × ( 0.67 ×10 ) 1.38 ×10 −23 × 327
5
= 3.02 ×10 −10 m
8.20 从地表往下钻深孔表明,地层每深 30m ,温度升高 10C ,设地壳的热传导系数为 0.84 J ⋅ s −1 ⋅ K −1 ⋅ m −1 ,问每秒从地核向外传出的通过每平方米表面积的热量是多少? 解:取向上为 z 轴正向,z=0 为地表,则 T = T0 −
ε 总 = Nε 平
能?
3 kT 2 3 3 R M 3M 3 3 = kTN = ( )T ⋅ NA = RT = PV = × 5 ×10 2 × 4 ×10 −3 = 3 J 2 2 NA µ 2 µ 2 2
8.14 温度为 270C 时,1mol 氦气、氢气和氧气各有多少内能? 1g 的这些气体各有多少内 解:1mol 气体的内能为 U = N A 对于氦 i = 3 ,对于氢和氧 i = 5
b = 4.3 ×10 −5 m 3 ⋅ mol −1 ,00C 时其摩尔体积为 6.0 ×10 −4 m 3 ⋅ mol −1 ,试求其压强。如果
将气体当做理想气体处理,结果又如何? 解:由范德瓦尔斯方程 ( P +
P=
RT a 8.31 × 273 0.37 − 2 = − = 3.05 ×10 6 Pa −4 −5 υ −b υ 6.0 ×10 − 4.3 ×10 (6.0 ×10 −4 ) 2
8.12 计算下列一组粒子的平均速率和方均根速率。 2 4 6 Ni 8 40.0 2 50.0
υi (m ⋅ s ) 10.0

(完整版)大学物理学(课后答案)第8章

(完整版)大学物理学(课后答案)第8章

第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。

则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。

而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。

8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。

开始时它们的压强和温度都相同。

现将3 J 热量传给氦气,使之升高到一定的温度。

若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。

故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。

故正确的是(C )。

8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。

又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。

对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。

当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。

由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。

换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。

2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。

3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。

答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。

(2)微观量:描述个别分子运动状态的物理量。

(3)宏观量:表示大量分子集体特征的物理量。

4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。

其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。

可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。

大学物理 气体分子动理论 试题(附答案)

大学物理 气体分子动理论 试题(附答案)

om
解: v1 ~ v2 区间的分子数为
∆ N v1 ~ v2 = N ∫
v2
v1
f (v )dv
该区间内分子速率之和为 vdN = N


v2
v1 v2
vf (v )dv ,所以该区间分子的平均速率为
∫ vdN
∆N v1 → v2
=
N ∫ vf (v )dv
v1
v2
1பைடு நூலகம்
v1
(A)
(B)
O
f (v )
v
ww
w. z
率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 子的平均速率为 v ,平均碰撞次数 z 和平均自由程 λ 分别为: [ B ] (A) v = 4 v 0 , Z = 4 Z 0 , λ = 4λ0 。 (B) v = 2v 0 , Z = 2Z0 , λ = λ0 。 (C) v = 2v 0 , Z = 2Z0 , λ = 4λ0 。 (D) v = 4v 0 , Z = 2Z0 , λ = λ0 。
解:因为
∆N v1 → v2
N
∫ f (v )dv
v1
v2
由题意
∫0 f (v )dv = ∫v f (v )dv ,
0
v0

说明
∆ N 0 → v0 = ∆ N v0 → ∞ =
ww
4. 设某种气体分子的速率分布函数为 f (v ) , 则速率在 v1 ~ v 2 区间内的分子的平均速率为 ] (A) (C)
µ = M mol =
MRT ρRT 11.3 × 10 −3 × 8.31 × 300 = = pV p 1.0 × 10 −2 ×1.013 × 105

大学物理习题答案第八章

大学物理习题答案第八章

[习题解答]8-2 在一个容器内盛有理想气体,而容器的两侧分别与沸水和冰相接触(热接触)。

显然,当沸水和冰的温度都保持不变时,容器内理想气体的状态也不随时间变化。

问这时容器内理想气体的状态是否是平衡态?为什么?解不是平衡态,因为平衡态的条件有二:一是系统的宏观性质不随时间变化,二是没有外界的影响和作用。

题目所说的情况不满足第二条。

8-3 氧气瓶的容积是32 dm3 ,压强为130 atm,规定瓶内氧气的压强降至10 atm时,应停止使用并必须充气,以免混入其他气体。

今有一病房每天需用1.0 atm的氧气400 dm3 ,问一瓶氧气可用几天?解当压强为、体积为时,瓶内氧气的质量M1为.当压强降至、体积仍为时,瓶内氧气的质量M2为.病房每天用压强为、体积为的氧气质量 m为.以瓶氧气可用n天:.8-4在一个容积为10 dm3 的容器中贮有氢气,当温度为7℃时,压强为50 atm。

由于容器漏气,当温度升至17℃时,压强仍为50 atm,求漏掉氢气的质量。

解漏气前氢气的质量为M1 , 压强为, 体积为, 温度为,于是M1可以表示为.漏气后氢气的质量为M2, 压强为, 体积为, 温度为, 于是M2可以表示为.所以漏掉氢气的质量为.计算中用到了氢气的摩尔质量。

8-5 气缸中盛有可视为理想气体的某种气体,当温度为T1 = 200 K时,压强和摩尔体积分别为p1 和V m1 。

如果将气缸加热,使系统中气体的压强和体积同时增大,在此过程中,气体的压强p和摩尔体积V m满足关系p = αV m,其中α为常量。

(1)求常量α;(2)当摩尔体积增大到2V m1 时,求系统的温度。

解(1) 1 mol理想气体的物态方程可以表示为,当温度为T1 (= 200 K)、压强为p1 和摩尔体积为V m1时,上式应写为 . (1)升温过程满足,在温度为T1 时,上式应写为, (2)将式(2)代入式(1),得. (3)由上式可以解得或 .(2)根据式(3)可以得到,取,代入上式,得, (4)将式(4)与式(3)联立,可以求得.8-8 证明式(8-9)。

福州大学物理(下)规范作业解答(全)PPT课件

福州大学物理(下)规范作业解答(全)PPT课件

单原子分子: i=3 V1
Qp
CP,mT
i 2RT
2
5RT
2
5 2
A
500J
双原子分子: i=5
Qp
CP,mT
i 2RT
2
7RT
2
7 A 700J 2
16
三、计算题
1.一定量的氮气,开始时压强为1atm,体积为10L,温 度为300K。(1)保持体积不变;(2)保持压强不变。 在温度都升到400K的过程中,各需吸收多少热量?
E 0 , A 0 ,Q 0
bc 等容升温
E 0 , A 0 ,Q 0
ab 等温膨胀
E 0 , A 0 ,Q 0
24
3.一定量的理想气体,在P-T图上经历一个如图所示的 循环过程(a→b→c→d→a),其中a→b、c→d两个 过程为绝热过程,则该循环的效率是 25%。 解:由图可知该循环为卡诺循环。
11
2. 1mol理想气体从P-V图上初态a分别经历如图所示的
(I)或(II)过程到达末态b。已知Ta<Tb,则这两过程中气
体吸收的热量QI和QII的关系是 (
)A。
(A)QI>QII>0 QII>QI>0
(B)ห้องสมุดไป่ตู้
(解:C)由Q于II<功Q的I<大0小等于(PD-)V图上过程曲 Q线I下<Q的II面<0积,从图中可以看出:
v pN2 v pH2
M molH2 M molN2
得 vpH2 3741 (m / s)
6
3.设容器内盛有质量为M1和质量为M2的二种不同的 单原子理想气体处于平衡态,其内能均为E,则此二种
气体分子平均速率之比为 M2 M! 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 气体动理论习题解答8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。

若此理想气体的压强为1.35×1014 Pa 。

试估计太阳的温度。

(已知氢原子的质量m = 1.67×10-27kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030kg )解:mR MVm M mn 3π)3/4(===ρK 1015.1)3/4(73⨯===Mkm R nk p T π8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子?解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。

解:(1)J 1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT tε(2)Pa kT n p i323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。

设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。

问气体的温度及压强各升高多少?(将氧气分子视为刚性分子)解:1mol 氧气的质量kg 10323-⨯=M ,5=i 由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒TT R V p RT pV ∆=⋅∆⇒=νν pa 52.0102.631.82=⨯⨯=∆=∆∴-VTR p 8-5 一个具有活塞的容器中盛有一定量的氧气,压强为1 atm 。

如果压缩气体并对它加热,使温度从27 ℃上升到177 ℃,体积减少一半,则气体的压强变化多少?气体分子的平均平动动能变化多少?分子的方均根速率变化多少?解:已知 K 300atm 111==T p 、K 4502/212==T V V 、kg/mol 103232-⨯=O μ根据RT pV ν=⇒222111T V p T V p =⇒atm 3312==p p atm 212=-=∆p p pJ 1011.31501038.123232123--⨯=⨯⨯⨯=∆=∆T k t ε m/s 10848359233122122=-=-=-μμRT RT v v8-6 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1 eV ,气体的温度需多高?解:(1)J 1065.515.2731038.12323212311--⨯=⨯⨯⨯==kT t ε J 1072.715.3731038.12323212322--⨯=⨯⨯⨯==kT t ε(2)kT 23J 101.6ev 1t 19-==⨯=ε⇒K 5.77291038.13106.12322319=⨯⨯⨯⨯==--k T t ε8-7 一容积为10 cm 3的电子管,当温度为300 K 时,用真空泵把管内空气抽成压强为5×10-4 mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气分子的平均平动动能的总和是多少?(3)平均转动动能的总和是多少?(4)平均动能的总和是多少?(将空气分子视为刚性双原子分子,760mmHg = 1.013×105 Pa )解:Pa 13376010013.115=⨯=mmHg(1)个141061.1⨯===kT pVnV N (2)J 1012323236-⨯≈===∑pV RT kT N t νε(3)J 1065.6227∑-⨯====pV RT kT N r νε(4)J 1065.1256-⨯==+=∑∑∑pV r t εεε8-8 水蒸气分解为同温度的氢气和氧气,即 H 2O →H 2+21O 2 也就是1mol 水蒸气可分解成同温度的1mol 氢和1/2mol 的氧。

当不计振动自由度时,求此过程的内能增量。

解:RT i E ν2= ,mol 1=νRT RT RT RT E 4326212525=-+=∆∴ 若水蒸气温度是100℃时J 232537331.843=⨯⨯=∆E 8-9 已知在273 K 、1.0×10-2 atm 时,容器内装有一理想气体,其密度为 1.24×10-2 kg/m 3。

求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3)气体分子的平均平动动能和转动动能各为多少?(4)容器单位体积内分子的总平动动能是多少?(5)若该气体有0.3 mol ,其内能是多少?解:(1)231v p ρ=⇒m/s 49432≈=ρp v (2)g 28333⇒322≈===ρμμpRTv RT RTv 所以此气体分子为CO 或N 2 (3)J 1065.52321-⨯==kT t ε J 1077.32221-⨯==kT r ε(4)J 1052.123233∑⨯===P kT n tε (5)J 170125==RT E ν8-10 一容器内储有氧气,其压强为1.01×105 Pa ,温度为27.0℃,求:(1)分子数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。

(设分子间均匀等距排列)解:(1)325/m 1044.2⨯==kTpn (2)32kg/m 297.1333====RTPRTpv p μμρ(3)J 1021.62321-⨯==kT t ε (4)m 1045.3193-⨯=⇒=d nd8-11 设容器内盛有质量为1M 和2M 的两种不同的单原子理想气体,此混合气体处在平衡态时内能相等,均为E ,若容器体积为V 。

试求:(1)两种气体分子平均速率1v 与2v 之比;(2)混合气体的压强。

解:(1) RT M RT M E 22112323μμ==⇒2121μμ=M M πμπRTm kT v 88==121221M M v v ==∴μμ (2)VEE V kT V N kT V N kT V N kT n p i 343222121===+==∑ 8-12 在容积为2.0×10-3 m 3的容器中,有内能为6.75⨯102 J 的刚性双原子分子理想气体。

(1)求气体的压强;(2)设分子总数为5.4⨯1022个,求分子的平均平动动能及气体的温度。

解:(1)pV i RT iE 22==ν⇒pa 1035.125⨯==iVE p (2)K 3.3621038.1104.51021035.1232235=⨯⨯⨯⨯⨯⨯==--Nk pV TJ 105.72321-⨯==kT t ε8-13 已知)(v f 是速率分布函数,说明以下各式的物理意义: (1)v v f d )(;(2)v v Nf d )(;(3)⎰pd )(v v v f解:(1)dv v v +-范围内的粒子数占总粒子数的百分比; (2)dv v v +-范围内的粒子数(3)速率小于p v 的粒子数占总粒子数的百分比8-14 图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦速率分布曲线。

试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

解:(1)由习题8-14图可知:m/s 2000)(2p =H v习题8-14图μRTv p 2=⇒m/s 500)(41)(22p p ==H O v v(2)由μRTv p 2=⇒K 3.48131.8210325002322=⨯⨯⨯==-R v T p μ8-15 在容积为3.0×10-2m 3的容器中装有2.0×10-2kg 气体,容器内气体的压强为5.06⨯104 Pa ,求气体分子的最概然速率。

解:由RT MpV μ=⇒MpVRT=μm/s 6.38922===∴MpVRTv p μ8-16 质量m =6.2×10-14g 的微粒悬浮在27℃的液体中,观察到悬浮粒子的方均根速率为1.4 cm/s ,假设粒子服从麦克斯韦速率分布函数,求阿伏伽德罗常数。

解:AmN RTmkTv 3=3=2/mol 1015.63N ⇒232A ⨯==v m RT8-17 有N 个粒子,其速率分布函数为⎩⎨⎧>>≥=)(0)0()(00v v v v c v f (1)作速率分布曲线;(2)由0v 求常数c ;(3)求粒子平均速率。

解:(2)110v c cdv v =⇒=⎰(3)⎰⎰===2)(v v v cv dv v vf v 8-18 有N 个粒子,其速率分布曲线如图所示,当02v v >时0)(=v f 。

求:(1)常数a ;(2)速率大于0v 和小于0v 的粒子数;(3)求粒子平均速率。

解:(1)由速率分布函数的归一化条件可得003212v a a v a v =⇒=⋅+⋅ (2)0v v <时:N N av N 312101=⋅=0v v >时:N N N N 3212=-= (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤=≤==000020023232)(v v v v v v a v v v v kv v f 002022029113232)()()(0000v vdv v dv v v dvv vf dv v vf dv v vf v v v v v v v =+=+==⎰⎰⎰⎰⎰∞8-19 质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径。

(1)若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2)说明大气层中为什么氢气比氧气要少。

(取习题8-18图r =6.40×106m )解:(1)由题意知gr RTv 28==πμRgr T 82πμ⋅=∴ 又kg/mol 103232-⨯=O μk g /m ol 10232-⨯=H μ K 109.152⨯=∴O T K 1018.142⨯=H T(2)根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多。

按大爆炸理论,宇宙在形成过程中经历了一个极高温过程。

在地球形成的初期,虽然温度已大大降低,但温度值还是很高。

因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸。

相关文档
最新文档