七年级数学上册上册数学压轴题专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册上册数学压轴题专题练习(word 版
一、压轴题
1.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.
(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。(写出具体求解过程)
2.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .
(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.
(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.
3.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .
(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;
(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;
(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ
与1的大小关系,并说明理由.
4.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为
AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.
(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;
(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.
(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;
(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.
5.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点
P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点
Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.
6.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若
30COD ∠=,则MON ∠=_______;
(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;
(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.
7.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)
(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;
(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0 ②猜想∠BCE 和α的数量关系,并证明; (3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0 ∠D 1C 1E 1沿数轴的负半轴向左平移t (0 8.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点. (1)若8cm AC ,则EF =______cm ; (2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出 EF 的长度,如果变化,请说明理由; (3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写 出结果不需证明. 9.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长; ②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC +的值不变. 10.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至