新人教版《第21章一元二次方程》单元测试(3)含答案解析

合集下载

2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)

2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)

2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,则()A.a>0B.a≠0C.a≠1D.a=12.若关于x的方程x2+2ax+4a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣33.方程(x﹣3)2=4的根为()A.x1=x2=5B.x1=5,x2=1C.x1=x2=1D.x1=7,x2=﹣1 4.若把方程x2﹣6x﹣4=0的左边配成完全平方的形式,则正确的变形是()A.(x﹣3)2=5B.(x﹣3)2=13C.(x﹣3)2=9D.(x+3)2=5 5.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或36.定义运算:m※n=mn2﹣2mn﹣1,例如:4※2=4×22﹣2×4×2﹣1=﹣1.若关于x的方程a※x=0有实数根,则a的取值范围为()A.﹣1≤a≤0B.﹣1≤a<0C.a≥0或a≤﹣1D.a>0或a≤﹣1 7.受益于电商普及和交通运输的快速发展,快递业务量持续增长.我市2019年的快递业务量为1.1亿件,2021年,我市快递业务量增加到1.4亿件,设快递业务量的年平均增长率为x,则下列方程正确的是()A.1.1(1+x)=1.4B.1.1(1+x)2=1.4C.1.1x2=1.4D.1.1(1+2x)=1.48.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s二.填空题(共8小题,满分40分)9.已知关于x的方程(m﹣1)x+2x﹣3=0是一元二次方程,则m的值为.10.已知m,n为一元二次方程x2﹣4x﹣3=0的两个实数根,则(m﹣2)(n﹣2)的值为.11.用配方法解一元二次方程2x2﹣5x﹣3=0,可以写成(x+h)2=k的形式,则.12.已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,则该方程的根是.13.如果关于x的方程2x2﹣3x+m=0有两个实数根,那么m满足.14.要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为.15.已知三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,则这个三角形的周长是.16.请阅读下列材料:解方程:(x2﹣1)2﹣5(x2﹣1)+4=0.解法如下:将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.(1)当y=1时,x2﹣1=1,解得x=±;(2)当y=4时,x2﹣1=4,解得x=±.综合(1)(2),可得原方程的解为x1=,x2=﹣,x3=,x4=﹣.参照以上解法,方程x4﹣x2﹣6=0的解为.三.解答题(共6小题,满分40分)17.解方程:(1)x(2x﹣3)=4x﹣6;(2)2x2﹣4x﹣5=0.18.已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.19.我们知道:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则x1+x2=﹣,x1•x2=,试利用上述知识解决下列问题:已知x2+2020x﹣1=0的两根分别为α和β,求代数式(α2+2021α+1)(β2+2021β+1)的值.20.已知关于x的一元二次方程x2+(2﹣m)x+1﹣m=0.(1)求证:该方程总有两个实数根;(2)若m<0,且该方程的两个实数根的差为3,求m的值.21.根据下列问题,列出关于x的方程,并将其化为一般形式.(1)某印刷厂3月份印刷了50万册书籍,5月份印刷了72万册书籍,如果每月印刷的增长率都相同,求每月印刷的增长率x;(2)一个微信群里共有x个好友,每个好友都分别给其他好友发了一条消息,这样一共产生132条消息.22.某服装厂生产一批服装,2019年该类服装的出厂价是200元/件,2020年,2021年连续两年改进技术,降低成本,2021年该类服装的出厂价调整为162元/件.(1)这两年此类服装的出厂价下降的百分比相同,求平均下降率.(2)2021年某商场从该服装厂以出厂价购进若干件此类服装,以200元/件销售时,平均每天可销售20件.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10件,如果每天盈利1150元,单价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:∵关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,∴a﹣1≠0,a≠1,故选:C.2.解:把x=﹣3代入方程得9﹣6a+4a=0,解得a=4.5.故选:B.3.解:方程(x﹣3)2=4,开方得:x﹣3=2或x﹣3=﹣2,解得:x1=5,x2=1.故选:B.4.解:x2﹣6x﹣4=0x2﹣6x=4x2﹣6x+9=13(x﹣3)2=13,故选:B.5.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.6.解:由题意可知:a※x=ax2﹣2ax﹣1=0,当a=0时,原来方程变形为﹣1=0,方程无解;当a≠0时,∵关于x的方程a※x=0有实数根,∴Δ=4a2+4a=4a(a+1)≥0,解得a≤﹣1或a>0.故选:D.7.解:依题意得:1.1(1+x)2=1.4.故选:B.8.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.二.填空题(共8小题,满分40分)9.解:由一元二次方程的定义得:m2+1=2,且m﹣1≠0,解得:m=﹣1.故答案为:﹣1.10.解:根据题意得m+n=4,mn=﹣3,所以(m﹣2)(n﹣2)=mn﹣2(m+n)+4=﹣3﹣2×4+4=﹣7.故答案为﹣7.11.解:原方程可以化为:x2﹣x=,等式的两边同时加上一次项系数一半的平方,得x2﹣x+=+,配方,得(x﹣)2=.故答案为:(x﹣)2=.12.解:∵关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,∴该方程的根是x1=1,x2=﹣2.故答案为:x1=1,x2=﹣2.13.解:∵关于x的方程2x2﹣3x+m=0有两个实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4×2×m=9﹣8m≥0,解得:m≤.故答案为:m≤.14.解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,故答案为:(100﹣4x)x=400.15.解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,∵三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,∴第三条边长的取值范围是:3<第三边的长<7,∴第三边长为:5,故这个三角形的周长是:2+5+5=12.故答案为:12.16.解:设x2=y,则原方程可化为:y2﹣y﹣6=0,解得:y1=3,y2=﹣2,(1)当y=3时,x2=3,解得x1=,x2=﹣,(2)当y=﹣2.时,x2=﹣2,此方程无实数根,综合(1)(2),可得原方程的解是:x1=,x2=﹣,故答案为:x1=,x2=﹣.三.解答题(共6小题,满分40分)17.解:(1)∵x(2x﹣3)=4x﹣6,∴x(2x﹣3)﹣2(2x﹣3)=0,∴(2x﹣3)(x﹣2)=0,则2x﹣3=0或x﹣2=0,解得x1=1.5,x2=2;(2)∵2x2﹣4x﹣5=0,∴2x2﹣4x=5,则x2﹣2x=,∴x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.18.解:(1)由题意,得:m2﹣3m+2=0解之,得m=2或m=1①,由m﹣1≠0,得:m≠1②,由①,②得:m=2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0,得x2+5x=0,x(x+5)=0解得:x1=0,x2=﹣5.19.解:把x=α和x=β分别代入方程得:α2+2020α﹣1=0,β2+2020﹣1=0,∴α2+2020α=1,β2+2020=1,根据根与系数的关系得:α+β=﹣2020,αβ=﹣1,则原式=(α2+2020α+α+1)(β2+2020β+β+1)=(α+2)(β+2)=αβ+2(α+β)+4=﹣1﹣4040+4=﹣4037.20.(1)证明:∵Δ=(2﹣m)2﹣4×1×(1﹣m)=m2≥0,∴原方程有两个相等的实数根或两个不等的实数根,即该方程总有两个实数根;(2)设方程的较大的实数根为x1,较小的实数根为x2,依题意得:x1﹣x2=3,x1+x2=m﹣2,x1x2=1﹣m,∴(x1﹣x2)2=32,x12﹣2x1x2+x22=9,x12+x22=9+2x1x2=9+2(1﹣m)=11﹣2m,∵(x1+x2)2=(m﹣2)2,∴x12+2x1x2+x22=m2﹣4m+4,∴11﹣2m+2(1﹣m)=m2﹣4m+4,整理得:m2=9,解得:m=3或m=﹣3,∵m<0,∴m=﹣3.21.解:(1)设每月印刷的增长率都为x,根据题意得:50(1+x)2=72.化为一般形式为25x2+50x﹣11=0;(2)设有x个好友,依题意得x(x﹣1)=132,化为一般形式为x2﹣x﹣132=0.22.解:(1)设平均下降率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均下降率为10%.(2)设单价应降低m元,则每件的销售利润为(200﹣m﹣162)=(38﹣m)元,每天可售出20+×10=(20+2m)件,依题意得:(38﹣m)(20+2m)=1150,整理得:m2﹣28m+195=0,解得:m1=15,m2=13.∵要减少库存,∴m=15.答:单价应降低15元.。

人教新版 九年级(上)数学 第21章 一元二次方程 单元测试卷 (解析版)

人教新版 九年级(上)数学 第21章 一元二次方程 单元测试卷 (解析版)

第21章一元二次方程单元测试一、选择题(共10小题).1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=02.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1 3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.25.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥16.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为.13.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①,②,③,④.(2)猜想:第n个方程为,其解为.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.2.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1解:∵(x﹣1)2=0,∴x﹣1=0,x=1,即x1=x2=1,故选:C.3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选:D.5.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.6.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是解:∵方程x2+bx+a=0有一个根是1,∴1+b+a=0,∴a+b=﹣1.故选:B.7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选:D.8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法解:方程(5x﹣1)2=(2x+3)2的最适当方法应是直接开平方法.故选:A.9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对解:x2﹣14x+40=0,(x﹣4)(x﹣10)=0,x﹣4=0或x﹣10=0,所以x1=4,x2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选:C.10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为x2+x﹣3=0.解:方程整理得:x2+x﹣3=0,故答案为:x2+x﹣3=013.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=17.解:由原方程,得2x2﹣3x﹣1=0,∴二次项系数a=2,一次项系数b=﹣3,常数项c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=9+8=17;故答案是:17.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值﹣1.解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为1.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7.解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.解:(1)由题意可得,,解得,241≤x≤300,即x的取值范围是:241≤x≤300(x为正整数);铅笔的零售价每支应为:元;铅笔的批发价每支应为:元;(2)由题意可得,15×﹣15×=1,化简,得x2+60x﹣900(m2﹣1)=0,解得,x1=30(m﹣1),x2=﹣30(m+1)(舍去),∴241≤30(m﹣1)≤300,解得,≤m≤11,∴m=10或m=11,当m=10时,m2﹣1=99<100,故m=10不合题意,舍去,当m=11时,m2﹣1=120>100,符合题意,∴m=11,∴x=30(m﹣1)=300,经检验x=300是原分式方程的解,答:初三年级共有300名学生,m的值是11.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4由题意知:(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,由题意知:(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)

第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。

人教版九年级上册第21章一元二次方程单元测试题含答案

人教版九年级上册第21章一元二次方程单元测试题含答案

第21章一元二次方程单元测试一、选择题(每小题3分,共18分)1.下列方程中,你最喜欢的一个二元二次方程是( )A.9412=-x x B. 04023=+-x x C. 314=-x D. 02323=+-y xy x2.用配方法解方程0142=++x x ,配方后的方程是( ) A. ()322=+x B. ()322=-xC. ()522=-x D. ()522=+x*3.下列一元二次方程两实数根和为-4的是( ) A. 0422=-+x x B. 0442=+-x x C. 01042=+-x x D. 0542=-+x x 4.方程()022=-+-x x x 的解是( ) A.2 B .-2,1 C .-1 D.2,-15.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰三角形ABC 的底边长和腰长,则三角形ABC 的周长为( )A.13B.11或13C.11D.126.长春市企业退休人员王大爷的工资是每月2100元,连续两年增长后,大王大爷的工资是每月2541元,若设这两年平均每年的增长率为x ,根据题意可列方程( ) A. ()254112100=+x B. ()2100125412=-xC. ()2541121002=+x D. ()2100125412=-x二、填空题(每小题3分,共18分)7.一元二次方程05232=-+x x 的一次项系数是 .8.方程()0932=--x 的解是 .9.若方程02=-x x 的两根为1x ,2x (1x <2x ),则2x -1x = .10.关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,则k 的取值范围是.11.若关于x 的方程()0222=+++a x a ax 有实数解,那么实数a 的取值范围是 .12.某种传染性牛疾在牛群中传播迅猛,平均一头牛每隔6小时能传染m 头牛,现知一养牛场有a 头牛染有此病,那么12小时后共有 头牛染上此病(用含a 、m 的代数式表示).三、解答题(每小题8分,共64分) 13.用适当方法解方程.(1)1222+=-x x x (2)()()()83211=++-+x x x (3)522=-x x (4)()()3332-=-x x x14.若方程()035112=-+-+x x m m 是关于x 的一元二次方程,求m 的值.15.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.16.已知关于x 的方程()()01222=-++-m x m x .求证:(1)方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.17.教材或资料中会出现这样的题目:把方程2212=-x x 化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项,现把上面的题目改编为下面的两个小题,请解答:(1)下列式子中,有哪几个是方程2212=-x x 所化的一元二次方程的一般形式(答案只写序号) . ①02212=--x x ;②02212=++-x x ;③422=-x x ;④0422=++-x x ;⑤ 0343232=--x x .(2)方程2212=-x x 化为一元二次方程的一般形式后,它的二次项系数、一次项系数、常数项之间具有什么关系?18. 如图①:要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?如图②:用含x 的代数式表示:AB=______cm ;AD=______cm ;矩形ABCD 的面积为______cm 2;列出方程并完成本题解答.19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件。

人教版九年级数学上册第21章《一元二次方程》测试卷3(含答案)

人教版九年级数学上册第21章《一元二次方程》测试卷3(含答案)

人教版九年级数学上册第21章《一元二次方程》测试卷3(含答案)时间:100分钟 总分100分一、选择题(共10小题,每小题3分,共30分.每小题只有一个选项是符合题意的)1.下列方程中,是一元二次方程的是 ( )A .x ²+y =3B . 112=-x xC .x ²-3=0D .2x +1=0 2.一元二次方程(x +3)(2x -1)=9化为一般形式后正确的是( )A .2x ²+5x -12=0B .2x ²+6x +12=0C .x ²+3x -6=0D .2x ²-5x -3=93.若m ,n 是一元二次方程x ²+2x -25=0的两个实数根,则m +n 的值为( ) A .-2 B .2 C .-25 D .254.某衬衫经过连续两次降价,售价由原来的每件100元降到每件 64元,则平均每次降价的百分率为 ( )A .10%B .15%C .20%D .25%5.关于x 的一元二次方程(a -2)x ²-3x -2=0有两个不相等的实数 根,则a 的取值范围是( )A .87>aB . 87<aC .87>a 且α≠2D . 78>a 且a ≠26.给出一种运算:a ⊗b =(a +b )b ,如2⊗3=(2+3)×3=15,若方程2⊗x =k 的一个根为2,则另一个根 为 ( )A . 4B .-4C . 8D .-87.若x =a 是方程x ²+x -1=0的一个根,则代数式-(a -1)²-3a 的值为 ( )A .2B .1C .-1D .-28.某社区服务中心为解决居民停车难的问题,准备利用社区内一块矩形空地修建一个停车场(如图). 已知停车场的长为52米,宽为20米,阴影部分设计为停车位,其余部分是等宽的通道.设通道的宽是x 米,若停车位的面积为482平方米.依题意可列出方程( )A . 2×20x +52x =52×20-482B . 20x +2×52x -x ²=52×20-482C . (52-2x )(20-2x )=482D .(52-x )(20-2x )=4829.已知关于x 的一元二次方程x ²+5x -k =0,当-6≤h ≤0时,该方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定10.欧几里得的《原本》中记载着方程x²+ax=b²的图解法:画Rt△ABC,使得∠ACB=90°,,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是 ( )A. AC的长B. CD的长C. AD的长D. BC的长二、填空题(共6小题,每小题3分,共18分)11.已知(m-2)x|m|+3x+2=0是关于x的一元二次方程,则m=________.12.一元二次方程x²+21x=20x+20×21的根是______________.13. 若关于x的一元二次方程(a-2)x²-3x+1=0有实数根,则整数a的最大值为_________.14.已知关于x的一元二次方程x²+6x+4k-8=0的一个根与分式方程的根相等,则k的值为 .15.阅读下面的诗词然后解题:大江东去浪淘尽,千古风流数人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜?请你通过列方程式,算出周瑜去世时的年龄为__________.16.若x1,x2是一元二次方程x²-3x+1=0的两个实数根,则x1²+x22-2的值为_______.三、解答题(共7小题,共52分.解答应写出过程)17.(6分)选择合适的方法解一元二次方程.(1)3(x+2)²=(x-2)2; (2)(x+3)²=2x+6.18.(6分)已知关于x的方程x²-3x+m-2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)若x1²+x2²=m+1,求m的值.19.(7分)为解方程(x²-2)²-5(x²- 2)+4=0,我们可以将x²-2视为一个整体,然后设x²-2=y,则原方程化为y²-5y+4=0,解此方程得y1=1,y2=4,当y=1时,x²-2=1, x=±√3,当y=4时,x²-2=4, x=±√6,∴原方程的解为x1=-√3,x2=√3,x3=-√6,x4=√6.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.用上述方法解下列方程:(1)(2x+5)²-4(2x+5)+3=0; (2)x4-8x²+7=0.20.(7分)某工厂为了给市场上供应足够的跳绳,3月到5月生产的跳绳数量由10000条增加到14400条.(1)求该工厂3月到5月生产跳绳的数量的月平均增长率;(2)若该工厂在接下来的生产中仍然保持相同的月平均增长率,请你预计6月份生产跳绳的数量能否达到18000条?说明理由.21. (8分)已知等腰△ABC 的两边长b ,c 恰好是关于x 的一元二次方程x 2-(2k +1)x +5(k -34)=0 的两个根.若△ABC 的另一边长a =4,试求△ABC 的周长.22.(8分)如图,在矩形ABCD 中, AB =4 cm ,BC =9cm ,点P 从点A 出发,沿AB 边向点B 以1 cm /s 的速度移动,同时点Q 从点B 出发,沿BC 边向点C 以2 cm /s 的速度移动.若其中有一个动点先到达终点,则两个动点同时停止运动,设运动时间为t s .(1)填空:AP =_______cm ,BQ =_______ cm ;(用含t 的代数式表示)(2)当t (t ≠0)为何值时, PQ =4 cm ?(3)在动点P ,Q 运动过程中,是否存在某个时刻使五边形 APQCD 的面积为矩形面积的 23?若存在,请求出此时t 的值;若不存在,请说明理由.23.(10分)小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T 恤衫.已知每件T 恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件.(1)若降价8元,则每天销售T 恤衫的利润为多少元?(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为多少?(3)为了保证每件T 恤衫的利润率不低于55%,小明每天能否获得1200元的利润?若能,求出定价;若不能,请说明理由.(利润率=利润成本×100%)参考答案:。

人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

九年级数学第21章《一元二次方程》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.关于x的方程是一元二次方程的条件是A. B. C. D. a为任意实数2.把一元二次方程化成一般形式,其中a,b,c分别为A. 2,3,B. 2,,C. 2,,1D. 2,3,13.已知是关于x的一元二次方程的一个根,则m的值是A. 1B.C. 0D. 无法确定4.若方程中,a,b,c满足和,则方程的根是A. 1,0B. ,0C. 1,D. 无法确定5.用配方法解一元二次方程,配方正确的是A. B. C. D.6.一元二次方程的根的情况为A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根7.已知,是关于x的一元二次方程的两个实数根,且,,则a,b的值分别是A. ,1B. 3,1C. ,D. ,18.关于x的方程的两个根是和1,则的值为A. B. 8 C. 16 D.9.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为的无盖长方形工具箱,根据题意列方程为A. B.C. D.11.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2019年起到2021年累计投入4250万元,已知2019年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是A.B.C.D.12.关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出三个结论:这两个方程的根都是负根;;其中正确结论的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)13.已知关于x的方程没有实数根,则m的取值范围是______.14.已知方程的一根为,则方程的另一根为______.15.已知,是一元二次方程的两实数根,则的值是______.16.在中,,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为.17.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3月每个月生产成本的下降率都相同,则每个月生产成本的下降率是.18.定义符号的含义为:当时,当时,,如:,,则方程的解是______.三、解答题(本大题共7小题,共66分)19.解下列方程:.20.已知关于x的一元二次方程,求证:无论实数m取得何值,方程总有两个实数根;若方程有一个根的平方等于1,求m的值.21.若要建一个矩形养鸡场,养鸡场的一面靠墙,如图所示,墙长18 m,墙对面有一个2 m宽的门,另三边用竹篱笆围成,篱笆总长33 m,且围成的养鸡场的面积为,则鸡场的长和宽各为多少米.22.已知实数a,b,c满足:,,又,为方程的两个实根,试求的值.23.某生物实验室需培育一群有益菌现有60个活体样本,经过两轮培植后,有益菌总和达24000个,其中每个有益菌每一轮可分裂出若干个相同数目的有益菌.每轮分裂中每个有益菌可分裂出多少个有益菌按照这样的分裂速度,经过三轮培植后共有多少个有益菌24.某菜市场有平方米和4平方米两种摊位,平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,平方米和4平方米两种摊位的商户分别有和参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,毎个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,每个摊位的管理费将会减少这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少,求a的值.25.己知的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程的两个实数根,求证:无论k为何值时,方程总有两个不相等的实数根:为何值时,是以BC为斜边的直角三角形;为何值时,是等腰三角形,并求的周长.参考答案一、选择题(本大题共12道小题,共36分)1-5 CBBCA 6-10 BDCCC 11-12 DD二、填空题(本大题共6小题,共18分)13、14、15、616、217、18、或三、解答题(本大题共7小题,共66分)19、解:因式分解,得.或.,;移项,得.提公因式,得.解得,;将看作一个整体,分解因式,得,即.解得.20、证明:,,所以无论实数m取得何值,方程总有两个实数根;解:方程有一个根的平方等于1,此根是,当根是1时,代入得:,即,此时m为任何数;当根是时,,解得:.21、解:设养鸡场的宽为xm,根据题意得:,解得:,,当时,,当时,舍去,答:养鸡场的宽是10m,长为15m.22、解:,即,,2 ab为方程的两根,,由得,或即,由根与系数的关系得:23、设每轮分裂中每个有益菌可分裂出x个有益菌,根据题意,得.解得,不合题意,舍去.答:每轮分裂中每个有益菌可分裂出19个有益菌.个.答:经过三轮培植后共有480000个有益菌.24、解:设该菜市场共有x个4平方米的摊位,则有2x个平方米的摊位,依题意,得:,解得:.答:该菜市场共有25个4平方米的摊位.由可知:5月份参加活动一的平方米摊位的个数为个,5月份参加活动一的4平方米摊位的个数为个.依题意,得:整理,得:,解得:舍去,.答:a的值为50.25、解:因为,所以方程总有两个不相等的实数根.根据根与系数的关系:,,则,即,解得或.根据三角形的边长必须是正数,因而两根的和且两根的积,解得,.若时,5是方程的实数根,根据一元二次方程根与系数的关系可得:,当时,,则周长是;当时,则周长是.。

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)

九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。

人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析

人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析

7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)

人教版九年级上册 第21章 《一元二次方程实际应用》专项练习(三)

人教版九年级上册 第21章 《一元二次方程实际应用》专项练习(三)

第21章《一元二次方程实际应用》专项练习(三)1.香果园大型水果超市的江安李子和山东烟台红富士苹果这两种水果很受欢迎,苹果售价24元/千克,李子售价18元/千克.(1)若第一周苹果的平均销量比李子的平均销量多200千克,要使这两种水果的总销售额不低于13200元,则第一周至少销售苹果多少千克?(2)若该水果超市第一周按照(1)中苹果和李子的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周苹果售价降低了a%,销量比第一周增加了a%.李子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了a%,求a的值.2.如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发,以3cm/s的速度向点B 移动,一直到达点B为止;同时,点Q从点C出发,以2cm/s的速度向点D移动.当其中一个点停止移动时,另一个点也随之停止,设移动时间为ts,连接PQ.(1)当t=2时,求PQ的长;(2)当PQ=10cm时,求t的值.3.重庆两江国际影视城,是集影视拍摄、文化旅游、度假休闲、历史风貌观光为一体的大型综合性旅游景区,其厚重的文化底蕴和独特的历史场景深受广大人群喜爱景区陆续复原兴建了抗战胜利记功碑、群林市场等200多栋反映重庆开埠以来尤其是陪都时期的著名建筑和历史街区,广大游客也因此称其为“民国街”.某商家抓住商机,准备在“民国街”售卖中山装和旗袍.去年十一月,中山装的单价为每件120元,旗袍的单价为每件180元,商家售卖中山装的销售额比售卖旗袍的销售额少1200元.(1)若去年十一月中山装的销售量不超过旗袍的销售量,求售卖中山装的销售额最大为多少元?(2)受市场影响,与去年同期相比,今年十一月,同款中山装的单价上涨了0.5a%,同款旗袍的单价上涨了a%,若两款服装的销售量都比(1)问中中山装的销售额取最大值时对应的销售量少a%,则两款服装的总销售额只比去年十一月的最大销售额少300元,求a的值.4.十九大以来,为全面推进新农村建设,积极改革农村产业结构,增加农民收入,致富村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量将上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大α%,并改良蔬菜种植结构,蔬菜每亩利润将增加a%这样,明年纽橙和蔬菜的总利润将比今年的总利润增加a%.求a的值.5.某商店以40元/千克的单价新进一批茶叶,经调查发现:在一段时间内,这批茶叶的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为y=﹣2x+240(40≤x≤120).(1)商店想在销售成本(进价总额)不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?(2)在(1)中,该商店为了国庆期间促销这批新进茶叶,经过两次降价将销售价格定为81元/千克,求平均每次降价的百分比.6.某校在开展“校园献爱心”活动中,准备向某山区学校捐胎男、女两种款式的书包,共有200名学生参加活动,平均每人捐款15元,用全部的捐款购买这两种款式的书包各30个,捐赠给了该山区学校.已知购买一个男款书包比购买一个女款书包少20元.(1)购买一个男款书包、一个女款书包各需多少元?(2)经调查该山区学校共有男学生63名,女学生56名,为保证每一个男学生都有一个男款书包,每一个女学生都有一个女款书包,需要再次进行补充捐赠,在补充捐赠活动中,自愿参与的学生在200名的基础上增加了a%(其中a>0),平均每人需捐款的钱数在15元的基础上减少了a%,求a的值.7.“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.8.如图,在长方形ABCD中,AB=10厘米,BC=6厘米,点P沿AB边从点A开始向点B以3厘米/秒的速度移动;点Q沿DA边从点D开始向点A以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,用含t的代数式表示AP=,AQ=,并求出当t为何值时线段AP=AQ.(2)如图2,在不考虑点P的情况下,连接QB,问:当t为何值时△QAB的面积等于长方形面积的.9.某市每年都举行“希望杯”篮球赛,去年初赛阶段,共15支队伍参赛,每两队之间都比赛一场,下表是去年初赛部分队伍的积分榜.队名比赛场次胜场负场积分A 14 10 4 24B 14 9 5 23C 14 4 10 18D 14 0 14 14(1)去年某队的总积分为20分,则该队在比赛中胜了多少场?(2)今年,参赛的队伍比去年有所增加,但因场地受限,组委会决定初赛阶段共安排40场比赛,并将参赛队伍平均分成4个小组,各小组每两队之间都比赛一场,求今年比去年增加了多少支队伍?10.某校八年级学生小阳,小杰和小凡到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为10元/千克,下面是他们在活动结束后的对话.小阳:如果以12元/千克的价格销售,那么每天可售出300千克.小杰:如果以15元/千克的价格销售,那么每天可获取利润750元.小凡:我通过调查验证发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?参考答案1.解:(1)设第一周销售苹果x 千克.则销售李子(x ﹣200)千克, 根据题意得:24x +18(x ﹣200)≥13200, 解得:x ≥400,答:第一周至少销售苹果400千克;(2)根据题意得:24(1﹣a %)×400(1+a %)+18×200(1+a %)=13200(1+a %), ∴a 1=,a 2=0(舍去).答:a 的值为2.解:(1)作QH ⊥AB ,垂足为H ,则QH =BC =6, 当t =2时,AP =3×2=6cm ,QC =2×2=4cm , ∴BH =QC =4cm ,∴PH =AB ﹣AP ﹣BH =16﹣6﹣4=6cm , ∵PQ 2=PH 2+QH 2, ∴PQ ==6;(2)设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm ,则QH =BC =6,PQ =10,HP =AB ﹣AP ﹣BH =16﹣5t .∵PQ 2=PH 2+QH 2,可得:(16﹣5t )2+62=102, 解得t 1=4.8,t 2=1.6.故当PQ =10cm 时,t 的值为1.6或4.8秒.3.解:(1)设售卖中山装的销售额为x 元,则售卖旗袍的销售额为(x +1200)元, 根据题意得:≤,解得:x ≤2400.答:售卖中山装的销售额最大为2400元.(2)去年十一月中山装、旗袍的销售量为2400÷120=20(件).根据题意得:120×(1+0.5a%)×20×(1﹣a%)+180×(1+a%)×20×(1﹣a%)=2400+2400+1200﹣300,令m=a%,原方程整理得:40m2+2m﹣3=0,解得:m1=0.25,m2=﹣0.3(不合题意),∴a=25.答:a的值为25.4.解:(1)设该村种植蔬菜的面积为x亩,则种植纽橙的面积为(1000﹣x)亩,根据题意得:x≥4(1000﹣x),解得:x≥800.答:该村种植蔬菜的面积至少为800亩.(2)根据题意得:800(1+3a%)×(1000﹣800)+600(1+a%)×800(1+a%)=[800×(1000﹣800)+600×800]×(1+a%),令m=a%,则原方程可整理得:m2﹣m=0,解得:m1=,m2=0(不合题意,舍去),∴a%=,∴a=20.答:a的值为20.5.解:(1)由题意得:(x﹣40)(﹣2x+240)=2400,解得:x1=60,x2=100,当x=60时,销售量为120千克,则销售成本为40×120=4800(元),超过了3000元,不合题意,舍去,当x=100时,销售量为40千克,则销售成本为40×40=1600(元),低于3000元,符合题意,所以销售单价应定为100元;(2)设平均每次减价的百分比是x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.9(舍去),即平均每次减价的百分比为10%.6.解:(1)购买一个男款书包需x 元,则购买一个女款书包需(x +20)元, 根据题意得30(x +x +20)=200×15, 解得x =40, 则x +20=60,答:购买一个男款书包、一个女款书包分别需40元、60元;(2)根据题意得200×(1+a %)×15×(1﹣a %)=(63﹣30)×40+(56﹣30)×60, 整理得(a %)2=,解得a %=或a %=﹣(舍去), 所以a =20. 答:a 的值为20.7.解:(1)设11月份红桔的进价为每千克x 元,香橙的进价为每千克y 元,依题意有,解得.答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元; (2)依题意有8(1﹣m %)×400(1+m %)+20(1﹣m %)×600(1+2m %)=15200, 解得m 1=0(舍去),m 2=49.6. 故m 的值为49.6.8.解:(1)由题意得:AP =3t ,DQ =2t ,则AQ =6﹣2t , 当AP =AQ 时,3t =6﹣2t ,t =1.2;故答案为:3t ,6﹣2t ; (2)∵,∴,得:t =19.解:(1)设胜一场积x 分,负一场积y 分,由表格数据中知,解得:,设胜m场,则负(14﹣m)场,列方程得:2m+(14﹣m)=20,解得:m=6,答:该队胜6场;(2)由题意可得,每个组比赛场数:40÷4=10场,设每个小组有n支队伍,列方程得:n(n﹣1)=10,解得:n1=5,n2=﹣4(不合题意舍去),所以5×4﹣15=5(支),答:今年比去年增加了5支队伍.10.(1)解:当销售单价为15元/千克时,销售量为:=150(千克).设y与x的函数关系式为:y=kx+b(k≠0),把(12,300),(15,150)分别代入得:,解得,∴y与x的函数关系是:y=﹣50x+900.(2)由题意:(﹣50x+900)(x﹣10)=600,解得x=16或12.销售单价为每千克12元或16元时,每天获取利润600元.。

人教版九年级数学上册第二十一章一元二次方程单元测试卷-(含答案及解析)

人教版九年级数学上册第二十一章一元二次方程单元测试卷-(含答案及解析)

保密★启用前人教版九年级数学上册单元测试卷第二十一章 一元二次方程考试范围:一元二次方程;考试时间:120分钟;试卷总分:120分一、单选题(共30分,每小题3分) 1.下列是一元二次方程的是( )A .2230x x --=B .25x y +=C .112xx += D .10x +=2.方程4x 2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是( )A .4,0,81B .﹣4,0,81C .4,0,﹣81D .﹣4,0,﹣81 3.方程2690x x +-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个根为1-D .没有实数根4.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-5.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定6.已知23-=x x ,则代数式()()()323210x x x x +-+-的值为( ).A .34B .14C .26D .77.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x+k =0的两个实数根,则k 的值是( )A .8B .9C .8或9D .128.用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( ) A .(x ﹣4)2=8B .(x ﹣4)2=40C .(x ﹣8)2=8D .(x ﹣8)2=409.设m 、n 是一元二次方程x 2+3x ﹣7=0的两个根,则m 2+4m +n =( ) A .﹣3 B .4 C .﹣4 D .5 10.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=182二、填空题(共24分,每小题3分) 11.一元二次方程230x -=的解为_______.12.方程220x x -+=与方程2610x x --=的所有实数根的和是______.13.已知m ,n 是方程2310x x +-=的两个根,则22m n +=_________.14.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.15.若关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的最大整数值是__________.16.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程220x x --=是“倍根方程”;①若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=;①若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”;①若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.17.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是__.18.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程 .三、解答题(共66分) 19.解方程:(共8分)(1)()2140x --= (2)()2236x x -=-20.阅读下列材料,解答问题.(共6分)222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.21.方程2ax 10x ++=与方程2x a 0x --=有且只有一个公共根,求a 的值(共6分)22.已知:关于x的方程x2﹣(k+2)x+2k=0(共8分)(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求①ABC的周长.23.一个两位数,个位上的数字比十位上的数字小4,且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.(共6分)24.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为250m的矩形场地?(共6分)25.某单位通过旅行社组织职工去上海世博会.下面是领队与旅行社导游收费标准的一段话:领队:每人的收费标准是多少?导游:如果人数不超过30人,人均旅游费用为120元.领队:超过30人怎样优惠呢?导游:如果超过30人,每增加1人,人均旅游费用就降低2元,但人均旅游费用不得低于90元.该单位按旅行社的收费标准组团参观世博会后,共支付给旅行社4000元.请你根据上述信息,求该单位这次参观世博会的共有几人?(共8分)26.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(共8分)(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?27.如图,长方形ABCD 中(长方形的对边平行且相等,每个角都是90°),AB =6cm ,AD =2cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以2cm/s 的速度向终点B 移动,点Q 以1cm/s 的速度向点D 移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t (s ),问:(共10分)(1)当t =1s 时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t = s 时,以点P ,Q ,D 为顶点的三角形是等腰三角形.(直接写出答案)参考答案:1.A2.C3.B4.D5.A6.C7.B8.D9.B10.B11.1x 2x = 12.6 13.11 14.4a <且0a ≠15.0 16.①①① 17.13 18.x (x +12)=86419.(1)13x =,21x =-;(2)12x =,25x =(1)()2140x --= ()214x -=12x -=或12x -=-13x =,21x =-(2)()2236x x -=- ()()22320x x ---=()()250x x --=20=或50x -=12x =,25x =20.x 1=54,x 2=23 解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,①4x -5=0,3x -2=0,①x 1=54,x 2=23. 21.-2解:∵有且只有一个公共根∴22ax 1x a x x ++=--∴ax 10x a +++=①当a=-1时两个方程完全相同,故a≠-1,①()11a x a -+=+∴1x =-当1x =-时,代入第一个方程可得1-a+1=0解得:2a =22.(1)见解析;(2)5(1)证明:由题意知:Δ=(k +2)2﹣4•2k =(k ﹣2)2,①(k ﹣2)2≥0,即①≥0,①无论取任何实数值,方程总有实数根;(2)解:当b =c 时,Δ=(k ﹣2)2=0,则k =2,方程化为x 2﹣4x +4=0,解得x 1=x 2=2,①①ABC 的周长=2+2+1=5;当b =a =1或c =a =1时,把x =1代入方程得1﹣(k +2)+2k =0,解得k =1,方程化为x 2﹣3x +2=0,解得x 1=1,x 2=2,不符合三角形三边的关系,此情况舍去,①①ABC 的周长为5.23.这个两位数为84.设十位上的数字为x ,则个位上的数字为(x ﹣4).可列方程为:x 2+(x ﹣4)2=10x +(x ﹣4)﹣4解得:x 1=8,x 2=1.5(舍),①x ﹣4=4,①10x +(x ﹣4)=84.答:这个两位数为84.24.用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m )解:设与墙垂直的篱笆长为x m ,则与墙平行的篱笆长为()202x -m ,根据题意,得(202)50x x -=,整理得,210250x x -+=,解得125x x ==,()202202510x m ∴-=-⨯=.答:用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m ).25.30X120="3600" ①3600小于4000,①参观的人数大于30人设共有x 人,则人均旅游费为【120-2(x-30)】元由题意得:x 【120-2(x-30)】=4000整理得:x 1=40,x 2=50当x=40时,120—2(40-30)=100大于90当x=50时,120—2(50.30)=80.小于90(不合,舍去)答:该单位这次参观世博会共又40人30×120=3600.①3600<4000,∴参观的人数大于30人,设共有x 人,则人均旅游费为[120﹣2(x ﹣30)]元,由题意得:x [120﹣2(x ﹣30)]=4000解得:x 1=40,x 2=50.当x =40时,120﹣2(40﹣30)=100>90;当x =50时,120﹣2(50﹣30)=80<90(不合,舍去).答:该单位这次参观世博会共有40人.26.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;①21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ①y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,①让顾客得到更大的实惠,①9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.27.(1)5cm 2;(2;(365 解:(1)如图,①四边形ABCD 是矩形,①AB =CD =6,AD =BC =2,①A =①B =①C =①D =90°. ①CQ =1cm ,AP =2cm ,①AB =6﹣2=4(cm ).①S =()14252+⨯=(cm 2). 答:四边形BCQP 面积是5cm 2;(2)如图1,作QE ①AB 于E ,①①PEQ =90°,①①B =①C =90°,①四边形BCQE 是矩形,①QE =BC =2cm ,BE =CQ =t (cm ).①AP =2t (cm ),①PE =6﹣2t ﹣t =(6﹣3t )cm .在Rt △PQE 中,由勾股定理,得(6﹣3t )2+4=9,解得:t 如图2,作PE ①CD 于E ,①①PEQ=90°.①①B=①C=90°,①四边形BCQE是矩形,①PE=BC=2cm,BP=CE=6﹣2t.①CQ=t,①QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t综上所述:t(3)如图3,当PQ=DQ时,作QE①AB于E,①①PEQ=90°,①①B=①C=90°,①四边形BCQE是矩形,①QE=BC=2cm,BE=CQ=t(cm).①AP=2t,①PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.①PQ=DQ,①PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t如图4,当PD=PQ时,作PE①DQ于E,①DE=QE=12DQ,①PED=90°.①①A=①D=90°,①四边形APED是矩形,①PE=AD=2cm.DE=AP=2t,①DQ=6﹣t,①DE=62t-.①2t=62t-,解得:t=65;如图5,当PD=QD时,①AP=2t,CQ=t,①DQ=6﹣t,①PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1t2.综上所述:t 6565。

人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案

人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.把一元二次方程(x+2)(x−3)=2x−6)化为一般形式,并写出它的二次项系数为,一次项系数为,常数项为.2.已知(a2−3a+2)x a2−5a+6+3x+5=0是关于x的一元二次方程,则a=.3.将一元二次方程x2−6x=2化成(x+ℎ)2=k的形式,则ℎ=.4.已知方程x2+bx+4=0的一个根是1,则它的另一根是.5.若关于x的一元二次方程(a−2)x2+4x−a2+2a=0有一个根为0,则a=.6.若关于x的一元二次方程(k−3)x2−4kx+4k=3有实数根,则k的取值范围为.7.已知(x2+y2+1)(x2+y2−3)=5,则x2+y2的值等于.8.若关于x的方程(x+ℎ)2+k=0(h,k均为常数)的解是x1=−3,x2=2则关于y的方程(x+ℎ−3)2+k= 0的解是.9.已知x1,x2是方程x2−x−2024=0的两个实数根,则代数式x13−2024x1+x22的值为.10.若实数m,n分别满足m2+2023m+2024=0,n2+2023n+2024=0且m≠n,则1m +1n的值为.11.已知实数a是关于x的一元二次方程x2−2024x+1=0的一个解,则a3−2024a2−2024a2+1的值是.12.等腰三角形的底边长为6,腰长是方程x2−8x+15=0的一个根,则该等腰三角形的周长为.13.若方程x2−17x+60=0的两个不相等的实数根,恰好是一个直角三角形的两条边长,则此直角三角形的第三条边长是.14.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若方程有一根x=−1,则b−a−c=0;②若a+b+c=0,则b2−4ac≥0;③若方程a(x−1)2+b(x−1)+c=0的两个根是x1=2,x2=5那么方程ax2+bx+c=0的两个根为x1=1x2=4;④若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立.其中正确的有个.(填个数)15.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,若设主干长出x个支干,则可列方程为.16.某型号的手机原来每台售价800元,经过两次降价,且每次降价的百分率相同,现在每台售价为512元,则每次降价的百分率是.17.现有一张矩形纸片,其周长为36cm,将纸片的四个角各剪下一个边长为2cm的正方形,然后沿虚线(如图所示)将纸片折成一个无盖的长方体.如果所得的长方体的底面积是24cm2,设原矩形纸片的长是xcm,那么可列出方程为.18.《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问甲走的步数是.19.如图,在矩形ABCD中AB=10cm,AD=8cm点P从点A出发沿AB以2cm/s的速度向点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点C运动,点P到达终点后,P、Q两点同时停止运动,则秒时,△BPQ的面积是6cm2.20.某工厂生产的某种产品按质量分为10个档次,第一档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产的是第三档的产品时,每件利润为元;(2)若生产第x档的产品一天的总利润为1120元,则该产品的质量档次为第档.参考答案1.解:(x+2)(x−3)=2x−6x2−3x+2x−6=2x−6x2−x−2x−6+6=0x2−3x=0∴一般形式为:x2−3x=0,二次项系数为1,一次项系数为−3,常数项为0.2.解:∴方程(a2−3a+2)x a2−5a+6+3x+5=0是关于x的一元二次方程∴a2−3a+2≠0,a2−5a+6=2解得a≠1且a≠2,a=1或a=4故a=4故答案为:4.3.解:∴ x2−6x=2∴x2−6x+9=11∴(x−3)2=11∴ℎ=−3.故答案为:−3.4.解:设另一根为m,根据根与系数的关系可得:m×1=4∴m=4∴方程x2+bx+4=0的另一个根是4.故答案为:4.5.解:把x=0代入方程(a−2)x2+4x−a2+2a=0得:−a2+2a=0解得a=0或a=2∴方程(a−2)x2+4x−a2+2a=0是关于x的一元二次方程∴a−2≠0∴a≠2.∴a的值为0.故答案为:0.6.解:∵关于x的一元二次方程(k−3)x2−4kx+4k=3有实数根即方程(k−3)x2−4kx+4k−3=0,且k−3≠0∴Δ=(−4k)2−4(k−3)(4k−3)≥0k≠3解得:k≥35∴k的取值范围为k≥3且k≠35且k≠3.故答案为:k≥357.解:设x2+y2=k∴(k+1)(k−3)=5∴k2−2k−3=5,即k2−2k−8=0∴k=4或k=−2∴x2+y2的值一定是非负数∴x2+y2=4.故答案为:48.解:∵关于x的方程(x+ℎ)2+k=0(ℎ,k均为常数)的解是x1=−3x2=2∴(x+ℎ−3)2+k=0的解是x−3=−3或x−3=2,即x1=0x2=5.故答案为:x1=0x2=5.9.解:把x1代入原方程得:x12−x1−2024=0∴x12−2024=x1∴x1,x2是方程x2−x−2024=0的两个实数根∴x1+x2=−ba =1x1⋅x2=ca=−2024∴x13−2024x1+x22=x1(x12−2024)+x22=x12+x22=(x1+x2)2−2x1⋅x2=12−2×(−2024)=4049;故答案为:4049.10.解:∴实数m,n分别满足m2+2023m+2024=0,n2+2023n+2024=0∴m和n是x2+2023x+2024=0的两个根∴m+n=−2023mn=2024∴1 m +1n=m+nmn=−20232024.故答案为:−2023202411.解:∵实数a是关于x的一元二次方程x2−2024x+1=0的一个解∴a2−2024a+1=0∴a2+1=2024aa2−2024a=−1a3−2024a2−2024 a2+1=a(a2−2024a)−2024 2024a=a×(−1)−1 a=−a−1 a=−a2+1 a=−2024a a=−2024故答案为:−202412.解:∴x2−8x+15=0∴(x−3)(x−5)=0则x−3=0或x−5=0解得x1=3 x2=5①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去;②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形所以该等腰三角形的周长为5+5+6=16故答案为:16.13.解:解方程x2−17x+60=0得:x=12或5即直角三角形的两边为12或5当12为直角边时,第三边为:√122+52=13;当12为斜边时,第三边为:√122−52=√119;故答案为:13或√119.14.解:①若方程有一根x=−1,则a−b+c=0,即b−a−c=0,故①正确;②若a+b+c=0,则可知方程有一个根为x=1则b2−4ac≥0,故②正确;③若方程a(x−1)2+b(x−1)+c=0的两个根是x1=2 x2=5所以方程ax2+bx+c=0的两个根为x1=2−1=1,x2=5−1=4故③正确;④若c是方程ax2+bx+c=0的一个根则ac2+bc+c=0当c≠0时,则一定有ac+b+1=0成立,故④错误.综上分析可知:其中正确的是①②③,共3个.故答案为:3.15.解:设主干长出x个支干,小分支的数量为x⋅x=x2(个)根据题意可列出方程:1+x+x2=91故答案为:1+x+x2=91.16.解:设每次降价的百分率是x∴原来每台售价800元,经过两次降价,且每次降价的百分率相同,现在每台售价为512元∴800×(1−x)2=512∴x1=20%,x2=180%>100%(舍去)∴每次降价的百分率是20%.故答案为:20%17.解:设原矩形纸片的长是x cm,则宽为(18−x)cm长方体纸盒的长为(x−4)cm,宽为(18−x−4)cm,高为2cm,由长方体的底面积是24cm2得:(x−4)(18−x−4)=24.故答案为:(x−4)(18−x−4)=24.18.解:设甲、乙两人相遇的时间为t,则乙走了4t步,甲斜向北偏东方向走了(6t−10)步,则依题意得:102+(4t)2=(6t−10)2整理得:20t2−120t=0解得:t1=6,t2=0(不合题意,舍去)∴4t=4×6=24.故甲走的步数是36.故答案为:36.19.解:设运动时间为t秒,则PB=(10−2t)cm,BQ=tcmBP⋅BQ=6cm2∴S△BPQ=12t(10−2t)=6∴12整理得:t2−5t+6=0解得:t1=2t2=3∴2或3秒时,△BPQ的面积是6cm2.故答案为:2或3.20.解:(1)根据题意得:6+2×2=6+4=10(元)∴若生产的是第三档的产品时,每件利润为10元故答案为:10;(2)根据题意得:生产第x档的产品的产量为:[95−5(x−1)]件生产第x档的产品的每件利润为:[6+2×(x−1)]元则[6+2×(x−1)]×[95−5(x−1)]=1120整理得:x2−18x+72=0解得:x1=6,x2=12(不符合题意,舍去)∴若生产第x档的产品一天的总利润为1120元,则该产品的质量档次为第6档故答案为:6.。

人教版 九年级数学上册 第21章 一元二次方程 单元测试卷

人教版 九年级数学上册 第21章 一元二次方程 单元测试卷

第21章一元二次方程单元测试卷一.选择题(共10小题).1.把方程x2+2(x﹣1)=3x化成一般形式,正确的是()A.x2﹣x﹣2=0B.x2+5x﹣2=0C.x2﹣x﹣1=0D.x2﹣2x﹣1=0 2.下列方程是一元二次方程的是()A.x(x+3)=0B.x2﹣4y=0C.x2﹣=5D.ax2+bx+c=0(a、b、c为常数)3.下列计算正确的是()A.x2•x3=x6B.(x2﹣)÷x=x﹣1C.x2+x+1=(x+)2+D.+=﹣14.若x=1是方程(m+2)x2﹣2x+m2﹣2m﹣6=0(m为常数)的根,则m的值为()A.﹣2或3B.﹣2C.3D.15.方程(x﹣3)2=1的解为()A.x=1或x=﹣1B.x=4或x=2C.x=4D.x=26.用公式法解方程x2﹣6x+1=0所得的解正确的是()A.B.C.D.7.关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,若x2=2x1,则4b﹣9ac的最大值是()A.1B.C.D.28.一种药品,原来的售价每件200元,连续两次降价后,现在每件售价162元,若每次降价的百分率相同,则平均每次降价()A.8%B.10%C.15%D.20%9.若(a2+b2)(a2+b2﹣3)=4,则a2+b2的值为()A.4B.﹣4C.﹣1D.4或﹣110.某市2020年投入了教育专项经费7200万元,用于发展本市的教育,预计到2022年将投入教育专项经费9800万元,若每年增长率都为x,下列方程正确的是()A.7200(1+x)=9800B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800D.7200x2=9800二.填空题11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛72场,设参加比赛的球队有x支,根据题意,所列方程为.12.若代数式x2+4x+6可以表示为(x+1)2+a(x+1)+3的形式,则a=.13.一元二次方程2x2+6x=﹣5化成一般式为.14.若方程ax2+2x﹣1=0是关于x的一元二次方程,则a的取值范围是.15.一元二次方程x(x+1)=0的两根分别为.16.若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是.17.已知x=1是一元二次方程x2+x+c=0的解,则c的值是.18.把方程x2+2x﹣3=0化成(x+m)2=n的形式,则m+n的值是.19.已知a,b是方程x2﹣3x+1=0的两个实数根,则a2+b2=.20.如果一个直角三角形的三边长为三个连续偶数,则它的周长为.三.解答题21.若(a+1)x|2a﹣1|=5是关于x的一元二次方程,则a是多少,且该一元二次方程的解为多少?22.一元二次方程a(x2+1)+b(x+2)+c=0化为一般式后为6x2+10x﹣1=0,求以a、b 为两条对角线长的菱形的面积.23.(1)解方程:x2﹣2x﹣1=0;(2)解不等式组:.24.解方程:(1)x2﹣x﹣3=0;(2)x2+7x=24+2x.25.如图,在△ABC中,∠C=90.,∠A,∠B,∠C所对的边分别为a,b,c.将形如ax2+cx+b=0的一元二次方程称为“直系一元二次方程”.(1)请直接写出一个“直系一元二次方程”;(2)求证:关于x的“直系一元二次方程”ax2+cx+b=0必有实数根;=3,求(3)若x=﹣1是“直系一元二次方程”ax2+cx+b=0的一个根,且S△ABC的值.26.为提高教学质量,市教育局准备采购若干套投影设备升级各学校教学硬件,经考察,某公司有A、B两种型号的投影设备可供选择.(1)该公司2021年年初每套A型投影设备的售价为2.5万元,经过连续两次降价,年底每套售价为1.6万元,求每套A型投影设备平均下降率n;(2)2021年年底市教育局经过招标,决定采购并安装该公司A,B两种型号的投影设备共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型投影设备售价为1.6万元,每套B型投影设备售价为1.5(1﹣n)万元,则A型投影设备最多可购买多少套?参考答案与试题解析一.选择题1.解:将一元二次方程x2+2(x﹣1)=3x化成一般形式有:x2﹣x﹣2=0,故选:A.2.解:A、x(x+3)=0,是一元二次方程,符合题意;B、x2﹣4y=0,含有两个未知数,最高次数是2,不是一元二次方程,不符合题意;C、x2﹣=5,不是整式方程,不是一元二次方程,不符合题意;D、ax2+bx+c=0(a、b、c为常数),一次项系数可以为任意数,二次项系数一定不能为0,此方程才为一元二次方程,但题目中并没给出这个条件,故此方程不一定是一元二次方程,不符合题意;故选:A.3.解:A、x2•x3=x5,此选项错误,不符合题意;B、(x2﹣)÷x=x﹣,此选项错误,不符合题意;C、x2+x+1=(x+)2+,此选项错误,不符合题意;D、=﹣1,此选项正确,符合题意.故选:D.4.解:把x=1代入(m+2)x2﹣2x+m2﹣2m﹣6=0,得(m+2)﹣2+m2﹣2m﹣6=0.解得m1=﹣2,m2=3.故选:A.5.解:(x﹣3)2=1,开方,得x﹣3=±1,解得:x=4或x=2,故选:B.6.解:∵a=1,b=﹣6,c=1,∴△=(﹣6)2﹣4×1×1=32>0,则x===3±2,故选:D.7.解:∵关于x的方程ax2+bx+c=0有两个不相等的实根x1、x2,∴x1+x2=﹣,∵x2=2x1,∴3x1=﹣,即x1=﹣,∴a+b•(﹣)+c=0,∴﹣+c=0,∴9ac=2b2,∴4b﹣9ac=4b﹣2b2=﹣2(b﹣1)2+2,∵﹣2<0,∴4b﹣9ac的最大值是2,故选:D.8.解:设这种衬衫平均每次降价的百分率为x,根据题意列方程得,200×(1﹣x)2=162,解得x1=0.1,x2=﹣1.9(不合题意,舍去);答:这种衬衫平均每次降价的百分率为10%.故选:B.9.解:设y=a2+b2(y≥0),则由原方程得到y(y﹣3)=4.整理,得(y﹣4)(y+1)=0.解得y=4或y=﹣1(舍去).即a2+b2的值为4.故选:A.10.解:依题意得:7200(1+x)2=9800.故选:B.二.填空题11.解:设参加比赛的球队有x支,依题意得:x(x﹣1)=72.故答案为:x(x﹣1)=72.12.解:(x+1)2+a(x+1)+3=x2+2x+1+ax+a+3=x2+(2+a)x+a+4,由题意知2+a=4且a+4=6,解得a=2,故答案为:2.13.解:由2x2+6x=﹣5移项得到:2x2+6x+5=0,故答案是:2x2+6x+5=0.14.解:∵方程ax2+2x﹣1=0是关于x的一元二次方程,∴a≠0,故答案为:a≠0.15.解:方程x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x2=﹣1.故答案为:x1=0,x2=﹣1.16.解:∵关于x的一元二次方程(k﹣2)x2﹣4x+2=0有实数根,∴△≥0且k﹣2≠0,即(﹣4)2﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤4且k≠2.故答案为:k≤4且k≠2.17.解:把x=1代入方程x2+x+c=0,可得1+1+c=0,解得c=﹣2.故答案是:﹣2.18.解:方程整理得:x2+2x=3,配方得:x2+2x+1=4,即(x+1)2=4,∴m=1,n=4,则m+n=1+4=5.故答案为:5.19.解:根据题意得:a+b=3,ab=1,则a2+b2=(a+b)2﹣2ab=32﹣2×1=7,故答案为:7.20.解:∵直角三角形的三边长为连续的偶数,∴可设最小的直角边为x,则另一直角边为x+2,斜边长为x+4.∴根据勾股定理得:x2+(x+2)2=(x+4)2.解得x1=﹣2(不合题意,舍去)x2=6.∴周长为6+8+10=24.故答案是:24.三.解答题21.解:由题意得:|2a﹣1|=2且a+1≠0,解得:a=或a=﹣.当a=时,该方程是x2=5,此时x=±.当a=﹣时,该方程是x2=5,此时x=±.综上所述,a的值是或﹣;该方程的解为x=±或x=±.22.解:ax2+a+bx+2b+c=0ax2+bx+a+2b+c=0∵6x2+10x﹣1=0∴a=6,b=10S=×6×10=30.菱形23.解:(1)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,x﹣1=,x=,∴,;(2),解不等式3x﹣(x﹣2)≥6,得2≥4,解得x≥2;解不等式x+1>,得3x+3>4x﹣1,解得x<4,故不等式组的解集为2≤x<4.24.解:(1)x2﹣x﹣3=0,∵△=b2﹣4ac=6+12=18,∴x=,==,∴x1=,x2=;(2)x2+7x=24+2x,x2+5x﹣24=0,(x﹣3)(x+8)=0,(x﹣3)=0或(x+8)=0,∴x1=3,x2=﹣8.25.解:(1)如;(2)由,又∵c2=a2+b2,∴Δ=2(a2+b2)﹣4ab=2(a﹣b)2≥0,∴该一元二次方程必有实数根;(3)∵x=﹣1是方程的一个根,∴,∴,∴(a﹣b)2=0,即a=b,=3,得:ab=6,由S△ABC∴,∴.26.解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型投影设备年平均下降率n为20%;(2)设A型投影设备可购买m套,则B型投影设备可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤112,解得m≤40,即A型投影设备最多可购买40套.。

初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)

初中数学  人教版  九年级上册  第21章 一元二次方程 单元考试测试卷(含解析答案)

初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。

新人教版第21章一元二次方程单元试卷含答案解析

新人教版第21章一元二次方程单元试卷含答案解析

2020年人教版九年级数学上册单元测试:第21章一元二次方程一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数2.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.03.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或34.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2020﹣a﹣b的值是()A.2020 B.2020 C.2020 D.20205.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1 B.2 C.3 D.46.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=97.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=109.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375 D.2x(2x+10)=37510.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20201,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144二、填空题11.一元二次方程x2﹣3=0的根为.12.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是.13.已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则的值为.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.若x1,x2是方程3x2﹣|x|﹣4=0的两根,则=.16.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为%.三、解答题(共52分)17.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.18.试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.19.已知实数,满足a2+a﹣2=0,求的值.2020实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.21.已知关于x的方程2x2﹣mx﹣2m+1=0的两根x1,x2,且x12+x22=,试求m的值.22.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.23.某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少2020.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?2020年人教版九年级数学上册单元测试:第21章一元二次方程参考答案与试题解析一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据常数项为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:∵x2+5x+m2﹣1=0的常数项为0,∴m2﹣1=0,解得:m=1或﹣1.故选C【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或3【考点】一元二次方程的解.【分析】直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.【解答】解:∵x=1是一元二次方程x2+mx+2=0的一个解,∴1+m+2=0,∴m=﹣3.故选A.【点评】此题比较简单,利用方程的解的定义即可确定待定系数.4.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2020﹣a﹣b的值是()A.2020 B.2020 C.2020 D.2020【考点】一元二次方程的解.【分析】将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.【解答】解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2020﹣a﹣b=2020﹣(a+b)=2020﹣(﹣5)=2020.故选:A.【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.5.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1 B.2 C.3 D.4【考点】根的判别式;一元一次不等式组的整数解.【分析】由于关于x的方程(2﹣a)x2+5x﹣3=0有实数根,分情况讨论:①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.【解答】解:∵关于x的方程(2﹣a)x2+5x﹣3=0有实数根,∴①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2﹣a)≥0,解之得a≤,∴整数a的最大值是4.故选D.【点评】本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意次方程应分是一元二次方程与不是一元二次方程两种情况进行讨论.6.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k ﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375 D.2x(2x+10)=375【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】如果设游泳池的长为xm,那么宽可表示为(x﹣10)m,根据面积为375,即可列出方程.【解答】解:设游泳池的长为xm,那么宽可表示为(x﹣10)m;则根据矩形的面积公式:x(x﹣10)=375;故选A.【点评】本题可根据矩形面积=长×宽,找出关键语来列出方程.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20201,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【专题】压轴题.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.二、填空题11.一元二次方程x2﹣3=0的根为x1=,x2=﹣.【考点】解一元二次方程-直接开平方法.【分析】直接解方程得出答案,注意用直接开平方法.【解答】解:x2﹣3=0,x2=3,x=,x1=,x2=﹣.故答案为:x1=,x2=﹣.【点评】此题主要考查了直接开平方法解方程,题目比较典型,是中考中的热点问题.12.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是3.【考点】换元法解一元二次方程.【专题】换元法.【分析】先设x2+y2=t,则方程即可变形为t(t﹣2)=3,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t(t≥0).则原方程可化为:t(t﹣2)=3,即(t﹣3)(t+1)=0,∴t﹣3=0或t+1=0,解得t=3,或t=﹣1(不合题意,舍去);故答案是:3.【点评】本题考查了换元法﹣﹣解一元二次方程.解答该题时需注意条件:x2+y2=t且t≥0.13.已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则的值为10.【考点】根与系数的关系.【分析】根据===,根据一元二次方程根与系数的关系可得:两根之积与两根之和的值,代入上式计算即可.【解答】解:∵x1、x2是方程x2+6x+3=0的两个实数根,∴x1+x2=﹣6,x1•x2=3.又∵===,将x1+x2=﹣6,x1•x2=3代入上式得原式==10.故填空答案为10.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2.【考点】根与系数的关系.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.若x1,x2是方程3x2﹣|x|﹣4=0的两根,则=.【考点】根与系数的关系.【分析】首先假设x>0或x<0分别讨论,再利用所求根代入得出即可.【解答】解:当x>0,则3x2﹣|x|﹣4=0,可变形为:3x2﹣x﹣4=0,解得:x1=,x2=﹣1(不合题意舍去),当x<0,则3x2﹣|x|﹣4=0,可变形为:3x2+x﹣4=0,解得:x1=﹣,x2=1(不合题意舍去),则=,故答案为:.【点评】此题主要考查了绝对值的性质以及一元二次方程的解法,根据已知利用分类讨论得出是解题关键.16.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为10%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是60(1﹣x),那么第二次后的价格是60(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率为x,依题意列方程:60(1﹣x)2=48.6,解方程得x1=0.1=10%,x2=1.9(舍去).故平均每次降价的百分率为10%.【点评】本题比较简单,考查的是一元二次方程在实际生活中的运用,属较简单题目.三、解答题(共52分)17.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)先计算判别式的值,然后利用求根公式法解方程;(2)先利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程;(3)先变形得到(y﹣1)2﹣2y(y﹣1)=0,然后利用因式分解法解方程.【解答】解:(1)△=(﹣4)2﹣4×2×(﹣5)=56,x==,所以x1=,x2=;(2)x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣;(3)(y﹣1)2﹣2y(y﹣1)=0,(y﹣1)(y﹣1﹣2y)=0,y﹣1=0或y﹣1﹣2y=0,所以y1=1,y2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.18.试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.【考点】配方法的应用;非负数的性质:偶次方.【分析】此题考查了配方法求最值,此题可化为2个完全平方式与一个常数的和的形式.【解答】解:将原式配方得,(x﹣2)2+(y+3)2+2,∵它的值总不小于2;∴代数式x2+y2+6x﹣4y+15的值总是正数.【点评】此题考查了配方法的应用,解题的关键是认真审题,准确配方.19.已知实数,满足a2+a﹣2=0,求的值.【考点】分式的化简求值;解一元二次方程-因式分解法.【专题】计算题.【分析】先解关于a的一元二次方程,求出a的值,并把所给的分式化简,然后把a的值代入化简后的式子计算就可以了.【解答】解:原式===,∵a2+a﹣2=0,∴a1=1,a2=﹣2,∵a1=1时,分母=0,∴a1=1(舍去),当a2=﹣2,原式==2.【点评】这是关于分式化简求值的问题,注意解出a的值必须保证分式有意义,才能代入计算.2020实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】(1)根据规则为:a△b=a2﹣b2,代入相应数据可得答案;(2)根据公式可得(x+2)△5=(x+2)2﹣52=0,再利用直接开平方法解一元二次方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得(x+2)△5=(x+2)2﹣52=0,(x+2)2=25,两边直接开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x1=3,x2=﹣7.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.21.已知关于x的方程2x2﹣mx﹣2m+1=0的两根x1,x2,且x12+x22=,试求m的值.【考点】根与系数的关系.【分析】首先根据一元二次方程根与系数得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2﹣2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【解答】解:∵x1、x2是一元二次方程2x2﹣mx﹣2m+1=0的两个实数根,∴x1+x2=m,x1x2=(﹣2m+1),∵x12+x22=(x1+x2)2﹣2x1x2=,∴m2﹣2×(﹣2m+1)=,解得:m1=3,m2=﹣11,又∵方程x2﹣mx+2m﹣1=0有两个实数根,∴△=m2﹣4×2×(﹣2m+1)≥0,∴当m=﹣11时,△=﹣73<0,舍去;故符合条件的m的值为m=3.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.通过变形可以得到关于待定系数的方程解决问题.22.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.【解答】解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形的边长为【点评】本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.23.某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少2020.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)关键是根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值.【解答】解:(1)设每千克应涨价x元,由题意,得(10+x)(500﹣2020=6000,整理,得x2﹣15x+50=0,解得:x=5或x=10,∴为了使顾客得到实惠,所以x=5.(2)设涨价x元时总利润为y,由题意,得y=10+x)(500﹣2020y=﹣2020+300x+5 000y=﹣2020﹣7.5)2+6125∴当x=7.5时,y取得最大值,最大值为6125元.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多为6125元.【点评】考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.。

人教版九年级上第21章《一元二次方程》单元测试题(含答案解析)

人教版九年级上第21章《一元二次方程》单元测试题(含答案解析)
13.本题答案不唯一,如x(x-1)=0
【解析】
【分析】
首先在-1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.
【详解】
由题意知,另一根为0时,满足-1<x<1,
∴方程可以为:x(x-1)=0,
故答案为:x(x-1)=0(本题答案不唯一).
【点睛】
C.没有实数根D.无法判断
4.已知一元二次方程 ,若 ,则该方程一定有一个根为()
A.0B.1C.2D.-1
5.用配方法解一元二次方程x2﹣6x﹣1=0时,下列变形正确的是( )
A.(x﹣3)2=1B.(x﹣3)2=10C.(x+3)2=1D.(x+3)2=10
6.关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则整数k的最小值是( )
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
9.B
【解析】
分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.
D、是一元二次方程,故此选项正确;
故选D.
【点睛】
此题主要考查了一元二次方程,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
2.D
【解析】
【分析】
把x=1代入x2+px+1=0,即可求得p的值.
详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,

人教新版九年级上学期数学 第21章 一元二次方程 单元练习试卷 含解析

人教新版九年级上学期数学 第21章 一元二次方程 单元练习试卷  含解析

第21章一元二次方程一.选择题(共11小题)1.下列方程是一元二次方程的是()A.x2+=2B.x2﹣5x﹣1=0C.x2﹣2x﹣3D.2x﹣y=02.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣3,23.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.54.方程(x﹣3)2﹣25=0的两根是()A.8和﹣2B.2和﹣8C.5和﹣5D.3和﹣35.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=76.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.7.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或38.关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m≥3C.m≤3且m≠2D.m<39.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn的值为()A.﹣3B.3C.﹣2D.210.已知实数a、b满足5a2+2b2+1=6ab+2a﹣2b,则(a﹣b)2009的值是()A.0B.1C.2D.311.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10B.20C.23D.36二.填空题(共8小题)12.把方程(3x+2)﹣(3x+2)(x﹣5)=49化成一般形式,则一次项系数为.13.已知m是方程式x2+x﹣1=0的根,则式子m3+2m2+2019的值为.14.用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是.15.若关于x的方程(x+a)(x﹣4)=0和x2﹣3x﹣4=0的解完全相同,则a的值为.16.关于x的一元二次方程4ax2+4x+1=0有两相等实数根,则a=.17.如果关于x的一元二次方程x2+x+a=0的一个根是1﹣,那么另一个根是,a的值为18.一批上衣,每件原件500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价后的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速出售,设第一次降价的百分率为x,则可列方程为19.已知矩形ABCD的周长的平方与面积的比为k.则矩形ABCD的较长的一边与较短的一边的长度的比等于.三.解答题(共5小题)20.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.21.今年以来,因生猪受到猪瘟的影响,导致多地猪肉价格连续上涨,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至9月20日,猪肉价格不断上涨,9月20日比年初价格上涨了60%、某市民于某超市今年9月20日购买3千克猪肉花120元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)现在某超市以每千克30元的猪肉进货,按9月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?22.解下列方程:(1)4(x﹣1)2﹣100=0;(2)x2﹣7x﹣18=0;(3)3(3﹣x)2+(x﹣3)=0.23.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.24.如图,长方形草坪ABCD的长AD为40m,宽AB为30m,草坪内有3条直的道路EC,EF和FC,ED=AF.小丽在点E处沿E→D→C方向步行,与此同时小明在点F处沿FC方向以相同的速度步行,经过26秒后两人刚好在点C处相遇,请求出小明步行的速度.参考答案与试题解析一.选择题(共11小题)1.下列方程是一元二次方程的是()A.x2+=2B.x2﹣5x﹣1=0C.x2﹣2x﹣3D.2x﹣y=0【分析】直接利用一元二次方程的定义分别分析得出答案.【解答】解:A、x2+=2,含有分式,不合题意;B、x2﹣5x﹣1=0,是一元二次方程,符合题意;C、x2﹣2x﹣3,是二次三项式,不是方程;D、2x﹣y=0,是二元一次方程,不合题意.故选:B.2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣3,2【分析】将方程化为一般式,【解答】解:方程x2﹣3=2x,即x2﹣2x﹣3=0的二次项系数是1、一次项系数是﹣2、常数项是﹣3,故选:A.3.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.5【分析】将x=1代入已知方程,得到关于b的方程,通过解该方程求得b的值即可.【解答】解:把x=1代入2x2+3x﹣b=0,得2+3﹣b=0.解得b=5.故选:D.4.方程(x﹣3)2﹣25=0的两根是()A.8和﹣2B.2和﹣8C.5和﹣5D.3和﹣3【分析】移项后,两边开平方即可得.【解答】解:∵(x﹣3)2﹣25=0,∴(x﹣3)2=25,则x﹣3=5或x﹣3=﹣5,解得x=8或x=﹣2,故选:A.5.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=7【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.【解答】解:∵2x2﹣8x﹣3=0,∴2x2﹣8x=3,则x2﹣4x=,∴x2﹣4x+4=+4,即(x﹣2)2=,故选:B.6.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.【分析】利用求根公式求出解即可.【解答】解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.7.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或3【分析】由整体思想,用因式分解法解一元二次方程求出x2﹣x的值就可以求出结论.【解答】解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.8.关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m≥3C.m≤3且m≠2D.m<3【分析】讨论:当m﹣2=0,方程变形为2x+1=0,此一元一次方程有解;当m﹣2≠0,方程为一元二次方程,利用判别式的意义得到则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,然后综合两种情况即可得到m的范围.【解答】解:当m﹣2=0,即m=2时,方程变形为2x+1=0,解得x=﹣;当m﹣2≠0,则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.9.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn的值为()A.﹣3B.3C.﹣2D.2【分析】根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.【解答】解:∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,∴m+n=﹣2,mn=﹣1,则m+n+mn=﹣2﹣1=﹣3.故选:A.10.已知实数a、b满足5a2+2b2+1=6ab+2a﹣2b,则(a﹣b)2009的值是()A.0B.1C.2D.3【分析】将已知等式配方成几个非负数的和为0的形式,可求a、b的值,再代值计算.【解答】解:由已知,得(4a2﹣4ab+b2)+(a2﹣2ab+b2)﹣2(a﹣b)+1=0,即(2a﹣b)2+(a﹣b﹣1)2=0,∴,解得,∴(a﹣b)2009=(﹣1+2)2009=1.故选:B.11.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10B.20C.23D.36【分析】可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,然后根据已知条件得到关于x的方程.【解答】解:当药品第一次降价%时,其售价为100﹣100a%=100(1﹣a%);当药品第二次降价x后,其售价为100(1﹣a%)2.∴100(1﹣a%)2=64.解得:a=20或a=﹣180(舍去),故选:B.二.填空题(共8小题)12.把方程(3x+2)﹣(3x+2)(x﹣5)=49化成一般形式,则一次项系数为﹣16.【分析】方程整理为一般形式,确定出一次项系数即可.【解答】解:方程整理得:3x+2﹣3x2+13x+10=49,即3x2﹣16x+37=0,则一次项系数为﹣16,故答案为:﹣1613.已知m是方程式x2+x﹣1=0的根,则式子m3+2m2+2019的值为2020.【分析】由m是方程的根,可得m2+m=1,变形m3+2m2+2019为m3+m2+m2+2019,然后整体代入得结果;【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m=1∵m3+2m2+2019=m3+m2+m2+2019=m(m2+m)+m2+2019=m+m2+2019=1+2019=2020.故答案为:2020.14.用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是16.【分析】根据配方法可以将题目中的方程变形,然后根据题意即可得到m和n的值,从而可以求得m+n 的值.【解答】解:∵x2﹣mx=1,∴(x﹣)2=1+,∵一元二次方程x2﹣mx=1配方成(x﹣3)2=n,∴,得,∴m+n=6+10=16,故答案为:16.15.若关于x的方程(x+a)(x﹣4)=0和x2﹣3x﹣4=0的解完全相同,则a的值为1.【分析】先分解因式,根据两方程的解相同即可得出答案.【解答】解:x2﹣3x﹣4=0,(x﹣4)(x+1)=0,∵关于x的方程(x+a)(x﹣4)=0和x2﹣3x﹣4=0的解完全相同,∴a=1,故答案为:1.16.关于x的一元二次方程4ax2+4x+1=0有两相等实数根,则a=1.【分析】根据根的判别式得出当△=0时,方程有两个相等的实数根,再求出即可.【解答】解:∵关于x的一元二次方程4ax2+4x+1=0有两相等实数根,∴4a≠0且△=42﹣4•4a•1=0,解得:a=1,故答案为:1.17.如果关于x的一元二次方程x2+x+a=0的一个根是1﹣,那么另一个根是1,a的值为1﹣【分析】设方程另一根为b,根据根与系数的关系得到1﹣+b=﹣,(1﹣)b=a,再求出即可.【解答】解:设方程x2+x+a=0的另一个根为b,则1﹣+b=﹣,(1﹣)b=a,解得:b=﹣1,a=﹣1,故答案为:﹣1,﹣1.18.一批上衣,每件原件500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价后的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速出售,设第一次降价的百分率为x,则可列方程为500(1﹣x)(1﹣2x)=240【分析】先设第次降价的百分率是x,则第一次降价后的价格为500(1﹣x)元,第二次降价后的价格为500(1﹣2x),根据两次降价后的价格是240元建立方程.【解答】解:设第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1﹣x)(1﹣2x)=240,故答案是:500(1﹣x)(1﹣2x)=24019.已知矩形ABCD的周长的平方与面积的比为k.则矩形ABCD的较长的一边与较短的一边的长度的比等于.【分析】根据矩形ABCD的周长的平方与面积的比为k得到相应的等式,整理为整式后,设矩形ABCD的较长的一边与较短的一边的长度的比为未知数,用求根公式求解即可.【解答】解:设矩形的长、宽分别为a、b(a≥b).则=k,即4a2+(8﹣k)ab+4b2=0.两边都除以b2,令t=,则4t2+(8﹣k)t+4=0.解得t=.故答案为:.三.解答题(共5小题)20.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.【分析】根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.【解答】解:把x=﹣1代入x2+2ax+a2=0得1﹣2a+a2=0,解得a1=a2=1,所以a的值为121.今年以来,因生猪受到猪瘟的影响,导致多地猪肉价格连续上涨,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至9月20日,猪肉价格不断上涨,9月20日比年初价格上涨了60%、某市民于某超市今年9月20日购买3千克猪肉花120元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)现在某超市以每千克30元的猪肉进货,按9月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?【分析】(1)利用单价=总价÷数量可求出9月20日猪肉的单价,设今年年初猪肉的价格为每千克x元,根据年初与9月20日猪肉单价间的关系,可得出关于x的一元一次方程,解之即可得出结论;(2)设每千克降价y元,则日销售(100+20y)千克,根据总利润=每千克的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出y值,再将其较大值代入(40﹣y)中即可求出结论.【解答】解:(1)今年9月20日猪肉的价格=100÷2.5=40(元/千克).设今年年初猪肉的价格为每千克x元,依题意,得:(1+60%)x=40,解得:x=25.答:今年年初猪肉的价格为每千克25元.(2)设每千克降价y元,则日销售(100+20y)千克,依题意,得:(40﹣30﹣y)(100+20y)=1120,整理,得:y1=2,y2=3,∵尽可能让顾客优惠,∴y=3,∴40﹣y=37.答:应该每千克定价为37元.22.解下列方程:(1)4(x﹣1)2﹣100=0;(2)x2﹣7x﹣18=0;(3)3(3﹣x)2+(x﹣3)=0.【分析】(1)直接开平方法求解可得;(2)因式分解法求解可得;(3)整理后因式分解法求解可得.【解答】解:(1)4(x﹣1)2﹣100=0,(x﹣1)2=25,∴x﹣1=5或x﹣1=﹣5,解得:x=6或x=﹣4;(2)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,∴x﹣9=0或x+2=0,解得:x=9或x=﹣2;(3)3(3﹣x)2+(x﹣3)=0,因式分解可得:(x﹣3)(3x﹣9+1)=0,即(x﹣3)(3x﹣8)=0,∴x﹣3=0或3x﹣8=0,解得:x=3或x=.23.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.【分析】(1)根据PQ=52利用勾股定理BP2+BQ2=PQ2,求出即可;(2)由(1)得,当△PQB的面积等于7cm2,然后利用根的判别式判断方程根的情况即可;【解答】(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3 x2=﹣1(舍去)∴3秒后,PQ的长度等于2;△PQB的面积不能等于7cm2,原因如下:(2)设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.24.如图,长方形草坪ABCD的长AD为40m,宽AB为30m,草坪内有3条直的道路EC,EF和FC,ED=AF.小丽在点E处沿E→D→C方向步行,与此同时小明在点F处沿FC方向以相同的速度步行,经过26秒后两人刚好在点C处相遇,请求出小明步行的速度.【分析】由矩形的性质得出CD=AB=30,BC=AD=40,∠B=90°,设EDE=AF=x,则DE+CD=x+30,在Rt△BCF中,BF=AB﹣AF=30﹣x,由勾股定理得出CF2=BF2+BC2=(30﹣x)2+402,由题意得DE+CD =CF,得出方程(x+30)2=(30﹣x)2+402,解得x=,求出CF=+30=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴CD=AB=30,BC=AD=40,∠B=90°,设EDE=AF=x,则DE+CD=x+30,在Rt△BCF中,BF=AB﹣AF=30﹣x,∴CF2=BF2+BC2=(30﹣x)2+402,由题意得:DE+CD=CF,∴(x+30)2=(30﹣x)2+402,解得:x=,∴CF=+30=,∴小明步行的速度为÷26=(m/s);答:小明步行的速度为m/s.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第21章一元二次方程》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是( )A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+92.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )A.a<1 B.a≤4 C.a≤1 D.a≥13.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为( )A.10cm B.13cm C.14cm D.16cm4.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是( )A.k≥B.k>C.k<D.k≤5.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是( )A.﹣10 B.10 C.﹣6 D.26.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=07.下列方程有两个相等的实数根的是( )A.x2+x+1=0 B.4x2+2x+1=0 C.x2+12x+36=0 D.x2+x﹣2=08.我省2020年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2020年增速位居全国第一.若2020年的快递业务量达到4.5亿件.设2020年与2020年这两年的平均增长率为x,则下列方程正确的是( )A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.59.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A.10 B.14 C.10或14 D.8或1010.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在题中的横线上11.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22= .12.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为.13.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= .14.将x2+6x+3配方成(x+m)2+n的形式,则m= .15.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n= .16.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .17.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L.18.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= .19.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.2020知若分式的值为0,则x的值为.三、解答题21.某地区2020年投入教育经费2500万元,2020年投入教育经费3025万元.(1)求2020年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2020年该地区将投入教育经费多少万元.22.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.23.白溪镇2020年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2020年达到82.8公顷.(1)求该镇2020至2020年绿地面积的年平均增长率;(2)若年增长率保持不变,2020年该镇绿地面积能否达到100公顷?24.为落实国*务*院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2020年市政府共投资3亿元人民币建设了廉租房12万平方米,2020年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2020年建设了多少万平方米廉租房?25.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?26.先化简,再求值:( +)÷,其中a满足a2﹣4a﹣1=0.27.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.28.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出2020已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?29.已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.《第21章一元二次方程》参考答案与试题解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是( )A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判别式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为( )A .10cmB .13cmC .14cmD .16cm【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设正方形铁皮的边长应是x 厘米,则做成没有盖的长方体盒子的长、宽为(x ﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x 厘米,则没有盖的长方体盒子的长、宽为(x ﹣3×2)厘米,高为3厘米,根据题意列方程得,(x ﹣3×2)(x ﹣3×2)×3=300,解得x 1=16,x 2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D .【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.4.若关于x 的一元二次方程x 2+(2k ﹣1)x+k 2﹣1=0有实数根,则k 的取值范围是( )A .k ≥B .k >C .k <D .k ≤【考点】根的判别式.【专题】计算题.【分析】先根据判别式的意义得到△=(2k ﹣1)2﹣4(k 2﹣1)≥0,然后解关于k 的一元一次不等式即可.【解答】解:根据题意得△=(2k ﹣1)2﹣4(k 2﹣1)≥0,解得k ≤.故选D .【点评】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=﹣2,x 2=4,则m+n 的值是( )A .﹣10B .10C .﹣6D .2【考点】根与系数的关系.【分析】根据根与系数的关系得出﹣2+4=﹣m ,﹣2×4=n ,求出即可.【解答】解:∵关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=﹣2,x 2=4,∴﹣2+4=﹣m ,﹣2×4=n ,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A .【点评】本题考查了根与系数的关系的应用,能根据根与系数的关系得出﹣2+4=﹣m ,﹣2×4=n 是解此题的关键.6.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x 米,则可以列出关于x 的方程是( )A .x 2+9x ﹣8=0B .x 2﹣9x ﹣8=0C .x 2﹣9x+8=0D .2x 2﹣9x+8=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】设人行道的宽度为x 米,根据矩形绿地的面积之和为60米2,列出一元二次方程.【解答】解:设人行道的宽度为x 米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x 2﹣9x+8=0.故选C .【点评】本题考查了由实际问题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.7.下列方程有两个相等的实数根的是( )A .x 2+x+1=0B .4x 2+2x+1=0C .x 2+12x+36=0D .x 2+x ﹣2=0【考点】根的判别式.【分析】由方程有两个相等的实数根,得到△=0,于是根据△=0判定即可.【解答】解:A 、方程x 2+x+1=0,∵△=1﹣4<0,方程无实数根;B、方程4x2+2x+1=0,∵△=4﹣16<0,方程无实数根;C、方程x2+12x+36=0,∵△=144﹣144=0,方程有两个相等的实数根;D、方程x2+x﹣2=0,∵△=1+8>0,方程有两个不相等的实数根;故选C.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根8.我省2020年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2020年增速位居全国第一.若2020年的快递业务量达到4.5亿件.设2020年与2020年这两年的平均增长率为x,则下列方程正确的是( )A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据题意可得等量关系:2020年的快递业务量×(1+增长率)2=2020年的快递业务量,根据等量关系列出方程即可.【解答】解:设2020年与2020年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A.10 B.14 C.10或14 D.8或10【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.【专题】压轴题.【分析】先将x=2代入x 2﹣2mx+3m=0,求出m=4,则方程即为x 2﹣8x+12=0,利用因式分解法求出方程的根x 1=2,x 2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x 的方程x 2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x 2﹣8x+12=0,解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B .【点评】此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.10.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A .x(5+x)=6B .x(5﹣x)=6C .x(10﹣x)=6D .x(10﹣2x)=6【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】一边长为x 米,则另外一边长为:5﹣x ,根据它的面积为6平方米,即可列出方程式.【解答】解:一边长为x 米,则另外一边长为:5﹣x ,由题意得:x(5﹣x)=6,故选:B .【点评】本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在题中的横线上11.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则x 12+x 22= 10 .【考点】根与系数的关系.【专题】计算题;实数.【分析】利用根与系数的关系确定出原式的值即可.【解答】解:∵x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,∴x 1+x 2=2,x 1x 2=﹣3,则原式=(x 1+x 2)2﹣2x 1x 2=4+6=10,故答案为:10【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.12.若x=1是一元二次方程x 2+2x+m=0的一个根,则m 的值为 ﹣3 .【考点】一元二次方程的解.【分析】将x=1代入方程得到关于m 的方程,从而可求得m 的值.【解答】解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.【点评】本题主要考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m 的方程是解题的关键.13.若实数a 、b 满足(4a+4b)(4a+4b ﹣2)﹣8=0,则a+b= ﹣或1 .【考点】换元法解一元二次方程.【分析】设a+b=x ,则原方程转化为关于x 的一元二次方程,通过解该一元二次方程来求x 即(a+b)的值.【解答】解:设a+b=x ,则由原方程,得4x(4x ﹣2)﹣8=0,整理,得16x 2﹣8x ﹣8=0,即2x 2﹣x ﹣1=0,分解得:(2x+1)(x ﹣1)=0,解得:x 1=﹣,x 2=1.则a+b 的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.14.将x 2+6x+3配方成(x+m)2+n 的形式,则m= 3 .【考点】配方法的应用.【专题】计算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.15.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n= 4 .【考点】因式分解-十字相乘法等.【分析】利用多项式乘法去括号,得出关于n的关系式进而求出n的值.【解答】解:∵x2+x+m=(x﹣3)(x+n),∴x2+x+m=x2+(n﹣3)x﹣3n,故n﹣3=1,解得:n=4.故答案为:4.【点评】此题主要考查了多项式乘以多项式,正确去括号得出是解题关键.16.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .【考点】根的判别式.【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.17.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是2020.【考点】一元二次方程的应用.【分析】设每次倒出液体xL,第一次倒出后还有纯药液(40﹣x),药液的浓度为,再倒出xL后,倒出纯药液•x,利用40﹣x﹣•x就是剩下的纯药液10L,进而可得方程.【解答】解:设每次倒出液体xL,由题意得:40﹣x﹣•x=10,解得:x=60(舍去)或x=2020答:每次倒出2020故答案为:2020【点评】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.18.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= 1 .【考点】一元二次方程的定义.【专题】计算题;待定系数法.【分析】根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.【点评】本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.19.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6 .【考点】根的判别式;一元一次方程的解.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.2020知若分式的值为0,则x的值为 3 .【考点】分式的值为零的条件;解一元二次方程-因式分解法.【分析】首先根据分式值为零的条件,可得;然后根据因式分解法解一元二次方程的步骤,求出x的值为多少即可.【解答】解:∵分式的值为0,∴解得x=3,即x的值为3.故答案为:3.【点评】(1)此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.(2)此题还考查了因式分解法解一元二次方程问题,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.三、解答题21.某地区2020年投入教育经费2500万元,2020年投入教育经费3025万元.(1)求2020年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2020年该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2020年要投入教育经费是2500(1+x)万元,在2020年的基础上再增长x,就是2020年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2020年该地区将投入教育经费.【解答】解:设增长率为x,根据题意2020年为2500(1+x)万元,2020年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2020年该地区将投入教育经费3327.5万元.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.22.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.,根据根与系数的关系列出方程组,求出a的值和方程的另一根.(2)设方程的另一根为x1【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;,由根与系数的关系得:(2)设方程的另一根为x1,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.白溪镇2020年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2020年达到82.8公顷.(1)求该镇2020至2020年绿地面积的年平均增长率;(2)若年增长率保持不变,2020年该镇绿地面积能否达到100公顷?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每绿地面积的年平均增长率为x ,就可以表示出2020年的绿地面积,根据2020年的绿地面积达到82.8公顷建立方程求出x 的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设绿地面积的年平均增长率为x ,根据意,得57.5(1+x)2=82.8解得:x 1=0.2,x 2=﹣2.2(不合题意,舍去)答:增长率为2020(2)由题意,得82.8(1+0.2)=99.36公顷,答:2020年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.24.为落实国*务*院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2020年市政府共投资3亿元人民币建设了廉租房12万平方米,2020年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2020年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2020年的投资,列出方程,解方程即可;(2)2020年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2020年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.25.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?【考点】二次函数的应用.【分析】(1)设AB=x米,根据等式x+x+BC=69+3,可以求出BC的表达式;(2)得出面积关系式,根据所求关系式进行判断即可.【解答】解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;(2)小英说法正确;矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,∵72﹣2x>0,∴x<36,∴0<x<36,∴当x=18时,S取最大值,此时x≠72﹣2x,∴面积最大的不是正方形.【点评】本题主要考查二次函数的应用,借助二次函数解决实际问题.其中在确定自变量取值范围时要结合题目中的图形和长>宽的原则,找到关于x的不等式.26.先化简,再求值:( +)÷,其中a满足a2﹣4a﹣1=0.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据a满足a2﹣4a﹣1=0得出(a﹣2)2=5,再代入原式进行计算即可.【解答】解:原式=•=,由a满足a2﹣4a﹣1=0得(a﹣2)2=5,故原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.27.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【考点】根的判别式;解一元二次方程-公式法.【专题】证明题.【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.【解答】(1)证明:△=(m+2)2﹣8m=m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x 1=,x 2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【点评】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.28.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出2020已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】设降价x 元,表示出售价和销售量,列出方程求解即可.【解答】解:降价x 元,则售价为(60﹣x)元,销售量为(300+2020件,根据题意得,(60﹣x ﹣40)(300+2020=6080,解得x 1=1,x 2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.【点评】本题考查了一元二次方程应用,题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.29.已知关于x 的一元二次方程x 2+x+m 2﹣2m=0有一个实数根为﹣1,求m 的值及方程的另一实根.【考点】一元二次方程的解;根与系数的关系.【分析】把x=﹣1代入已知方程列出关于m 的新方程,通过解该方程来求m 的值;然后结合根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为x 2,则﹣1+x 2=﹣1,解得x 2=0.把x=﹣1代入x 2+x+m 2﹣2m=0,得(﹣1)2+(﹣1)+m 2﹣2m=0,即m(m ﹣2)=0,解得m 1=0,m 2=2.综上所述,m 的值是0或2,方程的另一实根是0.【点评】本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.。

相关文档
最新文档