平均变化率与一元二次方程
实际问题与一元二次方程2——平均变化率问题
平均变化率问题 4.(4分)(2013· 兰州)据调查,2011年5月兰州市的房价 均价为7 600元/m2,2013年同期将达到8 200元/m2,假设
这两年兰州市房价的平均增长率为x,根据题意,所列方
程为( C )
A.7 600(1+x%)2=8 200 B.7 600(1-x%)2=8 200 C.7 600(1+x)2=8 200
15.(10分)(2013·巴中)某商场今年2月份的营业额为400 万元,3月份的营业额比2月份增加10%,5月份的营业额 达到633.6万元,求3月份到5月份营业额的月平均增长率. 解:设3月份到5月份营业额的月平均增长率为x,根据
题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=
D.7 600(1-x)2=8 200
5.(4分)某商品的原价为289元,经过连续两次降价后售
价为256元,设平均每次降价的百分率为x,则下面所列方
程中正确的是( A ) A.289(1-x)2=256 B.256(1-x)2=289
C.289(1-2x)=256 D.256(1-2x)=289
6.(4分)(2013· 黔西南)某机械厂七月份生产零件50万个 ,第三季度生产零件196万个,设该厂八、九月份平均每 月的增长率为x,那么x满足的方程是( C ) A.50(1+x)2=196 B.50+50(1+x)2=196 C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196
解是否符合 实际意义 .
,传染性很强,曾有2人同时患 上甲肝,在一天内,一人能传染x人,经过两轮传染后共有
128人患上甲肝,则x的值为( D )
A.10 B.9 C.8 D.7 2.(4分)有一人患了流感,经过两轮后共有225人患上此 病,求每轮传染中平均一人传染了几人?设每轮传染中平 均一人传染了x个人,则可列方程 1+x+(1+x)x=225.
最新北师版九年级初三数学上册《营销问题及平均变化率问题与一元二次方程》名师精品教案
第2课时 营销问题及平均变化率问题与一元二次方程教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合题意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。
(n 为相距时间)原数(1 - 平均减少率)n = 。
例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。
最新部编人教版九上数学实际问题与一元二次方程(1)平均变化率问题习题
分层训练
A组
3. 某药品经过两次降价,每瓶零售价由168元降为108
元.已知两次降价的百分率相同,设每次降价的百分率
为x,根据题意列方程得 A. 168(1-x)2=108
( A)
B. 168(1-x2)=108
C. 168(1-2x)=108
D. 168(1+x)2=108
4. 某市加大对绿化的投资,2016年绿化投资a万元,
解:(1)设11月,12月两月平均每月降价的百分率 是x,则11月份的成交价是14 000(1-x), 12月份的成交价是14 000(1-x)2. ∴14 000(1-x)2=11 340.∴(1-x)2=0.81. ∴x1=0.1=10%,x2=1.9(不合题意,舍去). 答:11月,12月两月平均每月降价的百分率是10%.
(2)如果房价继续回落,按此降价的百分率,你预测 到今年2月份该市的商品房成交均价是否会跌破10 000 元/m2?请说明理由.
(2)会跌破10 000元/m2.理由如下: 如果按此降价的百分率继续回落,估计今年2月份 该市的商品房成交均价为 11 340(1-x)2=11 340×0.81=9 185.4<10 000. 答:今年2月份该市的商品房成交均价会跌破10 000元/m2.
第9课时
实际问题与一元二次方程(1) ——平均变化率问题
典型例题 知识点1:病毒传染问题 【例1】已知有一人患了流感,经过两轮传染后共有64 人患了流感. (1)求每轮传染中平均一个人传染了几个人;
解:(1)设每轮传染中平均一个人传染了x个人. 依题意,得1+x+(x+1)x=64. 解得x1=7,x2=-9(不符题意,舍去). 答:每轮传染中平均一个人传染了7个人.
2.6 第2课时 利用一元二次方程解决营销问题及平均变化率问题
第2课时利用一元二次方程解决营销问题及平均变化率问题1.某种纪念品原价是168元,连续两次降价x%后售价为128元。
下列所列方程中正确的是()A 、168(1+x)2=128 B、168(1-x)2=128 C、128(1+x)2=168 D、128(1-x)2=1682.某超市一月份的营业额为200万元,一,二,三月份的营业额为1000万元,设平均每月的营业额为增长率为x,则由题意列方程为A.200+200×2x=1000B.200(1+x)2=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.某商店6月份的利润是2500元,要使8月份的利润达到3600元,这两个月利润的月平均增长的百分率是多少?4.植树造林是造福子孙后代的善义之举,某中学师生从2005年到2008年四年内共植树1999棵,已知该校2005年植树344棵,2006年植树500棵,如果2006年到2008年的植树棵数的年增长率相同,那么该校2008年植树多少棵?5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数.6.某种服装,平均每天可销售20件,每件盈利44元;若每件降价1元,则每天可多售5件。
如果每天要盈利1600元,每件应降价多少元?7.某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润=月销售量×销售单价-月销售成本.)8.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?9.某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件。
营销问题及平均变化率问题与一元二次方程同步练习
第2课时营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25,解得x 1=0.5,x 2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计营销问题及平均变化率⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.第2课时 营销问题及平均变化率问题与一元二次方程教学目标:知识技能目标通过探索,学会解决有关营销的问题和平均比变化率的问题.过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点:重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:一、创设情境 我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.二、探究归纳例1 阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2. 解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合题意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?归纳:平均增长率(或平均减少率)问题:原数(1 + 平均增长率)n= 。
九年级数学 第一部分课内容 一元二次方程 实际问题与一元二次方程(1)平均变化率问题
拓展提升
(2)今年6月份的快递投递任务是12.1×(1+10%) =13.31(万件). ∵平均每人每月最多可投递0.6万件,∴21名快递投递业 务员能完成的快递投递任务是0.6×21=12.6<13.31. ∴该公司现有的21名快递投递业务员不能完成今年6月 份的快递投递任务.∴需要增加业务员(13.31-12.6) ÷0.6= ≈2(人). 答:该公司现有的21名快递投递业务员不能完成今年6 月份的快递投递任务,至少需要增加2名业务员.
第一部分 新课内容
第二十一章 一元二次方程
第9课时 实际问题与一元二次方程 (1)——平均变化率问题
12/12/2021
核心知识
1. 连续增长两次问题、病毒传染问题:原量×(1+增 长百分率)2=新量. 2. 连续下降两次问题:原量×(1-下降百分率)2=新量.
12/12/2021
典型例题
知识点1:病毒传染问题 【例1】已知有一人患了流感,经过两轮传染后共有64 人患了流感. (1)求每轮传染中平均一个人传染了几个人; (2)如果不及时控制,第三轮将又有多少人被传染?
12/12/2021
巩固训练
6. (2017襄阳)受益于国家支持新能源汽车发展和 “一带一路”发展战略等多重利好因素,我市某汽车零 部件生产企业的利润逐年提高,据统计,2014年利润 为2亿元,2016年利润为2.88亿元. (1)求该企业从2014年到2016年利润的年平均增长率; (2)若2017年保持前两年利润的年平均增长率不变, 则该企业2017年的利润能否超过3.4亿元?
12/12/2021
典型例题
解:(1)设年平均增长率为x. 根据题意,得3(1+x)2=6.75. 解得x1=0.5,x2=-2.5(不符题意,舍去). 答:每年回收旧物的增长率为50%. (2)6.75×(1+50%)=10.125(万件). 答:预测2018年全年回收旧物能够达到10.125万件.
初三数学九年级上册2.6 第2课时 营销问题及平均变化率问题与一元二次方程1教学设计
第2课时营销问题及平均变化率问题与一元二次方程1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x元,根据题意,得(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.经检验,x1=10,x2=30都是原方程的解.当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元.解:设3,4月份销售额的月平均增长率为x.根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25,解得x1=0.5,x2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%. 方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计 营销问题及平均变化率 ⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.。
18.平均变化率问题与一元二次方程
答:水稻每公顷产量的年平均增长率为10%.
例2:某公司去年的各项经营中,一月份的营业额为200万元,一月、二月、三
月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
分析:设这个增长率为x,则
二月份营业额为: 200(1+x) . 200(1+x)2
三月份营业额为:
பைடு நூலகம்
.
根据: 一月、二月、三月的营业额共950万元 . 作为等量关系列方程为: 200+200(1+x) +200(1+x)2=950
典例解析
运用一元二次方程解决平均变化率问题
例1.青山村种的水稻去年平均每公顷产7200千克,今年平均每公顷产8712
千克,求水稻每公顷产量的年平均增长率. 解:设水稻每公顷产量的平均增长率为x.
根据题意, 得
7200(1+x)2=8712.
两边同时除以7200得 (1+x)2=1.21. 直接开平方,得 则 1+x=1.1, x1=0.1, 1+x=-1.1 x2=-1.1(舍去).
解:设这个增长率为x.根据题意,得 200+200(1+x) +200(1+x)2=950 整理方程,得 解这个方程得 x1=-3.5(舍去),x2=0.5. 答:这个增长率为50%. 4x2+12x-7=0,
注意:增长率不可为负,但可以超过1.
总结归纳
知识点
增长率问题
a(1+x)2=b,其中a为增长前 的量,x为增长率,2为增长 次数,b为增长后的量
平均变化率问题 降低率问题
a(1-x)2=b,其中a为降低前的 量,x为降低率,2为降低次 数,b为降低后的量.注意1 与x位置不可调换
人教版九年级数学上册《实际问题与一元二次方程——平均变化率》PPT
答:甲种药品成本的年平均下降率约22.5%
知识点二 年平均下降率
设 一 两 依乙年年题种后后意药乙乙得品种种,成药药6本品品00的成成0(年 本 本1平 为 为-y均)2下=63降6,0600率00000(为(元 元1y1-,,y-y))2 解方程得 y1≈0.225,,y2≈-1.775 答:乙种药品成本的年平均下降率约为 22.5.% 比较:两种药品成本的年平均下降率(相同)
增则长它(们或的降数低量)n关次系后可的表量示是为b,_a_(_1__x_)_n___b____
2注意: (1)1与x的位置不要调换; (2)解这类问题列出方程一般用直接开平方 法。
1.将练习2与练习3中所列方程解答完整. 2.教科书22页6题
(2013·广东)雅安地震牵动着全国人民的心,某单位开展了 “一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
活动一 两年前生产 1吨甲种药品的成本是
5000元,生产1吨乙种药品的成本是6000元, 随着生产技术的进步,现在生产 1吨甲种 药品的成本是3000元,生产1吨乙种药品的 成本是3600元,哪种药品成本的年平均下 降率较大?
思考:成本下降额与成本下降率有何区别?成本下降额较 大的药品,它的成本下降率一定也较大吗?
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增 长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多 少捐款?
解:(1)设捐款增长率为x,则10 000(1+x)2=12 100,解方 程,得x1=0.1=10%,x2=-2.1(不合题意,舍去),故捐款 的增长率为10%
(2)12 100×(1+10%)=13 310(元)
人教版九年级上册数学 21.3 一元二次方程传播问题、平均变化率、几何图形典型题总结
人教版九年级上册数学21.3 一元二次方程传播问题、平均变化率、几何图形典型题总结学生姓名:年级:老师:上课日期:时间:课次:第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费) 解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x=-3.2(舍),x2=0.2,所以2月,3月生产收入1的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x=1.8(舍去).∴平均每次下调的百分率为20%;2(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x)米,宽为(17-x)米,根据草坪的面积为300平方米可列出方程(22-x)(17-x)=300.解法二:根据面积的和差可列方程:22×17-22x-17x+x2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC 向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC与CQ的长,根据面积公式建立方程求解.解:(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得12·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得12(6-x)·2x=12×12×6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于△ABC面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。
第06课 一元二次方程的应用(平均变化率、握手、面积问题)(学生版) 九年级数学上册精品讲义(人教)
第06课一元二次方程的应用(平均变化率、握手、面积问题)课程标准课标解读1.通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一般步骤;2.通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.通过分析实际问题,建立准确的数学模型,从而解决实际问题。
知识精讲知识点01列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释:列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.知识点02一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2.2.常见模型问题常见的类型应用公式进行解答,就会解题就会方便很多,下表就是常见基本公式:(1)增长率问题:a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.“共”或“累计问题”(2)降低率问题:(3)传染问题(4)握手问题(5)送礼问题(6)枝干问题(1)平均增长率:设原价为a ,连续增长两次,价格变为b ,每次增长的百分率为x ,那么:增长第一次价格为:;增长第二次在上一次价格的基础上再乘,即最终价格2(1)a x b +=,得出等量关系;(如果增长三次,就将指数2变换为3即可)“累计问题”:设第一个月为a ,连续增长两个月,累计总数为b ,设平均增长率为x ,则:第一个月为a ,第二个月为,第三个月为,所以三个月累计(2)平均降低率:设原价为a ,连续降价两次,价格变为b ,每次降价的百分率为x ,那么:增长第一次价格为:;增长第二次在上一次价格的基础上再乘,即最终价格,得出等量关系;(3)传染问题:设开始挈带病毒的人数为a ,一个病人一轮传染x 个病人,两轮传染之后一共有b 个人挈带病毒,则:传染轮数挈带病毒人数传染人数第一轮第二轮两轮结束后一共挈带病毒数(4)握手问题:这个问题和求多边形对角线的个数类似,以6个人举例:首先A 站起来,和其余5个人一次握手,共握手5次;然后B 站起来,和其余5个人一次握手,共握手5次;以此类推,每个人都站起来和其余人握手,一共握手:6(61)´-次,但是握手完成后发现,任意两人之间握手2次,重复了一次,因此需要乘以12去重复;也就是一共握手16(61)2创-次。
人教版九年级数学上章节知识点深度解析 第2课时 平均变化率问题与一元二次方程
21.3 实际问题与一元二次方程 第2课时 平均变化率问题与一元二次方程
要点归纳 知识要点 平均变化率及销售问题
1. 平均变化率问题:设 a 为起始量, b 为终止量, n 为增长(降低)量的次数,则平均增长率公式: a (1+ x )n= b ( x 为平均增长率);平均降低率公 式: a (1- x )n= b ( x 为平均x2=20. 当 x =15时,可售出30+2×15=60(件); 当 x =20时,可售出30+2×20=70(件). 所以为尽快减少库存,取 x =20. 答:每件商品降价20元时,商场日盈利可达到 2100元.
123456
谢谢观看
Thank you for watching!
2. 销售问题:销售问题中的关系式:(1)利润= 售价-成本价(进货价);(2)利润率=(利润÷进 价)×100%.
当堂检测 1. 某书店第一天销售500本图书,之后两天的销售量 按相同的增长率增长,第三天的销售量为720本.若 设每天的增长率为 x ,则可列方程为( A ) A. 500(1+ x )2=720 B. 500(1+2 x )=720 C. 500(1- x )2=720 D. 500(1+ x )=720
123456
6. 商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施.经 调查发现,每件商品每降价1元,商场平均每天可多售 出2件.当每件商品降价多少元时,商场日盈利可达到 2100元? 解:设每件商品降价 x 元时,商场日盈利可达到 2100元. 由题意可得方程(50- x )(30+2 x )=2100,
4. 某礼品销售商以每件8元的价格购进纪念品,以每 件10元的价格出售,每天可售出200件.销售商想采 用提高售价的办法来增加利润.经试验,发现这种纪 念品的销售单价每提高1元,每天的销售量就会减少 10件.若销售这种纪念品每天获得的利润为1050元, 则销售单价是 15或23 元.
2第2课时利用一元二次方程解决平均变化率、利润问题PPT课件(华师大版)
当堂练习
1.商场某种商品的进价为每件100元,当售价定为每件150 元时平均每天可销售30件.为了尽快减少库存,商场 决定采取适当的降价措施.经调查发现,每件商品每 降价1元,商场平均每天可多售出2件.设每件商品降 价x元(x为整数).据此规律,请回答: 商场日销售量增加____件,2每x 件商品盈利________元50-x (用含x的代数式表示); 在上述条件不变、销售正常情况下,每件商品降价多 少元时,商场日盈利可到达2 100元?
解:类似于甲种药品成本年平均降落率的计算,由方程 6000 (1 x)2 3600
解方程,得 x1≈0.225, x2≈1.775. 得乙种药品成本年平均降落率为 0.225.
两种药品成本的年平均降落率相等,成本降落额较大的产 品,其成本降落率不一定较大.成本降落额表示绝对变化量, 成本降落率表示相对变化量,两者兼顾才能全面比较对象的变 化状况.
22.3 实践与探索
第2课时 利用一元二次方程解决平均变化率、利润问题
学习目标
1.能列出关于平均变化率、利润问题的一元二次方程;(重点) 2.体会一元二次方程在实际生活中的应用;(重点、难点) 3.经历将实际问题转化为数学问题的过程,提高数学应用意 识.
导入新课
回顾与思考 问题1 列一元二次方程解应用题的步骤是哪些?应该注意 哪些?
每千克核桃应降价多少元? 在平均每天获利不变的情况下,为尽可能让利于顾 客,赢得市场,该店应按原售价的几折出售?
【解析】 设每千克核桃降价x元,利用销售量×每件 利润=2240元列出方程求解即可;
为了让利于顾客因此应降价最多,求出此时的销售单 价即可确定按原售价的几折出售.
解:(1)设每千克核桃应降价x元,根据题意,得
初中数学平均变化率与一元二次方程例题讲解及练习
初中数学实际问题与一元二次方程例题讲解及练习教学内容建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况. 教学目标掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法. 重难点关键1.重点:如何全面地比较几个对象的变化状况.2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况. 教具、学具准备小黑板教学过程一、复习引入(学生活动)请同学们独立完成下面的题目.问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x 元,•则每件平均利润应是(0.3-x )元,总件数应是(500+0.1x ×100) 解:设每张贺年卡应降价x 元则(0.3-x )(500+1000.1x )=120 解得:x=0.1 答:每张贺年卡应降价0.1元.二、探索新知刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;0.30.751000.10.2534=≈,从这些数目看,•好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题.解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+0.25y ×34)=120 即(34-y )(200+136y )=120∴y≈-0.98(不符题意,应舍去)y≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律.(学生活动)例2.两年前生产1t甲种药品的成本是5000元,生产1t•乙种药品的成本是6000元,随着生产技术的进步,现在生产1t甲种药品的成本是3000元,生产1t•乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?老师点评:绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.依题意,得5000(1-x)2=3000解得:x1≈0.225,x2≈1.775(不合题意,舍去)设乙种药品成本的平均下降率为y.则:6000(1-y)2=3600解得:y≈0.225答:两种药品成本的年平均下降率一样大.因此,虽然绝对量相差很多,但其相对量也可能相等.三、巩固练习新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,•平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,•商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?四、应用拓展例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]=250kg,在这个提前(3)月销售成本不超过10000元,那么销售量就不超过1000040下,•求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000解得:x1=80,x2=60当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).五、归纳小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.六、布置作业1.教材P53复习巩固2 综合运用7、9.2.选用作业设计:一、选择题1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().A.12人B.18人C.9人D.10人2.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是().A.12% B.15% C.30% D.50%3.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为().A.600 B.604 C.595 D.605二、填空题1.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.3.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,•则列出的方程是________.三、综合提高题1.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?2.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?3.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a (a>0)个成品,且每个车间每天都生产b (b>0)个成品,质量科派出若干名检验员周一、•周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.(1)这若干名检验员1天共检验多少个成品?(用含a 、b 的代数式表示)(2)若一名检验员1天能检验45b 个成品,则质量科至少要派出多少名检验员?答案:一、1.C 2.B 3.D二、1.2 2.1 3.(1-63x )2=2863三、1.甲:设上升率为x ,则100(1+x )2=121,x=10%乙:设上升率为y ,则200(1+y )2=288,y=20%,那么乙商场年均利润的上升率大.2.设多种x 棵树,则(100+x )(1000-2x )=100×1000×(1+15.2%)•,•整理,•得:•x 2-400x+7600=0,(x-20)(x-380)=0,解得x 1=20,x 2=3803.(1)2222a b +⨯=a+2b 或2253a b +⨯ (2)因为假定每名检验员每天检验的成品数相同.所以a+2b=2103a b +,解得:a=4b 所以(a+2b )÷45b=6b ÷45b=304=7.5(人)所以至少要派8名检验员.。
2022人教版数学《精品 平均变化率与一元二次方程》配套教案(精选)
第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第1课时单项式与单项式、多项式相乘一、新课导入1.导入课题:有一块长方形的大型画布,它的长为5×103cm,宽为3×102cm,你能计算出它的面积吗?画布的面积是(5×103)×(3×102)cm2,你能计算出它的结果是多少吗?2.学习目标:(1)能叙述出单项式乘以单项式,单项式乘以多项式的运算法则.(2)灵活地运用法则进行计算和化简.3.学习重、难点:重点:单项式乘单项式及单项式乘以多项式的运算法则及应用.难点:单项式乘单项式及单项式乘以多项式的运算法则的应用.二、分层学习1.自学指导:(1)自学内容:探究单项式乘以单项式的运算法则.(2)自学时间:5分钟.(3)自学方法:采用“计算、观察、比较、归纳”的学习方法获取结论.(4)自学参考提纲:①怎样计算(5×103)×(3×102)?计算过程中用到哪些运算律及运算性质?(5×103)×(3×102)=5×3×103×102运用了乘法交换律.=(5×3)×(103×102)运用了乘法结合律.=15×105=1.5×106.运用了乘法的运算.②如果将上式中不是指数的数字改为字母,能得到怎样的算式,写出试试看.计算ac5·bc2=ab·c7; 3a2b·2ab3=6a3b4.③通过刚才的尝试,能归纳出单项式与单项式相乘的运算法则吗?④完成教材第99页“练习”第2题.2.自学:学生结合自学参考提纲进行自主探究.3.助学:(1)师助生:①明了学情:抽查不同层次的学生,了解学生完成探究的过程和结果是否正确.②差异指导:引导学困生复习回顾幂的乘方、同底数幂的乘法,积的乘方法则及运算律.(2)生助生:学生之间相互交流帮助解决疑难问题.4.强化:(1)单项式与单项式相乘的法则.(2)计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c).解:(1)10c7;(2)20a2b5c1.自学指导:(1)自学内容:教材第98页例4.(2)自学时间:5分钟.(3)自学方法:认真观察例4解题的过程,注意符号变化和运算顺序.(4)自学参考提纲:①请你回忆同底数幂的乘法、幂的乘方、积的乘方的法则.②计算(2x)3·(-5xy2)时,先算(2x)3,再与(-5xy2)相乘.为什么?因为有理数的混合运算法则为:①先算乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号按小括号、中括号、大括号依次进行.③计算:3x2·5x3=15x5;2ab·5ab2·3a2b=30a4b4;4y·(-2xy2)=-8xy3;(a3b)2·(a2b)3=a12b5.2.自学:结合自学指导,研读课本例题.3.助学:(1)师助生:①明了学情:抽查不同层次学生的计算情况,了解存在的主要问题.②差异指导:对理解运算顺序的确定有困难的学生进行指导.(2)生助生:学生之间相互交流帮助.4.强化:交流与总结:①运算顺序;②运算符号.1.自学指导:(1)自学内容教材第99页到教材第100页例5上面.(2)自学时间:5分钟.(3)自学方法:认真看书,重要的内容打上记号,有疑问的地方做上记号.(4)自学参考提纲:①等式p(a+b+c)=pa+pb+pc,是根据矩形的面积关系得出来的,你能根据分配律得到这个等式吗?②等式p(a+b+c)=pa+pb+pc提供了单项式与多项式相乘的方法,你是如何理解的?③单项式乘以多项式应用了乘法的什么运算律?乘法分配律.④试标出单项式乘以多项式的运算法则中的关键字词.⑤试一试:-2x(x+y)=-2x2-2xy;3ab(a+b)=3a2b+3ab2;-(m-n+2)=-m+n-2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师采取交谈、抽查方式了解自学进度及存在的问题.②差异指导:强调法则要点:“乘多项式的每一项”,“把所得的积相加”,并注意符号法则.(2)生助生:生生互相交流帮助解决疑难.4.强化:(1)运算法则:①文字表达:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.②式子表达:p(a+b+c)=pa+pb+pc.(2)单项式乘以多项式中的每一项,不要漏掉任何一项,并要注意符号的确定,合并同类项之前的项数与多项式的项数相同.(3)计算:(-2a2)·(3ab2-5ab3).=-6a3b2+10a3b31.自学指导:(1)自学内容:教材第100页例5.(2)自学时间:5分钟.(3)自学方法:认真观察例5的计算过程的依据,要注意去括号后的符号变化.(4)自学参考提纲:①标出例5题目中的单项式和多项式.②通过例5尝试归纳单项式乘多项式的计算步骤.③单项式乘以多项式的运算法则,就是把单项式乘以多项式的问题转化为单项式乘以单项式的问题.④思考:结合例5,你能说说当式子中含有负号时的简化方法吗?2.自学:结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生是否领会单项式乘多项式的方法和依据.②差异指导:重点对第(1)、(2)小题符号问题进行指导.(2)生助生:学生之间互助交流解决疑难.4.强化:(1)将单项式乘以多项式转化为单项式乘以单项式的乘法,将新知识转化为已学过的知识.(2)计算:①(-2a)·(2a+1) ②2x2(3x2-5y) ③3a(5a-2b)=-4a2-2a =6x4-10x2y =15a2-6ab(3)根据提示填空:计算:(12ab2-13a2b-6ab)·(-6ab)方法一:原式=12ab2·(-6ab)+(-13a2b)·(-6ab)+(-6ab)·(-6ab)=-3a2b3+2a3b2+36a2b2方法二:原式=12ab2·(-6ab)-13a2b·(-6ab)-6ab·(-6ab).=-3a2b3+2a3b2+36a2b2三、评价1.学生的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、收效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学应由学生根据已有知识(如乘法分配律法则等)自主推导出单项式与单项式、单项式与多项式相乘的法则,充分体现学生课堂上的主体作用,再结合具体问题的解答,由学生间互相交流,体会法则计算的本质,以便灵活应用于解题之中.一、基础巩固(第1题25分,第2题20分,第3题15分,共60分)1.细心填一填.(1)(-2a2b3)(-3ab)=6a3b4;(2)(4×105)·(5×104)=2×1010;(3)(-2ab2)2·(-a2b)3=-4a8b7;(4)(x2-2y)·(-xy)=-x3y+2xy2;(5)(-a2)·(ab+abc)=-a3b-a3bc.2.认真选一选.(1)化简x(2x-1)-x2(2-x)的结果是(B)A.-x3-x 3-x C.-x2-1 3-1(2)化简a(b-c)-b(c-a)+c(a-b)的结果是(B)A.2ab+2bc+2acB.2ab-2bc D.-2bc(3)如图是L形钢条截面,它的面积为(B)A.ac+bcB.ac+(b-c)cC.(a-c)c+(b-c)cD.a+b+2c+(a-c)+(b-c)(4)下列各式中计算错误的是(C)A.2x·(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-12x(2x2-2)=-x3-xD.23x(32x3-3x+1)=x4-2x2+23x3.计算:(3x2+12y-23y2)·(-12xy)3解:原式=(3x2+12y-23y2)·(-18x3y3)=-38x5y3-116x3y4+112x3y5.二、综合应用(每题10分,共20分)4.某地有一块梯形实验田,它的上底为m (m),下底为n (m),高是h (m).(1)用m、n、h表示这块梯形的面积S;(2)当m=8m,n=14m,h=7m时,求S.解:(1)S=12(m+n)h(2)S=12×(8+14)×7=77(m2)5.某商家为了给新产品做宣传,向全社会征集广告用语及商标图案,结果下图商标中标,求此商标图案阴影部分的面积.解:S阴影=14πa2+2a·a-12·3a·a=1 4πa2+12a2三、拓展延伸(每题10分,共20分)6.已知:单项式M、N满足2x(M+3x)=6x2y2+N,求M、N. 解:2x(M+3x)=6x2y2+N,2x·M+6x2=6x2y2+N∴N=6x22x·M=6x2y2M=3xy27.若(a m+1b n+2)·(a2n-1b2m)=a5b3,求m+n的值.解:(a m+1b n+2)(a2n-1b2m)=a5b3a m+2n b2m+n+2=a5b3m+2n=52m+n=3-2∴3m+3n=6∴m+n=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均变化率与一元二次方程
1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.
一、情境导入
月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?
二、合作探究
探究点:用一元二次方程解决增长率问题
【类型一】增长率问题
(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这
种产品产量的年增长率相同.
(1)求2013年到2015年这种产品产量的年增长率;
(2)2014年这种产品的产量应达到多少万件?
解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.
解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).
答:这种产品产量的年增长率为10%.
(2)100×(1+10%)=110(万件).
答:2014年这种产品的产量应达到110万件.
方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.
某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐
月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.
(1)求使用新设备后,2月、3月生产收入的月增长率;
(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)
解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.
解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.
(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.
方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.
【类型二】利润问题
一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?
解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.
解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.
答:该校共购买了80棵树苗.
方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.
【类型三】方案设计问题
菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.
分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.
解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;
(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.
三、板书设计
教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。