专题复习:一元二次方程二次函数利润问题

合集下载

11初中数学“一元二次方程商品利润问题”知识点全解析

11初中数学“一元二次方程商品利润问题”知识点全解析

初中数学“一元二次方程商品利润问题”知识点全解析一、引言商品利润问题是初中数学中一元二次方程应用的一个重要领域。

在现实生活中,商家经常需要计算商品的利润来制定销售策略和价格方案。

通过一元二次方程,我们可以有效地解决这类问题,找出最优的定价和销售策略。

本文将详细解析一元二次方程在商品利润问题中的应用,帮助同学们更好地掌握这一知识点。

二、商品利润问题基本概念1.成本价:商家购进商品时的价格,也称为进价。

2.销售价:商家出售商品时的价格。

3.利润:销售价与成本价之差,即利润=销售价-成本价。

4.利润率:利润与成本价之比,通常以百分数表示,即利润率=(利润/成本价)×100%。

三、一元二次方程在商品利润问题中的应用1.定价策略:商家需要根据市场需求、竞争对手定价等因素来制定合理的定价策略。

一元二次方程可以帮助商家找到使得利润最大的销售价。

2.折扣问题:商家为了促销,往往会提供折扣。

通过一元二次方程,我们可以计算出不同折扣下的实际销售价和利润。

3.销售量与利润关系:销售量与利润之间存在一定的关系。

一元二次方程可以帮助我们分析这种关系,找出使得利润最大的销售量。

四、解题方法与步骤1.审题:仔细阅读题目,明确已知条件和未知量,理解问题的背景和要求。

2.设未知数:根据问题背景,合理设置未知数。

在商品利润问题中,未知数通常是销售价、折扣率或销售量等。

3.建立方程:根据已知条件和未知数的设定,建立一元二次方程。

这个方程应该能够反映问题中各个量之间的关系。

4.解方程:利用一元二次方程的求解方法(如配方法、公式法等)解出未知数。

5.检验解的合理性:将解代入原方程进行检验,确保解符合问题的实际背景和条件。

6.作答:根据解的情况,给出问题的最终答案。

五、应用举例1.例1:某商店购进一种商品,每件成本价为100元,销售价为150元时,每天可售出50件。

为了扩大销售,增加盈利,商店决定降价销售。

经调查发现,每降价1元,每天可多售出2件。

一元二次方程与利润问题

一元二次方程与利润问题

一元二次方程的应用(利润问题)一、知识储备一、知识储备(1)利润=实际售价-成本;(2)总利润=单件利润×销售量.二、新授1. (1)某商品的进价是100元,售价是150元,则该商品的单件利润为50元.(2)某件商品的利润为5元/件,销售量为100件,则该商品总利润为500元.知识点1:直接给出单件(每斤)利润1、例:老板发现:如果每斤高档苹果盈利10元,每天可售出500斤;若每斤涨价1元,日销售量将减少20斤.若每天盈利6 000元,则每斤应涨价多少元?分析:设每斤涨价x元涨价后的单件利润涨价后的销售量涨价后的总利润列式:2、某商店热卖“好孩子”童装,平均每天可售20件,每件盈利40元.市场反馈每件童装每降价1元,平均每天就可多售出2件,要想每天在销售这种童装上盈利1 200元,同时又要使顾客得到实惠,那么每件童装应降价多少元?知识点2:间接给出单件利润或变化关系3、某商店经销一种商品,若按每件盈利2元销售,每天可售出200件,如果每件商品的售价涨价0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能使每天利润为640元?4.某商店将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,这种冰箱的售价每降低25元,平均每天就能多售出2台,商场要想在这种冰箱的销售中每天盈利4 800元,设每台冰箱降价x元,由题意列方程得课堂总结:(1)关系式:(售价-成本)×销售量=总利润;(2)一般都是设涨价(或降价)x元,然后间接求定价或进货量.三、过关检测A组1、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就减少10个,要实现每月10 000元的销售利润目标,且售价不能低于60元/个.(1)求这种台灯的定价;(2)商场应进货多少个?B组2、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,服装店希望一个月内销售该种T恤能获得利润3 360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?C组3.某单位组织职工到“万绿湖”观光旅游,下面是领队与旅行社就收费标准的一段对话:领队:“组团去‘万绿湖’旅行每人收费是多少?”旅行社:“如果人数不超过25人,人均费用为100元.”领队:“超过25人呢?”旅行社:“如果超过25人,每增加1人,人均费用降低2元,但人均旅行费用不得低于70元.”该单位组团旅游结束后,共支付2 700元,求该单位参加旅游的人数。

专题复习:一元二次方程二次函数利润问题

专题复习:一元二次方程二次函数利润问题

专题复习:一元二次方程与二次函数利润问题例:某商场销售一批名牌衬衫,进价为每件30元,售价为每件70元,平均每天可售出20件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.(1)若该商品连续两次下调相同的百分率后售价降至每件44.8元,求两次下降的百分率;(2)经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3))在(2)的条件下,每件衬衫降低多少元时,商场平均每天盈利最多?最大利润是多少元?4.48140)4()10600)(3040()3(10000)10600)(3040)(2(500050482500290012=+--+==--+=⎪⎭⎫ ⎝⎛⨯+--)((化顶点式))()(解方程x x x y x x x x巩固练习:某旅馆有客房120间,每间房的日租金为160元,每天都客满.旅馆装修后要提高租金,经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金的总收入增加多少元?作业:1.若x=2关于x 的一元二次方程x 2﹣ax+2=0的一个根,则a 的值为( )A .3B .﹣3C .1D .﹣12.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( ) A .y=B .y=C .y=D .y=(化顶点式))(解方程2)1()4(662)1()3()05.0200500)(3.0()2(180)05.0200500)(3.0(1-==-+-==+-x x y x x x x y x x3.下列命题中,正确的是()A.对角线垂直的四边形是菱形 B.矩形的对角线垂直且相等C.对角线相等的矩形是正方形 D.位似图形一定是相似图形4.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.当﹣1<x<3时,y>0C.当x<1时,y随x的增大而减小D.对称轴是直线x=15.某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2 B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2 D.20(1+x)2=24.26.如图,每个小正方形的边长均为1,△ABC和△DEC的顶点均在“格点”上,则=()A.B.C.D.8.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是()A.B.C.D.8.如图,抛物线y=x2﹣4x与x轴交于点O、A,顶点为B,连接AB并延长,交y轴于点C,则图中阴影部分的面积和为()A.4 B.8 C.16 D.32二、填空题(共4小题,每小题3分,满分12分)9.抛物线y=﹣2(x+1)2﹣2的顶点坐标是.10.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为.11.某水果店销售一种进口水果,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.水果店想要能尽可能让利于顾客,赢得市场,又想要平均每天获利2090元,则该店应降价元出售这种水果.12.如图,在边长为2的正方形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,使点A落在点A′处,作射线EA′,交BC的延长线于点F,则CF=.三、解答题13.某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.15.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?。

九年级数学上册第二章一元二次方程2.4二次函数的应用第2课时最大利润问题

九年级数学上册第二章一元二次方程2.4二次函数的应用第2课时最大利润问题

第2课时最大利润问题知识点 1 利润最大化问题1.毕节某旅行社在十一黄金周期间接团去外地旅游,经计算所获营业额y(元)与旅行团人员x(人)之间满足关系式y=-x2+100x+28400,要使所获营业额最大,则旅行团应有( )A.30人B.40人C.50人D.55人2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.36元3.2017·贵阳模拟某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式.(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?知识点 2 利用二次函数的最值解决其他实际问题4.两个数的和为6,这两个数的积最大可以达到________.5.某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,橘子总个数为y个,则果园里增种________棵橘子树时,橘子总个数最多.6.生物学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测量出这种植物高度的增长情况(如下表).科学家经过猜想,推测出y与x之间是二次函数关系.(1)求y与x之间的函数表达式;(2)推测最适合这种植物生长的温度,并说明理由.图2-4-127.如图2-4-13所示,正方形ABCD的边长为4,E,F分别是边BC,CD上的两个动点,且AE⊥EF,则AF的最小值是________.图2-4-138.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小明和小华提出的问题.图2-4-149.2017·安顺模拟经市场调查,某种商品在第x天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求y与x之间的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?10.[2016·黄冈] 东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为p =⎩⎪⎨⎪⎧14t +30(1≤t≤24,t 为整数),-12t +48(25≤t≤48,t 为整数),且其日销售量y(千克)与时间t(天)的关系如下表:(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少; (2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n 元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t 的增大而增大,求n 的取值范围.详解1.C 2.A3.解:(1)根据题意,得⎩⎪⎨⎪⎧65k +b =55,75k +b =45,解得⎩⎪⎨⎪⎧k =-1,b =120. ∴一次函数的表达式为y =-x +120. (2)根据题意,得W =(x -60)(-x +120) =-x 2+180x -7200 =-(x -90)2+900. ∵抛物线的开口向下,∴当x <90时,W 随x 的增大而增大, 而60≤x ≤87,∴当x =87时,W 最大=-(87-90)2+900=891.∴当销售单价定为87元/件时,商场可获得最大利润,最大利润是891元. 4.95.20 [解析] 设果园里增种x 棵橘子树,那么果园里共有(x +90)棵橘子树,∵每多种一棵树,平均每棵树就会少结4个橘子,∴平均每棵树结(520-4x )个橘子.∴y =(x +90)(520-4x )=-4x 2+160x +46800,∴当x =-b 2a =-1602×(-4)=20时,y 最大,橘子总个数最多.6.解:(1)设y =ax 2+bx +c (a ≠0),选(0,49),(2,41),(-2,49)代入后得方程组⎩⎪⎨⎪⎧c =49,4a -2b +c =49,4a +2b +c =41,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =49,∴y 与x 之间的函数表达式为y =-x 2-2x +49. (2)最适合这种植物生长的温度是-1 ℃.理由:由(1)可知,当x=-b2a=-1时,y取最大值50,即说明最适合这种植物生长的温度是-1 ℃.7.5 [解析] 在Rt△ADF中,AF2=AD2+DF2=42+(4-CF)2,若AF最小,则CF最大.设BE=x,CF=y,∵∠B=∠AEF=90°,则∠BAE+∠AEB=∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴ABEC=BECF,即44-x=xy,化简得y=-x2+4x4=-14(x-2)2+1,∴当x=2时,y有最大值为1,此时DF最小,为3,由勾股定理得到AF=AD2+DF2=5.8.解:(1)小华的问题解答:设利润为W元,每个定价为x元,则W=(x-2)·[500-100(x-3)]=-100x2+1000x -1600=-100(x-5)2+900.当W=800时,解得x=4或x=6,又因为2×240%=4.8(元),所以x=6不符合题意,舍去,故每个定价为4元时,每天的利润为800元.(2)小明的问题解答:当x<5时,W随x的增大而增大.所以当x=4.8时,W最大,为-100(4.8-5)2+900=896(元).所以800元销售利润不是最多,每个定价为4.8元时,才会使每天利润最大.9.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.(2)当1≤x<50时,二次函数图象的开口向下,对称轴为直线x=-b2a=45,∴当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y随x的增大而减小,∴当x=50时,y最大=-120×50+12000=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.10.解:(1)依题意,得y=120-2t.当t =30时,y =120-60=60. 答:在第30天的日销售量为60千克. (2)设日销售利润为W 元,则W =(p -20)y . 当1≤t ≤24时,W =(14t +30-20)(120-2t )=-12t 2+10t +1200=-12(t -10)2+1250.当t =10时,W 最大=1250. 当25≤t ≤48时,W =(-12t +48-20)(120-2t )=t 2-116t +3360=(t -58)2-4.由二次函数的图象及性质知,当t =25时,W 最大=1085. ∵1250>1085,∴在第10天的销售利润最大,最大日销售利润为1250元. (3)依题意,得每天扣除捐款后的日销售利润W =(14t +30-20-n )(120-2t )=-12t 2+2(n +5)t +1200-120n .其图象对称轴为直线t =2n +10,要使W 随t 的增大而增大. 由二次函数的图象及性质知, 2n +10≥24,解得n ≥7. 又∵n <9, ∴7≤n <9.。

二次函数的实际应用(利润问题)

二次函数的实际应用(利润问题)

建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。

利润问题初中一元二次方程

利润问题初中一元二次方程

利润问题初中一元二次方程咱来唠唠初中一元二次方程里的利润问题哈。

比如说,你去卖小玩意儿,进价是每个x元,你一开始打算每个卖y元。

那每个小玩意儿的利润就是卖价减去进价,也就是(y - x)元。

假如你总共进了m个这种小玩意儿,那总利润就是单个利润乘以数量,也就是m(y - x)元。

不过呢,有时候这个卖价不是固定不变的。

比如说,你发现如果每个小玩意儿的卖价提高a元,那销售量就会减少b个。

这时候,设提高后的卖价为z元,那销售量就变成了m - (z - y)/(a)×b个。

总利润就变成了[z - x](m - (z - y)/(a)×b)元。

这时候呢,就经常会出现一元二次方程啦。

因为这个式子展开后,z的最高次是二次的。

比如说,你进了100个小玩偶,进价每个10元,原本卖15元。

发现每提价1元,就少卖5个。

设提价后的卖价是z元。

那销售量就是100 - (z - 15)/(1)×5个,总利润就是(z - 10)(100 - (z - 15)/(1)×5)元。

把这个式子展开:begin{align}(z - 10)(100 - 5(z - 15)) =(z - 10)(100 - 5z + 75) =(z - 10)(175 - 5z) =175z - 5z^2 - 1750 + 50z =- 5z^2 + 225z - 1750end{align}这就是个一元二次方程啦。

如果告诉你总利润是多少,就可以通过解这个一元二次方程来求出提价后的卖价z啦。

总之呢,利润问题里的一元二次方程就是这么个情况,你只要把进价、卖价、销售量之间的关系搞清楚,列方程就不是难事啦。

二次方程与二次函数的利润问题

二次方程与二次函数的利润问题

一元二次方程与二次函数的应用之“利润问题”【知识储备】:1、 单件利润=_____________; 总利润=__________________; 销售额=_________ × _________。

2、价格变动引起的销量变化:①某商品每降价1元,平均每天可多售出2件,若降X 元,则平均每天可多售出 件; ②某商品每涨价1元,平均每天可少售出3件,若降X 元,则平均每天可多售出 件; ③某商品每降价5元,平均每天可多售出20件,若降X 元,则平均每天可多售出 件; ④某商品每涨价10元,平均每天可少售出25件,若降X 元,则平均每天可多售出 件;注意:③与④中,要先确定""销量变化价格变动的比值,才能与“X 元”相乘。

①②③④中,如果题干已经设出未知数是“售价为x 元”,则价格变动为“x-原售价”,并用此式与“每天多卖或少卖的数”相乘。

①②③④中,只表示出了“销量变化”,列方程时需要的是“销售数量”,用“原销量±销量变化”。

3(一)、问“价格变动”(涨价多少元/降价多少元?)1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元?3、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?4、服装柜在销售中发现某品牌童装进价为60元,当定价为100元时,平均每天可售出20件。

二次函数的应用--利润问题专项复习

二次函数的应用--利润问题专项复习

二次函数的应用---利润问题专项复习
环节二、例题讲解(展示、帮扶)
例1、某商品的进价为每件40元,售价为每件50元,每个月可卖出200件.如果每件商品的售价每上涨1元,则每个月少卖5件.设每件商品的售价上涨x元,每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定在什么范围时,每个月的利润不低于3000元?
练1:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y 元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)为了使顾客尽量满意,每件商品的售价定为多少元时,每个月的利润恰为2200元?。

利润问题一元二次方程含答案

利润问题一元二次方程含答案

利润问题_一元二次方程含答案利润问题是一个常见的经济问题,指的是企业在销售产品或提供服务后所获得的净利润。

利润问题可以通过一元二次方程来进行求解。

下面我将详细介绍利润问题及如何用一元二次方程求解。

假设某企业销售某种产品,每个产品的售价为x元,每个产品的成本为y元,该企业预计销售量为z个产品。

那么该企业的总收入R、总成本C和总利润P可以表示为以下方程:
R = xz (总收入等于售价乘以销售量) C = yz (总成本等于成本乘以销售量) P = R - C (总利润等于总收入减去总成本)
现在我们来具体解决一个利润问题。

假设某企业销售某种产品,每个产品的售价为20元,每个产品的成本为10元,该企业预计销售量为50个产品。

我们来计算该企业的总收入、总成本和总利润。

总收入R = 20 * 50 = 1000元总成本C = 10 * 50 = 500元总利润P = 1000 - 500 = 500元
通过上述计算可得,该企业的总收入为1000元,总成本为500元,总利润为500元。

利润问题在实际生活中非常常见,企业通常会根据产品的售价和成本来计算预期的利润。

利润问题的求解可以帮助企业了解其经营状况,并根据情况做出相应的调整。

同时,利润问题也可以帮助个人了解自己的收入和支出情况,从而做出理性的消费决策。

九年级数学上册复习专题06一元二次方程利润问题(1)

九年级数学上册复习专题06一元二次方程利润问题(1)

专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2①设应涨价x元;②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;【3】定价问题(问题为定价多少元或售价为多少元)(注意:无论是涨价还是降价,公式中的符号和位置都不变)①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为 千克、销售利润为 元;(2)若将这种水果每千克降价x 元,则每天的销售量是 千克(用含x 的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?【答案】(1)销售量:260,利润:312((2(100+200x (千克);(3)张阿姨应将每千克的销售价降至5元.【解析】【分析】(1)销售量=原来销售量+下降销售量(销售量×每千克利润=总利润(据此列式即可((2)销售量=原来销售量+下降销售量(据此列式即可((2)根据销售量×每千克利润=总利润列出方程求解即可(【详解】(1)销售量(100+20×0.80.1=100+160=260(利润((100+160((6(4(0.8(=312(则每天的销售量为260千克(销售利润为312元(故答案为260(312((2)将这种水果每千克降低x 元(则每天的销售量是100+0.1x ×20=100+200x (千克)( 故答案为(100+200x (((3)设这种水果每千克降价x 元(根据题意得((6(4(x ((100+200x (=300(2x 2(3x =1=0(解得(x =0.5或x =1( 当x =0.5时(销售量是100+200×0.5=200<240(当x =1时(销售量是100+200=300>240(∵每天至少售出240千克(∴x =1(6(1=5(答(张阿姨应将每千克的销售价降至5元(【点睛】本题考查了一元二次方程的应用(第一问关键求出每千克的利润(求出总销售量(从而利润.第二问(根据售价和销售量的关系(以利润做为等量关系列方程求解(2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【答案】每件童装应降价20元.【解析】【分析】设每件童装应降价x 元,则平均每天可售出4(20)2x 件,根据总利润=每件的利润⨯销售数量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论. 【详解】解:设每件童装应降价x 元,则平均每天可售出4(20)2x 件, 依题意,得:4(40)(20)12002x x , 整理,得:2302000x x -+=,解得:110x =,220x =.要求尽快减少库存,20x ∴=.答:每件童装应降价20元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?【答案】(1)30件;(2)每件衬衫应降价10元或20元【解析】【分析】(1)根据“每件衬衫降价1元,商场平均每天可多售出2件”直接计算即可得出答案;(2)设每件衬衫应降价x 元,商场每天要获利润1200元,可列方程求解.【详解】解:(1)∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价5元,可售出20+5×2=30(件);(2)设每件衬衫应降价x 元,据题意得:(40﹣x )(20+2x )=1200,解得:x =10或x =20.答:每件衬衫应降价10元或20元.本题考查了一元二次方程的应用,准确抓住题目中的相等关系,列出方程是解题的关键.4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?【答案】每辆车需降价2万元【解析】【分析】设每辆车需降价x 万元,根据每辆汽车每降5000元,公司平均每天可多售出2辆可用x 表示出日销售量,根据每天要获利48万元,利用利润=日销售量×单车利润列方程可求出x 的值,根据尽量减少库存即可得答案.【详解】设每辆车需降价x 万元,则日销售量为()82840.5x x +⨯=+辆, 依题意,得:(5)(84)48x x -+=,解得:11x =,22x =,∵要尽快减少库存,∴2x =.答:每辆车需降价2万元.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x 元,则商场日销售量增加 件,每件商品盈利_________元(用含x 的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)2x ,50-x (0<x≤50,x 为正整数);(2)25元.【解析】【分析】(1)根据已知条件可得:当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50x 为正整数).(2)设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+再由日盈利为:2000元,可得到一个关于x 的一元二次方程,并解之即得.(1)解:(该商品每降价1元,则商场平均每天可多售出2件(当每件商品降价x 元后,商场平均每天可多售出2x 件商品,每件商品的利润为:50-x (0<x≤50 x 为正整数). 故答案为:2x ,50-x (0<x≤50 x 为正整数).(2)解:设每件商品降价x 元,则由已知条件可得商场的日盈利为:(50)(302)x x -+化简得:22701500x x -++(商场的日盈利为2000元(227015002000x x -++=化简得:2352500x x -+=分解因式得:(10)(25)0x x --=解之得:1210,25x x ==(当每件商品的价格降低10元或25元时,商场的日盈利可达利2000元.又∵商场需要尽快减少库存(当每件商品的价格降低25元时,商场的日盈利可达利2000元.故答案为:25元.【点睛】本题考查了根据实际问题,设定未知数,列一元二次方程;一元二次方程的解法中的因式分解法(首先应把该方程化为标准形式:20ax bx c ++=,其中a ,b ,c 为常数且a≠0,再将等式左边进行因式分解.6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?【答案】(1)1748元;(2)20元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值, 再根据尽快减少库存即可确定x 的值.【详解】解:(1)当天盈利:(50-4)×(30+2×4)=1748(元).答:若某天该商品每件降价4元,当天可获利1748元.(2)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.根据题意,得:(50-x)×(30+2x)=2100,整理,得:x2-35x+300=0,解得:x1=15,x2=20,∵商城要尽快减少库存,∴x=20.答:每件商品降价20元时,商场日盈利可达到2100元.【点睛】本题考查了一元二次方程的应用,根据数量关系列出一元二次方程(或算式)是解题的关键.1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?【答案】售价为60元【解析】【分析】设售价为x元,由已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,列出方程,由且尽量减少库存得出方程的解,可得答案.【详解】设售价为x元由题意得:(x-30)[500-10(x-50)]=12000解得:x1=60,x2=70∵尽量减少库存∴售价应定为60元答:售价为60元【点睛】本题主要考查一元二次方程的实际应用,由已知条件列出方程式解题的关键.2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?【答案】(1)(505)x -;(2)17【解析】【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)根据销售量×每袋利润=总利润列出方程求解即可.【详解】解:(1)505505x x -=-(袋);故答案为:(505)x -;(2)根据题意得:(1812)(505)275x x -+-=,即:2450x x --=,解得:11x =-,25x =,当1x =-时,售价是18(1)17+-=元;当5x =时,售价是18523+=元.∵计划售价大于12元但不超过22元,∴1x =-,售价是17元.答:该商场每袋口罩的售价要定为17元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x 元(x 为非负整数),每周的销量为y 件. (1)求y 与x 的函数关系式及自变量x 的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?【答案】(1)10010=-y x ,05x ≤≤;(2)每件的售价是17元或者18元.【解析】【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y 与x 的函数关系式,然后根据x 的实际意义和售价每件不能高于20元即可求出x 的取值范围;(2)根据总利润=单件利润×件数,列方程,并解方程即可.【详解】(1)解:y 与x 的函数关系式为10010=-y x∵售价每件不能高于20元∴01520x x ≥⎧⎨+≤⎩∴自变量的取值范围是05x ≤≤;(2)解:设每件涨价x 元(x 为非负整数),则每周的销量为()10010x -件,根据题意列方程()()100101510560-+-=x x ,解得:122,3x x ==,所以,每件的售价是17元或者18元.答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元.【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?【答案】为了使得该商品每天盈利1980元,每件定价应为21或23元【解析】【分析】首先根据题意列出方程(利用根的判别式判断方程实数根的情况(然后再求解即可(【详解】①设每件应降价x 元(根据题意得((20(x (12((240+40x ((1980整理得(x 2-2x +1.5=0(((=4(6=(2(0(∴原方程无实数根(②设每件应该涨价y 元(根据题意得((20+y (12((240(20y ((1980解得(y 1(3(y 2(1(当y =3时(20+y =20+3(23(元((当y =1时(20+y =20+1(21(元)(答(为了使得该商品每天盈利1980元(每件定价应为21或23元(【点睛】本题考查了一元二次方程的应用(解题的关键是能够分别表示出销售量和单件的销售利润(从而列出方程求解(解答过程中注意舍去不符合题意的根(2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?【答案】每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少【答案】60元【解析】【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x -40)[400-10(x -50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【答案】(1)450千克;(2)当月销售利润为元8750时,每千克水果售价为65元或75元;(3)当该优质水果每千克售价为70元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x 元,根据题意列方程解答即可;(3)设月销售利润为y 元,每千克水果售价为x 元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.【详解】解(()1当售价为55元/千克时,每月销售量为()50010555050050450-⨯-=-=千克.()2设每千克水果售价为x 元,由题意,得()()4050010508750,x x ⎡⎤=⎦-⎣-- 即2101400400008750,x x -+-=整理,得21404875,x x -=-配方,得()27049004875,x -=-解得1265,75.x x == ∴当月销售利润为元8750时,每千克水果售价为65元或75元()3设月销售利润为y 元,每千克水果售价为x 元,由题意,得()()405001050,y x x ⎡⎤=---⎣⎦ 即210140040(00040)100,y x x x =-+-≤≤配方,得()210709000,y x =--+ 100-<,∴当70x =时,y 有最大值∴当该优质水果每千克售价为70元时,获得的月利润最大(【点睛】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算(5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?【答案】(1)580;(2)70;(3)50【解析】【分析】(1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x 元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.【详解】(1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为x 元,则(x -30)[600-10(x -40)]=10000,解得x 1=50,x 2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.【点睛】本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?【答案】该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【解析】【分析】设每件服装售价提高x元,则每天可售出(200﹣10x)件,根据总利润=每件服装的利润×销售数量,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】设每件服装售价提高x元,则每天可售出(200﹣10x)件,依题意,得:(60+x﹣50)(200﹣10x)=2240,整理,得:x2﹣10x+24=0,解得:x1=4,x2=6,∴60+x=64或66.答:该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【答案】(1)250,3250;(2)当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【解析】【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,然后求解方程即可得出结论.【详解】解:(1)280﹣(43﹣40)×10=250(件),当天销售利润是250×(43﹣30)=3250(元),故答案为:250,3250;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=3450,整理,得:x 2﹣98x +2385=0,解得:x 1=53,x 2=45.答:当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.【点睛】本题主要考查一元二次方程的应用,解此题的关键在于根据题意设出未知数,列出方程进行求解.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【解析】【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得: 55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?【答案】(1)302100=-+y x ;(2)52元.【解析】【分析】(1)根据销售量y 件=原销售量300件+降价(60-x )元后增加的销售量解答即可;(2)根据利润=每件利润×销售量即得关于x 的方程,解方程即可求出x ,检验后即得结果.【详解】解:(1)由题意得:()3003060302100y x x =+-=-+;(2)由题意,得()()403021006480x x --+=解得:1252,58x x ==,∵要尽快减少库存,∴每件售价应为52元.答:当每件售价定为52元时,该商店每天的销售利润为6480元.【点睛】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?【答案】(1)y=−5x+190;(2)每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【解析】【分析】(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意可得出y与x的关系式;(2)根据“总利润=每袋利润×日均销售量”列方程求解可得出答案.【详解】解:(1)设口罩每袋的售价为x元,日均销售量为y袋,由题意得y=100−5(x−18)=−5x+190,即y=−5x+190;(2)设每袋售价定为x元时,商店销售该款口罩所得的日均毛利润为720元,根据题意可得:(x−12)(−5x+190)=720,解得:x1=20,x2=30,∵该款口罩的每袋售价不得高于22元,∴x=30舍去,∴x=20,答:每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.【点睛】本题主要考查一次函数的实际应用,一元二次方程的应用,解题的关键是理解题意找到题目蕴含的相等关系,并据此列出方程.4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?【答案】(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【解析】【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x -40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x -40)(-2x+200)=-2(x -70)2+1800,即可求解.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(40,120)、(60,80)代入一次函数表达式得:401206080k b k b +=⎧⎨+=⎩ 解得2200k b =-⎧⎨=⎩, 所以关系式为y=-2x+200;(2)由题意得:(x -40)(-2x+200)=1000解得x 1=50,x 2=90;所以当x=50时,销量为:100件;当x=90时,销量为20件;(3)由题意可得利润W =(x -40)(-2x+200)=-2(x -70)2+1800,∵-2<0,故当x <70时,w 随x 的增大而增大,而x≤65,∴当x=65时,w 有最大值,此时,w=1750,故销售单价定为65元时,该超市每天的利润最大,最大利润1750元.【点睛】考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y (台)和销售单价x (万元)对应的点(x ,y )在函数y =kx + b 的图象上,如图:(1)求y 与x 的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多。

2023年中考数学专题复习:二次函数应用之利润问题(提优篇)

2023年中考数学专题复习:二次函数应用之利润问题(提优篇)

2023中考数学专题复习:二次函数应用之利润问题(提优篇)1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是( )A.销售单价降低15元时,每天获得的利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天获得的利润为1200元D.若每天获得的利润为1050元,则销售单价一定降低了5元2.一塑料玩具生产公司将每件成本为70元的某种玩具按每件100元批发出售,平均一天可售出100件.后来经过市场调查,发现这种玩具单价每降低1元,其日销量可平均增加10件.为了减少空气污染,国家要求限制塑料玩具生产,规定该公司的最大生产限额为每天180件.若想获得最大利润,则批发价应降低( )A.15元B.10元C.8元D.5元3.某旅行社有100张床位,每床每晚收费100元时,可全部租出,每床每晚收费提高20元,则有10张床位未租出;若每床每晚收费再提高20元,则再减少10张床位未租出;以每次提高20元的这种方法变化下去,为了获利最大,每床每晚收费应提高( )A.40元或60元B.40元C.60元D.80元4.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.则y与x之间的函数关系式为( ),若设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为( )元时,超市销售该品牌洗手液每天销售利润最大,最大利润是( )元.A.y=−5x+150,15,375B.y=5x+150,15,625C.y=−5x+150,20,500D.y=5x−150,20,5005.某商品的进货单价为90元,按100元一个出售,能售出500个,如果这种商品每涨价1元,其销售量就减少10个.为了获得最大利润,其单价应定为( )A.130元 B.120元C.110元D.100元6.某快餐店销售A,B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份,该店为了增加利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是元.7.某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶,经市场调查表明,当售价超过10元时,每瓶售价每增加0.5元,日均销售量减少40瓶.当每瓶售价为11元时,日均销售量为瓶.8.某旅社有客房144间,每间房的日租金为200元时,每天都客满,经市场调查发现,如果每间房的日租金每增加10元时,则每天客房出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到元时,客房的日租金总收入最高.9.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30−x)件,若使利润最大,则每件商品的售价应为元.10.某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有1个房间空闲.如果游客居住房间,宾馆需要对每个房间每天支出40元的各种费用.当每个房间每天的定价为元时,宾馆利润最大,最大利润是元.11.小米利用暑期参加社会实践,在妈妈的帮助下,利用社区提供的免费摊点卖玩具,已知小米所有玩具的进价均为2元/件,在销售过程中发现:每天玩具销售量y(件)与销售价格x (元/件)的关系如图所示,其中AB段为反比例函数图象的一部分,BC段为一次函数图象的一部分,设小米销售这种玩具的日利润为w元.(1) 根据图象,求出y与x之间的函数解析式;(2) 求出每天销售这种玩具的利润w(元)与x(元/件)之间的函数解析式,并求每天利润的最大值;(3) 若小米某天将价格定为超过4元(x>4),那么要使得小米在该天的销售利润不低于54元,求该天玩具销售价格的取值范围.12.受新冠疫情影响,3月1日起,“君乐买菜”网络公司某种蔬菜的销售价格开始上涨.如图1,前四周该蔬菜每周的平均销售价格y(元/kg)与周次x(x是正整数,1≤x<5)的关系x+a刻画;进入第5周后,由于外地蔬菜的上市,该蔬菜每周的平均销可近似用函数y=25售价格y(元/kg)从第5周的6元/kg下降至第6周的5.6元/kg,y与周次x(5≤x≤7)的x2+bx+5刻画.关系可近似用函数y=−110(1) 求a,b的值.(2) 若前五周该蔬菜的销售量m(kg)与每周的平均销售价格y(元/kg)之间的关系可近似地用如图2所示的函数图象刻画,第6周的销售量与第5周相同:①求m与y的函数表达式;②在前六周中,哪一周的销售额w(元)最大?最大销售额是多少?(3) 若该蔬菜第7周的销售量是100kg,由于受降雨的影响,此种蔬菜第8周的可销售量将比第7周减少a%(a>0).为此,公司又紧急从外地调运了5吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜第8周的销售价格比第7周仅上涨0.8a%.若在这一举措下,此种蔬菜在第8周的总销售额与第7周刚好持平,请通过计算估算出a的整数值.13.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1) 当10≤x<60时,求y关于x的函数表达式;(2) 九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?14.某商品的进价是每件40元,原售价每件60元.进行不同程度的涨价后,统计了商品调价当天的售价和利润情况,以下是部分数据:售价(元/件)60616263⋯利润(元)6000609061606210⋯(1) 当售价为每件60元时,当天售出件.(2) 若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不低于6200元?15.某店因为经营不善欠下38000元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的某品牌服装的进价为每件40元,该品牌服装日的售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.(1) 求日销售量y(件)与销售价x(元/件)之间的函数关系式.(2) 当销售价为多少元时,该店的日销售利润最大.(3) 该店每天支付工资和其它费用共250元,该店能否在一年内还清所有债务.16.某农作物的生长率p与温度t(∘C)有如下关系:如图(1),当10≤t≤25时可近似用函数p=150t−15刻画;当25≤t≤37时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1) 求ℎ的值.(2) 按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m/天051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3) 天气寒冷,大棚加温可改变农作物生长速度在(2)的条件下,原计划大棚恒温20∘C时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(∘C)之间的关系如图(2).问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).17.国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1) 请直接写出y关于x之间的关系式;(2) 设该商铺销售这批商品获得的总利润(总利润=总销售额−总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?(3) 若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是.(可借助二次函数的图象直接写出答案)18.知识背景:当a>0且x>0时,因为(√x−√a√x )2≥0,所以x−2√a+ax≥0,从而x+ax≥2√a(当x=√a时取等号).设函数y=x+ax(a>0,x>0),由上述结论可知,当x=√a时,该函数有最小值为2√a.应用举例:已知函数y1=x(x>0)与函数y2=4x(x>0),则当x=√4=2时,y1+y2=x+ 4x有最小值为2√4=4.解决问题:(1) 已知函数y1=x+3(x>−3)与函数y2=(x+3)2+9(x>−3),当x取何值时,y2y1有最小值?最小值是多少?(2) 已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?19.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1) 直接写出:购买这种产品件时,销售单价恰好为2600元;(2) 设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3) 该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)20.2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q(只)与第x天的关系为q=−2x2+80x−200(6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.(1) 直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;(2) 求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;(3) 物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为.21.某商场要经营一种文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.(1) 当每天的利润为1440元时,为了让利给顾客,每件文具的销售价格应定为多少元?(2) 设每天的销售利润为W元,每件文具的销售价格为x元,如果要求每天的销售量不少于10件,且每件文具的利润至少为25元.①求W与x的函数关系式,并写出自变量的取值范围.②问当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?22.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1) 求商场经营该商品原来一天可获利润元.(2) 设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?23.某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.设每天的总利润为w元.(1) 根据图象求出y与x之间函数关系式.(2) 请写出w与x之间的函数关系式,并写出自变量x的取值范围.(3) 当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?24.湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A,B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1) 求该店平均每天销售这两种湘莲礼盒各多少盒.(2) 小亮调查发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大?最大是多少元?。

一元二次方程应用专题--利润问题(含答案)

一元二次方程应用专题--利润问题(含答案)
7.某商店出传某种商品每件可获利 元,利润率为 ,若这种商品的进价提高 ,而商店将这种商品的售价提高到每件仍可获利 元,则提价后的利润率为________.
8.某商场以每件 元的价格购进一批商品,当每件商品售价为 元时,每月可售出 件,为了迎接“双 ”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价 元,那么商场每月就可以多售出 件.要使商场每月销售这种商品的利润达到 元,且更有利于减少库存,则每件商品应降价多少元?
每千克核桃应降价多少元?
在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
13.一商店销售某种商品,平均每天可售出 件,每件盈利 元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于 元的前提下,经过一段时间销售,发现销售单价每降低 元,平均每天可多售出 件.
且更有利于减少库存,则每件商品应降价 元.
9.
【答案】
解:设销售单价应定为 元,
由题意,得 ,
解得 , ,
∵尽可能让利消费者,
∴ .
答:销售单价应定为 元.
10.
【答案】
,
设该商品的销售单价为 元 ,则当天的销售量为 件,
依题意,得: ,
整理,得: ,
解得: , .
答:当该商品的销售单价为 元或 元时,该商品的当天销售利润是 元.
所以每千克核桃应降价 元,
此时,售价为: (元),
∴ .
答:该店应按原售价的 折出售.
13.
【答案】
设每件商品降价 元时,该商店每天销售利润为 元,
根据题意得 ,
整理,得 ,
解得: , .
∵要求每件盈利不少于 元,
∴ 应舍去,

(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题

(完整版)一元二次方程应用题之利润问题问题描述:某公司生产和销售某种商品,已知该商品的定价为每件x元,每件商品的制造成本为200元,销售每件商品所需的费用为10元。

该公司希望通过调整销售价格来最大化利润。

现在需要确定一个一元二次方程,以确定的销售价格为自变量,利润为因变量。

请求解这个问题。

解决方法:设销售价格为p元,销售商品的数量为q件。

由此可得以下关系:收入 = 销售价格 ×销售数量 = p × q成本 = 制造成本 ×销售数量 = 200 × q总费用 = 成本 + 销售费用 = 200 × q + 10 × q = 210 × q利润 = 收入 - 总费用 = p × q - 210 × q = q(p - 210)根据问题描述可知,一元二次方程的自变量是销售价格p,因变量是利润。

设方程为 y = ax^2 + bx + c,其中a、b、c为待确定的系数。

由上述推导可得:y = q(p - 210)即 y = q(p - 210) = q(210 - p)将y与x对应:y表示利润,x表示销售价格p。

根据问题描述,已知a=0,b=q,c=q×210,因此方程可以写成:y = q(210 - p)这是一个一元二次方程,通过求导可以找到该方程的极值点。

方程的极值点对应的销售价格就是能够使利润最大化的价格。

因为a=0,所以只需要求二次项的系数b即可。

结论:根据上述分析,该公司应将销售价格定为210元时,利润最大化。

注意事项:本文档中所述方程为一种简化模型,只考虑了制造成本和销售费用,没有考虑其他因素对利润的影响。

在实际情况中,可能还需要考虑市场需求、竞争对手的定价等因素,并进行综合分析来确定最优销售价格。

因此,读者在实际应用中应谨慎对待该模型的结果,结合具体情况做出决策。

期末复习二次函数专题(利润问题)

期末复习二次函数专题(利润问题)

一学教育辅导讲义⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?5、市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).6、小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,求他与篮底的距离L 。

教学主管意见:家长签字: ___________家庭作业:1.二次函数1212-+=x x y ,当x= 时,y 有最 值,这个值是23-.2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为 (只写一个),此类函数都有 值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是 (填“有解”或“无解”)一学教育教务处4、影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶上,速度为V(km/h)的汽车的刹车距离S(m)可由公式S=1100V2确定;雨天行驶时,这一公式为S=150V2.如果车行驶的速度是60km/h,•那么在雨天行驶和晴天行驶相比,刹车距离相差米.5、如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .。

一元二次方程的运用 利润问题

一元二次方程的运用 利润问题

二次函数的应用------利润问题复习目标:能根据实际情况建立一次函数、二次函数模型,研究、解决生活中的实际问题。

能根据自变量的取值范围确定函数的最值一、基本知识检测1、抛物线y=ax2+bx+c,当a>0时,抛物线开口向上,当x=-b/2a 时,y最小值= (4ac-b2)/4a时,当a<0,抛物线开口向下,当x=-b/2a 时,y最大值= (4ac-b2)/4a .2、利润= 售价- 进价=单件利润×销售数量=进价×利润率3、某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?二、例题讲解一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?(3)物价部门规定,该种茶叶售价不高于180元/kg,商家要想获得较高利润,该怎样定价?此时最大利润是多少?(4)在(3)的情况下,商家每天销售获得不低于6400元的利润,该怎样确定该茶叶的售价x的取值范围?三、运用1、学案96页当堂检测第四题2、中考链接某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为少?四、小结1、解这类题目的一般步骤(1)列出二次函数解析式,并根据自变量的实际意义,确定自变量的取值范围(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.2、今天我们共同探讨了哪些内容?你有什么收获?五、作业复习导引P35第7题。

九年级一元二次方程利润问题和二次函数压轴题角度问题

九年级一元二次方程利润问题和二次函数压轴题角度问题

利润问题和压轴题角度问题1、商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。

(1)求按原价出售一天可得多少利润?(2)求销售利润y与降价x的的关系式(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润(5)现题目条件不变,若将降价后的销售价格设为自变量x,求因变量y与自变量x的关系式3、某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?4、某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。

经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。

假定每月销售件数y(件)是价格x(元)的一次函数.(1)试求y与x的之间的关系式.(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入-总成本)5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?ABC二次函数面积问题(方法应用)1.如图,抛物线与x轴交与(1,0),(3,0)A B-两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得QAC∆的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使PBC∆的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.2.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.cbxxy++-=23:已知:抛物线的对称轴为x =–1,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.4.(阜新)如图,抛物线y=﹣x 2+bx+c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3).(1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S BOC ,求点P 的坐标;(3)如图b ,设点Q 是线段AC 上的一动点,作DQ △x 轴,交抛物线于点D ,求线段DQ 长度的最大值.A C xyB O夹角公式的利用设直线l1、l2的斜率存在,分别为k1、k2,l1到l2的转向角为θ,则tanθ=(k2- k1)/(1+ k1k2)l1与l2的夹角为θ,则tanθ=∣(k2- k1)/(1+ k1k2)∣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习:一元二次方程与二次函数利润问题
例:某商场销售一批名牌衬衫,进价为每件30元,售价为每件70元,平均每天可售出20件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.
(1)若该商品连续两次下调相同的百分率后售价降至每件元,求两次下降的百分率;
(2)经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,每件衬衫应降价多少元
(3))在(2)的条件下,每件衬衫降低多少元时,商场平均每天盈利最多最大利润是多少元
4.48140)4()10600)(3040()3(10000)10600)(3040)(2(500050482500290012=+--+==--+=⎪⎭⎫ ⎝⎛⨯+--)
((化顶点式)
)()(解方程
x x x y x x x x
巩固练习:
某旅馆有客房120间,每间房的日租金为160元,每天都客满.旅馆装修后要提高租金,经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高比装修前日租金的总收入增加多少元
作业:
1.若x=2关于x 的一元二次方程x 2﹣ax+2=0的一个根,则a 的值为( )
(化顶点式)

(解方程
2)1()4(662)1()
3()05.0200500)(3.0()2(180)05.0200500)(3.0(1-==-+-==+-x x y x x x x y x x
A.3 B.﹣3 C.1 D.﹣1
2.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()
A.y=B.y=C.y=D.y=
3.下列命题中,正确的是()
A.对角线垂直的四边形是菱形 B.矩形的对角线垂直且相等
C.对角线相等的矩形是正方形 D.位似图形一定是相似图形
4.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错
误的是()
A.函数有最小值 B.当﹣1<x<3时,y>0
C.当x<1时,y随x的增大而减小D.对称轴是直线x=1
5.某公司年前缴税20万元,今年缴税万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()
A.20(1+x)3= B.20(1﹣x)2=
C.20+20(1+x)2= D.20(1+x)2=
6.如图,每个小正方形的边长均为1,△ABC和△DEC的顶点均在“格点”
上,则=()
A.B.C.D.
8.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E
作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是()
A.B.C.D.
8.如图,抛物线y=x2﹣4x与x轴交于点O、A,顶点为B,连接AB并延长,交y轴于点C,则图中阴影部分的面积和为()
A.4 B.8 C.16 D.32
二、填空题(共4小题,每小题3分,满分12分)
9.抛物线y=﹣2(x+1)2﹣2的顶点坐标是.
10.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前
后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距
离2m,小明身高,他的影长是,那么该树的高度为.
11.某水果店销售一种进口水果,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.水果店想要能尽可能让利于顾客,赢得市场,又想要平均每天获利2090元,则该店应降价元出售这种水果.
12.如图,在边长为2的正方形ABCD中,点E为AD边的中点,将△ABE
沿BE翻折,使点A落在点A′处,作射线EA′,交BC的延长线于点F,则
CF= .
三、解答题
13.某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别
用A
1、A
2
、A
3
表示);田赛项目:跳远,跳高(分别用T
1
、T
2
表示).
(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为;
(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P
1
,利用列表法或树状图加以说明;
(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P
为.
2
14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.
(1)求证:四边形AODE是菱形;
(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.
15.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.
(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,
A处测得点E的仰角为45°,试求AB的长(结果保留根号);
(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)。

相关文档
最新文档