第3章 力系的平衡

合集下载

第三章 力系的平衡(陆)

第三章 力系的平衡(陆)
解得:
FAx 316.4kN
FAy P F cos 60 0 FAy 300kN
Fy 0
解得:
M
A
0
MA M F 1 l F cos 60 l F sin 60 3l 0
解得:
MA 1188kN m
固定端
HOHAI UNIVERSITY
=
=
=
返回
HOHAI UNIVERSITY
二、物体系的平衡· 静定和超静定问题
Fx Fy
M
q
Fx
M
q
FB
Fy
HOHAI UNIVERSITY
如果所考察的问题的未知量数目恰好等于独立平衡方程的 数目,那些未知数就可全部由平衡方程求得,这类问题称为静 定问题(statically determinate problem)。
F 0 F 0
ix iy
3、研究对象选取次序。
HOHAI UNIVERSITY
例题: 对于共面不平行的三个力成平衡,有如下结论:若不平行 的三个力成平衡,则三力作用线必汇交于一点。这就是所谓的 三力平衡定理。 F2 FR
o
F1 F3
HOHAI UNIVERSITY
例题 梁支承和受力情况如图所示,求支座A、B的反力。
M 0
c
l FB sin 60 l ql F cos 300 2l 0 2
0
解得: FB=45.77kN
HOHAI UNIVERSITY
② 取整体,画受力图.
F 0
ix
FAx FB cos 600 F sin 300 0
解得: FAx 32.89kN

《工程力学:第三章-力系的平衡条件和平衡方程》解析

《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。

第三章力系的平衡介绍

第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学

理论力学-3-力系的平衡

理论力学-3-力系的平衡

z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0

第3章力系的平衡条件与平衡方程

第3章力系的平衡条件与平衡方程

第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。

力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i nR i nO O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。

平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0OMF ≡∑物体在平面汇交力系作用下平衡方程:00x yFF ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。

其中AB 为吊车大梁,BC 为钢索,A 处为固定铰支座,B 处为铰链约束。

已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。

求:1、电动机处于任意位置时,钢索BC 所受的力和支座A 处的约束力;2、分析电动机处于什么位置时。

钢索受力最大,并确定其数值。

解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。

建立平衡方程 取A 为矩心。

根据 ()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin 30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+ 由xF =∑cos 0Ax TB F F θ-=2()cos303()2QP P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。

理论力学:第3 章 力系的平衡

理论力学:第3 章 力系的平衡
第 3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R

0,M O

0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则

G sin cos

G sin cos( )
cos( ) 1,

arctan 3
3652'
Pmin

G sin

20

3 5

12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q

G(b
e) 50b a

Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。

工程力学力系平衡

工程力学力系平衡

D
FC
l
A B
l
FP
D
第 三 种 情 形
l
C FA A l FCy l B l FP D
FCx
C
FA A
l
B
l
FP
D
第 三 种 情 形
FCy
FCx C
E
MA ( F ) = 0 : FCx l -FP 2l = 0 MC ( F ) = 0 : -FA l - FP 2l = 0 ME ( F ) = 0 : -FCy 2l -FA l = 0
A
F =0
x
l -FQ -FW x FTB lsin=0 2 l FP x+FQ 2 = 2 FW x F FTB= Q lsin l
F =0
y
FAx FTB cos=0 FQ 2 FW x FQl FW FAx= x cos30 = 3 l 2 l FAy-FQ-FP+FTB sin=0
例题
均质方板由六根杆支 撑于水平位臵,直杆 两端各用球铰链与扳 和地面连接。板重为 P,在A 处作用一水 平 力 F , 且 F=2P , 不计杆重。求各杆的 内力。
简单的刚体系统平衡问题
前面实际上已经遇到过一些简单刚体系统 的问题,只不过由于其约束与受力都比较简单, 比较容易分析和处理。 分析刚体系统平衡问题的基本原则与处理 单个刚体的平衡问题是一致的,但有其特点, 其中很重要的是要正确判断刚体系统的静定性 质,并选择合适的研究对象
平衡方程
根据平衡的充要条件
F1 M1 O
z
F2
M2
y Mn
FR =0 , MO=0

工程力学第三章-力系的平衡

工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。

理论力学第3章 力系的平衡

理论力学第3章 力系的平衡

基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。

说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。

B 点。

过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。

qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。

第三章 力系的平衡条件

第三章  力系的平衡条件

解: 取AB梁,画受力图。 梁 画受力图。
∑F =0 x
F + F cos450 = 0 Ax c
F + F sin450 −F = 0 Ay c
∑Fy =0
MA = 0 F cos450 ⋅l − F ⋅ 2l = 0 ∑ c
解得
F = 28.28kN FAx = −20kN FAy = −10kN , , C
例3 - 8
M 已知: F=20kN, q=10kN/m, = 20kN⋅m, L=1m; 已知:
求: A,B处的约束力. 处的约束力. 解: 取CD梁,画受力图. 画受力图.
∑M =0
c
l F sin 60 ⋅l −ql ⋅ − F cos300 ⋅ 2l = 0 B 2
0
解得
FB=45.77kN
∑MA = 0
F ⋅ 2a + F x ⋅ a = 0 Bx D

F =−F Bx
例3-19 已知: 荷载与尺寸如图; 已知: 荷载与尺寸如图; 每根杆所受力。 求: 每根杆所受力。 取整体,画受力图。 解: 取整体,画受力图。
∑F = 0 ix
F =0 Ax
F = 20kN Ay
∑MB = 0 −8FAy +5*8+10*6+10*4+10*2 = 0
q= 20kN , m
l =1 ; F = 400kN, m
解得 F = 316.4kN Ax
o F =0 FAy − P−Fcos60 = 0 ∑ y
解得 FAy =300kN
∑M
A
=0
A 解得 M = −1188kN⋅ m
M − M − F1⋅l + F cos60o ⋅l + Fsin 60o ⋅3l = 0 A

工程力学 第3章 力系的平衡

工程力学 第3章 力系的平衡

6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。

最新完美版建筑力学第三章力系的平衡

最新完美版建筑力学第三章力系的平衡
目录
第3章 力系的平衡\平面力系向一点的简化
目录
第3章 力系的平衡\平面力系向一点的简化
3-1-1 力的平移定理
平面力系向一点简化的理论基础是力的平移定理。 设在刚体上A点作用一个力F,现要将其平行移动到 刚体内任一点O (图a),但不能改变力对刚体的作用效应。
目录
第3章 力系的平衡\平面力系向一点的简化
根据加减平衡力系公理,可在O点加上一对平衡力F、 F,力F 和F的作用线与原力F的作用线平行,且F = F =F (图b)。 力F 和F 组成一个力偶M,其力偶矩等于原力F对O 点之矩。
b2 A y B
F
a2
a1、b1和a2、b2,线段a1b1、a2b2
a1 冠以适当的正负号称为力F在x 轴和y轴上的投影,分别记作Fx、Fy,即
Fx
b1
x
Fx=±a1b1
Fy=±a2b2
式中的正负号规定为:从a1到b1(或a2到b2)的指向与坐 标轴正向相同时取正,相反时取负。
目录
第3章 力系的平衡\平面力系向一点的简化
中心O的主矩。其大小和转向与简化中心的选择有关。 如果选取的简化中心不同,主矢不会改变,故它与 简化中心的位置无关;但力系中各力对不同简化中心的矩 一般是不相等的,因而主矩一般与简化中心的位置有关。
目录
第3章 力系的平衡\平面力系向一点的简化
3-1-3 力在坐标轴上的投影
在力F作用的平面内建立直角 坐标系Oxy。 Fy 由力F的起点A和终点B分别 向坐标轴作垂线,设垂足分别为
y
由图可知,若已知力F的大 小及力F与x、y轴正向间的夹角 分别为和,则有
b2
B
Fy
a2 A

F

工程力学3—力系的平衡条件和平衡方程

工程力学3—力系的平衡条件和平衡方程

∑ Fx = 0 B ∑ M A ( F ) = 0 A x ∑ M ( F ) = 0 B 其中A、B两点的连线AB不能垂直于投影轴x。
′ FR
由后面两式知:力系不可能简化为一力偶,只能简化 为过A、B两点的一合力或处于平衡。再加第一条件, 若AB连线不垂直于x 轴 (或y 轴),则力系必平衡。
∴N B =
60 =300N 0.2
[例4] 图示结构,已知M=800N.m,求A、C两点的约束反力。 例 图示结构,已知Байду номын сангаас, 、 两点的约束反力。 两点的约束反力
M AC = R C ⋅ d = 0.255 R C ( N .m )
∑M
i
=0
M AC − M = 0
RC = 3137 N
3 平面任意力系的平衡条件和平衡方程
M =m1 +m2 +m3 +m4 =4×(−15)=−60N⋅m
由力偶只能与力偶平衡的性质, 由力偶只能与力偶平衡的性质, 与力N 组成一力偶。 力NA与力 B组成一力偶。 根据平面力偶系平衡方程有: 根据平面力偶系平衡方程有
NB ×0.2 − m1 − m2 − m3 − m4 = 0
∴N A = N B =300 N
1,3,4;
有效的方程组合是:1,2,3;1,2,4;1,2,5;1,4,5; 2,4,5 ;2,3,5; 3,4,5
第3章 力系的平衡条件与平衡方程 章
1 平面汇交力系的平衡条件与平衡方程 2 平面力偶系的平衡条件与平衡方程 3 平面任意力系的平衡条件与平衡方程 4 简单的刚体系统平衡问题 5 考虑摩擦时的平衡问题 6 结论与讨论
1 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:

第3章力系的平衡条件与平衡方程

第3章力系的平衡条件与平衡方程

第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。

力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。

平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。

其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。

已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。

求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。

钢索受力最大,并确定其数值。

解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。

建立平衡方程 取A 为矩心。

根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。

理论力学:第3章 力系的平衡

理论力学:第3章 力系的平衡

1第3章 力系的平衡 3.1 主要内容空间任意力系平衡的必要和充分条件是:力系的主矢和对任一点的主矩等于零,即 0=R F 0=O M 空间力系平衡方程的基本形式 0,0,0=∑=∑=∑z y x F F F 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M空间汇交力系平衡的必要和充分条件是:力系的合力 0=R F空间汇交力系平衡方程的基本形式0,0,0=∑=∑=∑z y x F F F空间力偶系平衡的必要和充分条件是:各分力偶矩矢的矢量和 0=∑i M空间力偶系平衡方程的基本形式 0)(,0)(,0)(=∑=∑=∑F F F z y x M M M平面力系平衡的必要和充分条件:力系的主矢和对于任一点的主矩都等于零,即:0=∑='F F R;0)(=∑=F O O M M 平面力系的平衡方程有三种形式:基本形式: 0)(,0,0=∑=∑=∑F M F F O y x二矩式: 0)(,0)(,0=∑=∑=∑F M F M F B A x (A 、B 连线不能与x 轴垂直)三矩式: 0)(,0)(,0=∑=∑=∑F M F M M C B A (A 、B 、C 三点不共线)平面力系有三个独立的平衡方程,可解三个未知量。

平面汇交力系平衡的必要和充分条件是合力为零,即0=∑=F F R 平衡的解析条件:各分力在两个坐标轴上投影的代数和分别等于零,即0,0=∑=∑y x F F两个独立的平衡方程,可解两个未知量。

平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即∑=0Mi一个独立的平衡方程,可解一个未知量。

3.2 基本要求1.熟练掌握力的投影,分布力系的简化、力对轴之矩等静力学基本运算。

2.能应用各种类型力系的平衡条件和平衡方程求解单个刚体和简单刚体系统的平衡问题。

对平面一般力系的平衡问题,能熟练地选取分离体和应用各种形式的平衡方程求解。

3.正确理解静定和超静定的概念,并会判断具体问题的静定性。

工程力学第3章空间力系的平衡

工程力学第3章空间力系的平衡
缺点
计算量大,需要较高的数学水平。
几何法求解空间力系平衡问题
几何法
通过几何图形来描述物体的运动状态和受力 情况,通过观察和计算几何关系得到物体的 运动轨迹和受力情况。
优点
直观易懂,适用于简单运动和受力情况。
缺点
精度低,容易受到主观因素的影响。
代数法求解空间力系平衡问题
1 2
代数法
通过代数方程来描述物体的运动状态和受力情况, 通过解代数方程得到物体的运动轨迹和受力情况。
平衡方程形式
空间力系的平衡方程为三个平衡方程,分别表示力在x、y、z轴上 的平衡。
空间力系的平衡方程应用
解决实际问题
利用空间力系的平衡方程,可以 解决实际工程中的受力分析问题, 如梁的受力分析、结构的稳定性 分析等。
简化问题
通过将复杂的问题简化为简单的 空间力系问题,可以更方便地求 解问题。
验证实验结果
优点
适用范围广,可以用于解决各种复杂问题。
3
缺点
计算量大,需要较高的数学水平。
04
空间力系平衡问题的实例分 析
平面力系的平衡问题实例分析
总结词
平面力系平衡问题实例分析主要涉及二维空间中的受力分析,通过力的合成与分解,确定物体在平面内的平衡状 态。
详细描述
在平面力系中,物体受到的力可以分解为水平和垂直方向的分力。通过分析这些分力的合成与平衡,可以确定物 体在平面内的稳定状态。例如,在桥梁设计中,需要分析桥墩受到的水平风力和垂直压力,以确保桥墩的稳定性。
平衡条件
物体在空间力系作用下,满足力矩平衡、力矢平衡和 力平衡三个条件。
空间力系的简化
01
02
03
力矩
描述力对物体转动效应的 量,由力的大小、与力臂 的乘积决定。

第三章 力系的平衡

第三章 力系的平衡

HOHAI UNIVERSITY ENGINEERING MECHANICS
例1: 作AB和CD示力图
HOHAI UNIVERSITY ENGINEERING MECHANICS
解: AB示力图 FAx FAy
A D C B
F
A
B F'RD FRD D
F
CD示力图
FRD D C C FRC
FRC
C
4.物体间的内约束力不应该画出。
§3-3 汇交力系的平衡
一、汇交力系平衡的充分必要条件
HOHAI UNIVERSITY ENGINEERING MECHANICS
FR F1 F2 Fn 0
二、汇交力系的平衡方程

空间汇交力系: 平面汇交力系:
FRx =Fix=0
FRy =Fiy=0
两个构件用光滑圆 柱形销钉连接起来,称 为铰链连接(铰接)
四、活动铰支座
HOHAI UNIVERSITY ENGINEERING MECHANICS
上摆
组成分析
销钉 底板 只能限制物体与支座接触处向着支承面或 离开支承面的运动。 运动分析
滚轮
受力分析
HOHAI UNIVERSITY ENGINEERING MECHANICS
(A、B的连线不垂直于x轴)
HOHAI UNIVERSITY ENGINEERING MECHANICS
连杆的约束力沿着连杆 中心线,指向不定
F'B
空间铰
HOHAI UNIVERSITY ENGINEERING MECHANICS
六、球铰
HOHAI UNIVERSITY ENGINEERING MECHANICS

第3章力系的平衡-图文

第3章力系的平衡-图文

第3章力系的平衡-图文3-1简易起重机用钢丝绳吊起重量G=2kN的重物。

不计杆件自重、摩擦及滑轮大小,A、B、C三处简化为铰链连接,试求杆AB和AC所受的力。

答:(1)FAB=2.73kN,FAC=-5.28kN(2)FAB=—0.1414kN,FAC=3.15kN。

题3-1图题3-2图3-2均质杆AB重为P、长为l,两端置于相互垂直的两光滑斜面上。

已知一斜面与水平成角,求平衡时杆与水平所成的角及距离OA。

答:=0.5—OA=lin3-3构件的支承及载荷情况如图示,求支座A、B的约束力。

答:FRA =FRB=1.5kN,FRAFNB2Fa/l。

题3-3图3-4图示为炼钢电炉的电极提升装置。

设电极HI与支架总重G,重心在C点,支架上三个导轮A、B、E可沿固定立柱滚动,提升钢丝绳系在D 点。

求电极被支架缓慢提升时钢丝绳的拉力及A、B、E三处的约束力。

答:F=G,FNA=FNB=Ga/bFNE=0。

题3-4图题3-5图3-5杆AB重为P、长为2l,置于水平面与斜面上,其上端系一绳子,绳子绕过滑轮C吊起一重物Q,如图示。

各处摩擦均不计,求杆平衡时的Q值及A、B两处的约束力。

、均为已知。

答:Q=0.5Pin,FNA=0.5P,FNB=0.5Pco3-6在大型水工试验设备中,采用尾门控制下游水位,如图示。

尾门AB在A端用铰链支持,B端系以钢索BE,铰车E可以调节尾门AB与水平线的夹角,因而也就可以调节下游的水位。

已知=60、=15,设尾门AB长度为a=1.2m、宽度b=1.0m、重为P=800N。

求A端约束力和钢索拉力。

答:FA某=1303N,FAy=4357N,FT=2359N。

题3-6图题3-7图3-7重物悬挂如图,已知G=1.8kN,其它重量不计,求铰链A的约束力和杆BC所受的力。

答:FA某=2.4kN,FAy=1.2kN,FBC=848N。

3-8求图示各物体的支座反力,长度单位为m。

答:(1)FRA=kN3.75,题3-8图(2)FA某=0,FAy=17kN,MA=43kNm。

理论力学第3章力系平衡方程及应用

理论力学第3章力系平衡方程及应用

a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FC
M C B
E l
M 0
FC M l
M FC l 0
FB
3) 再以ADC丁字杆为研究对象
D FD FAx A l FAy C l F'C
由Fx=0,可得
FAx=F'C=FC=M/l
M
D
0
FAx l FAy l 0
M l
FAy
3.4 物体系的平衡
பைடு நூலகம்
FO '
M 2 - FB '? O1 B

0
FB ' = FB = FA = FA ' = 5N
M 2 = 3N ?m
22
3.2 力偶系的平衡
例题 已知:两圆盘半径均为200mm,AB =800mm,
圆盘面O1垂直于z轴,圆盘面O2垂直于x轴,两盘面上作
用有力偶, F1=3N , F2=5N ,构件自重不计。求 : 轴承 A,B处的约束力。
FAx +
ò
0
q ?xdx 3l
F cos300 = 0
FAy - P - F sin 300 = 0
33
3.3 平面任意力系的平衡 4.平面平行力系的平衡方程
平面平行力系的方程为两个,有两种形式
Fy 0 M A 0
M A 0 M B 0
各力不得与投影轴y垂直
M 2 - FA '? AB FB = FA '
0
M 2 = FA '? AB FB = FA ' = 8KN
8KN ?m
19
3.2 力偶系的平衡
例题 三联杆机构在图示位置平衡。已知: M1=1N· m , OA=0.4m , O1B=0.6m , OA 与 AB 杆的夹角为30°试求M2和AB杆的内力。 B O M2 O1 M1 A
两个方程两个未知数
9
注意
TBP = TBD = P
3.1 汇交力系的平衡
例题 铰链四杆机构CABD的CD边固定,在铰链
A 、 B 处有力 F1 、 F2 作用。该机构在图示位置平
衡,杆重略去不计。求力F1与F2的关系。
B A
45
30
90
C
0
F1
F2
60
D
解: 1)AB,AC,BD均为二力杆
F2 cos30? FBA ' = 0
5)建立图示坐标系,建立平衡方程
å
X=0
6)根据式3)和5),得到F1和F2关系
F1 FAB 'sin 450 3 = = = 0.61 F ' F2 2 2 BA cos 300
12
3.1 汇交力系的平衡
例题 墙角处的吊架由两端铰接的杆 OA、OB 和软绳 OC构成。两杆分别垂直墙面,由 OC绳维持在水平面 内。 已知:节点O处悬吊重物P=10 kN,OA=30 cm, OB=40cm,OC绳与水平面夹角为 30°。若杆重不计, 试求绳的拉力和二杆所受的力。 C
RA
A
F
45 °
FB
B
2)选择坐标轴,按图示坐标系列出平衡方程
å å
X = 0,
Y = 0,
RA cos a - F cos 45?
RA sin a - F sin 45?
0
FB = 0
两个方程,两个未知量
6
解二: 1)研究对象AB杆,画受力图
RA y
A
O
F
RA x
C
45 °
FB
B
2)选择坐标轴,按图示坐标系列出平衡方程
F
x
0,
解得
Fox FA sin 0
Fox FR l 2 R2
F
y
0,
解得
Foy FA cos 0
Foy F
3.4 物体系的平衡
例题 图示结构中,C处为铰链连接,各构件的自重略去 不计,在直角杆 BEC 上作用有矩为 M 的力偶,尺寸如图 所示。试求支座A的约束反力。
解: 1)AB,BC为二力杆
FAB
A B
FBC
B
FBA
2)取B点(含滑轮和销轴)为研究 对象,画受力图 FBA '
FCB
C
y
FBC '
TBD
3)建立图示坐标系,建立平衡方程
B 300 T BP x
å
X= 0,
- FBA '+ TBP cos60 - TBD cos30 = 0
å
Y= 0,
FBC '- TBP cos30 - TBD cos60 = 0
l/2 l/2 C FP B
FAx
l/2 A FAy
l M 0 F cos 45 FP l 0 A D 2 FD 2 FPl / cos 45l 2 2 FP
因此撑杆CD受力:
FCD FD 2 2FP 压力
45 FD
D
l M 0 F FP l 0 D Ax 2
i i i

可解3个 未知量
平面
F F
xi yi
0 0
X 0 Y 0
i i

可解2个 未知量
3.1 汇交力系的平衡
例题 水平梁AB受力F=1kN作用,梁的重量
不计。求A、B支座的约束反力。
F
A 3m
45 ° B
1.5m
解: 1)研究对象AB杆,画受力图
范钦珊著:理论力学/第3章
25
3.3 平面任意力系的平衡
1. 平面力系的平衡条件
力系的主矢和对于任一点的主矩都等于零。
0 FR
MO 0
解析表达式
F 0 F 0 M 0
x y O
O 为矩心
3.3 平面任意力系的平衡 2. 平面任意力系的平衡方程
一矩式方程
F 0 F 0 M 0 x、y轴不能平行
3.3 平面任意力系的平衡
例题 已知M=qa。求图示结构支座A、B处的约束力。
以AB梁为研究对象,画受力图 Fx 0 FAx 0
M
A
0
FB 4a M P 2a q 2a a 0
Fy 0
FAy q 2a P FB 0
3 1 FB P qa 4 2 P 3 FAy qa 4 2
例题 已知P=10kN,P1=40kN,尺寸
如图所示。求轴承A、B处的约束力。
解:画受力图
M
A
0
FB 5 1.5 P 3.5 P 1 0
FAx FB 0
FAy P 1P0
Fx 0
Fy 0
FB 31kN
FAx 31kN
FAy 50kN
3.3 平面任意力系的平衡
例题 求固定端A处约束力。
1)以ABD梁为研究对象,画 受力图
FAy
2)列平衡方程
MA
M A - M + F cos30 ?3l
3l
0
FAx
M A Fi 0
Fx 0
Fy 0
F sin 30 ?l
0
ò
3l
0
q 鬃 x (3l - x)dx = 0 3l
A、B两点连线不得与各力平行
3.4 物体系的平衡
静定问题:未知量个数等于独立的平衡方程个数; 超静定问题:未知量个数大于独立的平衡方程个数。
二者的差为超静定的次数。
3.4 物体系的平衡
3.4 物体系的平衡
例题 图示结构中,A、C、D三处均为铰链约束,横杆 AB在B处承受集中载荷 FP。结构各部分尺寸如图所示。 已知FP和l。试求撑杆CD的受力以及A处的约束反力。
FAx 2FP
l l M 0 F F 0 C Ay P 2 2 FAy FP

3.4 物体系的平衡
例题 已知:OA=R,AB= l,冲力F,不计物体自重与 摩擦, OA 处于水平位置系统平衡。求:平衡时力偶矩 M 的大小;轴承O 处约束力;连杆AB 受力;冲头给导 轨的侧压力。
M D C A l l M D C A B l E l D C l A FAx F'C FC M C B E l FB B
1) 受力分析,选择研究对象
E l
以整体为研究对象;
共有4个未知反力(3个方程); 从中间铰C处分开。
FD
l
FAy
3.4 物体系的平衡
2) 以BEC直角杆为研究对象 因力偶必须由力偶来平衡,故FC与FB 等值、反向,组成一反力偶。因此,有
解: 1)选轮O为研究对象,画受力图
FA
A d O M1
FO
B 2)轮O力偶系平衡
M 1 - FA ? d FA = FO
0
M1 M1 FA = = = 8 KN d AO sin a FO = FA = 8 KN
18
3)选BAC杆为研究对象,画受力图 C M2
FA '
A
O
FB
B
4)BAC杆力偶系平衡
第3章 力系的平衡问题
第3 章
力系的平衡问题
3.1 汇交力系的平衡
3.2 力偶系的平衡
3.3 平面任意力系的平衡
3.4 物体系的平衡
3.5 平面简单桁架的内力计算
3.6 空间力系的平衡
3.1 汇交力系的平衡
汇交力系平衡的必要和充分条件: 该力系的合力为零。 汇交力系平衡的必要和充分条件(几何解释):
相关文档
最新文档