药物代谢动力学PPT课件
合集下载
药物代谢动力学(修正)PPT课件
CHAPTER
药物代谢动力学研究的发展趋势
药物代谢动力学与药效学、药代学、毒理学等多学科的交叉研究,有助于更全面地了解药物在体内的吸收、分布、代谢和排泄过程,为新药研发和临床用药提供更科学、更准确的指导。
跨学科的研究团队和合作机制的建立,可以整合不同领域的专业知识和技术,提高研究效率和成果质量。
多学科交叉研究
随着科技的不断进步,新的技术和方法在药物代谢动力学研究中得到广泛应用。例如,高通量测序技术、质谱技术、核磁共振技术等,可以更准确、更快速地检测和分析药物在体内的代谢产物和代谢过程。
新技术的应用有助于提高药物代谢动力学研究的效率和准确性,缩短新药研发周期,降低研发成本。
新技术新方法的应用
药物代谢动力学与临床药学结合,可以更好地将研究成果应用于临床实践,提高药物的疗效和安全性。
意义
计算方法
用于评估药物在体内的代谢和排泄速率,从而指导临床用药。
通过药代动力学模型计算得出。
03
02
01
速率常数
指当药物在体内达到动态平衡后,体内药量与血药浓度的比值。
定义
用于评估药物在体内的分布情况,从而了解药物的作用部位和作用范围。
意义
与药物的脂溶性、组织亲和力等有关。
影响因素Βιβλιοθήκη 表观分布容积影响代谢的因素
描述药物代谢速度的参数。
代谢速率常数
药物的代谢
药物及其代谢产物从体内排出的过程。
排泄的定义
排泄方式
影响排泄的因素
排泄速率常数
尿液、胆汁、汗液等。
肾小球滤过率、肝肠循环等。
描述药物排泄速度的参数。
药物的排泄
03
CHAPTER
药物代谢动力学参数
描述药物在体内代谢、排泄速度的常数。
药物代谢动力学研究的发展趋势
药物代谢动力学与药效学、药代学、毒理学等多学科的交叉研究,有助于更全面地了解药物在体内的吸收、分布、代谢和排泄过程,为新药研发和临床用药提供更科学、更准确的指导。
跨学科的研究团队和合作机制的建立,可以整合不同领域的专业知识和技术,提高研究效率和成果质量。
多学科交叉研究
随着科技的不断进步,新的技术和方法在药物代谢动力学研究中得到广泛应用。例如,高通量测序技术、质谱技术、核磁共振技术等,可以更准确、更快速地检测和分析药物在体内的代谢产物和代谢过程。
新技术的应用有助于提高药物代谢动力学研究的效率和准确性,缩短新药研发周期,降低研发成本。
新技术新方法的应用
药物代谢动力学与临床药学结合,可以更好地将研究成果应用于临床实践,提高药物的疗效和安全性。
意义
计算方法
用于评估药物在体内的代谢和排泄速率,从而指导临床用药。
通过药代动力学模型计算得出。
03
02
01
速率常数
指当药物在体内达到动态平衡后,体内药量与血药浓度的比值。
定义
用于评估药物在体内的分布情况,从而了解药物的作用部位和作用范围。
意义
与药物的脂溶性、组织亲和力等有关。
影响因素Βιβλιοθήκη 表观分布容积影响代谢的因素
描述药物代谢速度的参数。
代谢速率常数
药物的代谢
药物及其代谢产物从体内排出的过程。
排泄的定义
排泄方式
影响排泄的因素
排泄速率常数
尿液、胆汁、汗液等。
肾小球滤过率、肝肠循环等。
描述药物排泄速度的参数。
药物的排泄
03
CHAPTER
药物代谢动力学参数
描述药物在体内代谢、排泄速度的常数。
药物代谢动力学PPT课件
Administration
immediately distributed evenly around the compartment …..
Stirrer
Excretion
Metabolism
and subjected to loss by metabolic deactivation and excretion.
dC/dt = -Kel
积分得: C = Co - Kel ·t,AUC为直线 方程。
C = 1/2Co时t1,/2 t= = t1/2: 0.5·Co/Kel
**零级消除的t1/2与剂量成正比,是剂量依 赖型半衰期。
*****
零级动力学过程:恒量消除 血药浓度~时间关系(AUC, C~t) :直线 对数血药浓度~时间关系(logC~t): 曲线 半衰期(t1/2 = 0.5·Co/Kel):不恒定,剂量
dC/dt =
dC/dt =
Vm·C
简化为:Vm·C Km + C
= Vm C
这时药物消除速率与药浓无关,为零级动力 学过程, 按最大速率消除。
不管初始剂量如何,体内血药浓度充 分降低后,消除总是符合一级动力学过程。
大多数药物以一级动力学消 除
一级动力学消除特点: 零级动力学消除特点:
1.恒比消除。
依赖 Alcohol,heparin,phenytoin,aspirin:
高浓度时遵循零级动力学消除。
图
消除 5单位/h 2.5单位/h
1.25单位/h
消除2.5单位/h 2.5单位/h 2.5单位/h
一级动力学: 恒比消除
back 图
零级动力学: 恒量消除
3、米氏动力学过程:
immediately distributed evenly around the compartment …..
Stirrer
Excretion
Metabolism
and subjected to loss by metabolic deactivation and excretion.
dC/dt = -Kel
积分得: C = Co - Kel ·t,AUC为直线 方程。
C = 1/2Co时t1,/2 t= = t1/2: 0.5·Co/Kel
**零级消除的t1/2与剂量成正比,是剂量依 赖型半衰期。
*****
零级动力学过程:恒量消除 血药浓度~时间关系(AUC, C~t) :直线 对数血药浓度~时间关系(logC~t): 曲线 半衰期(t1/2 = 0.5·Co/Kel):不恒定,剂量
dC/dt =
dC/dt =
Vm·C
简化为:Vm·C Km + C
= Vm C
这时药物消除速率与药浓无关,为零级动力 学过程, 按最大速率消除。
不管初始剂量如何,体内血药浓度充 分降低后,消除总是符合一级动力学过程。
大多数药物以一级动力学消 除
一级动力学消除特点: 零级动力学消除特点:
1.恒比消除。
依赖 Alcohol,heparin,phenytoin,aspirin:
高浓度时遵循零级动力学消除。
图
消除 5单位/h 2.5单位/h
1.25单位/h
消除2.5单位/h 2.5单位/h 2.5单位/h
一级动力学: 恒比消除
back 图
零级动力学: 恒量消除
3、米氏动力学过程:
药理学第二章药物代谢动力学PPT课件
半衰期(T1/2)
总结词
描述药物在体内消除一半所需时间的参数。
详细描述
半衰期是药物在体内消除一半所需的时间,它是药物代谢动力学的重要参数之一。T1/2值越短,药物 消除越快。药物的消除途径、代谢速率和排泄速率等因素都会影响T1/2值。
清除率(Cl)
总结词
描述肾脏清除药物的能力的参数。
详细描述
清除率是指肾脏清除药物的能力,它是药物代谢动力学的重要参 数之一。Cl值越大,肾脏清除药物的能力越强。药物的排泄速率 、尿液pH值和尿液流量等因素都会影响Cl值。
二室模型
总结词
二室模型考虑了药物在体内分布的不均 匀性,将身体分为中央室和周边室两个 部分。
VS
详细描述
二室模型将身体分为中央室和周边室两个 部分,中央室包括血液和主要的脏器,周 边室包括其他组织。该模型适用于药物在 体内分布不均匀,且在中央室和周边室的 转运速率不同的情况。
微生物模型
总结词
微生物模型是用于描述药物在微生物中的代谢和消除过程的模型,常用于药物制剂的微 生物学质量控制。
05
药物代谢动力学的实际应用
个体化给药方案设计
根据患者的年龄、体重、性别、生理状态等因素,制定个性化的给药方案,确保 药物在体内达到最佳的治疗效果。
通过监测患者的药物代谢情况,调整给药剂量和频率,以实现最佳的治疗效果并 减少不良反应。
新药研发与评价
药物代谢动力学是新药研发的重要环 节,用于评估药物的吸收、分布、代 谢和排泄等特性。
疾病状态
疾病状态可以影响药物的吸收、分布、代谢和排泄,导致药 物代谢动力学参数的变化。
肝肾功能不全的患者对药物的代谢和排泄能力较弱,需要调 整药物剂量。
药理学第2章药物代谢动力学PPT课件
影响药物排泄的因素
肾功能
肾排泄是药物排泄的主要途径,肾功能不全 会影响药物的排泄速度和能力。
肝功能障碍
肝脏是药物代谢的主要器官,肝功能障碍会 影响胆汁排泄。
年龄
儿童和老人的肾功能相对较弱,药物的排泄 速度较慢。
遗传因素
某些药物的排泄速度存在个体差异,与遗传 因素有关。
药物排泄的研究方法
尿液检测
通过收集尿液并测定其中的药物浓度,可以了解 药物排泄的速度和量。
胆汁检测
通过收集胆汁并测定其中的药物浓度,可以了解 胆汁排泄的情况。
皮肤排泄研究
通过皮肤分泌物的测定,可以了解某些药物通过 皮肤排泄的情况。
THANK YOU
感谢聆听
制剂因素
药物的剂型、制备工艺、辅料等 也会影响其吸收。例如,药物的 溶解度、溶出速率等会影响其在 体内的吸收。
80%
生理因素
胃肠道的pH值、胃排空速率、肠 道蠕动等生理因素也会影响药物 的吸收。此外,人体的新陈代谢 和排泄也会影响药物的吸收。
药物吸收的研究方法
动物实验
通过给动物用药,观察其体内 药物浓度的变化,从而了解药 物的吸收特性。
药物代谢动力学的重要性
指导临床合理用药
通过了解药物的代谢动力学特性,可以制定合理的 给药方案,提高治疗效果并降低不良反应的发生率 。
促进新药研发
了解药物的代谢动力学特性是新药研发的重要环节 ,有助于发现潜在的药物候选者并进行优化。
保障用药安全
通过药物代谢动力学研究,可以评估药物的疗效和 安全性,为保障用药安全提供科学依据。
生理屏障
如细胞膜、血脑屏障等生理屏障限制某些药物的 分布。
药物分布的研究方法
01
药物代谢动力学学PPT课件
药物代谢的酶系统
药物代谢的类型与产物
氧化反应
通过加氧的方式将药物转化为极性更强的代谢物,易于排泄。例如,苯妥英钠在肝内氧化为苯妥英。
还原反应
通过加氢的方式将药物还原为更易排泄的形式。例如,硝苯地平在肝内还原为硝苯啶。
水解反应
通过加水的方式将药物分解为更易排泄的形式。例如,阿司匹林在肝内水解为水杨酸。
中药代谢动力学研究
THANKS
感谢您的观看。
半衰期计算公式
半衰期可以反映药物在体内的消除速度,对于制定给药方案和调整用药剂量具有重要的指导意义。同时,半衰期也是判断药物是否易于蓄积中毒的重要依据。
半衰期的意义
半衰期计算
07
CHAPTER
药物代谢动力学在临床上的应用
根据患者的生理、病理状况和药物代谢特征,制定个体化的给药方案,确保药物疗效和安全性。
药物代谢动力学学ppt课件
目录
药物代谢动力学概述 药物吸收 药物分布 药物代谢 药物排泄 药物代谢动力学参数计算 药物代谢动力学在临床上的应用
01
CHAPTER
药物代谢动力学概述
药物代谢动力学是研究药物在体内吸收、分布、代谢和排泄的学科,主要关注药物在体内的动态变化过程。
药物代谢动力学对于新药研发、临床合理用药、药物疗效和安全性评价等方面具有重要意义,是药理学和药物治疗学的重要基础。
清除率的意义
03
清除率可以反映机体对药物的代谢能力,是制定给药方案的重要依据。
清除率计算
1
2
3
表观分布容积是指药物在体内达到动态平衡时,体内药量与血浆药物浓度的比值,是反映药物在体内分布广度的指标。
表观分布容积定义
表观分布容积(Vd)= (总药量)/(血浆药物浓度),其中总药量和血浆药物浓度可通过实验测定。
药物代谢动力学ppt课件
4、经皮给药 脂溶性 促皮吸收剂
精选课件
15
精选课件
16
吸收速度与程度主要取决于药物的理
化性质、剂型、剂量和给药途径。 1)消化道吸收 (1)口腔粘膜:脂溶性药物如硝酸甘油 (舌下给药)以简单扩散方式被吸收。 (2)胃:小的水溶性分子如酒精可自胃
粘膜吸收。 (3)小肠、大肠:大多数药物在小肠被
吸收。
精选课件
44
静脉注射2g磺胺药,其血药浓度为 10mg% , 经 计 算 其 表 观 分 布 容 积 为
D
A、0.5L B、2L
C、5L
D、20L
E、200L
精选课件
45
(三)血浆清除率
每单位时间内能将多少升血中的某药全 部消除(L/min或h)。
消除速率常数(K)
某单位时间内药物被消除的百分速率数。
(2)时量曲线用普通坐标时为曲线,血 药浓度改为对数尺度时呈直线。
精选课件
39精选课件ຫໍສະໝຸດ 40四、药代动力学重要参数
• 生物利用度 • 表观分布容积 • 血浆清除率 • 血浆半衰期
精选课件
41
(一)生物利用度:
不同剂型的药物能吸收并经首过消除 后进入体循环的相对份量及速度。
A(进入体循环药物量) F(生物利用度)=
由于有特殊的转运系统,所以水溶性大分子 物质也能选择性地通过生物膜。
精选课件
7
精选课件
8
(2)影响扩散速度的因素:
①膜两侧的药物浓度差。
②药物的理化性质:分子量小、脂 溶性大、极性小、非解离型的药物易 通过生物膜转运,反之难跨膜转运。
精选课件
9
2、主动转运:是一种逆浓度(或电位) 差的转运。
特点:需要载体,消耗能量,有饱和 现象和竞争性抑制。
精选课件
15
精选课件
16
吸收速度与程度主要取决于药物的理
化性质、剂型、剂量和给药途径。 1)消化道吸收 (1)口腔粘膜:脂溶性药物如硝酸甘油 (舌下给药)以简单扩散方式被吸收。 (2)胃:小的水溶性分子如酒精可自胃
粘膜吸收。 (3)小肠、大肠:大多数药物在小肠被
吸收。
精选课件
44
静脉注射2g磺胺药,其血药浓度为 10mg% , 经 计 算 其 表 观 分 布 容 积 为
D
A、0.5L B、2L
C、5L
D、20L
E、200L
精选课件
45
(三)血浆清除率
每单位时间内能将多少升血中的某药全 部消除(L/min或h)。
消除速率常数(K)
某单位时间内药物被消除的百分速率数。
(2)时量曲线用普通坐标时为曲线,血 药浓度改为对数尺度时呈直线。
精选课件
39精选课件ຫໍສະໝຸດ 40四、药代动力学重要参数
• 生物利用度 • 表观分布容积 • 血浆清除率 • 血浆半衰期
精选课件
41
(一)生物利用度:
不同剂型的药物能吸收并经首过消除 后进入体循环的相对份量及速度。
A(进入体循环药物量) F(生物利用度)=
由于有特殊的转运系统,所以水溶性大分子 物质也能选择性地通过生物膜。
精选课件
7
精选课件
8
(2)影响扩散速度的因素:
①膜两侧的药物浓度差。
②药物的理化性质:分子量小、脂 溶性大、极性小、非解离型的药物易 通过生物膜转运,反之难跨膜转运。
精选课件
9
2、主动转运:是一种逆浓度(或电位) 差的转运。
特点:需要载体,消耗能量,有饱和 现象和竞争性抑制。
药物代谢动力学 ppt课件
PPT课件
40
二、药物的体内过程
微粒体酶 是促进药物生物转化的主要酶系统, 主要存在于肝细胞内质网上,又称肝药酶。其 中主要的氧化酶系是细胞色素P-450
2.需要载体转运,载体对药物有特异的选择性。 3.有饱和现象 4. 如果两个药物均由相同的载体转运,则它们之间存在竞争 性抑制现象
PPT课件
14
二、药物的体内过程
吸收 (absorption) 药物自给药部位进入血液循环的过程称为吸收。
影响药物吸收的因素
药物的理化性质及剂型;
给药途径;
吸收环境
PPT课件
15
PPT课件
16
给药途径
❖ 1.口服给药(小肠是口服给药的主要吸收部位)
❖ 口服药物在胃肠粘膜吸收后,首先经门静脉进入肝脏,当通过肠粘膜及肝 脏时部分药物发生转化,使进入体循环的有效药量减少,这种现象称首关 消除。
❖ 2.舌下给药
❖ 3.直肠给药(直肠给药是指通过肛门将药物送入肠管,通过直肠粘膜的迅 速吸收进入大循环 ,发挥药效以治疗全身或局部疾病的给药方法。其主要 方法有三:①保留灌肠法, ②直肠点滴法,③栓剂塞入法。)
PPT课件
33
胎盘屏障
PPT课件
34
血眼屏障
❖ 循环血液与眼内组织间的屏障。药物很难从血液中进入 房水、晶状体、玻璃体 眼部疾病需全身给药结合局部滴 眼和眼周边注射
PPT课件
35
二、药物的体内过程
代谢
(matabolism) 药物在体内发生的化学结构的变化称为代谢,又称生物 转化(biotransformation)。
二、药物的体内过程
影响药物分布的因素 1 药物与血浆蛋白的结合
2 药物与组织的亲和力
药理学 药物代谢动力学ppt课件
34
血脑屏障 (Bloodbrain barrier, BBB)
脑组织内的毛细血 管内皮细胞紧密相 连,内皮细胞之间 无间隙,且毛细血 管外表面几乎均为 星形胶质细胞包围 ,这种特殊结构形 成了血浆与脑脊液 之间的屏障。
35
36
37
四、生物转化/代谢 ( biotransformation/ metabolism)
30
1、药物与血浆蛋白结合
D:游离型药物, DP:结合型药物,PT:血浆蛋白总量,KD:解离常31数
2、体液PH影响
碱化尿液排酸药,酸化尿液排碱药。 细胞内液(PH=7.0),细胞外液 (PH=7.4)→故弱酸药在细胞外浓 度高,而弱碱性在细胞内高。
32
3、血流量与膜的通透性
器官血流量 再分布:早期心、脑、肾,后期脂肪、皮
61
生物利用度 (bioavailability)
绝对生物利用度:把静脉注射和血管外途径 给药时的AUC值进行比较: F= AUCev/AUCiv×100%
相对生物利用度:在同一给药途径下,对不 同制剂进行比较: F=AUC受试制剂/AUC标准制剂×100%
62
第三节 药物消除动力学
药物消除动力学过程是指进人血液循环的 药物由于分布、代谢和排泄,使其血药浓度 不断衰减的过程。
物在尿中离子化,酸化尿液使碱性药物在尿 中离子化,阻止药物重吸收。
50
二)胆汁排泄
由胆汁排入十二指肠的药物有的直接随粪 便排出,但较多的药物可由小肠上皮吸收, 并经肝脏重新进入全身循环,这种肝脏、 胆汁间、小肠的循环称为肝肠循环 (hepatoenteral circulation)。 意义:肝肠循环能延长药物的作用时间, 如洋地黄毒苷。洋地黄中毒,消胆胺可加 速其排泄。
血脑屏障 (Bloodbrain barrier, BBB)
脑组织内的毛细血 管内皮细胞紧密相 连,内皮细胞之间 无间隙,且毛细血 管外表面几乎均为 星形胶质细胞包围 ,这种特殊结构形 成了血浆与脑脊液 之间的屏障。
35
36
37
四、生物转化/代谢 ( biotransformation/ metabolism)
30
1、药物与血浆蛋白结合
D:游离型药物, DP:结合型药物,PT:血浆蛋白总量,KD:解离常31数
2、体液PH影响
碱化尿液排酸药,酸化尿液排碱药。 细胞内液(PH=7.0),细胞外液 (PH=7.4)→故弱酸药在细胞外浓 度高,而弱碱性在细胞内高。
32
3、血流量与膜的通透性
器官血流量 再分布:早期心、脑、肾,后期脂肪、皮
61
生物利用度 (bioavailability)
绝对生物利用度:把静脉注射和血管外途径 给药时的AUC值进行比较: F= AUCev/AUCiv×100%
相对生物利用度:在同一给药途径下,对不 同制剂进行比较: F=AUC受试制剂/AUC标准制剂×100%
62
第三节 药物消除动力学
药物消除动力学过程是指进人血液循环的 药物由于分布、代谢和排泄,使其血药浓度 不断衰减的过程。
物在尿中离子化,酸化尿液使碱性药物在尿 中离子化,阻止药物重吸收。
50
二)胆汁排泄
由胆汁排入十二指肠的药物有的直接随粪 便排出,但较多的药物可由小肠上皮吸收, 并经肝脏重新进入全身循环,这种肝脏、 胆汁间、小肠的循环称为肝肠循环 (hepatoenteral circulation)。 意义:肝肠循环能延长药物的作用时间, 如洋地黄毒苷。洋地黄中毒,消胆胺可加 速其排泄。
药物代谢动力学ppt课件精选全文完整版
• 主动转运(active transport) • 易化扩散(facilitated diffusion)
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。
●胞裂外排(exocytosis)
药物代谢动力学
跨膜转运(Membrane Transfer)
simple diffusion
carrier-mediated
active
facilitated
1. 药物理化性质; 2. 给药途径; 3. 药物剂型; 4. 影响药物从消化道内吸收的主要因素;
药物代谢动力学
1. 药物理化性质:
●分子量; ●脂溶性; ●解离度;
问题:什么样的药物容易被吸收?
药物代谢动力学
2. 给药途径
●常见的给药方式:
静脉 、吸入 、舌下和直肠、肌内注射 、皮下注射 、 口服 、皮肤
药物代谢动力学
(二)吸入(呼吸道给药,inhalation)
�定义:经口鼻吸入的药物从肺泡吸收的给药方式; 肺泡上皮细胞能吸收5 µm左右微粒, 肺泡表面积大(达200m2) ,
●适用于挥发性药物和气体药物,如鼻炎喷雾剂 ;
药物代谢动力学
(三)局部用药
●完整的皮肤吸收能力差 ; �适用于脂溶性高的药或加促皮吸收的药剂,如皮康王、无极膏 。 �问题生活当中,还有哪些是局部给药?
药物代谢动力学
6)药物通过胞膜的速度受药物理化性质的影响;
�药物分子大小; �药物脂溶性; �药物解离状况;
分子量小、脂溶性高、极性小、非解离型的药物容易透过细胞膜。
药物代谢动力学
7)药物通过细胞膜的速度受环境pH的影响
� --------------离子障 ion-trapping �大多数药物为弱酸性或弱碱性;
�原则:药物解离程度脂溶性 跨膜转运 效应。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大脑动脉
大脑静脉
脑脊液
二、药物的体内过程
胎盘屏障
是胎盘绒毛与子宫血窦之间的屏障,其通透性与一般生 物膜(毛细血管)无显著差别。 注意:几乎所有药物都能穿透胎盘屏障进入胚胎循环。 故孕妇用药应谨慎,防止造成胎儿中毒或致畸。 有些药物通过胎盘代谢减低活性,但有些药物则增加活性。 试验证明,天然或人工合成的肾上腺皮质激素,如皮质醇及 泼尼松通过胎盘转化为失活的11-酮衍生物;而地塞米松通过 胎盘不经代谢进入胎儿体内。 因此治疗孕妇疾病,可用泼尼松;治疗胎儿疾病宜用地塞米松。
特点:①不耗能;
②载体具有高度特异性;
③饱和现象;
易化扩散
一、药物; 极性大小; 药物的解离度。
一、药物的跨膜转运
主动转运 (active transport)
即逆浓度或电位梯度的转运,药物由低浓度一侧向高浓度一侧转运。 特点: 1.在转运过程中消耗能量;
肝药酶的特点 ➢特异性不高 ➢活性和含量是不稳定且个体差异大 ➢药物可影响其活性。
药酶诱导剂
凡能使肝药酶的活性增强或合成加速的药物。它 可加速药物自身和其它药物的代谢。如:苯巴比 妥、苯妥英、利福平等。
药酶抑制剂
凡能使药酶活性降低或合成减少的药物。它能减 慢其他药物的代谢,使药效增强。如:氯霉素、 对氨基水杨酸、异烟肼。
药物的吸收、分布、排泄需要通过体内的生物膜, 这个过程称为药物的跨膜转运。
一、药物的跨膜转运
吸收
被动转运
转运 分布 方式
药
排泄
主动转运
物
转化 代谢
被动转运
简单扩散 滤过 易化扩散
一、药物的跨膜转运
被动转运是药物依赖于膜两侧的浓度差,从浓度 高的一侧向浓度低的一侧扩散渗透,直到两侧药 物浓度达到平衡
4 组织器官血流量 5 体内屏障
药物与血浆蛋白的结合
人体甲状腺细胞内碘的浓度比血液高20~25倍,但 仍然不断吸收碘
脑的重量占体重的2%-3%,但其所需要的血流量则 占心输出量的15%-20%
在一定单位时间内流经双侧肾脏的血量称肾血流 量。肾血流量占安静状态下心输出量的25%
二、药物的体内过程(体内屏障) 血脑屏障,胎盘屏障,血眼屏障 血脑屏障 脑组织内的毛细血管外表面被星形胶质细胞包绕, 其内皮细胞紧密相连之间无间隙,由此构成血浆 与脑脊液之间的特殊屏障。 分子量较大、血浆蛋白结合率较高、极性较大、 脂溶性较小的药不易透过此屏障。
二、药物的体内过程
排 泄 (excretion) 药物在体内经吸收、分布、代谢后,经排泄器 官和分泌器官自体内彻底消除的过程称排泄。
挥发性药物及气体可从呼吸道排出,多数 药物主要由肾排泄,有的也经胆道、乳腺、汗 腺、肠道等排泄。
二、药物的体内过程
肾排泄 肾是药物排泄最重要的器官。药物及其代谢物经肾排泄, 包括肾小球滤过、肾小管分泌及肾小管重吸收三种方式。
代谢的结果
灭活:有活性
活化:无活性
有活性仍然有活性
有毒
无毒
无毒
有毒
无 活性 有活性
代谢方式
氧化,还原,水解,结合
二、药物的体内过程
药 酶 (biotransformation) 药物在肝脏进行生物转化需要酶的参与,简称 药酶。药酶分微粒体酶和非微粒体酶两类。
二、药物的体内过程
微粒体酶 是促进药物生物转化的主要酶系统, 主要存在于肝细胞内质网上,又称肝药酶。其 中主要的氧化酶系是细胞色素P-450 非微粒体酶系 (血液、线粒体)
2.需要载体转运,载体对药物有特异的选择性。 3.有饱和现象 4. 如果两个药物均由相同的载体转运,则它们之间存在竞争 性抑制现象
二、药物的体内过程
吸收 (absorption) 药物自给药部位进入血液循环的过程称为吸收。
影响药物吸收的因素 药物的理化性质及剂型; 给药途径; 吸收环境
给药途径
1.口服给药(小肠是口服给药的主要吸收部位) 口服药物在胃肠粘膜吸收后,首先经门静脉进入肝脏,当通过肠粘膜及肝脏 时部分药物发生转化,使进入体循环的有效药量减少,这种现象称首关消除。
2.舌下给药
3.直肠给药(直肠给药是指通过肛门将药物送入肠管,通过直肠粘膜的迅速 吸收进入大循环 ,发挥药效以治疗全身或局部疾病的给药方法。其主要方 法有三:①保留灌肠法, ②直肠点滴法,③栓剂塞入法。)
简单扩散是被动转运的主要形式,也是最重要的 一种转运方式。
特点:是在转运过程中不消耗能量;
不需载体,无饱和性;
滤过
药物分子借助流体静压或渗透压随体液通过细胞膜的水性通道,由 细胞膜的一侧到达另一侧称为滤过(filtration)
易化扩散
易化扩散又称载体转运。指一些不溶于脂质而与机 体生理代谢有关的物质如葡萄糖、氨基酸、核苷 酸等借助细胞膜上的某些特异性蛋白质-通透酶 而扩散。
4.注射给药(静脉iv、肌内注射im、皮下SC)
5.吸入给药(支气管哮喘) 6.皮肤黏膜给药
二、药物的体内过程
分布 (distribution) 药物吸收后从血循环到达 机体有关部位和组织器官的过程
二、药物的体内过程
影响药物分布的因素 1 药物与血浆蛋白的结合
2 药物与组织的亲和力
3 体液的PH值
影响药物排泄因素: 尿量 尿液pH值 尿液pH值的改变可影响药物排泄。尿液偏酸 性时,弱碱性药物解离型多,脂溶性低,重吸收少,排 泄多,而弱酸性药物则相反。
胎盘屏障
血眼屏障
循环血液与眼内组织间的屏障。药物很难从血液中进入房水、晶状 体、玻璃体 眼部疾病需全身给药结合局部滴眼和眼周边注射
二、药物的体内过程
代谢
(matabolism) 药物在体内发生的化学结构的变化称为代谢,又称生物 转化(biotransformation)。
大多数药物主要在肝脏,部分药物也可在其 它组织,如肠肾肺血浆
第三章药物代谢动力学
药物代谢动力学
药物的跨膜转运 药物的体内过程 药物的速率过程
药物代谢动力学
药物代谢动力学(pharmacokinetics)研究药物的体内过程及药物在 体内浓度随时间变化的动态规律。
药物
药物效应动力学
机体
药物代谢动力学
一、药物的跨膜转运
药物的体内过程:指药物由进入体内到药物从体内 消除的过程,包括吸收、分布、代谢、排泄四个 部分。