天然气水合物开采研究现状
天然气水合物研究与开发
天然气水合物研究与开发天然气水合物是一种新型的燃料资源,其储量相当丰富,可成为未来能源转型的重要后备力量。
目前,天然气水合物研究与开发已经成为全球能源科技的热点。
一、什么是天然气水合物天然气水合物,是一种以天然气和水形式结合的化合物,也称为天然气冰或脆冰。
它的分子结构是由天然气分子和水分子构成的六边形晶格结构,其中天然气占70%左右,水分子占30%左右。
由于这种化合物在常温常压下呈脆性,有如冰块,因此被称为水合物。
天然气水合物分布广泛,主要分布在浅海和大陆架上,特别是北极地区、南海和日本海等开垦较少的区域。
据估算,全球天然气水合物储量超过14万亿立方米,其中中国的海域储量最高,达3400亿立方米以上,是世界最大的天然气水合物资源国家。
二、天然气水合物研究与开发现状天然气水合物研究和开发虽然起步较晚,但近年来取得了密集的进展。
目前,全球主要的天然气水合物开发国家包括日本、美国、加拿大、印度、中国等。
在日本,多家大型能源公司已经积极投资天然气水合物的开发研究。
日本已经建立了一系列天然气水合物研究机构,主要研究领域包括天然气水合物开采、运输、存储等方面。
美国和加拿大也在积极开展天然气水合物研究工作,主要集中在研究天然气水合物的资源量和开采技术等。
美国已经成立了多个天然气水合物研究中心和联合实验室,而加拿大则在开采海域天然气水合物方面颇具优势。
在印度,天然气水合物研究和开发也备受重视。
印度天然气公司和国家天然气水合物公司联合投资,开展天然气水合物研究和开采工作。
中国也将天然气水合物作为战略能源资源来进行研究开发。
自2013年以来,中国天然气水合物开发基地建设进展迅速,中国海油、中海油、中化集团等多家国内大型能源公司也进行了天然气水合物研究和开发工作。
三、天然气水合物的优缺点与传统燃料相比,天然气水合物具有许多优点。
首先,天然气水合物储量丰富,可作为未来的主要能源资源;其次,天然气水合物燃烧释放出的二氧化碳排放量较低,不会对环境造成较大污染;最后,天然气水合物与液化天然气相比,其产生的碳排放量更少,能源利用效率更高。
天然气水合物开发现状及其环境问题
天然气水合物开发现状及其环境问题最新【精品】范文参考文献专业论文天然气水合物开发现状及其环境问题天然气水合物开发现状及其环境问题摘要:当今世界经济整体都在迅猛发展,随之而来的就是能源紧张以至于枯竭的地步,寻求高效清洁的新能源成为世界各国普遍追求的目标,进而天然气水合物就进入人们的主要关注目标。
天然气水合物是目前世界上没有开发的可利用程度较高的潜在能源,其储藏量相当于全世界汽油和天然气资源的总和。
天然气水合物在全球范围内分布广而储藏量又巨大,本身具有极大的开发前景,被认为是二十一世纪最理想的替代能源。
无可置疑,天然气水合物是一种蕴含巨大价值的潜在能源,虽然天然气水合物的开发处于探索阶段,但是对这种新型能源的研究和开发具有相当大的意义。
关键词:天然气水合物开发现状环境问题有关专家分析判定天然气水合物的形成是由于海洋板块之间的活动造成的。
海洋板块之间相互运动,深海天然气随着板块的裂缝涌上来。
在深海的高压的作用,温度相对较低的海水与之间产生化学反应,进一步形成天然气水合物,也就是所谓的甲烷水合物。
但是由于开发天然气水合物的技术还不是很成熟,在开发的过程中会对环境产生一系列不良的影响,例如全球大气变暖、破坏的海洋生态平衡的和造成海底滑坡等环境问题。
一、对天然气水合物的基本情况天然气水合物的可利用程度较高,而且是清洁新能源,因此,受到各国科学家的普遍关注,对于地球上的天然气水合物的储存也在量一直在讨论之中。
早期科学家们根据天然气水合物形成所需要的条件,进一步来推断天然气水合物储存量,得出的结论就是天然气水合物储存量是全球石化以及天然气资源量的2倍,而且绝大多数分布在海洋之中。
近年来在全球范围内实施海洋探索计划,有关研究者对天然气水合物储存量重新做了评估,评估表明,最新估算的储存量比早期的结论减少了将近一半。
尽管是这样,天然气水合物的储存量还是很丰富的。
资料表明,目前全球范围内的天然气水合物保守估计的储最新【精品】范文参考文献专业论文存量与油气资源的总储量基本一样,由此可知,天然气水合物的储存量是令人惊喜的,在未来的能源结构中天然气水合物将占据很大的比例,成为能源主要的来源。
全球及中国天然气水合物开发现状分析
全球及中国天然气水合物开发现状分析一、全球天然气水合物试采现状分析天然气水合物(Natural Gas Hydrate,NGH)是水和甲烷气体形成的非化学计量性笼状晶体物质。
它的形成不仅需要时间和空间,还需要气源、水以及低温和高压的条件,因而主要在冻土层以下和海底陆坡生成。
其在自然界中大量存在且分布广泛,已在全球的79个国家超过230个区域发现天然气水合物。
目前国际上先后在俄罗斯麦索雅哈、加拿大马更些三角洲、中国祁连山、美国阿拉斯加北坡冻土区和日本南海海槽、中国南海神狐地区进行过开采试验。
2020年,中国进行了第2次试采,使用了包括水平井+降压法等在内的一系列先进技术。
此次试采创造了产气总量86.14×104m3、日均产气量2.87×104m3两项世界纪录,实现了从“探索性试采”向“试验性试采”的重大跨越。
二、中国天然气水合物开采现状分析目前已在中国南海、东海及青藏高原发现天然气水合物样品5处,发现地质、地球物理、地球化学等赋存标志7处,并在其他地区发现一系列异常标志。
天然气水合物资源量是指地层(沉积物)中所蕴藏的水合物资源总量,不管发现与否以及能否被开发利用。
依据工作程度可将资源量分成已发现资源量和待发现资源量两部分,并可进一步细分成潜在资源量、理论资源量、推测资源量、推定资源量、可采资源量和探明资源量等。
储量则指经过合理评价得出的有经济开发价值的天然气水合物量,依地质工作程度可细分成推测储量、推定储量、可采储量和探明储量等。
三、中国天然气水合物开采技术现状分析目前,中国海域天然气水合物开采技术包括降压法、原位破碎抽取法、CO2置换法、加热法及注入抑制剂等,其中降压法和原位破碎抽取法是主要研究方向,试采试验都取得较好效果。
目前,国内外海域天然气水合物开采技术均未成熟,普遍存在单井产量低、开采成本过高、开采效率低等问题,难以支撑商业化开采,各种天然气水合物开采方式的优缺点对比如下:四、中国深海水合物开发理论与技术趋势海洋水合物开发作为国家能源重大发展战略,不仅是国家经济社会发展的重大现实需求,也是能源发展方式转变的重大现实需求,其开采技术具有意义重大和难度巨大的双重属性,在国家层面具有战略性和革命性特征,在技术层面具有前沿性和竞争性特点。
天然气水合物开采技术研究进展
天然气水合物开采技术研究进展天然气水合物是指天然气和水分子在高压、低温下形成的结晶体,是天然气的一种新形式。
天然气水合物的丰富储量和广泛分布,在能源领域具有非常重要的战略意义。
目前,天然气水合物开采技术研究已经取得了一些进展,本文将从四个方面进行分析。
一、天然气水合物开采技术研究现状天然气水合物开采技术一直是石油天然气领域的研究焦点,当前主要包括以下方面:1、水合物钻探技术:研究水合物在钻探过程中的动力学行为和物理性质,并开发出适合于水合物探测的传感器、仪器等设备。
2、水合物开采技术:通过人工或自然措施改变温度、压力、浓度等环境因素,使水合物分解,达到开采目的。
3、水合物输送技术:在水合物开采后,需要将天然气输送到加工厂进行加工处理,目前研究正在进行中。
4、水合物加工技术:水合物加工技术是将开采的水合物转换成生产能用的商品气体,主要涉及水合物裂解、去除杂质、压缩储存等方面。
二、天然气水合物开采技术研究现状目前,世界各国均在加速水合物开采技术的探索,例如日本在2013年成功进行了深层水合物开采实验,韩国也在2016年成功进行了大规模天然气水合物探测试验。
而我国则于2017年成功进行了天然气水合物试采。
在这些实践中,研究者们不断探索优化开采技术,提高开采效率。
1、温度管理技术天然气水合物开采需要在压力较高的环境下进行,为使水合物分解,需要通过温度管理技术来控制水合物的热解温度。
目前,研究者们主要通过水淬、电热、压缩利用等方法来达到控制温度的目的。
2、压裂技术在水合物开采过程中,如果仅仅靠温度变化来改变水合物体积、压力,开采效率较低。
因此,需要依托压裂技术,通过向水合物区域注入压缩空气、水等物质来达到改变水合物体积的目的。
3、高效减阻剂技术在输送天然气的过程中,水合物会因发生极性相互作用而粘附在输送管道及設备表面,严重影响输送效率。
高效减阻剂技术可将水合物与管道表面分离,提高天然气输送效率。
三、天然气水合物开采技术成果目前,天然气水合物开采的有效储量还未被准确评估。
天然气水合物开采现状与挑战
天然气水合物开采现状与挑战天然气水合物是一种新型的天然能源资源,被广泛认为是未来能源领域的重要矿产资源。
它是天然气与水分子在适当的压力和温度条件下结合形成的晶体固态物质,通常存在于深海和极低温环境中。
天然气水合物的开采虽然面临着诸多挑战,但随着技术的发展和能源需求的增长,对天然气水合物的开采和利用持续增加。
天然气水合物的开采现状可以说还处于起步阶段。
目前,全球已探明的天然气水合物资源主要分布在北极、南海、日本海和美国海域等地。
其中,日本和美国是天然气水合物研究和开发最为活跃的国家之一。
日本是全球天然气水合物储量最丰富的国家,而美国则以其海洋天然气水合物研究领域的先进技术而闻名。
另外,中国也积极参与天然气水合物的研究和开发,目前已取得一些重要进展。
然而,天然气水合物的开采面临着许多挑战。
首先,天然气水合物的开采技术相对复杂,需要克服高压高温环境、海底条件限制等问题。
其次,天然气水合物属于深海开采,需要投入巨大资金和海洋工程技术。
此外,天然气水合物的开采过程中可能释放大量的甲烷气体,该气体是一种强效温室气体,对气候变化具有重要影响。
同时,天然气水合物的开采还需面对国际海洋法的约束和保护环境的责任。
为了克服这些挑战,科学界和工业界已经展开了广泛的研究和创新。
一方面,各国加大了沿海天然气水合物的勘探和开发投入,加快了技术的发展和成熟度。
例如,日本开展了亚洲首个海上天然气水合物试采,取得了一定的成果。
美国则在开发海洋天然气水合物方面进行了大规模的研究和示范项目。
另一方面,研究人员也在努力寻找更有效的开采技术和解决方案。
比如,通过改良气体吸附剂、超临界水煮法等技术,以提高天然气水合物的开采效率。
此外,国际合作也是解决天然气水合物开采挑战的重要途径。
各国可以分享经验、互相学习,共同应对开采过程中遇到的技术和环境问题。
在此基础上,建立公平和可持续发展的国际规则,保护海洋环境和资源,确保天然气水合物的可持续开发和利用。
天然气水合物开发的现状与前景展望
天然气水合物开发的现状与前景展望天然气水合物是一种新兴的能源,被认为是未来能源的主要来源之一。
它是水与天然气分子在高压、低温条件下结合形成的一种物质。
随着石油、天然气等传统能源储量的逐渐枯竭,天然气水合物的开发成为了全球范围内的热门话题。
现在,让我们来了解一下天然气水合物开发的现状和前景。
一、天然气水合物开发的现状天然气水合物作为一种新兴的能源,其开发及利用技术还不够成熟。
目前,全球已确认的天然气水合物储量超过2000亿立方米,而中国拥有的天然气水合物储量更是高达14000亿立方米。
尽管找到了大量的天然气水合物储量,但发展水合物开采技术依然是一个长期的过程。
目前,有关天然气水合物开发的研究主要集中在三个方面:一是开采技术方面,二是运输和储存方面,三是利用技术方面。
在开采技术方面,天然气水合物的开采需要的高压、低温条件给水合物挖掘带来了很大的挑战。
也因此,目前开采技术比较笨拙,成本较高。
但随着技术的不断发展,相信完善的开采技术会降低开采成本,提高生产效率。
在运输和储存方面,为了避免水合物在运输或储存过程中发生变形和解离,需在加压和降温条件下储存和运输。
这也会增加成本。
在利用技术方面,天然气水合物的甲烷含量高,是一种优质的燃料,其燃烧产生的二氧化碳排放量明显少于燃煤燃气等传统燃料。
但是,由于天然气水合物开采技术不成熟,需全方位储存和运输,这也给利用带来了巨大的困难。
二、天然气水合物开发的前景展望天然气水合物开发在全球石油资源日益枯竭的背景下备受关注。
其广阔的开采空间与巨大的储量让人们对其前景充满期待。
首先,天然气水合物的开采效益可想而知。
目前,天然气水合物是人类已知的最大的未被利用的天然气储存库,开采天然气水合物将给全球的能源供应带来巨大的促进作用,解决能源短缺的问题。
而且,天然气水合物的燃烧是无害的,不会对环境造成威胁,符合环保产业发展的要求。
这都为天然气水合物的发展、推广与应用提供了广泛的空间。
天然气水合物开采技术的发展现状
天然气水合物开采技术的发展现状天然气水合物是一种高效利用燃料资源的新兴能源,它的开采技术在我国已有一定的历史。
目前,随着相关技术的不断发展和完善,我国的天然气水合物开采技术也在不断提升,未来的前景十分广阔。
天然气水合物的地质特点天然气水合物是在海洋深处和极地底部的低温高压条件下形成的,通常位于水深500~1000米、海底温度0~10°C的层位。
其形成方式类似于冰结晶,由甲烷、水和少量的其他气体(如二氧化碳、氦、氢等)在适宜的压力和温度下形成晶体状结构。
与天然气和石油相比,天然气水合物的资源规模非常庞大。
据估计,全球天然气水合物储量约为290万亿立方米,相当于传统地下天然气储量的数十倍。
可见,天然气水合物是未来燃料产业的发展方向之一。
国内天然气水合物的开采状况我国的天然气水合物开采工作始于20世纪90年代,主要集中在爱国者海盆、珠江口盆地和南海等地区。
随着国内外相关技术的进步,我国在天然气水合物的开采和利用方面取得了不少进展。
目前,我国已经掌握了一系列天然气水合物的开采技术,包括水平井开采、大规模试采、加热法开采、自然漏气开采等。
其中,水平井开采是一种较为成熟的技术,已经成功应用于我国三江盆地和珠江口盆地的实施试验中。
在实际开采过程中,相应的生产设备也得到了不断的改进和完善。
例如,开采船的设计和制造、海底管线的布设和连接、气液分离和储存设备等,都得到了不断的提升和改善。
未来天然气水合物开采技术的发展趋势随着全球能源需求的不断增长,未来天然气水合物的开采将会成为燃料产业的发展方向之一。
在此过程中,我国需加快技术研究和开发,积极探索更有效、更安全的开采技术。
一方面,我国可以进一步完善水平井的开采技术,并深入研究其他开采方法的适用性及可行性。
另一方面,也可以加强配套技术和设备的研发和生产,优化开采流程,提高生产效率和安全性。
未来还有一个重要趋势是实现天然气水合物的太空开采。
由于天然气水合物储量广大而位置分散,因此在上层海洋的开采不太现实。
天然气水合物的研究现状
天然气水合物的研究现状一、引言天然气水合物(气烟团结物)是一种在海洋和极地等寒冷条件下形成的天然气与水分子结合形成的固态物质,被誉为“能源界的黑马”。
天然气水合物有着巨大的储量和潜力,在能源领域具有广泛的应用前景。
二、天然气水合物的形成机理天然气水合物的形成主要是由于天然气在寒冷的海底和土壤中长期存在而形成。
气体分子在寒冷的环境中容易与水分子形成水合物,形成水合物后,则使水合物的晶体结构发生变化,形成具有网络结构的天然气水合物。
三、天然气水合物的储量与分布天然气水合物被认为是未来能源开发的重要方向之一,其储量巨大,被称为气体领域的“碳水化合物”。
据国际能源署评估,全球天然气水合物资源量可达455万亿立方米,相当于标准煤200年的储量。
目前,天然气水合物的主要分布地区在北极、南极、北太平洋和印度洋等区域。
四、天然气水合物的开采技术天然气水合物的开采技术目前还相对不成熟。
目前主要采取的方法是钻井开采,通过钻井、注水、注气等方法将天然气水合物从海底或土壤中开采出来。
五、天然气水合物的应用前景目前天然气水合物的应用前景十分广泛,包括替代煤、替代油、替代石油天然气、替代核能等方面。
此外,天然气水合物还可以用于制氢。
天然气水合物有着巨大的储量和潜力,在未来的能源市场上将具有重要的地位。
六、结语天然气水合物的研究和开发对于我国的能源安全和国民经济发展具有重要的战略意义。
为了推动天然气水合物的开发,中国政府正在积极制定相关政策,为天然气水合物的研究和开发提供支持和保障。
未来天然气水合物必将成为我国能源领域的重要战略资产。
天然气水合物开采技术的发展状况和前景展望
天然气水合物开采技术的发展状况和前景展望近年来,天然气水合物作为一种新型能源被广泛关注,其具有丰富的储量、高能量密度、清洁环保等优点。
天然气水合物以冰蜡状的形式存在于海洋和陆地沉积物中,开采技术具有极高的难度,但随着技术的不断进步,天然气水合物的开采已经不再是梦想,逐渐成为现实。
本文将就天然气水合物开采技术的发展现状、技术趋势以及未来展望进行探讨。
一、天然气水合物开采技术现状天然气水合物的开采技术可分为三种:地面开采、水下开采和深水开采。
1.地面开采地面开采主要是通过地下冷却技术,即在水合物层埋入一定的冷却管,在管外侧的温度逐渐降低至水合物热稳定范围时,水合物变形破裂,并在管内进一步形成为气态烃类,然后抽采其中的天然气。
这种开采方法的缺点是成本高、效益低,而且只能在浅层沉积物中使用,且对于海洋环境的影响较大,因而应用范围较小。
2.水下开采水下开采就是在水下减压下将水合物瓦斯导出,然后通过管道将其转移至生产平台。
通过对水合物沉积层的大规模直接采集,可以大大降低水合物瓦斯的开采成本,具有生产效益较高的优点。
水下开采技术已经得到了部分钻探勘探和采掘实验的证明,但是在实际应用中还面临许多挑战,如开采难度大、生产线路长、设备易受环境影响等问题。
3.深水开采深水开采是一种较为新的开采方式,利用下潜作业器械直接在水合物层中挖掘,然后将物料同步导向生产平台或采集站,其优点经济性好、开采效率高。
这种技术虽然目前还没有达到生产实际的阶段,但是未来前景十分广阔。
二、天然气水合物开采技术趋势1.海洋平台目前,天然气水合物储量大部分存储于海洋平台,因此开采技术的发展趋势也将向海洋平台发展。
传统的天然气水合物开采技术有许多限制,而海洋平台也面临着许多挑战,需要通过合理设计,创新优化,提高技术效率。
2.温度适应性天然气水合物开采技术需要具有一定的温度适用性,因为海洋深度不同受到地心引力不同的作用,不同深度所面临的海底温度也不一样。
2024年天然气水合物开采市场分析现状
2024年天然气水合物开采市场分析现状1. 简介天然气水合物是一种在特定温度和压力条件下形成的油气储层,其中天然气以水合物形式存在。
天然气水合物资源丰富,潜力巨大,具有高能量密度、低温排放等特点。
天然气水合物的开采市场一直备受关注,本文将对天然气水合物开采市场的现状进行分析。
2. 市场规模天然气水合物开采市场的规模不断扩大。
目前全球已发现的天然气水合物储量估计超过数万亿立方米,其中大部分储量分布在深海地区。
根据国际能源署(IEA)的预测,未来几十年内,天然气水合物可能成为世界主要的能源来源之一。
3. 市场发展趋势在天然气水合物开采市场,存在以下发展趋势:3.1 技术进步天然气水合物开采技术一直处于不断发展的阶段。
随着海洋工程技术和油气勘探技术的进步,开采技术逐渐成熟,越来越多的水合物储层得以开发。
新兴技术如深海定向钻井、水合物溶解开采等也为水合物开采提供了更多可能性。
3.2 投资增加天然气水合物资源的潜力吸引了越来越多的投资者。
各国政府和能源公司纷纷加大对水合物开采的投资。
例如,日本和中国等国家在深海地区进行了多次试验开采,以探索商业化开发的可行性。
3.3 市场竞争加剧随着天然气水合物开采技术的不断成熟和市场的潜力逐渐被认可,市场竞争加剧。
各国能源公司和国际能源巨头均将天然气水合物开采作为未来的发展方向,加大投资力度争夺市场份额。
同时,技术创新和合作也成为提高竞争力的重要因素。
4. 市场挑战天然气水合物开采市场面临一些挑战:4.1 成本高昂天然气水合物开采的成本比传统天然气开采更高,在技术研发、设备建设、作业环境等方面都需要更多的投入。
这使得许多潜在投资者对水合物开采的经济可行性持怀疑态度。
4.2 环境保护天然气水合物开采过程中可能对环境产生一定影响。
例如,水合物开采可能导致海底地质变化、水质污染等问题。
在开采过程中,需要采取有效的环境保护措施,以减少对海洋生态环境的影响。
4.3 市场不确定性天然气水合物市场目前仍处于开拓阶段,市场前景和商业化开发的可行性仍存在一定的不确定性。
2024年天然气水合物市场分析现状
2024年天然气水合物市场分析现状1. 引言天然气水合物是一种具有巨大潜力的能源资源,在全球能源市场中具有重要的地位。
本文将对天然气水合物市场的现状进行分析,包括市场规模、市场需求、供应和价格等方面。
2. 市场规模天然气水合物是一种富含天然气的固态物质,其蕴藏量巨大。
根据研究数据,全球天然气水合物储量可能达到数万亿立方米,远远超过常规天然气的储量。
然而,目前全球开发和利用天然气水合物的能力仍相对较低,市场规模较小。
3. 市场需求天然气水合物具有高能量密度和清洁燃烧特性,被认为是一种理想的替代能源。
随着全球能源需求的增长和对清洁能源的需求不断增强,对天然气水合物的需求也得到了提升。
目前,天然气水合物市场主要供应工业生产和居民用气两方面的需求。
工业生产需要大量的能源供应来满足生产和运营的需求,而居民用气则主要用于热水供应、采暖和燃气灶等日常生活用途。
随着工业化和城市化进程的推进,对天然气水合物的需求将进一步增加。
4. 市场供应目前,天然气水合物的开发技术还相对不成熟,且成本较高。
全球仅有少数国家在天然气水合物的开发和利用方面取得了一定的进展,其中包括日本、中国、美国等国家。
由于天然气水合物的开采难度大、技术要求高,目前全球供应量相对较低,无法满足市场需求。
然而,随着技术的不断进步和成本的降低,预计未来几年天然气水合物的供应量将逐步增加。
5. 市场价格天然气水合物的价格受多种因素影响,包括市场供需关系、开采成本、技术进展等。
由于目前天然气水合物市场规模相对较小,供应量有限,价格较高。
然而,随着天然气水合物技术的成熟和供应量的增加,预计未来市场价格将逐渐下降。
此外,全球对清洁能源的需求不断增加,也有望推动天然气水合物的市场价格上升。
6. 结论天然气水合物作为一种具有巨大潜力的能源资源,在全球能源市场中具有重要的地位。
市场规模虽然较小,但随着技术的不断发展和成本的降低,天然气水合物的市场可能会得到进一步扩大。
天然气水合物调查和研究现状
天然气水合物调查和研究现状引言天然气水合物是一种在高压、低温条件下形成的结晶体,由天然气分子和水分子组成。
它具有高含气量、高燃烧效率和丰富的资源潜力,被视为未来能源领域的重要替代品。
本文将对天然气水合物的调查和研究现状进行综述,包括其形成、开采技术、环境影响以及前景展望。
1. 形成机制天然气水合物的形成需要同时具备一定的压力和温度条件。
在海底的沉积物中,天然气与水结合形成水合物晶体,这是因为海底的高压和低温环境满足了水合物形成的条件。
此外,天然气水合物也存在于极地地区的冻土层中。
2. 开采技术目前天然气水合物的开采技术还处于初级阶段,但已经取得了一定的进展。
目前常用的开采方法包括压力释放法和化学添加剂法。
压力释放法是通过减小水合物所处的压力,使其解离释放天然气。
化学添加剂法则是通过添加特定的化学物质,改变水合物的稳定性,使其解离释放天然气。
这些开采技术还存在一些问题,如高成本、环境影响等,需要进一步研究和改进。
3. 环境影响天然气水合物的开采对环境可能会造成一定影响。
首先,开采过程中可能会产生大量的废水和废气,对水质和大气造成污染。
其次,开采后的地下空洞可能会引起地质灾害,如地面塌陷。
此外,天然气的燃烧也会产生二氧化碳等温室气体,对气候变化产生影响。
因此,在开采天然气水合物的同时,应该注重环境保护和可持续发展。
4. 前景展望天然气水合物作为一种新型的天然气资源,具有广阔的应用前景。
首先,天然气水合物具有高含气量,可以成为天然气的重要替代品。
其次,天然气水合物的资源量丰富,可以提供长期的能源供应。
此外,天然气水合物的开采技术还有待进一步完善和发展,未来可能会有更成熟的技术应用于实际生产中。
综上所述,天然气水合物具有巨大的发展潜力,对能源领域和环境保护具有重要意义。
结论天然气水合物是一种具有巨大潜力的能源资源,其调查和研究在不断进行中。
我们需要进一步拓展对于天然气水合物形成机制的了解,改进开采技术以提高生产效率,并注重环境影响的控制和可持续发展。
天然气水合物研究分析
2019年11月天然气水合物研究分析杨楠(辽河油田海南油气勘探分公司,辽宁盘锦124010)摘要:结合实际,对天然气水合物进行研究,首先阐述天然气水合物开发现状,其次在论述天然气水合物研究方向同时,对该技术在实践过程中的要点进行研究,希望阐述后,可以给相关领域的研究者提供帮助。
关键词:天然气;水合物;研究分析1天然气水合物开发研究进展从世界范围内来分析,主要是开展了8次天然气水合物的试采工作,特别是在2017年5月在我国南海神狐海域内试采达到30.9×104m3的累计产气量和60d的连续开采,创造世界纪录。
但是水合物在开采的过程,需要考虑到内部水合物相变的实际情况,然气水多相渗流会随着气水砂运移和外部环境传热条件没有充分的了解清楚,并且开采环节中由于砂质胶合物分解后会给沉积层力学性能造成较大的影响,而这些问题的存在使得整个开采过程无法达到安全性的要求。
因此,要想达到水合物的安全、高效、经济性的提升,还需要加强该技术的研发,实现技术性的突破。
天然气水合物的研发和应用,总结经过组成结构研发、热力学模型研究、动力学研究等3个环节。
1810年,氯气水合物已经开展了第1次实现人工合成,给水合物的利用开启了先河,进入到20世纪50年代,Stackelberg 和Claussen 首次确定了Ⅰ型和Ⅱ型水合物中的小分子气体与水分子在持续低温的条件之下会逐步的形成笼型的晶体结构,给水合物的开采带来了非常大的优势,从此进入快速研发阶段。
1958年,Waals 和Plat-teeuw 提出以统计热力学为基础所建立的热力学模型,加强了对于水合物方面的研发和利用,了解其具体的赋存条件等。
1965年,前苏联在进行麦索雅哈气田开发的过程中,也是首次在世界范围内公布了自然界中的天然气水合物的储量存在,受到世界工业领域的持续关注,并于1968年进行了首次水合物的试采,开创历史,但是从整体上来说,在试采中存在产量低、管道堵塞等问题,阻碍了水合物的持续开采,所以各个国家开始进行储层内相变规律的研发,也是科学家研究的重点。
甲烷水合物的开发与应用研究
甲烷水合物的开发与应用研究甲烷水合物,即天然气水合物,是一种稳定的固态气体,是由甲烷分子和水分子在高压、低温条件下形成的一种化合物。
它具有高储存密度、广泛分布、资源丰富、环保等特点,是一种重要的天然气来源。
目前,随着科技的不断进步,甲烷水合物开发与应用研究已成为国内外热门话题。
一、甲烷水合物开发的现状甲烷水合物的开发虽然在中国和世界各地已有一定的开发经验,但由于其开发难度较大,如何解决水合物超高压下的开采和储存、运输等问题是目前关注的焦点。
1.国内甲烷水合物开发研究我国是世界最早发现甲烷水合物的国家之一,也是全球水合物储量最丰富的国家。
目前,我国的甲烷水合物开发主要集中在南海地区,如神狐海域、珠江口盆地东南缘和北部湾等。
其中,神狐海域试采成功为我国水合物开发提供了基础实践。
2.国际甲烷水合物开发研究日本、美国、印度、韩国等多个国家和地区也正在积极进行甲烷水合物的研究开发工作。
日本已经建立了以神户大学为中心的水合物研究机构,美国在美洲大陆架海域进行了一系列水合物开采试验,印度也于2005年发现了安达曼海的甲烷水合物。
二、甲烷水合物应用前景1.能源利用领域甲烷水合物作为一种新型的可再生能源,其储量远大于传统天然气,具有天然气的简单运输和利用等特点。
未来,甲烷水合物有望在世界能源供应中发挥重要作用。
2.环境保护领域相比于煤炭或石油等传统能源,甲烷水合物燃烧时生成的二氧化碳和氧气的含量很少,同时也不会释放其他污染物,对环境影响较小。
因此,甲烷水合物的开采与使用有助于减少对环境的污染和降低温室气体的排放。
三、甲烷水合物开发应用面临的问题1.技术难题甲烷水合物的开采、储存、运输等技术难度较大,如如何在高压下开采甲烷水合物、如何实现甲烷水合物稳定的储存与运输等问题还需要在技术上不断进行突破。
2.成本问题目前,甲烷水合物的开采、储存、运输等成本较高,这对甲烷水合物的发展及其应用形成了一定的制约,如何降低成本也是目前亟待解决的问题。
天然气水合物的研究现状与开发前景
天然气水合物的研究现状与开发前景天然气水合物是一种重要的天然气资源,具有高能量密度和环保特性,是未来能源发展的重要方向之一。
目前,全世界普遍关注天然气水合物的研究与开发,离开了天然气水合物的开发,未来的能源供给将面临巨大的风险。
天然气水合物是一种化学物质,在超低温和高压的环境下,天然气分子与水分子形成了稳定的结晶体,形成了天然气水合物。
天然气水合物是一种混合物,含有约90%的甲烷和其他的烷烃和少量的氮气和二氧化碳等气体。
目前,全球的天然气水合物资源储量估计为1.3×10¹⁶ m³,相当于常规天然气资源储量的数倍,其中海洋天然气水合物资源占主要部分,可能存在于全球各大洋的海洋沉积物中。
而除了海洋天然气水合物外,陆地上也存在天然气水合物,如中国黑龙江省松花江地区的恒山东、华阳等,逾350个天然气水合物钻井点。
天然气水合物的开采利用并不容易,需要克服很多技术难题。
但近年来,全球的天然气水合物研究成果大幅增加,相关技术也得到了极大的发展。
目前,国内外都对天然气水合物的研究开展了大量的工作,积累了大量的经验和数据。
以下是天然气水合物的研究现状与开发前景分析:一、天然气水合物的研究现状1.开采技术的研究目前,开采利用天然气水合物的主要技术包括采出法、渗滤法、溶解提取法、熔化提取法、热水蒸汽驱替法、水力喷射法、微生物转化法等,同时,水平井、多相流、气水分离等技术也是研究重点。
2.天然气水合物的开发实验国内外的研究机构通过实验室和大规模开发试验对天然气水合物开发和操作进行了验证。
目前,日本在深海天然气水合物的研究和开发技术方面处于世界领先,但由于技术难度和安全性等问题,目前全球尚无商业化建设。
国内目前正在进行陆地天然气水合物勘探,储量巨大,但开发技术尚不成熟。
3.天然气水合物的数值模拟通过数值模拟,可以更好地了解天然气水合物的特性、分布规律和开采模式等。
目前,国内外已经开展了许多天然气水合物数值模拟研究,但模拟结果存在不确定性,需要结合实验和现场数据进行校准。
天然气水合物开采技术
天然气水合物开采技术天然气水合物是一种储量丰富的天然气资源,被誉为“燃气之王”,具有巨大的经济价值和战略意义。
然而,由于其特殊的地质环境和化学性质,天然气水合物的开采一直是一个技术难题。
本文将介绍天然气水合物开采技术的现状和发展趋势。
一、天然气水合物的特点天然气水合物是一种在高压高温条件下形成的冰样物质,由天然气分子和水分子在适当的温度和压力下结合而成。
其主要成分是甲烷,同时还含有少量的乙烷、丙烷等烃类气体。
天然气水合物广泛分布于深海沉积物和极地地区的陆相沉积物中,是一种重要的非常规天然气资源。
天然气水合物具有以下特点:1. 储量丰富:据估计,全球天然气水合物资源量约为10万亿立方米,是传统天然气资源的数倍甚至数十倍。
2. 分布广泛:天然气水合物分布于全球各大洲的深海和极地地区,是一种具有全球性战略意义的能源资源。
3. 开采难度大:天然气水合物的开采受到地质条件、化学性质等多方面因素的限制,技术难度较大。
二、天然气水合物开采技术现状目前,全球对天然气水合物的开采技术已经取得了一定进展,主要包括以下几种技术:1. 压降法:通过降低水合物层的压力,使其解聚释放天然气。
这种方法适用于陆相沉积物中的天然气水合物开采。
2. 加热法:通过加热水合物层,使其温度升高,从而破坏水合物结构,释放天然气。
这种方法适用于深海沉积物中的天然气水合物开采。
3. 化学添加剂法:向水合物层注入化学添加剂,改变水合物的化学性质,促使其解聚释放天然气。
4. 微生物法:利用特定微生物在水合物层中生长繁殖,产生代谢产物破坏水合物结构,释放天然气。
三、天然气水合物开采技术的发展趋势随着科技的不断进步和对能源资源的需求增加,天然气水合物的开采技术也在不断发展。
未来天然气水合物开采技术的发展趋势主要包括以下几个方面:1. 高效节能:未来的天然气水合物开采技术将更加注重能源利用效率和环保性,采用更加节能环保的开采方法。
2. 智能化技术:随着人工智能、大数据等技术的发展,未来的天然气水合物开采将更加智能化、自动化。
浅析天然气水合物研究现状
天 然 气 水 合 物 的 结 晶格 架 主 要 由水 分
在 天 然 气 水 合物 , 作 为 重要 的 能 源 类 型 其 得 到 了全 世 界 广 泛 关 注 和 研 究 。
探 计 划 的 实 施 , 快 了 天 然 气 水 合 物 发 现 远 景 资源 量 可逾 ( 6 加 7 0~2 1 ) 0 t 。 9 ×l f 5 的进 程 , 然 气 水 合 物 研 究 和 普 查 勘 探 工 天 2. . 1 2天然 气 水 合 物 的 开 采 作 开 始 全 面 发 展 。 规 模 的 国 际 合 作 成 果 大 目前 国 际上 已投 入 开 采 的 天 然 气水 合
能源来源 。
的 压 力 和 温 度 条 件 下 ,甲烷 气 体 分子 天 然
1 6 年 , 饿 罗斯 西 伯 利 亚 的 梅 素 雅 94 在 天然 气水 合物资 源分布 情况 如下 : 从 地 被 封 闭在 水 分 子 的 扩 大 品格 中 , 固 态 呈 的 结 晶 化 合 物 。 名 冰 冻 甲烷 , 又 甲烷 水 合 卡 气 田 钻 井 过 程 中 , 次 发 现 自然 界 中 存 北 阿 拉 斯 加 、 令海 、 利 福 尼 亚 近 海 、 首 白 加 中
gs a hy r t a d i s t p s. a y e t s u y p o e s n r s a c s t a i n , nd ma a r e d s r p i n d a e n t y e An l z i s t d r c s a d e e r h i u t o a ke b i f e c i t o o i s i t i u i n , n n f t d s r b t o mi i g a r l t d e v r n nd e a e n i o me t l r b e b t a ki g h d s o r h s o y f a h d a e . e p t f r a d h p o l ms n n t n n e n a p o l ms y r c n t e i c ve y i t r o g s y r t s Th n u o w r t e r b e i i s a t e d o sl i g f o v n a d t e k y e e r h c n e s. n h e r s a c o t nt
气体水合物技术及应用发展现状分析
气体水合物技术及应用发展现状分析气体水合物技术是近年来备受关注的研究领域之一,这种技术可广泛应用于海洋工程、能源开采等领域。
本文将针对气体水合物技术及其应用发展现状进行分析。
一、气体水合物技术介绍气体水合物是一种在高压下形成的物质,是天然气、二氧化碳等气体分子在水分子中形成的结晶物质。
将气体水合物暴露于常温常压下时,其会原状态下的体积收缩为约1/170倍,能大幅度提高天然气等气体的贮存密度和输送效率。
气体水合物的开采及利用可替代化石燃料,为清洁能源的开发提供了新手段。
二、气体水合物技术的发展1. 气体水合物的开采首次成功地从深海中采集出大规模的气体水合物是在2004年,中国、日本、美国等国家均参与了相关的研究工作。
然而,气体水合物的开采技术目前仍处于实验研究阶段,远未达到工业级别。
2. 气体水合物的应用气体水合物的应用主要集中在清洁能源、海洋工程和制冷等领域。
其中清洁能源是气体水合物领域的主要应用之一。
据研究表明,气体水合物具有比化石燃料更加清洁、安全、低廉等优点,将成为未来的主要能源来源。
三、气体水合物技术的发展现状1. 技术发展气体水合物技术的发展可分为气体水合物基础研究和工业应用开发研究两个方面。
在基础研究方面,国内外学者致力于研究气体水合物的形成机理、储层特征、导流运移特性等方面的问题。
而在工业应用方面,主要涉及气体水合物的开采、储存、输送等方面的技术。
2. 发展趋势目前,气体水合物的开采技术尚未完全成熟,需要进一步对其进行研究和开发。
随着研究的深入,气体水合物的开采和利用将会快速发展。
同时,随着全球对于清洁能源需求的不断增加,气体水合物将成为一种备受关注的清洁能源。
四、未来展望随着气体水合物技术的不断发展,其在清洁能源领域和海洋工程等领域的应用将会得到广泛推广。
同时,从国内外走势来看,气体水合物的开采和利用将成为未来的主要发展方向。
因此,在技术研究和产业发展方面,需要大幅度加强投入和合作,以实现该领域的快速发展。
天然气水合物开采技术的研究现状与前景
天然气水合物开采技术的研究现状与前景天然气是人类能源消耗的主要来源之一,但是传统的天然气开采方式面临新的挑战和限制,其中最重要的是可采储量和采集成本的问题。
为了解决这一问题,人们开始研究利用天然气水合物的开采技术。
本文将对天然气水合物开采技术的研究现状及其前景进行探讨。
一、什么是天然气水合物?天然气水合物(Gas Hydrate)是一种在海床或深层地下岩石中形成的物质,其主要成分为甲烷和水。
这种物质在特定的高压和低温条件下形成,形成的原理类似于普通的冰。
天然气水合物在地球表层的水填充地层中广泛存在,而且数量十分丰富,其储量甚至可能远超过传统天然气。
二、天然气水合物的开采技术研究现状目前,天然气水合物开采技术研究正在不断深入。
以下是一些相关技术的主要研究内容:1.水合物的勘探技术由于水合物是一种处于水下深处的物质,因此天然气水合物的勘探难度较大。
针对这一问题,目前的勘探技术主要包括地震勘探和电磁勘探。
地震勘探是利用地震波的反射和折射规律,探测水合物层位和地下构造。
电磁勘探则是通过测量地下电磁场来确定水合物分布情况。
2.水合物的开采技术目前常用的水合物开采技术主要有三种:热解、压力平衡和化学物质注入法。
热解技术是将水合物加热,使甲烷与水分离,然后利用抽吸机将甲烷抽出。
压力平衡技术则是通过搭建压力平衡系统,使水合物中的甲烷自行释放,然后利用抽吸机将甲烷抽出。
化学物质注入法是将特定化学物质注入水合物中,使之分解成甲烷和水,然后再利用抽吸机将甲烷抽出。
三、天然气水合物开采技术的前景天然气水合物开采技术的发展前景是巨大的。
其主要原因是,天然气水合物是一种储量丰富、能源密度高、能够替代传统化石燃料的新型能源。
随着科技的进步,对天然气水合物的勘探、开采技术不断优化,其可采储量将会越来越大。
而且,因为天然气水合物的资源分布广泛,其开采能够避免一些传统化石燃料开采的局限性,从而保障全球能源供应的安全性。
总的来说,天然气水合物开采技术的研究和发展将会为全球能源产业的发展带来一系列深远的影响,在未来的发展中,值得关注和期待。
天然气水合物开采技术的研究现状
天然气水合物开采技术的研究现状天然气水合物是一种蕴含丰富甲烷的沉积物,其有着天然气的能量密集性和液态天然气的高效性,因此一直被视作具有极高潜力的清洁能源。
世界各国都在积极开展天然气水合物的勘探工作,但是开采天然气水合物的技术仍面临很多挑战和困难。
本文将介绍天然气水合物的开采技术研究现状。
一、天然气水合物开采技术的研究意义天然气水合物被认为是未来能源的重要组成部分,具有极高的经济和环境效益。
相较普通天然气而言,天然气水合物在资源储量方面的潜力更大,据估计,天然气水合物的储量是普通天然气的数倍。
而且,天然气水合物的开采不会对环境产生污染,能有效缓解对传统能源使用所面临的环境问题。
此外,利用天然气水合物作为能源还可以降低对石油和煤炭等传统能源的依赖,有助于促进国家的能源多元化和可持续发展。
二、现有的天然气水合物开采技术目前,天然气水合物的开采技术主要分为以下几种。
1. 带水层开采法该方法利用水合物与沉积物随着水深增加在温度和压力等自然条件下发生相变,通过加热来恢复油气。
但这种方法生产成本较高,开采难度较大。
2. 直接用井筒吸采法该方法是将井筒钻进水合物层内,通过给井筒注水,使水分析增加、压力降低,沿着井筒管道吸取天然气水合物。
这种方法成本较低,但随着井筒深度增加和温度和压力条件的变化,水合物易发生解除,导致开采难度的增加。
3. 热激发开采法该方法是通过注入高温高压流体来热激发天然气水合物,使其发生相变,从而将油气释放出来。
虽然这种方法成本相对较高,但开采效率高,且不会对环境产生污染,因此被认为是未来天然气水合物开采的有力竞争者。
三、天然气水合物开采技术研究存在的问题及展望1. 技术成熟度不高。
与传统油气开采相比,天然气水合物开采技术要更加高级和复杂,现有技术并不能有效解决其开采过程中面临的各个问题。
2. 安全隐患较大。
天然气水合物开采过程中存在较大的安全隐患,如果处理不当可能会对海洋环境产生严重的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气水合物开采研究现状*吴传芝1,赵克斌1,孙长青1,孙冬胜2,徐旭辉2,陈昕华3,宣玲1(1.中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡214151;2.中国石油化工股份有限公司石油勘探开发研究院,北京100083;3.中国石油化工股份有限公司石油勘探开发研究院西部分院,乌鲁木齐830011)摘要:随着天然气水合物基础研究的不断深入,天然气水合物开采研究空前活跃。
在技术方法方面,传统的热激发开采法、减压开采法与化学抑制剂注入开采法获得了不断的发展与改进;新型开采技术如CO2置换法与固体开采法引起了学者们的极大关注;最近我国还研制出适合于海洋天然气水合物开采的水力提升法。
在开采研究实践方面,全世界已在3处冻土区进行了天然气水合物试采研究。
介绍了天然气水合物开采技术的研究进展与冻土区天然气水合物试采研究结果,分析了天然气水合物开采研究中可能涉及的环境问题,展现了现阶段天然气水合物开采研究领域的最新成果,总结了这一领域取得的经验与认识,强调了国际天然气水合物开采研究对我国天然气水合物研究的启示。
关键词:天然气水合物;开采技术;开采试验;麦索亚哈气田;M allik地区中图分类号:T E31文献标识码:A文章编号:1000-7849(2008)01-0047-06天然气水合物具有巨大的资源潜能,但只有解决了其开采问题,天然气水合物才能成为一种真正的能源。
近10年来,对天然气水合物研究起步较早的一些国家,明显加速了天然气水合物开采研究的步伐,在开采技术、开采工艺、开采面临的环境问题等方面做了大量工作,并在冻土区进行了天然气水合物开采试验。
我国近年来也已介入天然气水合物开采研究领域,但总体上,国内天然气水合物开采研究才刚刚开始,尚没有进行试采研究。
笔者拟介绍天然气水合物开采技术的发展、试采研究结果与开采涉及的环境问题等内容,展现现阶段世界天然气水合物开采研究领域的最新成果,总结这一研究领域已取得的经验与认识,强调国际天然气水合物开采研究对我国天然气水合物开采研究的启示。
1开采方法的改进与发展天然气水合物是一种由天然气和水组成的亚稳定态矿物,存在于特定的温压条件下。
一旦赋存条件发生变化,天然气水合物藏的相平衡就会被破坏,引起天然气水合物分解。
传统的天然气水合物开采技术就是根据天然气水合物的这种性质而设计的,主要包括热激发开采法、减压开采法与化学试剂注入开采法[1-15]。
随着天然气水合物基础研究的不断深入,近些年又涌现出一些新的开采技术,如CO2置换法与固体开采法等[8,12-13,16-20]。
1.1传统开采方法的改进与技术缺陷(1)热激发开采法热激发开采法是直接对天然气水合物层进行加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水与天然气的开采方法。
这种方法经历了直接向天然气水合物层中注入热流体加热、火驱法加热、井下电磁加热以及微波加热等发展历程[4-6,8-15]。
热激发开采法可实现循环注热,且作用方式较快。
加热方式的不断改进,促进了热激发开采法的发展。
但这种方法至今尚未很好地解决热利用效率较低的问题,而且只能进行局部加热,因此该方法尚有待进一步完善。
(2)减压开采法减压开采法是一种通过降低压力促使天然气水合物分解的开采方法。
减压途径主要有两种:¹采用低密度泥浆钻井达到减压目的;º当天然气水合物层下方存在游离气或其他流体时,通过泵出天然气水合物层下方的游离气或其他流体来降低天然气水合物层的压力[4,6,8-10,12-13,15]。
减压开采法不需要连续激发,成本较低,适合大面积开采,尤其适用于存在下伏游离气层的天然气水合物藏的开采,是天然气水合物传统开采方法中最有前景的一种技术。
但它对天然气水合物藏的性质有第27卷第1期2008年1月地质科技情报Geolog ical Science and Technolog y InformationVol.27No.1Jan.2008*收稿日期:2007-04-28编辑:禹华珍基金项目:中国石油化工股份有限公司项目/天然气水合物勘探与开发现状调研0(P05072)作者简介:吴传芝(1966)),女,工程师,主要从事油气地球化学勘探领域的科技情报工作。
特殊的要求,只有当天然气水合物藏位于温压平衡边界附近时,减压开采法才具有经济可行性。
(3)化学试剂注入开采法化学试剂注入开采法通过向天然气水合物层中注入某些化学试剂,如盐水、甲醇、乙醇、乙二醇、丙三醇等,破坏天然气水合物藏的相平衡条件,促使天然气水合物分解[4,6,8-10,12-13,15]。
这种方法虽然可降低初期能量输入,但缺陷却很明显,它所需的化学试剂费用昂贵,对天然气水合物层的作用缓慢,而且还会带来一些环境问题,所以,目前对这种方法投入的研究相对较少。
1.2开采新思路的涌现与发展随着天然气水合物开采研究的深入,近10年来涌现出一些新的天然气水合物开采思路。
CO2置换开采法是近期比较热门的研究对象。
这种方法首先由日本研究者提出[16-20],方法依据的仍然是天然气水合物稳定带的压力条件。
在一定的温度条件下,天然气水合物保持稳定需要的压力比CO2水合物更高[13]。
因此在某一特定的压力范围内,天然气水合物会分解,而CO2水合物则易于形成并保持稳定。
如果此时向天然气水合物藏内注入CO2气体,CO2气体就可能与天然气水合物分解出的水生成CO2水合物[13]。
这种作用释放出的热量可使天然气水合物的分解反应得以持续地进行下去。
CO2置换开采法已引起了广泛关注。
美国能源部目前正资助一项/CO2置换开采法0研究项目。
该项目已于2006年4月启动,预计到2008年6月完成。
目标是研制一种二氧化碳与水的乳化装置,从而制造出具有暂时稳定性的二氧化碳-水微乳化溶液。
通过向天然气水合物藏中注入这种微乳化溶液,置换出天然气水合物中的甲烷气体[21]。
另一种开采新思路是固体开采法。
固体开采法最初是直接采集海底固态天然气水合物,将天然气水合物拖至浅水区进行控制性分解[8,12-13,19]。
这种方法进而演化为混合开采法或称矿泥浆开采法。
该方法的具体步骤是,首先促使天然气水合物在原地分解为气液混合相,采集混有气、液、固体水合物的混合泥浆,然后将这种混合泥浆导入海面作业船或生产平台进行处理,促使天然气水合物彻底分解,从而获取天然气[13,19,22]。
近年来,我国加强了天然气水合物开采的研究力度,以中国科学院广州能源研究所为代表的一些机构在海洋天然气水合物开采装置、开采技术方面取得了一些创新性成果。
在2004年研制出天然气水合物一维开采实验模拟系统的基础上,广州能源研究所又研制出国内第一套天然气水合物二维开采实验模拟系统[23-24]。
此外,该所还在海洋天然气水合物固体开采方面获得了几项技术专利[25-26],提出了海洋天然气水合物开采的水力提升法[27]。
水力提升法是利用海底集矿系统对天然气水合物进行原地粉碎,采集含有固、液、气三相的混合物质,由水力提升系统上传到海面作业船上的天然气水合物分解系统,再导入海面高温海水对天然气水合物进行分解。
在上述天然气水合物开采方法中,热激发开采法与减压开采法投入的研究较多,也较为成熟;CO2置换开采法正处于积极的研究之中;随着开采装置的改进,固体开采法也获得了进一步发展。
尽管如此,天然气水合物开采目前还只是具有技术可行性,现阶段天然气水合物开采面临的最大挑战是如何解决经济可行性问题。
2典型开采研究实例天然气水合物试采研究是天然气水合物走向商业开采的必由之路。
从世界范围看,至今已在3个地区进行了天然气水合物试采研究,包括前苏联西西伯利亚的麦索亚哈气田、美国阿拉斯加北部斜坡区以及加拿大西北部麦肯齐三角洲地区。
2.1麦索亚哈气田天然气水合物的开采麦索亚哈气田发现于20世纪60年代末,是第一个也是迄今为止唯一一个对天然气水合物藏进行了商业性开采的气田。
该气田位于前苏联西西伯利亚西北部,气田区常年冻土层厚度大于500m,具有天然气水合物赋存的有利条件。
麦索亚哈气田为常规气田,气田中的天然气透过盖层发生运移,在有利的环境条件下,在气田上方形成了天然气水合物层。
该气田的天然气水合物藏首先是经由减压途径无意中得以开采的。
通过开采天然气水合物藏之下的常规天然气,致使天然气水合物层压力降低,天然气水合物发生分解。
后来,为了促使天然气水合物的进一步分解,维持产气量,特意向天然气水合物藏中注入了甲醇和氯化钙等化学抑制剂。
对麦索亚哈气田的产气量、实际压力变化以及理论压力变化曲线(图1)的分析证实,该气田的天然气水合物藏获得了成功开采。
该气田自1970年1月投产以来,天然气水合物藏的平均压力从7.93 M Pa降到了目前的6.07MPa。
如果天然气水合物未发生分解,则经计算可知,气田压力将会降至3.65 M Pa[28]。
从图1还可看出,自1982年以来,虽然产气量有所变化,但气田压力基本保持恒定。
M a-kogo n等[28]认为这是由于产气量与天然气水合物分解出的天然气量相持平所致。
据估算[28],截止到2004年1月1日,麦索亚哈气田累计产气量的一半以上是天然气水合物分解的产物。
48地质科技情报2008年图1麦索亚哈气田产气量、储层压力随时间的变化[28]Fig.1Ch anges of gas p rodu ction and res ervoir pressurew ith time,M essoyakha Field麦索亚哈气田天然气水合物藏的发现与开采,使人们首次认识到天然气水合物可成为一种天然能源,从此拉开了天然气水合物作为能源研究的序幕。
2.2麦肯齐三角洲地区天然气水合物试采麦肯齐三角洲地区位于加拿大西北部,地处北极寒冷环境,具有天然气水合物生成与保存的有利条件。
该区天然气水合物研究具有悠久的历史。
早在1971~1972年间,在该区钻探常规勘探井M allik L-38井时,偶然于永冻层下800~1100m井段发现了天然气水合物存在的证据[13,29];1998年专为天然气水合物勘探钻探了M allik2L-38井,该井于897~952m井段发现了天然气水合物[13,29-30],并采出了天然气水合物岩心[31]。
2002年,在麦肯齐三角洲地区实施了一项举世关注的天然气水合物试采研究[32-34]。
该项目由加拿大地质调查局、日本石油公团、德国地球科学研究所、美国地质调查局、美国能源部、印度燃气供给公司、印度石油与天然气公司等5个国家9个机构共同参与投资,是该区有史以来的首次天然气水合物开采试验,也是世界上首次这样大规模对天然气水合物进行的国际性合作试采研究。
该区天然气水合物试采研究共钻了3口探井,试采研究井为M allik5L-38井,观察井为M allik 3L-38井和M allik4L-38井。