蛛网模型的数学推导.docx
数学建模-蜘蛛网
数学建模*蜘蛛网世界上生存着许多种类的蜘蛛,而其中的大部分种类都会通过结网来进行捕食。
请你建立合理的数学模型,说明蜘蛛网织成怎样的结构才是最合适的。
最合适的结构:对数螺线对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。
方程:x=m*e^(t)*cos(t),x=m*e^(t)*cos(t),t是参数,范围是实数域方法:先向空中放出一根“搜索丝”。
之后放出一根悬垂丝,并在这根丝的中段加上第三根丝成Y字状,形成最初的3根不规则半径。
再加上n多条线形成网的雏形。
接下是铺设螺旋线,纺织成网。
以网心为起点,织出一根自内向外的螺旋线.从中心往边的过程中,在合适的地方加几根辐线,为了保持网的平衡,再到对面去加几根对称的辐线。
这种螺旋线把它放大或缩小都不会改变。
就像我们不能把角放大或缩小一样。
用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的.整个网看起来是一些半径等分的圆周.从中心开始,用一条线在半径上作出一条螺旋状的线。
这是一条辅助的线。
然后,从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。
在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。
这样半径上就有许多小球。
从外面看上去,就是许多个小点。
垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。
每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。
而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。
这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等。
这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。
这曲线在一根无限长的直线上滚动,焦点将要划出的轨迹是:垂曲线。
这个数字的值约等于这样一串数字+1/1+1/1*2+1/1*2*3+1/1*2*3*4+…=e。
数学与蜘蛛网
数学与蜘蛛网蛛网是一种简单而优美的自然造物.那结满露珠的网在晨曦的照射下散射着光辉,沁人心脾,令人陶醉!然而,当人们试图用数学去描述那美丽的结构时,其所需要的公式之复杂是令人惊异的.有许许多多蛛网的图案,它们由各种不同的蜘蛛织成,有片状的,三角形状的,漏斗状的或圆顶状的.让我们看一看球蜘蛛的网所揭示的数学概念吧!人们很难猜到它联系着怎样一种建筑工作.在蛛网中人们首先注意到的数学对象大概是两条类似于螺线的蛛网曲线.我们把从蛛网中心放射出去的那几股线称为“半径”.类似螺线的曲线则由连接两相邻半径的弦形成.位于两条相邻半径间的弦互相平行,沿半径的所有同位角也全都相等.假如蜘蛛网的半径有无穷多条,那么整段蛛网将具有单一的形式,这时替代锯齿般螺形线的是一条平滑的曲线.这种曲线就是对数螺线.对数螺线的性质.●在螺线与半径的交点处画切线,则切线与半径所形成的角全都相等.这就是为什么对数螺线也称等角螺线的原因.●螺线截半径所得的各线段长,依次成等比数列.螺线按几何比率增大,其对数螺线的名称即由此而来.●当蛛网缠绕将近完结时,它的尺寸会发生变化,但这不是对数螺线的形状.●如果一条螺线形式的线,从它位于中心处的端点逐渐解开,同时永远使线保持一种绷紧的状态,那线的端头在解开时将形成一条对数螺线.●类似于螺线的蛛网,既经济又规则地充满了空间,它不仅强韧而且花用的材料最少.蜘蛛怎样构造它的网:蜘蛛最初为它的网设置一个三角形的框架.这对于产生最大的强度和韧性极为必要,而且所用的丝也可以减少到最低限度.第二条螺线是蜘蛛结网时作为陷阱的主要部分,它是用很粘的丝从外部向中心部分兜转而成的.蜘蛛所织的两种网都是对数螺线.(①原注:蜘蛛开始织网时利用不同的腺体来产生丝,一些腺体产出很粘的丝,而另一些腺体产生不粘的丝.框架、半径和第一条螺线(临时性的)是用不粘的丝,这样蜘蛛不至于自己抓住自己,蜘蛛则记住了网的各种情况.这样,当一个猎物被网粘住时,便能立即判断该猎物的大小和所在的位置(根据猎物挣扎时拖曳半径引起振动的感觉),然后很快地经由不粘的丝爬到猎物的旁边,并最终抓住它的猎物.)当早晨的露凝布在蜘蛛网上时,互相靠拢的水结成小小的水滴(特别对于较粘的丝).蛛网的弦由于水滴的负荷而弯曲,使得每条弦都变成为悬链线!悬链线是由一条自由悬挂着的柔软的绳子或链条所形成的曲线.它的一般性方程为:这里a是Y轴上的截距.出现在悬链线方程中的e为:它是一个无理数和超越数,也算是一件被蜘蛛网“捕捉”的“猎物”.还有许多其他的数学概念,如半径、弦、平行线段、三角形、相等的同位角、对数螺线、悬链线等,也和e一样都“落入”了蜘蛛所编织的陷阱.。
第3题-蛛网模型——数学建模
六、问题三模型的建立与求解7.1问题分析由题可知,该问题是多目标优化问题,满足居民人体的营养均衡、平衡进出口贸易、土地面积等条件下,满足购买成本尽量低、使种植者获益尽量大这两个目标。
7.2弹性理论及蛛网模型弹性描述的是两个变量之间的关系, 即因变量对自变量变化的敏感程度。
在经济学中,弹性表示某一经济变量变动1%时,所导致的另一个经济变量变化的百分比:弹性系数=因变量的变化比例/自变量的变化比例1.需求弹性价格:价格每变动1%引起的需求量变化的百分比。
通常用需求量变化的百分率除以价格变动的百分率表示。
它们之间的比值称为弹性系数,记为Ep,即:2..供给价格弹性:价格每变动1%引起供给量变化的百分比。
一般地,Es>0,斜率为正。
3.蛛网模型理论(Cobweb Model Theorom)蛛网模型是对弹性理论的运用,用来考察某种商品(主要用于农产品)价格波动对下一周期产量的影响。
蛛网理论有一系列假定条件:市场是完全竞争市场,任何消费者和厂商都不能单独影响商品的产量和价格;当期商品价格不受当期产量的影响,当期产量由前期价格决定。
根据某种商品供给弹性和需求弹性之间的关系,蛛网理论分为收敛性蛛网、发散型蛛网和封闭型蛛网三种类型。
(l)收敛型蛛网需求弹性绝对值大于供给弹性的绝对值,当市场受到干扰偏离均衡状态时,价格和产量围绕均衡水平波动,但是波动越来越小,最后恢复均衡,称为收敛型蛛网。
图中S曲线为供给曲线,D曲线为需求曲线,E点为均衡点,P0,Q分表代表均衡价格和均衡产量。
在第一期,假定由于受到外在因素干扰导致减产,实际产量QI <Q,导致价格从P0上升到Pl。
在第二期:生产者在Pl的位置上愿意把产量从Ql增至Q4,此时Q4>Q,生产者为了把商品出清,价格跌到P2,此时P2<P。
在第三期:生产者根据第二期P2的价格愿意提供的产量为Q3,此时Q3<Q,消费者愿意支付的价格上升为P3,此时P<P3<Pl,在P3的价格水平上生产者有安排了Q2的产量,如此循环,产量和价格波动越来越小,最后恢复到初始的均衡状态。
蛛网模型的差分方程分析
蛛网模型的差分方程分析
蛛网模型的基本假设是:商品的本期d t Q 决定于前一期的价格1-t P ,即供给函数
)(1-=t d t P f Q ,商品的本期的需求量d t Q 决定于本期的价格t P ,即需求函数为)(t d t P f Q =。
根据以上假设条件,蛛网模型可以用以下三个联立的方程式表示:
t d t P Q ∙-=βα(本期需求函数)
1-∙+-=t s t P Q γδ(本期供给函数)
s t d t Q Q =
式中,γδβα,,,均为常数,且均大于零。
由以上方程组可以得到等式:1-∙+-=∙-t t P P γδβα即:βδαβγ+=+-1t t P P 。
解这个差分方程:因为01≠+βγ,所以解为γ
βδαβγ+++-=t t P )(。
所以当γβ>时(即需求函数的斜率大于供给函数的斜率),若∞→t ,γβδα++=
t P 。
说明价格收敛于γ
βδα++=e P 。
在静态模型中,e P 就是其稳定价格。
当γβ=时,即需求函数的斜率等于供给函数的斜率,∞→t ,γβδαβγ+++±=t P ,即价格以距离β
γ围绕稳定价格e P 变化。
当γβ<时,∞→t ,t P 发散。
t e t P P )(||β
γ=-,随着时间变化,价格t P 距离稳定价格e P 越来越远,以至无穷大。
蛛网模型
需求弹性大,则税负转嫁就很困难,且向前转给消 费者的少,向后转给原供应者的多;需求弹性小, 则税负容易转嫁,且向前转给消费者的多,向后转 给原供应者的少;需求完全无弹性,税负可能全部 向前转嫁给消费者;需求完全有弹性,税负可能全 部向后转嫁给原供应者。需求弹性越大,转嫁的可 能性越小;需求弹性越小,转嫁的可能快越大,税 负转嫁与需求弹性成反比
如果商品的供给弹性大于需求弹性, 则政府对该种商品征税后,赋税将 主要由消费者负担。 例如:粮食
如果商品的供给弹性 小于需求弹性,则政府 对该种商品征税后,赋 税将主要由生产者自己 负担。 例如:钻石,黄金。
为什么飞机票经常打折,火车票却很少打折?
第一:这与价格弹性有关。飞机票价格下跌需求就增加,总的 利润就会提高,这是所谓的“薄利多销”。然而火车票却是供 不应求,即使涨价,也会有很多人愿意购买,因为火车成本低, 涨价也不会涨得太厉害。
谢谢观赏!
为什么飞机票打折而火车票不打折 呢?
总体来说,飞机票是供大于求,所以航空公司总 是会采取打折的办法以吸引客源。而火车票是供 不应求,所以火车有时候总是宁愿空跑也不愿打 折。火车是国有制机构,是国家专制机构操作, 而飞机是处在几大航运公司的竞争下的,所以竞 争之下必有经营的不同手段而导致机票打折的现 象出现。然而本来就供不应求的火车票是没有多 大必要打折的。所以飞机票总是出现打折而火车 票不愿打折。
模蛛 型网
Co Cobweb model
在经济学中
蛛网模型(Cobweb model)
运用弹性原理解释某些生 的商品在失去均衡时发生 的不同波动情况的一种动 态分析理论
蛛网模型(差分方程)汇总
n
x1 (k 1) bi xi (k ) (设至少1个bi>0) i 1
x i
1
(k
1)
s i
x i
(k),
i
1,2,,
n
1
b1
s 1
b2 0
bn1 0
bn
0
x(k) [x1(k), x2 (k),xn (k)]T
~按年龄组的分布向量
L
s2
0
x(k 1) Lx(k)
x(k) Lk x(0)
设x1偏离x0
x1 y1 x2 y2 x3
xk x0 , yk y0
xk x0 , yk y0
P1 P2
P3 P0
P P P P
1
2
3
0
P0是稳定平衡点
P0是不稳定平衡点
y
f
y2 P3
yy30 y1
P2
g
y
P4 曲线斜率
P0 | K f || K g | y0
P1
0 x2 x0 x3 x1 x
~ 商品数量减少1单位, 价格上涨幅度 xk1 x0 ( yk y0 )
~ 价格上涨1单位, (下时段)供应的增量
~ 消费者对需求的敏感程度 小, 有利于经济稳定
~ 生产者对价格的敏感程度 小, 有利于经济稳定
1 经济稳定
结果解释
经济不稳定时政府的干预办法
1. 使 尽量小,如 =0
y
g
需求曲线变为水平 y0 以行政手段控制价格不变
0
2. 使 尽量小,如 =0 y
供应曲线变为竖直
靠经济实力控制数量不变
0
f
x g
f
蛛网模型
经济应用模型——蛛网模型数理学院班级:姓名:学号:蛛网模型摘要:本文首先从蛛网模型的经济学定性分析出发,分析了蛛网波动的三种类型.然后分别在连续时间的条件下以时滞微分方程的形式和在离散化时间条件下以差分方程的形式两种角度建立模型,对传统的蛛网模型进行了定量分析并讨论了均衡点趋于稳定的条件.关键词:蛛网模型;差分方程;时滞微分方程;稳定性一、蛛网模型介绍蛛网理论(cobweb theorem),又称蛛网模型,是利用弹性理论来考察价格波动对下一个周期产量影响的动态分析,它是用于市场均衡状态分析的一种理论模型. 蛛网理论是20世纪30年代出现的一种关于动态均衡分析方法.许多商品特别是某些生产周期较长的商品(如猪肉,棉花等),他们的的市场价格、数量会随时间的变化而发生变化,呈现时涨时跌、时增时减、交替变化的规律. 1930年美国的舒尔茨、荷兰的丁伯根和意大利的里奇各自独立提出,由于价格和产量的连续变动用图形表示犹如蛛网,1934年英国的尼古拉斯·卡尔多将这种理论命名为蛛网理论.蛛网模型理论是在现实生活中应用较多、较广的动态经济模型,它在一定范围内揭示了市场经济的规律,对实践具有一定的指导作用.根据产品需求弹性与供给弹性的不同关系,将波动情况分成三种类型:收敛型蛛网(供给弹性小于需求弹性)、发散型蛛网(供给弹性大于需求弹性)和封闭型蛛网(供给弹性等于需求弹性).近年来,许多学者对经典的蛛网模型进行了广泛的的研究并做了一些改进,建立了更符合实际经济意义的蛛网模型.在这些研究中,对蛛网模型的假设基本上是基于单一商品市场上,将时间离散化后,从差分方程的角度入手, 研究蛛网模型的稳定性,并通过讨论模型平衡点的稳定性,得到了蛛网模型稳定的条件.实际上,价格是影响商品需求量、供给量因素,但并非唯一因素,例如人们对某种商品的需求量不仅与商品的价格有关,也与人们当期的可支配收入、当期价格上涨率等有关;另一方面,由于市场信息的滞后作用,生产者在进行市场价格与供给预测时,不仅会考虑前一期的价格,还会考虑到前几期甚至更长一段时期商品价格的综合趋势,因此考虑时滞效应的非均衡蛛网模型更具有实际意义.本文建立了蛛网理论的数学模型,给出了相应的数学分析与论证,使蛛网理论有了一个更加完备的理论基础,同时也为这一理论的量化分析提供了新的思路.二、蛛网模型在西方经济学中的定性分析蛛网模型考察的是生产周期较长的商品.蛛网模型的基本假设条件是:商品的本期产量s t Q 决定于前一期的价格1-t P ,即供给函数为)(1-=t s t P f Q .商品本期的需求量d t Q 决定于本期的价格t P ,即需求函数为)(t d t P g Q =.文中用t P 、t Q 、d t Q 、s t Q 分别表示t 时刻的价格、数量、需求量、供给量.蛛网模型是一个动态模型,它根据供求曲线的弹性分析了商品的价格和产量波动的三种类型:“收敛型蛛网”、“发散型蛛网”和“封闭型蛛网”.第一种类型:如图2-1所示,相对于价格轴,需求曲线斜率的绝对值大于供给曲线斜率的绝对值.当市场受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越小,最后会恢复到原来的均衡点.相应的蛛网称为“收敛型蛛网”.由于某种原因的干扰,如恶劣的气候条件,实际产量由均衡水平e Q 减少为1Q .根据需求曲线,消费者愿意以价格1p 购买全部产量1Q ,于是,实际价格上升为1p . 根据第一期较高的价格水平1p ,按照供给曲线,生产者将第二期的产量增加为2Q ;在第二期,生产者为了出售全部产量2Q ,接受消费者支付的价格2p ,于是实际价格下降为2p .根据第二期较低的价格2p ,生产者将第三期的产量减少为3Q ;在第三期,消费者愿意支付3p 的价格购买全部的产量3Q ,于是实际价格又上升为3p .根据第三期的较高的价格3p ,生产者又将第四期的产量调整为4Q .依此类推,如图2-1所示,实际价格和实际产量的波动幅度越来越小,最后恢复到均衡点E 所代表的水平.由此可见,图2-1中均衡点E 状态是稳定的.也就是说,由于外在的原因,当价格与产量发生波动而偏离均衡状态()e e Q P 、时,经济体系中存在着自发的因素,能使价格和产量自动的恢复均衡状态.在图2-1中,产量与价格变化的路径就形成了一个蜘蛛网似的图形.从图2-1中可以看到,只有当供给曲线斜率的绝对值大于需求曲线斜率的绝对值时,即供给曲线比需求曲线较为陡峭时,才能得到蛛网稳定的结果,相应的蛛网被称为“收敛型蛛网”.在这里,我们看到,除第一期受到外在原因干扰外,其它各期都不会再受新的外在原因干扰,从而前一期的价格能够唯一决定下一期的产量.按照动态的逻辑顺序,我们还看到,生产者片面地根据上一期的价格决定供给量, 消费者被动地消费生产者提供的全部生产量,而价格则由盲目生产出来的数量所决定.第二种类型:如图2-2所示,相对于价格轴,需求曲线斜率的绝对值小于供给曲线斜率的绝对值.当市场受到外力干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越大,最后会偏离原来的均衡点.相应的蛛网称为“发散型蛛网”.假定在第一期由于某种原因的干扰,实际产量由均衡水平e Q 减少为1Q .根据需求曲线,消费者愿意支付价格1p 购买全部产量1Q ,于是实际价格上升为1p ,根据第一期较高的价格水平1p ,按照供给曲线,生产者将第二期的产量增加为2Q ;在第二期,生产者为了出售全部产量2Q ,接受消费者支付的价格2p ,于是实际价格下降为2p .根据第二期较低的价格2p ,生产者将第三期的产量减少为3Q ;在第三期,消费者愿意支付3p 的价格购买全部的产量3Q ,于是实际价格又上升为3p ;根据第三期的较高的价格3p ,生产者又将第四期的产量调整为4Q .依此类推,如图2-2所示,实际价格和实际产量的波动幅度越来越大,最后偏离均衡点E 所代表的水平.由此可见,图2-2中均衡点E 所代表的均衡状态是不稳定的.从图2-2可看出,当相对于价格轴,需求曲线斜率的绝对值小于供给曲线斜率的绝对值时,即相对于价格轴而言,需求曲线比供给曲线较为平缓时,才能得到蛛网不稳定的结果.所以供求曲线的上述关系是蛛网不稳定的条件,当市场由于受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越大,偏离原来的均衡点越来越远.相应的蛛网称为“发散型蛛网”.第三种类型:如图2-3所示,相对于价格轴,需求曲线斜率的绝对值等于供给曲线斜率的绝对值时.市场受到外力干扰偏离原有的均衡状态以后,实际价格和实际产量会按照同一幅度围绕均衡水平上下波动,既不偏离,也不趋向均衡点.相应的蛛网称为“封闭型蛛网”.对于图2-3中,不同时点的价格与供求量之间的解释与前两种情况类似,故从略.从图2-3可看出,当相对于价格轴,需求曲线斜率的绝对值等于供给曲线斜率的绝对值时,即相对于价格轴而言,供求曲线具有相同的陡峭与平缓程度时,蛛网以相同的幅度上下波动,相应的蛛网称为“封闭型蛛网”.三、蛛网模型的数学分析3.1 连续时间条件下的蛛网模型的数学分析在连续时间的条件下,建立起微分方程形式的蛛网模型,研究蛛网模型的稳定性,并对模型结果进行了经济解释.我们考虑基于单一商品的市场的蛛网模型,并假设:时间是连续变量,价格、商品数量随时间连续变化.设某商品价格是时间t 的函数()p p t =,供给量S 由供给函数()S f p =决定,记做()t S .供给是由多种因素决定的, 这里我们略去价格以外的因素, 只讨论供给与价格的关系.考虑到商品生产者对商品信息了解到商品价格的调节有个时间滞后,假定供给是某一时期价格()p t t -∆的线性函数:()()0S t S p t t α=+-∆,()1 其中, 0S 、α是大于零的常数,0t ∆>,α可表示商品的边际供给量.在传统的蛛网理论中,需求是价格的函数,价格作为影响需求的唯一因素,这对正确反映商品价格变化规律具有一定局限性,为更好的反映商品价格变化过程,考虑影响需求的其他因素如价格上涨等.假设需求与价格及价格的上涨率都有关系,需求与价格、价格上涨率负相关.为此建立的需求函数为:()()0.dP D t D P t dtβγ=-- ()2 其中, 0D 、β是大于零的常数,β表示商品的边际需求量. γ的大小反映了商品需求对价格上涨率的依赖程度.需求量与供给量之差()S D -称为过量需求,即需求大于供给的部分.供给者时刻都在确定价格()t P ,根据商品市场在正常的情况下, 商品供需的变化引起价格的变动, 价格的涨速与第t 段时间过剩的需求正相关, 即()()()()000,t dp D S D u S u du dtμ⎡⎤=-+-⎢⎥⎣⎦⎰ ()3 所以有 ()()()22.d p D t S t dtμ=- ()3* 其中,0μ>为价格的调节系数, 反映价格依据超额需求的变动而进行调节时的调整速度和幅度的度量参数.将()1式、()2式代入()3*式可得 ()()()2002.d p dp p t t p t D S dt dtμγμμβμ=--∂-∆-+- ()4 在()4式中,令()()p t x t =,()dp y t dt=,则有()()()()()()()()00,5.dx t y t dt dy t y t x t t x t D S dt μγμμβμ⎧=⎪⎪⎨⎪=--∂-∆-+-⎪⎩当00D S >时,系统()5有唯一平衡点00,0D S αβ⎛-⎫ ⎪+⎝⎭.当需求量等于供给量,即市场出清时的价格为均衡价格,即 βα+-=00_S D p 为均衡价格. 系统()5在00,0D S αβ⎛-⎫ ⎪+⎝⎭处线性近似系统为: ()()()()()(),+.du t v t dt dv t Au t Bu t t Cv t dt⎧=⎪⎪⎨⎪=-∆+⎪⎩ ()6其中,,,A B C μβμαμγ=-=-=-系统()6的特征方程为: ()20.t C A e B λλλ∆---= ()7令z t λ=∆,()7式可化为()2+=0z z mz n e ω++,其中,m C t =-∆,2n A t =-∆,2B t ω=-∆.记()()()2,+z H z h z t z mz n e ω==++,显然()()2,h z t z mz n t =+++ω具有主项2z t .令()()()+H i F iG σσσ=,则 ()()2cos sin ,F n m σσσσσω=--+()()2sin +cos .G n m σσσσσ=-由于函数()()2sin +cos G n m σσσσσ=-的所有零点都是实数,又因为 22μγαβ<≤,0,0,0αβγ>≥≥,则对于()G σ的每一个零点k σ都有不等式()()'0k k F G σσ>成立:如果22μγαβ<≤,0,0,0αβγ>≥≥,那么系统()5的平衡点00,0D S αβ⎛-⎫ ⎪+⎝⎭是局部渐进稳定的.通过对系统()5的分析,可得到如下结论:如果边际商品供给小于边际商品需求,边际商品需求不大于22μγ,并且商品需求对商品价格上涨率的依赖程度γ满足一定条件,那么无论时滞t ∆多么大,商品价格随着时间的变化,稳定的趋于均衡价格_00D S p αβ-=+.也就是说,无论供给者从了解商品需求到调控生产量的时间滞后有多长,对价格的调整有多么不同,只要这些调控的幅度不是很大,商品的价格总是能够回到使供需相等的均衡价格水平;反之,如果边际商品供给大于边际商品需求,边际商品需求不大于22μγ,当时滞t ∆取一定值时,系统会出现Hopf 分支,也就是说,价格会围绕均衡价格上下波动,而且商品的价格最终不能回到均衡价格.3.2 离散时间条件下的蛛网模型的数学分析最简单的市场经济模型是单一商品市场模型,在时间离散化后的条件下,假设商品的供给量、需求量,只与该商品的价格有关,由需求量等于供给量建立的方程,即均衡方程,求得其解即是均衡价格.若进一步假定需求、供给是价格的线性函数,可以得到传统线性蛛网模型.最后在需求、供给是价格的非线性函数的条件下,可以得到非线性蛛网模型.3.2.1 蛛网模型的线性分析由蛛网模型的基本假设条件,本期的需求量是本期价格的线性函数,即t t P Q ⋅-=βαd ,β表示商品价格减少1个单位时需求量的上涨幅度;而本期的供给量是由上一期的价格决定的,为上一期价格的线性函数,即1s -⋅+-=t t P Q γδ,γ表示商品价格增加1个单位时供给量的上涨幅度.该模型可以用以下三个联立的方程式来表示:d ,t t Q P αβ=-⋅ ()8s 1,t t Q P δγ-=-+⋅ ()9 d s .t t Q Q = ()10式中,β、∂、γδ和均为常数,且均大于零.d t Q 为第t 期的需求量,s t Q 为第t 期的供给量,t P 为第t 期的价格,1-t P 为第1-t 期的价格.将前面的()8式和()9式代入()10式可得1-.t t P P αβδγ-⋅=-+⋅ ()11由此可得第t 期的产品价格为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+++⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+++⎪⎪⎭⎫ ⎝⎛-=++⎥⎦⎤⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=++⎪⎪⎭⎫ ⎝⎛-=----233222111βγβγβδαβγβγβδαβγβδαβδαβγβγβδαβγt t t t t P P P P P2101t t P γαδγγγβββββ-=⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=-++-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 011t t P γβγαδγββγβ⎛⎫-- ⎪⎛⎫⎛⎫+⎝⎭=-+⋅ ⎪ ⎪+⎝⎭⎝⎭+ 01.t t P γαδγββγβ⎡⎤⎛⎫⎛⎫+=-+--⎢⎥ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎣⎦()12 又因为在市场均衡时,均衡价格为1-==t t e P P P ,所以,由()11式可得均衡价格为γβδα++=e P ()13 均衡价格是一种理想状态,即在此价格水平下,每个人的需求都得到满足,而且不会有商品卖不出去.将()13式代入()12式可得()t 001.t t e te e P P P P P P γγββγβ⎡⎤⎛⎫⎛⎫=-+--⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫=--+ ⎪⎝⎭()14分析()14式,可以得到以下三种情形第一种情况,若1<βγ,当∞→t 时,则此时e t P P →.也就是说,价格t P 随着时间的推移,其波动幅度愈来愈小,最终趋向于均衡价格e P .事实上,此时因需求弹性P P e d βαβ-=,供给弹性PP e S γδγ+-=,当1<βγ时,可推得s d e e >,即供给弹性的绝对值小于需求弹性的绝对值(需求曲线斜率的绝对值小于供给曲线斜率的绝对值),蛛网模型是收敛的.在收敛性蛛网中,价格变动引起的需求量变动大于价格变动引起的供给量的变动,因而任何超额需求或超额供给只需较小的价格变动即可消除.同时价格变动引起的下一期供给量的变动较小,从而对当期价格发生变动的作用较小,这意味着超额需求或超额供给偏离其均衡量的幅度以及每期成交价格偏离均衡价格的幅度,在时间序列中将是逐渐缩减的,并最终趋向其均衡产量e Q 和均衡价格e P .第二种情况,若1>βγ,当∞→t 时,则此时∞→t P .这说明,需求曲线斜率的绝对值(β)小于供给曲线斜率的绝对值(γ)时,或供给弹性较大而需求弹性较小时,市场价格将振荡至无穷大,蛛网模型是发散的.在发散型蛛网中,价格变动引起的供给量的变动大于价格变动引起的需求量的变动.当出现超额供给时,为使市场上供给者卖出所有的产品,要求价格大幅度下跌,这将会导致下一期的供给量减少,以致该期出现大量的供给短缺,供给的严重不足导致价格大幅度上扬,由此导致下一期供给量大幅度增加和价格大幅度下跌.在这种情况下,一旦失去均衡,以后各期的供给过剩或短缺的波动幅度以及成交价格波动的幅度,都将离均衡价格e P 越来越远.第三种情况,若1=βγ,当∞→t 时为常数.这说明,相对于价格轴,需求曲线斜率的绝对值(β)等于供给曲线斜率的绝对值(γ)时,即市场价格一旦偏离均衡状态,则以后各期的价格及产量的变动序列就表现为围绕均衡值循环往复地上下振荡,既不进一步偏离,又不进一步逼近均衡价格e P .这就是“封闭型蛛网”的情形.从上面的讨论,我们可以看出,均衡点最终能否趋于稳定状态关系到该模型的分类,因此我们有必要对均衡点趋于稳定的条件作进一步讨论.3.2.2 蛛网模型的非线性分析记第t 时段商品的数量为t x ,价格为t y ,自然数t 表示时段, ,2,1=t .这里把时间离散化为时段,每个时段相当于商品的一个生产周期,蔬菜、水果是一个种植周期,肉类是牲畜的饲养周期.价格与产量紧密相关,可以用一个确定的关系来表现,即设().t t y f x =该函数反映消费者对这种商品的需求关系,称为商品数量越多,格就越低,所以f 是单调递减函数.因此在图1-3中用一条下降曲线f 表示它,称为需求曲线.又假设下一个时段的产量1+t x 是生产者根据上一时期的价格决定的,即设()1.t t x g y +=该函数反映生产者的供应关系,品的价格越高,供给量就越大,g 是单调增加函数. 在图1-3中用一条上升曲线g 表示它,g 称为供给曲线.为了表现出t x 和t y 的变化过程,我们可以借助已有的函数f 和g ,当供需相等时,如图1-3所示求函数f 与供给函数g 相交于()000,y x P ,点0P 即是市场出清的均衡状态.在进行市场经济分析时,f 取决于消费者对某种商品的需求程度和消费水平等因素,g 取决于生产者的生产、经营等能力,当知道具体的需求函数与消费函数时,可以根据f 、g 曲线的具体性质来判定在平衡点()000,y x P 的稳定性.一旦需求曲线和供应曲线确定下来, 商品数量和价格是否趋向稳定状态, 就完全有这两条曲线在平衡点()000,y x P 附近的形状决定.建立差分方程:()t t x f y = ()15()t t y g x =+1 ()16设()000,y x P 点满足:()00x f y =,()00y g x =,设()'0f x α= ,()'01.g y β=在()000,y x P 点附近取f 、g 的一阶泰勒展式,线性近似为()00x x y y t t --=α ()17()001y y x x t t -+=+β ()18 合并()17、()18两式,并消去()0t y y -可得()1010.t t x x x αβαβ++-+= ()19上式是关于t x 的一阶线性差分方程,它是原来方程的近似模型,这是客观实际问题的近似模拟,解这个一阶线性差分方程得:()()()()()()()()()()()()()()()10210010211010100-1-1111111.t t t t t t t t tx x x x x x x x x x x x x x x αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+---=++⎡⎤⎡⎤=-++++=-++-+⎣⎦⎣⎦=⎡⎤=-++-+-++-+⎣⎦⎡⎤=-+--⎣⎦=--+由此可得,当∞→t 时,0x x t →,即()000,y x P 点稳定条件是1<αβ,即βα1<,需求曲线f 在点()000,y x P 的切线斜率绝对值小于供给曲线g 在该点的切线斜率绝对值;反之,()000,y x P 点不稳定的条件是1>αβ,即βα1>,需求曲线f 在点()000,P y x 的切线斜率绝对值大于供给曲线g 在该点的切线斜率绝对值.这个非线性分析使传统的线性蛛网模型的分析有了进一步的推广.西方经济学家认为,蛛网模型解释了某些生产周期较长的商品的产量和价格的波动的情况,是一个有意义的动态分析模型,对理解某些行业产品的价格和产量的波动提供了一种思路.但是,这个模型还是一个很简单的和有缺陷的模型.实际上在大多数情况下, 商品生产数量并不只是根据前一时期的价格决定的,具有相当管理经验的生产经营者在决定产品数量1+t Q 时不会仅仅只参考前一期的价格t P ,可能还会对更前几期的价格做一定的比较和分析,尤其像生产者始终只是简单地把上一期价格作为本期价格预期并以此作为决定产量的依据,这种非理性假设与现实是极不相符的.四、结束语在一般的经济学原理分析中,对蛛网模型理论都给予了动态分析,但分析过程大都仅仅从经济学供求关系角度对产品产量与价格的波动过程进行解释.这种说明性的分析与论证,尽管具有形象、直观的特点.但从数学角度来看,这类分析可以说是不很严密的.本文分别在时间连续的条件下从微分方程的角度与时间离散的条件下从差分方程的角度入手,对蛛网模型进行了数学上的分析与论证,为这一理论的量化分析提供了新的思路.参考文献[1]高鸿业.西方经济学(微观部分)[M].中国人民大学出版社,2007.[2]姜启源,谢金星.数学模型(第三版)[M].高等教育出版社,2003.[3]梁小民.微观经济学[M].中国社会科学出版社,1996.[4]王树禾.微分方程模型与混沌[M].中国科学技术出版社,1999.[5]蒋中一.数理经济学的基本方法[M].商务印书馆,2004.[6]萨缪尔森.经济学[M].华夏出版社,2000.。
经济学中蛛网模型的数学分析设计
(此文档为word格式,下载后您可任意编辑修改!)毕业论文(设计)论文(设计)题目:经济学中蛛网模型的数学分析毕业设计(论文)原创性声明和使用授权说明原创性声明使用授权说明学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)3)其它目录摘要 (1)ABSTRACT (2)第1章蛛网模型研究的目的和意义 (3)第2章西方经济学中蛛网模型的基本理论 (4)2.1蛛网模型的介绍 (4)2.2 蛛网模型的分类 (4)第3章蛛网模型的数学分析 (8)3.1 连续时间下的蛛网模型的数学分析 (8)3.2 离散时间下的蛛网模型的数学分析 (10)3.3 模型中核心变量的实际意义 (15)第4章蛛网模型的优化 (17)4.1 优化后的蛛网模型 (17)4.2 分析优化后模型的稳定性 (18)第5章蛛网模型的应用 (22)5.1 2007年-2010年新乡市房地产供需情况的描述分析 (22)5.2 蛛网模型在新乡市房地产市场中的应用 (24)5.3 国家宏观调控手段 (26)第6章总结 (28)参考文献 (29)致谢 (30)摘要蛛网模型是动态经济分析中的经典模型,运用弹性原理解释某些生产周期较长的商品在失去均衡时发生的不同波动情况。
(完整word版)蛛网模型详解
蛛网模型详解蛛网模型分析了商品的产量和价格波动的三种情况。
第一种情况:供给曲线斜率的绝对值大于需求曲线斜率的绝对值。
当市场由于受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越小,最后会回复到原来的均衡点。
假定,在第一期由于某种外在原因的干扰,如恶劣的气候条件,实际产量由均衡水平Qe减少为Q1。
根据需求曲线,消费者愿意支付P1的价格购买全部的产量Q1,于是,实际价格上升为P1。
根据第一期的较高的价格水平P1,按照供给曲线,生产者将第二期的产量增加为Q2。
在第二期,生产者为了出售全部的产量Q2,接受消费者所愿意支付的价格P2,于是,实际价格下降为P2。
根据第二期的较低的价格水平P2,生产者将第三期的产量减少为Q3。
在第三期,消费者愿意支付P3的价格购买全部的产量Q3,于是,实际价格又上升为P3。
根据第三期的较高的价格水平P3,生产者又将第四期的产量增加为Q4。
如此循环下去,实际产量和实际价格的波动的幅度越来越小,最后恢复到均衡点E所代表的水平。
由此可见,均衡点E所代表的均衡状态是稳定的。
也就是说,由于外在的原因,当价格和产量偏离均衡数值(Pe和Qe)后,经济制度中存在着自发的因素,能使价格和产量自动地恢复均衡状态。
产量和价格变化的途径形成了一个蜘蛛网似的图形,这就是蛛网模型名称的由来。
只有当供给曲线斜率的绝对值大于需求曲线斜率的绝对值时,即供给曲线比需求曲线较为陡峭时,才能得到蛛网稳定的结果,相应的蛛网被称为“收敛型蛛网”。
在这里,我们看到,除第一期受到外在原因干扰外,其它各期都不会再受新的外在原因干扰,从而前一期的价格能够唯一决定下一期的产量。
按照动态的逻辑顺序,我们还看到,生产者错误地根据上一期的价格决定供给量,消费者被动地消费生产者提供的全部生产量,而价格则由盲目生产出来的数量所决定。
供求曲线各自只画了一条,但是,经济学在前面已经指出,供给的变动,不仅是指供给量沿着既定供给曲线的变动,还包括供给曲线的变动。
蛛网模型的数学推导
假定供给和需求函数都是线性的,蛛网模型可由以下差分方程组表示:Q st =-a+bPt-1(1)Q dt =c-dPt(2)Q s t=Qdt(3)(1)式表示,第t年供给量取决于第t-1年的成交价格,(2)表示需求量取决于当年市场价格,(3)式表示市场必须是出清的,因此每年供给量均等于需求量。
a、b、c、d为常数(参数),且都为正数。
将(1)式和(2)式代入(3)式可得:c-dPt =-a+bPt-1(4)从(4)式中解出Pt:P t =(-bd)Pt-1+a+cd(5)在(5)式中假定t=1可得第1年价格为:P 1=(-bd)P+a+cd(6)以此类推:P 2=(-bd)P1+a+cd(7)将(6)式代入(7)式中:P 2=(-bd)2P+(-bd)a+cd+a+cd重复这一过程,可得到以初始价格P0来表示的第3年、第4年、……第n 年的价格:P n =(-bd)n P+[∑(-bd)k]a+cd=(-bd)n P+a+cb+d[1-(-bd)n] (8)又因为达到均衡点后,价格不再变化,假定第t年达到均衡,则P t =Pt+1=……=PE(9)将(9)式代入(5)式可得均衡价格PE:P E =a+cb+d(10)将(10)式代入(8)式并整理:P n =(-bd)n P+PE[1-(-bd)n]=(P0-PE)(-bd)n+PE(11)从(11)式可得出下列结论:(ⅰ)如果|-bd|<1,则:limPn=PE,即Pn趋近于PE,市场价格将无限趋近均衡价格,蛛网周期是收敛的。
而|-bd|<1,说明d<b,或供给曲线斜率大于需求曲线,供给弹性较小而需求弹性较大。
(ⅱ)如果|-bd|>1,则:limPn=∞,市场价格将振荡至无穷大,蛛网周期是发散的。
此时,d<b,即供给曲线斜率小于需求曲线,供给弹性较大而需求弹性较小。
(ⅲ)如果|-bd|=1,则P2n=P,P2n+1=2PE-P,价格在这两个值之间来回振荡,蛛网周期是循环的,此时d=b,即供给曲线斜率与需求曲线斜率相等。
蛛网模型
二、蛛网模型的数学综述
(一)蛛网模型收敛性的充要条件
在数学模型中,供求函数都是设定为严格单调连续的可微函数,必要时还要假设供求函数为凸函数,在进行系统的分析中,通常对供求函数有如下关系, = (S( ))=G( ),该式可看作价格变化演进过程的表达,G为价格演化的一种映射,对于一阶差分方程 =G( ),其中G平滑可微,若 为 =G( )的一个不动点,即
假设价格序列{ }收敛于 ,则序列{ }为递减序列,即| |<| |< <| |,( )( )<0,
则| |=|( - )-( - )|,| |=|( )-( - )|,
进一步可得
|( )-( - )|>|( - )-( - )|
对于D(P),S(P),G(P)是严格单调连续可微函数,则价格序列收敛的充要条件是:
=G( ), = ,
| | <1,或者| |<1,又显然 为单调递减函数 <0,所以0> ,又有对于任意的 , ,存在
|f( )-f( )| r| - |,
即 ,
可得,需求函数 =D( )和供给函数 =S( ),连续可微,= (S(P))=G(P)单调递减连续可微,对于价格序列{ }收敛于 的充要条件为
[2]高鸿业.西方经济学(第二版) [M].北京:中国人民出版社,2001年8月,58 -62 .
[3]王树和.微分方程模型与混沌[M].合肥:中国科技大学出版社,1998.
[4]龚德恩,雷勇.非均衡蛛网模型价格调节的稳定性分析[J].数学的实践与认识,2010,40(17)
2.6市场经济中的蛛网模型
∑(y
k =1
y k ) = ( y 2 y1 )∑ (αβ ) k 1 k +1
k =1
n
即
y n +1 = y1 + ( y 2 y1 )∑ (αβ ) k 1
k =1
n
lim y n +1
n →∞
1 = y1 + ( y 2 y1 ) 1 + αβ
,
αβ < 1
说明经济趋于稳定的条件是 αβ < 1. 问题:试证 lim xn+1 = x0 , lim y n+1 = y0 . n→∞ n→∞ 注意到:
α ——
1
f 在 p0 点斜率的绝对值 K
f
β —— g 在 p0 点斜率 K g
可见当 K f < K g ,即需求曲线 f 越平,供给曲线 经济稳定,反之正好相反。
g 越陡,越有利于
模型解释: 1、 α 的数值反映消费者对商品需求的敏感程度, β 的数值反映 生产经营者对商品价格的敏感程度。可见 β 固定时 α 越小,需求 曲线越平,表明消费者对商品需求的敏感程度越小,越利于经济 稳定(使(4)成立) α 固定时, β 越小供给曲线越陡,表明生 。 产经营者对价格的敏感程度越小,越有利于经济稳定(使(4)成 立) 。反之,当 α 、 β 较大,表明消费者对商品的需求和生产经营 者对商品的价格都很敏感, 则会导致经济不稳定 (4) (使 不成立) 。 2、当市场经济不稳定时政府有两种干预办法:一种是使 α 尽量 小(极端情形令 α =0,使需求曲线水平,这时不管供给曲线如何, 总是稳定的) ,这相当于政府控制物价。另一种办法是使 β 尽量小 (极端情形令 β =0,使供给曲线垂直,这时不管需求曲线如何, 也总是稳定的) ,这相当于政府控制市场上的商品数量。当供不应 求时,即时组织从外地调货投放市场,当供过于时,收购过剩的 部分,维持上市场量不变。或政府发放救济金,拉动经济。
数学在蜘蛛网模型的应用
蛛网模型及其在经济学只能感的应用摘要:蛛网模型是十分重要的数学模型之一,它在经济学中得到了广泛的应用。
本文运用了经济学原理和数学原理分析了蛛网模型,同时论证劳动力市场工程师数量与工资率波动形成的收敛型蛛网和我国近二十年小麦价格与产量波动形成的发散型蛛网。
从中得到如下的结论:1.在工程师市场中,工资率的变动对工程师数量供给的影响小于需求量的影响,也就是需求曲线的斜率的绝对值小于供给曲线斜率的绝对值,形成收敛型蛛网。
2.在农产品市场中,小麦的价格变动对供给量的影响大于需求量的影响,也就是需求曲线的斜率的绝对值小于供给曲线斜率的绝对值,形成发散型蛛网。
关键词:蛛网模型 求曲线 均衡 弹性引言:引进时间变化的因素,通过对属于不同时期的需求量,供给量和价格之间相互作用的考察,用动态分析的方法论述诸如劳动力市场调整,农产品市场等周期较长的产量和价格在偏离均衡状态以后的实际波动过程及其结果。
自改革开放以来,行业人才数量的培养和需求存在周期性变化,数量增多时,必然有工资率的下降;小麦价格的频繁波动和其产量的变化以及其他商品供求变化存在周期性的,都应该运用蛛网模型准确地把握变化趋势,采取灵活对策。
当然,供给弹性和需求弹性是这些波动的根本原因。
运用蛛网模型研究社会中的经济现象具有一定的指导意义。
1蛛网模型的经济学原理1.1条件假设蛛网模型所描述的数量和价格循环波动的现象是在一定的假设条件下出现的。
第一:本期产量供给不影响本期价格,本期产量供给s t Q 决定于前期价格1t P ;第二:本期的需求量td Q 决定于本期的价格t P ;第三:需求量弹性不变。
蛛网模型假定需求弹性不变,主要是指需求的价格弹性不变,特别是在农产品市场上,农产品的需求弹性小,假设其不变。
第四:一种完全自由竞争的市场,任何生产者和消费者都是被动地接受价格。
1.2 经济学分析蛛网模型以经济变量的时间先后分析了商品的价格和产量的波动,在其他有周期性的供给量和价格波动的市场也有类似的分析。
蛛网模型(差分方程)
n
xi1 (k 1) si xi (k ), i 1,2,, n 1
bn1
bn x(k ) [ x (k ), x (k ), x (k )]T 1 2 n 0 0 0 ~按年龄组的分布向量 x(k 1) Lx(k ) s2 0 k x(k ) L x(0) sn1 0 预测任意时段种群 按年龄组的分布 ~Leslie矩阵(L矩阵)
1 市场经济中的蛛网模型
供大于求 价格下降
数量与价格在振荡 增加产量 价格上涨 供不应求
减少产量
现 象
问 题
描述商品数量与价格的变化规律 商品数量与价格的振荡在什么条件下趋向稳定
当不稳定时政府能采取什么干预手段使之稳定
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系
生产者的供应关系
~ 1个个体在整个存活 期内的繁殖数量为1
T
4) x(k ) c x , x [1, s1 , s1 s2 ,, sn1 ]
xi 1 (k ) si xi (k ), i 1,2,, n 1
~存活率 si是同一时段的 xi+1与 xi之比 (与si 的定义 xi 1 (k 1) si xi (k ) 比较)
稳定状态分析的数学知识 • L矩阵存在正单特征根1, k 1 , k 2,3, n
s1 s1 s2 s1 s2 sn1 特征向量 x 1, , 2 , , n 1 1 1 1 • 若L矩阵存在bi, bi+1>0, 则 k 1 , k 2,3,, n
平衡点稳定条件
2
比原来的条件
1 放宽了
2
蜘蛛网的对数螺旋线模型
蜘蛛网的对数螺旋线模型摘要:针对蜘蛛网结构进行研究,建立以对数螺线为核心的数学模型。
通过计算圆形蜘蛛网与对数螺线形蛛网的覆盖面积与长度的关系,得到在面积相同时,对数螺线形蛛网更节省蛛丝的结论;运用蒙特卡洛方法,模拟昆虫触网的过程,得出从概率的角度来说,对数螺线更利于捕食的结论。
关键词:蜘蛛网结构对数螺旋线蒙特卡洛方法中图分类号:o242.1 文献标识码:a 文章编号:1007-3973(2013)008-118-021 问题背景在自然界中,蜘蛛共有约4万种。
虽然不是所有的蜘蛛都结网,但在几乎所有科中都有结网型蜘蛛。
蛛网的进化经历了绊丝、片网和圆网阶段,并在圆网的基础上,继续进化形成其他类型的网。
圆网在蛛网进化上的地位比较特殊,且其结构较其它种类简单、规则;因此,到目前为止对蛛网的研究大都集中在圆网上。
圆网由拖丝、捕丝和辅助螺旋丝组成。
圆网的形状并不是标准的圆,而是对数螺旋线形,本文主要从两个方面讨论对数螺旋线形的蜘蛛网模型比标准圆形的蜘蛛网模型更具优越性。
2 研究内容2.1 两种蛛网的覆盖面积与长度的关系蜘蛛丝是一种天然动物蛋白纤维,所以蜘蛛织网本身就是一种成本投入,而回报就是用这张网捕捉到的猎物。
所以,从蜘蛛的角度出发,在相同的捕食效果的前提下,所用蛛丝越少越好。
将蜘蛛网的对数螺旋线和标准圆形模型在同一坐标系中,如图1。
下面计算两种模型蜘蛛网的覆盖面积与周长之比,比值越大说明相对应形状的蛛网越省蛛丝。
需要说明的是由于空间大小的限制,蛛网围绕圈数不可能太多,另外对于螺线形蛛网,随着围绕圈数的增加,蛛网边缘处网线之间的空隙会增加很快,若这一空隙比一般虫子体型直径大很多,则无法起到捕虫的功能,这也制约着蛛网围绕圈数的增加。
由于一般情况下蛛网围绕圈数均大于17,说明从节省蛛丝的角度看,螺线形蛛网比圆形蛛网优越。
为了比较两种蛛网结构对于捕食的影响(昆虫触网的概率大小),下面运用蒙特卡罗方法模拟昆虫飞向蜘蛛网上的过程。
蛛网理论
附录:蛛网理论之推导 一、一阶常系数差分方程差分:1t t y y −−,令其等于t y Δ(差分符号)含有差分符号t y Δ的方程可称为差分方程,亦即含有1t t y y −−的方程 例如,1t t y ay c −+= ∵1t t t y y y −−=Δ∴1t t t y y y −=Δ+则,1(1)t t y a y c −Δ++=(一阶差分方程)又例如,11121()()2t t t t t t t t t 2t y y y y y y y y y y −−−−−ΔΔ=Δ−Δ=−−−=−+−(二阶差分方程) 所谓一阶常系数差分方程的一般式:1()t t y ay f t −+=,其中()f t 为已知函数,当()f t 为常数时,称为常系数差分方程..e g 当时()0f t = ,即10t t y ay −+=1t t y ay −=− 当时,1t =10y ay =−当时, 2t =221()y ay a =−=−0y y y ……当时, t n =0()n n y a =− ∴,令0()t t y a =−0y A = 则,()t t y A a =− 一般来说,一阶常系数差分方程的通解为:()()t t y G t A a =+− c (常数)时,1t t y ay c −+=当()f t =讨论:(i )1a ≠− 当时,1t =10y c ay =−当时,2t =21()0y c ay c a c ay =−=−−222201()(1)()[()1()a y a c a y c a a −−=−+−=+−−−i 0y 0 当时,3t =23320[(1)()][1(1)]()y c ay c a a c a y c a a a y =−=−−+−=−−+− 323201()[1()()]()[()1()a y c a a a y c a y a −−=+−+−+−=+−−−i 30) 附录: 22()(a b a b a b −=+− 3322()(a b a b a ab b −=−++)……则,001()[]()()()1()11t t t t a c y c a y y a a −−=+−=+−−−++i ca a− 令01c y A a−=+,()1t t c y A a =+−+a(ii ) ∴1a =−1t t y y c −−= ∵10y c y =+2120y c y c y =+=+10n n y c y n c y −=+=+i∴0t y t c y =+i 令0y A =, 则t y A t c =+i 二、蛛网条件根据蛛网假设,有1(,(,)t t tt q S P q D P )βα−=⎧⎨=⎩ (α、β分别为需求参数和供给参数) 设为供求均衡价格,为均衡条件下的供需量*P *q **11(,)(,)(,t t t t q S P q q S P S P )βββ−−=⇒−=−根据拉格朗日中值定理**1*(,)(,)(t t Pt q q S P S P S P P ββ−′−=−=−i *1)−* (1) 同理, (2) ***(,)(,)(,)()t t t t Pt q D P q q D P D P D P P ααα′=⇒−=−=−i(1)(2),得:***1**1***1(t P P t t P t PP P S S P P P P D P P D −−′′−=⇒−=′′−i )− 整理,得:***1**(1P Pt t P PS S P P D D −′′−=−′′P显然,此为一阶常系数差分方程,其中**P P S a D ′=−′,***(1P PS c P D ′=−′ 若**PP S D ′≠′,则,*********00******(1(1)[)()()11P P t t P P P t P P P P P PS S P P D D S P P P P P S S D D D D ′′−−′′′=+−=+−′′*P S ′′′−−′′ 令*0P P A −=,则***()t Pt PS P P A D ′=+′ ①当**1PPS D ′<′时,, t →∞*t P P → 价格会趋向均衡价格,收敛的蛛网 ②当**1PPS D ′>′时,, t →∞t P →∞ 价格越来越远离均衡价格,发散型蛛网 ③当**1PPS D ′=′时,, t →∞*t P P A =± 价格围绕均衡价格作等幅摆动,振幅为A ,封闭型蛛网 所以,蛛网模型的稳定条件为**1PP S D ′<′。
蛛网理论
Qtd=α-β·Pt
Qts=-δ+γ·Pt-1
Qtd=Qts
其中,α、β、δ和γ均为常数且均大于零。
由于区别了经济变量的时间先后,因此,蛛网模型是一个动态模型。
蛛网模型分析了商品的产量和价格波动的三种情况。
第一种情况:供给曲线斜率的绝对值大于需求曲线斜率的绝对值。当市场由于受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越小,最后会回复到原来的均衡点。
再者,经济学提到的经济制度中的自发因素又是什么?这里实际上只有供给曲线比需求曲线较为陡峭这一个因素,那么这个因素又算是哪一种经济制度中的呢?
此外,我们在现实中看到过牛奶被倒进大海的事件,可见生产者并不强调一定
要出售全部的产量。生产者追求的不是销售量,而是利益。他们不会盲目接受经济学强加给他们的所谓的由生产量等于需求量所决定的均衡价格。
2009-09-04 17:04 蛛网理论 蛛网理论 蛛网理论是20世纪30年代西方经济学界出现的一种动态均衡分析,它将市场均衡理论与弹性理论结合起来,再引进时间因素来考察市场价格和产量的变动状况,即用供求宣解释某些生产周期长的商品,在供求不平衡时所发生的价格和产量循环影响和变动。蛛网理论研究的主要产品,从生产到上市都需要较长的生产周期,而且生产规模一旦确定,在生产过程中未完成前,不能中途改变,因此市场价格的变动只能影响下一周期的产量。同时认为本期的产量取决于上一期的价格,本期的价格决定下期产量取决于上一期的产量。这种变动状况分为三种模型:(一)供给弹性小于需求弹性。意味着价格变动对供给量的影响小于需求量的影响。这时价格和产量的波动会逐渐减小,使市场价格趋于均衡价格,称为“收敛型蛛网”。(二)供给价格弹性大于需求价格弹性。市场受外力干扰偏离均衡状态的市场价格在对下期供给量变动影响下,使实际价格和实际产量上下波动幅度会越来越大,远离均衡点,使均衡无法恢复,这种情形称为“发散型蛛网”。(三)供给弹性等于需求弹性。即价格波动引起供给量变动的程度始终不变,即实际产量和实际价格始终围绕均衡点上下波动,永远达不到均衡,称为“封闭型蛛网”。蛛网理论最适合解释农产品的供求状况及其价格的基本走势。在现实的运动中,蛛网理论的三种模型在一定时期内是相互交错出现的。在我国目前农产品市场上,则趋向于前两种模型的运行。我国农产品已告别了短缺时代,自1997年起农产品市场价格在波动中不断走低,农民收入增幅不断下降。农产品市场价格的变化只反映当前的供求关系,而对供求关系在未来一定时期内可能发生的变化并不能反映出来。农业生产者只是以兴期的市场价格来安排来年的生产。由于农作物生长周期较长,而且中途很难改变,在正常情况下,本期的生产安排规模,已决定了下一期的产量规模。农业生产者总是以现有的市场价格为标准,预期未来的收益,往往陷入“蛛网困境”,产量增大,收入减少,赶不上市场变动的节奏。蛛网理论强调的是供求均衡,即生产和需求的均衡。目前我国的农产品市场已形成了买方市场,供大于求的格局已经形成,短期内将难以改变。按照蛛网定理解决农产品价格波动和供求的不稳定,主要应从两方面来解决:一是解决生产的供给与需求的适应,并优化供给;二是加强流通市场建设,使生产与市场需求连接起来,以需求指导生产。日前我国农业生产除了市场化程度低以外,关键是我国农产品流通市场建设落后,所以我们的研究是在“买方市场”条件下,在强调优化供给,即在加快农业结构调整的基础上,重点突出对市场流通体系研究,通过流通市场的建设,加快农产品的流通,使供需逐渐达到均衡,从而走出“蛛网困境”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假定供和需求函数都是性的,蛛网模型可由以下差分方程表示:
( 1)
Q dt =c-dP t(2)
Q s t=Q dt(3)
(1)式表示,第 t 年供量取决于第 t-1 年的成交价格,(2)表示需求量取决于当年市价格,(3)式表示市必是出清的,因此每年供量均等于需
求量。
a、b、c、d 常数(参数),且都正数。
将( 1)式和( 2)式代入( 3)式可得:
c-dP t =-a+bP t-1(4)
从( 4)式中解出 P t:
-b a+c
P t =(d) P t-1 + d( 5)
在( 5)式中假定 t=1 可得第 1 年价格:
-b a+c
P1=(d) P0+ d(6)
以此推:
-b a+c
P2=(d) P1+ d(7)
将( 6)式代入( 7)式中:
2-b
-b a+c a+c
P =(d) 2P+(d)d + d
重复一程,可得到以初始价格P0 来表示的第 3 年、第 4 年、⋯⋯第 n 年的价格:
-b n-b k a+c
P n=(d) P0 +[ ∑(d) ] d
-b n a+c-b n
=(d)P0+b+d [1-(d)](8)
又因达到均衡点后,价格不再化,假定第t 年达到均衡,
P t =P t+1 =⋯⋯ =P E(9)
将( 9)式代入( 5)式可得均衡价格 P E:
E a+c
P =
b+d(10)
将( 10)式代入( 8)式并整理:
P n=(-b
)n P0 +P E[1- (
-b
)n] d d
Q st =-a+bP t-1
-b
=(P0-P E)(d)n+P E(11)
从( 11)式可得出下列结论:
-b
(ⅰ)如果 | d |<1 ,则: limP n=P E,即 P n趋近于 P E,市场价格将无限趋近
-b
均衡价格,蛛网周期是收敛的。
而| d |<1 ,说明d<b,或供给曲线斜率大于需求曲线,供给弹性较小而需求弹性较大。
-b
(ⅱ)如果 | d |>1 ,则: limP n=∞,市场价格将振荡至无穷大,蛛网周期
是发散的。
此时, d<b,即供给曲线斜率小于需求曲线,供给弹性较大而需求弹性较小。
-b
(ⅲ)如果 | d |=1 ,则 P2n=P0,P2n+1=2P E-P 0,价格在这两个值之间来回振荡,蛛网周期是循环的,此时d=b,即供给曲线斜率与需求曲线斜率相等。