5-地物反射特性

合集下载

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析引言典型地物反射波谱测量与特征分析是遥感领域的重要研究内容之一、通过获取地物的反射光谱特性,可以深入了解地物的组成和性质,从而实现地物分类和变化监测等应用。

本文将介绍地物反射光谱测量的方法以及常见的特征分析方法。

一、地物反射光谱测量方法1.无人机航拍法无人机航拍法是一种比较常用的地物反射光谱测量方法。

通过搭载光谱仪等设备的无人机进行航拍,可以获取高分辨率的光谱数据。

这种方法适用于小范围的地物反射光谱测量,可以获取非常详细的地物光谱信息。

2.便携式光谱仪法便携式光谱仪法是一种简便易行的地物反射光谱测量方法。

通过使用便携式光谱仪,可以在不同地点采集地物的光谱数据。

这种方法适用于快速测量大面积范围的地物光谱信息,常用于农业、植被监测等领域。

3.卫星遥感法卫星遥感法是一种广泛应用于大区域地物光谱测量的方法。

通过卫星传感器获取的遥感数据,可以得到地物的反射光谱特性。

这种方法适用于大范围的地物光谱监测和研究。

二、地物反射光谱特征分析方法1.基于统计学的分析方法基于统计学的分析方法通过对光谱数据进行统计学分析,提取地物的光谱特征。

常见的方法有频率统计和概率分布分析。

这些方法能够揭示地物光谱的整体分布规律,帮助区分不同地物类型。

2.基于特征波长的分析方法基于特征波长的分析方法通过找到光谱数据中特定波长的峰值或谷值,来提取地物的光谱特征。

常见的方法有光谱指数法和比值法。

这些方法能够有效提取地物的光谱特征,突出地物的不同性质。

3.基于光谱反射率的分类方法基于光谱反射率的分类方法通过将地物反射光谱与已知地物光谱进行对比,实现地物的分类。

常见的方法有最大似然分类和支持向量机分类。

这些方法通过对光谱数据进行分析,可以将地物进行有效地分类。

三、应用实例1.植被监测通过地物反射光谱测量和特征分析,可以实现对不同植被的监测。

通过提取植被的光谱特征,可以了解植被的生长状况、叶绿素含量等指标,进而对植被进行分类和变化监测。

反射率、地表反照率、比辐射率等大全

反射率、地表反照率、比辐射率等大全

反射率、地表反照率、⽐辐射率等⼤全⼀、反射率1.反射率⼜称光谱反射率,是波长的函数,⼜称为光谱反射率ρ(λ),定义为反射能与⼊射能之⽐:2.⽅向反射率实际物体反射具有⽅向性,对⼊射和反射⽅向严格定义的反射率,为⽅向反射率。

辐射⽅向的定义有微⼩⽴体⾓、任意⽴体⾓、半球全⽅向等。

当⼊射与反射⽅向定义为微⼩⽴体⾓时,成为⼆向性反射。

3.⼆向性反射率分布函数BRDF(Bidirectional Reflectance Distribution Function)是描述表⾯反射特性空间分布的基本参数。

⼆向性反射率因⼦(BRF),⼜称双向反射⽐因⼦,是在⼀定的辐照和观测条件下,⽬标地物的反射辐射通量与同条件下标准参考⾯(理想朗伯反射⾯)的反射辐射通量之⽐。

4.反照率(albedo)⼜称半球反射率,定义为⽬标物的反射出射度与⼊射度之⽐,即单位时间、单位⾯积上各个⽅向出射的总辐射能量M与⼊射的总辐射能量E之⽐,表⽰为:α=M/E。

地表反照率,即⾃然地物的半球反射率。

可以通过遥感成像提供的辐射亮度值L或反射率ρ,⼆向性反射率分布函数BRDF来获得。

5.⽅向-⽅向反射率⼊射能量照明⽅式为平⾏直射光,没有或可以忽略散射光;某个特定⽅向的反射能量与⼊射能量之⽐。

地物双向反射特性主要就是研究⽅向-⽅向反射率波谱。

其定义如下:6半球-⽅向反射率⼊射能量在2p半球空间内均匀分布,与⼊射能量之⽐。

定义如下:7⽅向-半球反射率(DHR)⼊射能量照明⽅式为平⾏直射光,没有或可以忽略散射光; 2p半球空间的平均反射能量与⼊射能量之⽐。

定义如下:式中为2p半球空间内表⾯反射的平均辐亮度值。

8半球-半球反射率就是反照率。

⼊射能量在2p半球空间内均匀分布, 2p半球空间的平均反射能量与⼊射能量之⽐。

若将不严格要求⼊射能量在2p半球空间内均匀分布,半球-半球反射率就是地物反照率。

定义如下:⼆、⽐辐射率⽐辐射率即物体的出射度与同温度的⿊体出射度之⽐:据基尔霍夫定律,对于不透明体有:⽅向⽐辐射率,与⽅向-半球反射率的关系:三、透射率透射率τ定义为透射能与⼊射能之⽐:⼤⽓透射率:m为⼤⽓质量,t为⼤⽓垂直光学厚度;k为衰减/消光系数,x为⼤⽓路径,kx为⼤⽓光学厚度。

地物光谱反射率分析

地物光谱反射率分析

地物光谱反射率分析实习报告实习题目:地物光谱测定实习时间,地点:天山堂前面空地贺兰堂地信专业机房实习目的:认识地物光谱反射率的规律,分析典型地物的光谱特征使用仪器:地物光谱分析仪测量目标的基本信息:草地,裸地,水泥路,红灌丛,绿灌丛环境参数表:气温:18度实习内容,实习步骤:1. 用ASD软件打开外业测量地物光谱数据,去除十条曲线中明显异常曲线打开ASD软件→file→open→选中测得的十条曲线→打开→选择加载的十条数据→view→graph data→在空白处右击→customization dialog→axis→min/max(设置max为1),根据图形删除其中一条或多条异常曲线(在目录中直接删除)2.对符合条件的地物光谱曲线进行处理(导出每种地物的JPG、tab 和平均值.mn数据)①加载符合条件的曲线(方法与步骤1相同)→export→分别选择jpg,设置输出路径和文件名,点击export即可②求每种地物的平均值曲线Process→statistics→选择mean→设置输出路径和文件名即可对于上述导出的平均值曲线,点击export→分别选择text格式,设置输出路径和文件名,点击export即可导出.dat文件3.处理数据①对每种地物的jpg文件,只需要分析其曲线特征(联系地物实际特性来分析其在可见光(380-760nm)和近红外(760-1500nm)之间的光谱特征)②将上述的dat文件(五个)分别用excel打开,并且计算红、绿、蓝波段的平均值,蓝光101-171,绿光171-251,红光281-341,将计算好的五组数据放入新的excel表中,并绘制折线图③将步骤2中的各种地物平均值数据在ASD中打开,方法如步骤1所示,并将其按照jpg格式导出,并对其进行分析。

反射率曲线及分析:0.65um之间,植被的反射率曲线出现了一个小波峰,由于这个波段式可见光波段,说明植物叶绿素对蓝光和红光吸收作用强,而对绿光的反射作用强,在0.7~0.8um之间出现了一个陡坡,到1.1um附近有一峰值,这是植被特有的特征。

地物的光谱特性

地物的光谱特性
➢ 影响地物反射率大小的因素:
入射电磁波的波长 入射角的大小 地表颜色与粗糙度
2. 地物的反射光谱:地物的反射率随入 射波长变化的规律。
1) 地物反射光谱曲线:根据地物反射率 与波长之间的关系而绘成的曲线。地 物电磁波光谱特征的差异是遥感识别 地物性质的基本原理。
2) 不同地物在不同波段反射率存在差异: 雪、 沙漠、湿地、小麦的光谱曲线
2) 微波辐射比红外辐射弱得多,但技术上 可以经过处理来接收。
3) 瑞里—金斯公式
黑体辐射的微波功率与温度成正比, 与波长的平方成反比。
W( )
2kT
2
微波波段与红外波段发射率的比较:不同地 物之间微波发射率的差异比红外发射率要明显得 多,因此,在可见光和红外波段中不易识别的地 物,在微波波段中则容易识别。(表2-6)
6、地物的发射光谱
① 发射光谱:地物的发射率随波长变化的 规律。
② 发射光谱曲线:按照发射率和波长之间 的关系绘成的曲线。
③ 岩石的发射光谱分析(图2-12)
亮度温度:衡量地物辐射特征的重要指标。指等 物体的辐射功率等于某一黑体的辐射功率时, 该黑体的绝对温度即为亮度温度。 The temperature of the black body which radiates the same radiant energy as an observed object is called the brightness temperature of the object. 亮度温度与实地温度的关系:总小于实地温度。
4) 地物的光谱特性具有时间特性和空间特
性。
时间特性
空间特性
地物发射电磁波的能力以发射率作为衡量 标准;地物的发射率是以黑体辐射作为参 照标准。

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析一、实验目的与要求1.实验意义:(1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。

FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。

通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。

(2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。

影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。

不同的地理位置,海拔高度不同。

时间、季节的变化。

地物本身差异、土壤含水量、植被病虫害。

2.实验目的:(1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。

(2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。

认识并掌握典型地物反射光谱特征。

二、实验内容与方法1.实验内容(1)典型地物反射波谱测量选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。

地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。

(2)地物波谱特征分析a)标准波谱库浏览b)波谱库创建c)高光谱地物识别●从标准波谱库选择端元进行地物识别●自定义端元进行地物识别2.实验方法(1)ASD光谱仪简介FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。

整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。

地物的反射光谱与地物波谱特性

地物的反射光谱与地物波谱特性

地物的反射光谱曲线
不同的地物在不 同波段反射率存在差 异。
右图为雪地、小
麦地的光谱曲线。
植物反射波谱特性
由于植物均进行光合 作用,因此各类绿色植物 具有很相似的反射波谱特 性: 在可见光波段 0.55μm(绿光)附近有 反射率为10%-20%的一个 波峰; 在近红外波段0.81.0μm间有一个反射的陡 坡,至1.1μm附近有一个 峰值,形成植被的独有特 征。
地物的反射光谱
物体是反射波谱限于紫外、可见光
和近红外,尤其是后两波段。
物体的反射波谱是特征主要取决于该
物体与入射辐射相互作用的波长选择,即:
对入辐射是反射、吸收和投射的选择性,其 中反射作用是主要的。
地物的反射光谱
地物的反射光谱有如下特征: (1)不同的地物在不同波段反射率存在差异 (如雪地、小麦地的光谱曲线) (2)相同地物光谱曲线有相似性,但是也存在 差异性(如患虫害的小麦与正常小麦的光谱曲线) (3)地物光谱特征具有事件性和空间性(不同 时间与空间光谱特征不同
完善等很多问题仍然缺乏一套系统的、规范的我
国典型地物的波普数据。
国外地物波谱库研究现状

美国NASA于70年代初就初步建立了地
球资源信息系统(ERSIS)。包括植被、土
壤、岩矿和水体等2000余种地物的实验室 反射波谱数据。
地物波谱仪
地物波谱仪
逐渐摆脱“看图识字”的阶段,越来越依赖于地
物波谱特性的研究和发展。
我国地物波谱特性发展现状

地物波谱特性是遥感探测的基础,遥感优
化组合的依据,是定量遥感的技术与应用发展的 先决条件,但我国在地物波谱特性研究中还存在 在很多问题,尽管我国近年引进了一大批代表国 际前沿的地物波谱测试的设备,但其辅助装置不

地物反射率问题回答

地物反射率问题回答

地物反射率地物反射率是指地表面对太阳辐射的反射能力,也就是太阳辐射照射到地表面后,有多少能量被反射回到大气层中。

地物反射率是遥感技术中非常重要的参数之一,它对于遥感图像的解译和应用具有重要的意义。

一、地物反射率的基本概念1.1 反射率的定义反射率(Reflectance)是指光线从介质中穿过另一个介质时发生反向传播并且不被吸收的比例。

在遥感中,反射率通常是指太阳辐射照到地表面后,被地表面反射回来的比例。

1.2 反射率的计算方法在实际应用中,我们可以通过计算不同波段下太阳辐射和地表面反射辐射之间的比值来计算出地物反射率。

具体而言,可以使用如下公式进行计算:ρλ = Lλ / Eλsinθ其中,ρλ表示波长为λ时的地物反射率;Lλ表示波长为λ时接收器接收到的光线辐亮度;Eλ表示波长为λ时太阳入射光线辐亮度;θ表示太阳入射光线与垂直于地表面的夹角。

二、地物反射率的影响因素2.1 地物本身的特性地物反射率受到地物本身特性的影响。

不同类型的地物具有不同的反射率,因此在遥感图像解译中需要考虑到这一点。

例如,植被通常具有较高的反射率,而水体则具有较低的反射率。

2.2 入射角度入射角度也会对地物反射率产生影响。

当太阳光线垂直照射时,地表面接收到的能量最大,此时地物反射率也最高;而当太阳光线偏离垂直方向时,接收到的能量减少,因此地物反射率也会相应降低。

2.3 大气层干扰大气层中存在着吸收、散射等现象,这些现象会影响到遥感图像中地物反射率的精确计算。

为了减小大气层干扰对遥感图像解译造成的影响,在遥感技术中通常采用校正方法来消除大气层干扰。

三、地物反射率的应用3.1 地物分类与识别地物反射率是遥感图像中非常重要的参数之一,它可以用于地物分类和识别。

通过分析不同类型地物的反射率特征,我们可以将遥感图像中的地物进行分类和识别。

例如,在农业生产中,可以利用遥感技术对作物进行监测和管理,以提高作物产量和质量。

3.2 地表覆盖变化监测地表覆盖变化是指地表面上不同类型地物在时间和空间上的分布变化。

(完整版)植物反射波谱特征

(完整版)植物反射波谱特征

健康的绿色植被的光谱反射特征地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。

在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。

健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。

例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。

植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。

除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。

如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。

这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。

从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。

在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。

健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。

植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。

在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。

在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。

许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。

同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

地物反射波谱特征及高光谱成像遥感

地物反射波谱特征及高光谱成像遥感

收稿日期:2008-08-28作者简介:张亚梅(1969-),女,河北秦皇岛人,硕士研究生,主要研究方向为光电工程及自动控制.文章编号:1673-1255(2008)05-0006-06地物反射波谱特征及高光谱成像遥感张亚梅(东北电子技术研究所,辽宁 锦州 121000)摘 要:依据地表物体表面外形特性,物体反射分为镜面反射、漫反射和方向反射.探讨了3类反射的特性曲线,介绍了几种典型的地物类型反射波谱特征,并对影响地物光谱反射特性变化的因素进行了概略描述,以加强对地物电磁波谱特征的认知,及开展与高光谱成像领域相关的遥感图像分析、反演和应用等方面的工作.关键词:地物;反射波谱;高光谱成像;遥感中图分类号:V 443.5 文献标识码:ASpectrum Characteristics of Surface Features Reflectionand High Spectral Imaging Remote SensingZHANG Ya -mei(Northeast Res earch Institute of Electronics Technolo gy ,Jinzhou 121000,china )A bstract :Based on the external features of surface objects ,the objects reflection is divided into mirror surface re -flection ,diffuse reflection and directional reflection .In order to have a deep know ledge of the electromagnetic spectrum characteristics of surface features ,three kinds of reflected characteristic curves are discussed ,and sev -eral types of spectrum characteristics of surface features reflection are introduced .The factors influencing the spectral reflection characteristics of surface features are sum marized and the wo rk on remote sensing image analy -sis ,counterevidence and application related to the field of high spectral imaging are done .Key words :surface features ;reflected spectrum ;high spectral imaging ;remote sensing 自1948年原苏联的克里诺夫出版了有关地物波谱特性研究以来,人们开展了大量的地物波谱特性的观测和研究.20世纪60年代美国为发射地球资源卫星曾全面地开展了地物波谱特性研究,20世纪70年代该项研究进入高潮.目前研究的波段基本覆盖了遥感所使用的波段,测量和研究的对象包括了自然界的植被、土壤、岩石、水体和人工建筑等地物.这些研究对认识遥感成像机理、遥感图像解译、遥感仪器最佳探测波段选择和遥感仪器研制等起到了推动作用.随着遥感应用的深入,遥感信息与地物相互作用的研究有了进一步发展;特别是成像光谱仪的应用,不仅显示了地物波谱特性研究的重要性,而且也推动了这一领域的研究.因为它可以获得图谱合一的信息,可以直接将地物波谱特性和遥感图像结合在一起,在图像分析和应用方面都取得了很好的结果.现代遥感技术的发展,不仅延伸了地物的成像波段范围,而且可以在需要的任何波段独立成像或连续成像,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性,突出特定地物反射峰值波长的微小差异.开展地物可见光和近红外反射波谱特征分析研究是对遥感图像进行数据利用和评价的物理基础[1].1 地物的反射类别及反射特性曲线地物波谱特性是电磁辐射与地物相互作用的一种表现,可见光和近红外波段主要表现地物反射作用和地物的吸收作用.因此,地物反射波谱特征也就第23卷第5期2008年10月 光电技术应用ELECT RO -O PT IC T ECHNO LOG Y APP LICA TI ON Vo l .23,No .5October .2008是指地物可见光和近红外波段波谱特征.根据地表目标物体表面性质的不同,物体反射大体上可以分为3种类型,即镜面反射、漫反射、方向反射(实际物体的反射).镜面反射是指物体的反射满足反射定律.当发生镜面反射时,对于不透明物体,其反射能量等于入射能量减去物体吸收的能量.自然界中真正的镜面很少,非常平静的水面可以近似认为是镜面.漫反射,如果入射电磁波波长λ不变,表面粗糙度h 逐渐增加,直到h 与λ同数量级,这时整个表面均匀反射入射电磁波,入射到此表面的电磁辐射按照朗伯余弦定律反射,其反射辐照亮度是一个常数,这种反射面又叫朗伯面.实际地物表面由于地形起伏,在某个方向上反射最强烈,称为方向反射,是介于镜面和朗伯面(漫反射)之间的一种反射.自然界中绝大多数地物的反射都属于这种类型的反射,又叫非朗伯面反射.它发生在地物粗糙度继续增大的情况下,反射具有各向异性,即实际物体面在有入射波时各个方向都有反射能量,但大小不同.从空间对地面观察时,对于平面地区,并且地面物体均匀分布,可以看成漫反射;对于地形起伏和地面结构复杂的地区,为方向反射.图1示出了3种反射的情况.图1 3种反射形式反射率是物体的反射辐射通量与入射辐射通量之比,ρ=E r /E ,这个反射率是在理想漫反射体的情况下,整个电磁波长的反射率.实际上由于物体固有的结构特点,对于不同波长的电磁波会产生有选择的反射,例如绿色植物的叶子由于表皮、叶绿素颗粒组成的栅栏组织和多孔薄壁细胞组织构成,如图2所示.入射到叶子上的太阳辐射透过上表皮,蓝、红光辐射能被叶绿素吸收进行光合作用;绿光也吸收了一大部分,但仍反射一部分,所以叶子呈现绿色;而近红外线可以穿透叶绿素,被多孔薄壁细胞组织所反射.因此,在近红外波段上形成强反射.图2 叶子的结构及其反射反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线,光谱反射率ρl =E rlE l.物体的反射波谱的特征主要取决于该物体与入射辐射相互作用的波长选择,即对入射辐射的反射、吸收和透射的选择性,其中反射作用是主要的.物体对入射辐射的选择性作用受物体的组成成分、结构、表面状态以及物体所处环境的控制和影响.在漫反射的情况下,组成成分和结构是控制因素.如图3所示为4种地物的反射光谱特性曲线.从图3中曲线可以看到,雪的反射光谱与太阳光谱最相似,在蓝光0.49μm 附近有个波峰,随着波长增加反射率逐渐降低.沙漠的反射率在橙色0.6μm 附近有峰值,但在长波范围里比雪的反射率要高.湿地的反射率较低,色调发暗灰.小麦叶子的反射光谱与太阳的光谱有很大差别,在绿波处有个反射波峰,在红外部分0.7~0.9μm 附近有一个强峰值.图3 4种地物的反射波谱特性曲线各种物体,由于其结构和组成成分不同,反射特性曲线的形状是不一样的,即便是在某波段相似,甚7第5期 张亚梅:地物反射波谱特征及高光谱成像遥感 至一样,但在另外的波段还是有很大的区别的.例如图4所示的柑桔、番茄、玉米、棉花4种地物的反射特性曲线,在0.6~0.7μm 之间很相似,而其他波长(例如0.75~2.5μm 波段之间)的光谱反射特性曲线形状则不同,有很大差别.图4 4种植物的反射波谱特性曲线2 常见的几种地物类型波谱特征2.1 植被的反射波谱特性由于植物均进行光合作用,所以各类绿色植物具有很相似的反射波谱特性,其特征是:在可见光波段0.55μm (绿光)附近有反射率为10%~20%的一个波峰,两侧0.45μm (蓝)和0.67μm (红)则有2个吸收带.这一特征是由于叶绿素的影响造成的,叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强.在近红外波段0.8~1.0μm 间有一个反射的陡坡,至1.1μm 附近有一峰值,形成植被的独有特征.这是由于植被叶的细胞结构的影响,除了吸收和透射的部分,形成的高反射率.图5 绿色植物反射波谱曲线在中红外波段1.3~2.5μm ,以1.45、1.95μm 和2.7μm 为中心是水的吸收带,受到绿色植物含水量的影响,吸收率大增,反射率下降,形成低谷.而1.5~1.9μm 光谱区反射率增大.绿色植物反射波谱曲线如图5所示[2].植物波谱在上述基本特征下仍有细部差别,这种差别与植物种类、季节、病虫害影响、含水量多少有关系,如图6所示3种类型树木的光谱曲线比较.图6 3种类型树木的光谱曲线比较2.2 土壤的反射波谱特性自然状态下土壤表面的反射率没有明显的峰值和谷值,一般来讲土壤的光谱特性曲线与以下一些因素有关,即:土壤类别、含水量、有机质含量、砂、土壤表面的粗糙度、粉砂相对百分含量等.土壤含水量增加,土壤的反射率就会下降,在水的各个吸收带(1.4、1.9、2.7μm 处附近区间),反射率的下降尤为明显.此外肥力也对反射率有一定的影响.由图7可以看出,土壤反射波谱特性曲线较平滑,因此在不同光谱段的遥感影像上,土壤的亮度图7 3种不同类型土壤在干燥环境下的光谱曲线8 光 电 技 术 应 用 第23卷区别不明显[2].2.3 水体的反射波谱特性水体对0.45~0.56μm 蓝绿光波段透射能力较强,一般深度可达10~20m ,清澈水体可达100m 的深度.同时,水体的反射也主要在蓝绿光波段,其他波段吸收率很强,特别在近红外、中红外波段有很强的吸收带,反射率几乎为零,因此在遥感中常用近红外波段确定水体的位置和轮廓,在此波段的黑白正片上,水体的色调很黑,与周围的植被和土壤有明显的反差,很容易识别和判读.但是当水中含有其他物质时,反射光谱曲线会发生变化.水含泥沙时,由于泥沙的散射作用,可见光波段发射率会增加,峰值出现在黄红区.如图8所示水中含有叶绿素时,近红外波段明显抬高,这些都是影像分析的重要依据.图8 叶绿素含量不同时水体的光谱曲线2.4 岩石的反射波谱特性岩石的反射波谱主要由矿物成分、矿物含量、物质结构等决定.影响岩石矿物波谱曲线的因素包括岩石风化程度、岩石含水状况、矿物颗粒大小、岩石表面光滑程度、岩石色泽等.几种岩石的反射波谱曲线如图9所示.在遥感探测中一般根据所测岩石的具体情况选择不同的波段.2.5 城市道路、建筑物的反射波谱特性在城市遥感影像中,通常只能看到建筑物的顶部或部分建筑物的侧面,特别是建筑材料所构成的屋顶.从图10中可以看出,铁皮屋顶表面成灰色,反图9 几种岩石的反射波谱曲线射率较低而且起伏小,所以曲线较平坦.石棉瓦反射率最高,沥青粘砂屋顶,由于其表面铺着反射率较高的砂石而决定了其反射率高于灰色的水泥平顶.绿色塑料棚顶的波谱曲线在绿波段处有一反射峰值,与植被相似,但它在近红外波段处没有反射峰值,有别于植被的反射波谱.军事遥感中常用近红外波段区分在绿色波段中不能区分的绿色植被和绿色的军事目标.图10 几种建筑物屋顶的波谱特性城市中道路的主要铺面材料为水泥沙地和沥青两大类,少量部分有褐色地,如图11所示,它们的反射波谱特性曲线形状大体相似,水泥沙路在干爽状态下呈灰白色,反射率最高,沥青路反射率最低.图11 几种道路的波谱特性9第5期 张亚梅:地物反射波谱特征及高光谱成像遥感 3 影响地物光谱反射特性变化的因素有很多因素会引起反射率的变化,如:太阳位置、传感器位置、地理位置、地形、季节、气候变化、地面湿度变化、地物本身的变异、大气状况等.太阳位置主要是指太阳高度角和方位角,如果太阳高度角和方位角不同,则地面物体入射照度也就发生变化.为了减小这2个因素对反射率变化的影响,遥感卫星轨道大多设计在同一地方时间通过当地上空,但由于季节的变化和当地经纬度的变化,造成太阳高度角和方位角的变化是不可避免的.传感器位置指传感器的观测角和方位角,一般空间遥感用的传感器大部分设计成垂直指向地面,这样影响较小,但由于卫星姿态引起的传感器指向偏离垂直方向,仍会造成反射率变化.处在不同地理区域的同种地物具有不同的光谱效应,称之为空间效应.除不同地理区域地物本身的变异因素外,不同的地理位置,太阳高度角和方位角、地理景观等都会引起反射率变化,还有海拔高度不同,大气透明度改变也会造成反射率变化.同一地物的反射波谱特性一般随时间季节变化,称之为时间效应,如图12所示的新雪和陈雪反射特性曲线等.即使在很短的时间内,由于各种随机因素的影响(包括外界的随机因素和仪器的响应偏差)也会引起反射率的变化.这种随机因素的影响还表现在同一幅影像中,但是这种因素的影像引起的光谱反射率变化,将在某一个区间中出现,如图13示出了大豆反射率变化的区间.图14所示,同一春小麦在花期、灌浆期、乳熟期、黄叶期的光谱测试所得的结果.可以看出,花期的春小麦反射率明显高于灌浆期和乳熟期.至于黄叶期,由于不具备绿色植物特征,其反射光谱近似于一条斜线.这是因为黄叶的水含量降低,导致在1.45、1.95、2.7μm附近3个水图12 新雪和陈雪的反射特性曲线图13 大豆反射率变化范围图14 同一作物(春小麦)在不同生长阶段的波谱特性曲线吸收带的减弱.当叶片有病虫害时,将使反射率发生较大变化,也有与黄叶期类似的反射率.4 地物反射波谱与高光谱成像地物的波谱特征是遥感识别地物的重要依据,尤其是针对未来航空航天遥感中的成像波谱仪的重要性更加突出.因此开展各种地物的波谱特征测定和研究,不仅是遥感的基础性工作,而且是遥感应用研究中一个重要的内容.美国NASA于19世纪70年代初就初步建立了地球资源信息系统,包括植被、土壤、岩石和水体等2000余种地物的实验室反射波谱数据.从19世纪80年代,我国许多遥感科学研究部门相继建立了10余个地物波谱库,在我国不同的遥感发展时期都起到了积极的推动作用.现代遥感技术的发展,使得地物的成像范围不仅延伸到人们不可见的紫外和红外波长区,而且可以在需要的任何波段独立成像或连续成像.高光谱遥感的光谱分辨率高于百分之一波长达到纳米(nm)数量级,其光谱通道数多达数十甚至数百,使得遥感的波段宽度从早期的0.4μm(黑白摄影)、0.1μm(多光谱扫描)到5nm(成像光谱仪).遥感器10 光 电 技 术 应 用 第23卷波段宽度窄化,针对性更强,可以突出特定地物反射峰值波长的微小差异;同时,成像光谱仪等的应用,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性.如图15所示成像光谱仪的数据特点[3].图15 高光谱成像光谱仪数据示意图 1983年,世界第一台成像光谱仪AIS -1在美国研制成功,并在矿物填图、植被生化特征等研究方面取得了成功,初显了高光谱遥感的魅力.此后,许多国家先后研制了多种类型的航空成像光谱仪.如美国的AVI RIS 、DAIS ,加拿大的FLI 、CASI ,德国的ROSIS ,澳大利亚的Hy Map 等.在经过航空试验和成功运行应用之后,19世纪90年代末期终于迎来了高光谱遥感的航天发展.1999年美国地球观测计划(EOS )的Terra 综合平台上的中分辨率成像光谱仪(MODIS )、号称新千年计划第一星的EO -1,欧洲环境卫星(ENVISAT )上的M ERIS ,以及欧洲的CHRIS 卫星相继升空,宣告了航天高光谱时代的来临.中国也自行研制了更为先进的推帚式成像光谱仪(PH I ),其在可见光到近红外光谱区具有244个波段,光谱分辨率优于5nm .新的成像光谱系统不仅继续在地质和固体地球领域研究中发挥作用,而且在生物地球化学效应研究、农作物和植被的精细分类、城市地物甚至建筑材料的分类和识别方面都有很好的结果.高光谱成像技术是将由物质成分决定的地物光谱与反映地物存在格局的空间影像有机地结合起来,对空间影像的每一个像素都可赋予对它本身具有特征的光谱信息.高光谱图像的分类和识别,主要是基于地物光谱特征的分类识别和基于统计的分类识别2种方法.其中基于地物光谱特征的分类识别,是利用光谱库中已知的光谱数据,采用匹配算法来鉴别和识别图像中地物类型.这种方法既可采用全波长的比较和匹配,也可用感兴趣的光谱特征或部分波长的光谱或光谱组合参量进行匹配,达到分类和识别的目的.5 结 束 语20多年来,高光谱遥感已发展成一个颇具特色的前沿技术,并孕育形成了一门成像光谱学的新兴学科门类.它的出现和发展将人们通过遥感技术观测和认识事物的能力带入了又一次飞跃,续写和完善了光学遥感从全色经多光谱到高光谱的全部影像信息链.由于高光谱遥感影像提供了更为丰富的地(下转第21页)11第5期 张亚梅:地物反射波谱特征及高光谱成像遥感 法.相比之下,其他的数值求解方法则受D的形状限制较大.参考文献[1] Jo hn L ester M iller.P rinciples of Infrared T echnolo gy,APractical G uide to the State of the Art[M].N ew York:Chapman and Hall,1994.[2] Dereniak E L,Boreman G D.I nfrared Detecto rs andSystems[M].New Yor k:John Wiley&Sons,Inc.,1996.[3] Dale Varberg,Edwin J Purcell,Steven E Rigdo n.Calcu-lus[M].8版.北京:机械工业出版社,2003.[4] Press W H,T eukolsky S A,Vetterling W T,e t al.C语言数值算法程序大全[M].2版.傅祖芸,赵梅娜,丁岩,等.北京:电子工业出版社,1995.[5] 杨华中,汪蕙.数值计算方法与C语言工程函数库[M].北京:科学出版社,1996.[6] Mag rab E B,Azarm S,Balachandran B,et al.M A T LAB原理与工程应用[M].高会生,李新叶,胡智奇,等.北京:电子工业出版社,2002.[7] 薛定宇,陈阳泉.高等应用数学问题的MA T LA B求解[M].北京:清华大学出版社,2004.(上接第5页)探测器中注入较大的能量和照射相对较长的时间,从而可能产生较好的作用效果.另外,仅选择单个激光脉冲进行计算,是一个极为简单的静态模型.实际上,激光及探测器的开关门时间一般是周期性的,两者相互作用的关系的严格描述比较复杂.这里仅从激光脉冲波形的角度,做了一点初浅的思考.参考文献[1] 梁作亮,张喜和.超高重复频率Nd:YAG激光器的研制[J].长春光学精密机械学院学报,1992,15(1):30-33.[2] 金锋,翟刚,李晶,等.二极管泵浦声光调Q窄脉冲N d:YA G激光器[J].光电子.激光,2004,15(3):303-306.[3] 王立新,王伟祥,张克非.长脉冲N d:YAG激光器的实验研究[J].应用激光,1999,19(4):159-160.[4] 吴谨,万重怡,刘世明,等.小型T EA CO2激光器的温度特性[J].激光技术,2002,26(6):409-410.[5] 张昭,吴谨,王东蕾,等.长脉冲紫外预电离T E CO2激光器[J].中国激光,2005,32(12):1599-1604.[6] 田兆硕,王祺,王雨三,等.光栅选支电光调Q射频激励波导CO2激光器研究[J].光电子.激光,2000,11(3):282-284.(上接第11页)球表面信息,其应用领域已涵盖地球科学的各个方面,在地质找矿和制图、大气和环境监测、农业和森林调查、海洋生物和物理研究等领域发挥着越来越重要的作用.地物目标反射波谱特征分析研究,除了可以提供遥感图像设计与成像依据外,还可为农业生产、资源调整、灾害预报与评估、工程建设、环境监测、城市发展等提供更加快速可靠的信息服务和辅助决策,因此,蕴含着巨大的经济效益和社会效益.参考文献[1] 浦瑞良.高光谱遥感及其应用[M].北京:高等教育出版社,2000.[2] 贾海峰,刘雪华.环境遥感原理与应用[M].北京:清华大学出版社,2006.[3] 高昆,刘迎辉,倪国强,等.光学遥感图像星上实时处理技术的研究[J].航天返回与遥感,2008(1):11-14.(上接第17页)个视场的M TF都大于0.66,成像质量良好,各项指标都满足成像要求.参考文献[1] 薛鸣球.电影摄影物镜光学设计[M].北京:中国工作出版社,1971:167-168.[2] 刘崇进,史光辉.机械补偿法变焦镜头三个发展阶段的概况和发展方向[J].应用光学,1992,13(2):12-13.[3] 张良.中波红外变焦距系统的光学设计[J].应用光学,2006,27(1):32-34.[4] 陶纯堪,变焦距光学系统设计[M].北京:国防工业出版社,1988:115-117.21第5期 王忆锋等:用蒙特卡罗方法和M A T LAB计算矩形冷屏的视场角 。

常见地物的反射光谱特征

常见地物的反射光谱特征

常见地物的反射光谱特征嘿,朋友们!咱今天来聊聊常见地物的反射光谱特征,这可有意思啦!你看那绿油油的草地,就像一块大自然的绿色绒毯。

它对太阳光的反射可特别啦!绿光被它反射得那叫一个欢快,就好像草地在向我们展示它的生机勃勃呢!这要是跟镜子比,镜子那是直愣愣地全反射,草地可就聪明多了,它知道该把哪些光留下,哪些光送回去。

再说说那清澈的湖水吧,平静得像一面大镜子似的。

但它的反射光谱特征和镜子可不一样哦!水会吸收一些光,然后又把一部分光温柔地反射出来。

就好像湖水有自己的小脾气和喜好,它会挑选着来反射呢!你想想,要是湖水像镜子一样啥都反射,那我们看到的湖水不就成了一个晃眼的大灯泡啦?还有那黄澄澄的沙漠呀,阳光照上去,那反射出来的光都带着一股热气。

沙漠就像个大大咧咧的家伙,啥光都不挑,来者不拒地反射着。

你说它是不是特别豪爽?那树林呢,就像是一个神秘的绿色城堡。

树叶们把阳光玩得团团转,有的光被吸收了,用来进行光合作用,让树木茁壮成长;有的光则被巧妙地反射出来,让整个树林看起来都充满了生机和活力。

这就好像树林有一套自己的魔法,能把光变得不一样。

咱平时走在路上,看到的这些地物,可都有着它们独特的反射光谱特征呢!这就好比每个人都有自己的性格特点一样。

你不觉得这很神奇吗?这些地物通过它们的反射光谱特征,向我们展示着它们的美丽和独特。

想想看,如果没有这些不同的反射光谱特征,我们的世界该多单调啊!草地不再是那可爱的绿色,湖水失去了它的灵动,沙漠也没了那股热气腾腾的感觉,树林也不再神秘。

那多无趣呀!所以啊,我们要好好珍惜这些常见地物的反射光谱特征,它们可是让我们的世界变得丰富多彩的大功臣呢!我们要用心去感受它们,去欣赏它们的独特之处。

让我们一起享受这个充满奇妙反射光谱特征的美丽世界吧!这难道不是一件特别棒的事情吗?。

反射类别及地物的发射光谱特点

反射类别及地物的发射光谱特点
水体:反射主要在蓝绿波段, 其它波段吸收都很强,近红外 吸收更强。 水中含泥沙时,可见光波段反 射率会增加,峰值出现在黄红 区。水中含叶绿素时,近红外 波段明显抬升。
14
2.典型地物反射波谱特征
岩石:形态各异,没有统一的变 化规律
15
2.典型地物反射波谱特征
岩石的反射波谱曲线受:
• 矿物成分 • 矿物含量 • 风化程度 • 含水状况 • 颗粒大小 • 表面光滑程度 • 色泽等影响
电磁波与物体间的相互作用图
4
Hale Waihona Puke 比较概念: 地表反射率:地面反射辐射量与入射辐射量之比,表征地面对太阳辐射的吸收 和反射能力。反射率越大,地面吸收太阳辐射越少;反射率越小,地面吸收太 阳辐射越多,表示:surface albedo 表观反射率(apparent reflectance ):表观反射率就是指大气层顶的反射率,辐 射定标的结果之一,大气层顶表观反射率,简称表观反射率,又称视反射率。 =地表反射率+大气反射率。所以需要大气校正为地表反射率。“5S”和“6S” 模型输入的是表观反射率而MODTRAN模型要求输入的是辐射亮度。 反照率(albedo):反照率是指地表在太阳辐射的影响下,反射辐射通量与入 射辐射通量的比值。它是反演很多地表参数的重要变量,反映了地表对太阳辐 射的吸收能力。 它与反射率的概念是有区别的:反射率(reflectance)是指某一波段向一定方向 的反射,因而反照率是反射率在所有方向上的积分;反射率是波长的函数,不 同波长反射率不一样,反照率是对全波长而言的。反照率的定义是地物全波段 的反射比,反射率为各个波段的反射系数。因此,反照率为地物波长从0 到∞的反 射比。
地物的反射辐射
主讲教师:刘丹丹
主要 内容

遥感技术与应用复习资料

遥感技术与应用复习资料

、名词解释1、遥感:(广义)遥远的感知。

泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)的探测。

(狭义)应用探测仪器,不与探测目标相接触,从远处探测和接收目标物的电磁波信息,经过信息的传输及其处理分析,识别物体的属性及其分布特征的综合性探测技术。

2、黑体:是“绝对黑体”的简称,指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1 (100% )的物体。

发射率& =1,不随波长而变。

3、白体:(绝对白体):发射率沪0,反射率=1,透射率=0。

4、灰体:发射率&为小于1的常数,不随波长而变。

5、选择性辐射体:& <1且随波长而变化。

6、灰度:指黑白航片上的黑白深浅程度。

7、明度:是人眼对光源和物体明亮程度的感觉。

8、饱和度:色彩纯洁程度。

9、瑞丽散射:(分子散射):当微粒直径(如空气分子)远小于波长时出现的散射。

10、米氏散射:当微粒直径(如气溶胶)与波长基本相等时出现的散射。

11 、非选择性散射:当微粒直径(如云雾)比波长大得多时出现的散射。

12、基尔霍夫定律:在给定的温度下,任何地物的发射率,在数值上等于同温度、同波长下的吸收率。

13、霍芯藩-波尔兹曼定律:地物的热辐射强度与温度的四次方成正比。

14、维恩位移定律:随着温度的升高,辐射最大值对应的峰值波长向短波方向移动。

15 、像点位移:因地形起伏引起的像点位移(又称投影差)16、监督分类:首先需要以研究区域选取有代表性的训练场地作为样本,用“训练区”中已知地面各类地物样本的光谱特征来“训练”计算机,获得各类地物的判别模式或判别函数,并依此模式或函数,对未知地区的像元进行处理分类。

分别归入到已知的类别中,达到自动分类识别的目的。

17、非监督分类:是在没有先验类别(训练场地)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度的大小进行归类合并的方法。

(主要采用聚类分析法)。

18、拓扑关系:一幅图的诸元素可大致分为点、线、面三种基本形式,拓扑就是这三种基本元素的关联关系,包括数据关系和位置关系。

地物反射波谱特征

地物反射波谱特征

6
7
8
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
实际物体的反射,介于镜面反射和漫反射之间。在入射辐照度相同时,反 射辐射亮度的大小既与入射方位角和天顶角有关,也与反射方向的方位角 与天顶角有关。
Lr (r r ) (ii , r r ) I i (i i )
'
入射辐照度Ii由两部分组成,一部分是太阳的直接辐射,其辐照度 大小与太阳天顶角θ i和日地距离D有关;另一部分是太阳辐射经过 大气散射后又漫入射到地面的部分,其辐照度与入射角无关。
Lr (r r ) ' (i i ,r r ) I i ( i , D) " (r r ) I D
植被的光谱曲线: 可分为三段:
0.4-0.76m: 有一个小的反射峰,位于绿色波段(0.55 m ),两边 (蓝、红)为吸收带(凹谷) 0.76-1.3 m: 高反射,在0.7 m处反射率迅速增大,至1.1处有峰值 1.3-2.5 m: 受植物含水量影响,吸收率增加,反射率下降,形成几个 低谷
9
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
反射波谱:研究地物反射率随波长的变化规律 识别地物 地物反射曲线的形态相差很大,表明反射率随波长变化的规律不同 图:植被、水体、干的土壤
10
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
11
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
2.3 地球的辐射与地物波谱
2.3.1、太阳辐射与地表的相互作用
1
2.3 地球的辐射与地物波谱
2.3.1、太阳辐射与地表的相互作用
地球辐射的分段特性 波段名称 可见光与近红 外 0.3-2.5μm 地表反射太阳 辐射为主 中红外 远红外

地理试题 地物的反射率

地理试题 地物的反射率

地理试题地物的反射率
地物的反射率是指地球表面上不同地物对太阳辐射的反射能力。

不同地物的反射率不同,这对地球能量平衡和气候变化有着重要影响。

首先,植被在地物中具有较高的反射率,因为植被能够吸收一
部分的太阳辐射能量用于光合作用,并反射剩余的能量。

这对调节
地表温度和降水有着重要的影响。

其次,水体的反射率取决于水面的倾斜角和太阳入射角,一般
情况下,水面的反射率较高,尤其是在太阳高度较低的时候,水面
的反射率会更高。

另外,裸露的土地和岩石的反射率相对较低,它们更多地吸收
太阳辐射能量,导致地表温度升高。

总的来说,地物的反射率对地表能量平衡和气候变化有着重要
的影响。

科学家通过研究不同地物的反射率,可以更好地理解地球
系统的能量交换过程,为气候模型和环境保护提供重要的参考依据。

地物反射的名词解释

地物反射的名词解释

地物反射的名词解释地物反射是指地球表面上的固体或液体物质对入射光的反射现象。

在日常生活中,我们经常能够观察到地物反射的现象,比如阳光照射在水面上形成的镜面反射、太阳光照射在建筑物或者树木上形成的漫反射等。

地物反射主要是由于物体表面的光学特性所致。

在光线照射到地物表面时,一部分光线会被物体表面吸收,而另一部分则会被反射出来。

被物体表面吸收的光能量会被转化为物体的热能,而被反射出来的光则进入人们的视线。

地物反射有两个重要的特点:一是颜色与波长相关,二是方向性差异。

首先是颜色与波长的相关性。

地物反射的颜色取决于物体表面对不同波长光的吸收和反射能力。

当某个波长的光被物体表面吸收的能力较强时,该波长的光会在反射过程中减少,从而使物体的颜色呈现出吸收该波长的对立色。

例如,绿色植物在阳光照射下呈现出绿色,是因为植物表面的叶绿素对绿光的吸收能力较强,而对其他波长的光的吸收能力较低。

其次是地物反射的方向性差异。

不同物体的表面结构不同,因此它们对入射光的反射方向也会有所差异。

例如,平整的镜面表面会使光线以相同的角度和方向反射出去,形成明亮的镜面反射;而粗糙的表面则会使光线向各个方向散射,形成漫反射。

这也是为什么我们在太阳光下看到的水面映照出明亮的光斑,而看到树木或建筑物时则是均匀的光线分布。

了解地物反射对于许多应用非常重要。

一方面,在自然景观的摄影中,我们需要了解不同地物对光线的反射特性,从而选择合适的拍摄角度和光线条件,以获得更加真实和生动的照片。

另一方面,在遥感技术中,地物反射的特性可以帮助我们对地表进行分类和监测。

通过对不同地物的反射率进行分析,我们可以判断出土地类型、植被覆盖率、水体的质量等重要环境指标,为环境保护、资源管理等提供科学依据。

总之,地物反射是地球表面的固体或液体物质对入射光的反射现象。

它呈现出颜色与波长的相关性和方向性差异。

通过对地物反射特性的研究和应用,我们可以更好地理解自然环境,同时也能够发展遥感技术,为环境保护和资源管理等领域提供科学支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 气态H2O的3个基频振动模式
图 H2O的3个基频振动模式
图 液态H2O的3个基频振动模式
H2O
成因 υ υ υ
2 1 3
气态 2.74 2.66
3
液态 3.05 2.87 1.93
固态 3.17 2.96 2.02

1.875
υ 1+υ
3
1.94

3 3
1.38 1.14
1.45 1.21
图 光谱线型及位置的变化与水分子倍频2ν3和合频ν3十ν2有关。
2、研究地物波谱特性意义
(1) 遥感器的波段选择、定标、校验和评价
遥感器的最佳波段选择是地物波谱研究中的最基本的任务,是遥感器设计成功与否的关 键之一;详细的地物波谱信息及相关的地面周围环境实况资源可直接用作遥感器设计依据, 1 植被叶绿素吸收 250 0.620-0.670(红) 通过在规范化的地物波谱工作配合下的模拟试验及结果分析,就可以得到所要求的各种设 计参数;已研制成功的遥感器或其模拟样机的性能是否改变,应用效果如何的校验和评价 2 云和植被覆盖变换 250 0.841-0.876 也离不开准确详细的地物波谱数据。 (2) 建立地物波谱与遥感数据的关系 3 500 0.459-0.479(蓝) 土壤植被差异 对遥感数据和地物波谱数据定量化相关关系的研究,有助于建立遥感图像判读标志及波 谱数据和图像的色度学关系,并为计算机处理和分析提供方法和依据。 4 500 0.545-0.565(绿) 绿色植被 (3) 相关信息和波谱数据关系的研究,扩大应用范围 地物波谱数据和气象资料、生物学参量、岩石的矿物成分、土壤水分、人工目标等关系 5 500 1.230-0-1.250 叶面/树冠差异 的研究深入,探索地物波谱特性及遥感应用研究的新领域 (4) 建立地物波谱应用模式 6 500 1.628-1.652 雪/云差异 根据地物的波谱特性,研究分析地物的性质、状况和属性是遥感地物波谱研究的宗旨; 有效地分析和识别地物,区别目标和背景的特征,发展地物和波谱分析模型。 7 陆地和云的性质 500 2.105-2.155 (5)不同波谱段的地物波谱特性的综合研究 由地物波谱特性可知,不同的波段内,地物波谱将显示不同的特性。开展可见-近红 外-中红外-热红外波段以及微波区的综合研究,从而拓宽和加深不同平台遥感信息复合 的研究及应用。
主动遥感系统中的微波雷达、搜集的 信息是地物反射及散射特性的反映。 图.根据波段把遥感划分为3种类型
图 物质的内部状态原理图
液态水分子由3个原子组成,它有3个简正频率 ν1,ν2和ν3,对应3个波长: λ1=3.106μm——对称的O-H基伸缩运动; λ2=6.08μm——H-O-H键的弯折运动; λ3=2.903μm——非对称的O-H伸缩运动, 它们都是基频模式。最低阶的泛音(倍频)是2ν1, 2ν2、和2ν3,相应波长则为λ1/2,λ2/2和λ3/2。 组合谐音(合频)的一个例子是: ν=ν3十ν2,其波长为: 1/λ = 1/λ2 + 1/λ3,→ λ=1.87μm 或者v’=2v1十ν3,λ’= 0.962μm。
各种物体由于化学组分、物质结构 及表面状态以及时间、空间环境的不 同差别,它们对电磁辐射的反射、吸 收、透射的能力是不相同的,即使同 一个物体,它对各种波长的电磁辐射 的响应也有很大差别。也就是各种物 体有自己独特的电磁辐射特性,包括 反射光谱特性、发射光谱特性及散射 特性等。
被动遥感系统的传感器,搜集的正 是地球表面物体 ,对太阳辐射的反射信 息和物体自身发射的电磁辐射(即热辐 射)信息;
L0
L0
0
rλ 通常又称为光谱反射比(率)或光谱反射亮度系数,它只是波长的函数,能够客 观地反映物体的固有反射性质。
反射率(反射比)- Reflectance
表面的反射波强度与入射波强度之比。即由反射引起的出射度与入射到表面的 辐照度之比。不同材料表面具有不同的反射率,同一材料对于不同波长,其反射率 也不同,称之为“选择性”反射。 反射率数值还与物体表面状况,以及其周围的介质和入射角有关。对于特定表 面,常称“反射比”。在给定波长处的单色光的反射率,称为光谱反射率。遥感影 像分析的根据就是:不同地物在不同波段具有不同的反射率,用同一地区不同谱段 的影象进行比较可提高判别精度。 反照率(半球反射比)- Albedo 从反射体表面,特别是天体表面向各个方向反射的全部光通量占入射总光通量 的百分比,或指一颗行星或卫星反射的光通量与其接受的光通量之比,均表示物体 在2π空间的反射通量(或辐射出射度)与入射通量(或辐照度)之比。例如,地球的反照 率是34%。
2

l
4h

sin
瑞利提出,当Δ φ <π /2时,表面为光滑面的判别准则,即:
h

8 sin
随着微波技术的发展,皮克、奥利弗 修改瑞利判 据,使之适合中等粗糙度的表面,以确定中等粗糙 面h值的上、下限。其平滑准则为:
h

25sin
式中∠γ 也即是雷达天线发射电磁辐射的俯角。 在微波遥感中,h和λ 采用相同的长度单位。反射面 类型的划分,在微波遥感中十分重要。
i i i r r
Li i , i , r , r L p i , i , r , r
—目标的双向反射比因子; L , , , —目标反射的辐亮度,w.m-2.sr-1; L , , , — 完全反射漫射体反射的辐亮度 ,w.m-2.sr-1 实际测量中,野外波谱仪器输出的信 号值与入射辐亮值成线形关系,一般直接 采用仪器输出值 R i ,i , r , r 计算,同时采用 工作标准代替全反射漫射体,计算时应修 正工作标准的影响。
式中dL(θ r,φ r )是观测方向的物体表面反 射辐射亮度,dEi(θ i,φ i)是入射到物体表面的辐 照度,θ r,φ r表示反射方向的角度,θ i,φ i 表 示入射方向的角度。双向反射率分布函数f的单位是 球面度-1。图示出表面反射的几何参量。在入射方 向,辐照度与辐射亮度的关系为:
dEi i , i Li i , i cosi di
80 70 60 50
reflectance(%)
40 30 20 10 0 400
800
1200
1600 wavelenth(nm)
2000
2400
soil
water
rock
canopy
4、反射面类型
通常物体的表面分为光滑面与粗糙面两大类。然而,说一个表面的光滑与粗糙并非是绝对的 ,它是相对于入射电磁辐射的波长而定的。例如,一个对于可见光是粗糙的表面,对于微波辐射 则可能是光滑面。 1.判别表面光滑度的准则 如图,设波长为λ 的电磁辐射投射到一个凹凸不平的表面,表面起伏的平均高差为h,投射的 掠角为γ (即入射角的余角),入射辐射两射线的波程差Δ R=2hsinγ ,其位相差为:
图 朗伯定理的几何关系
理想漫反射面(朗伯面)的反射辐射亮度与观测方向无关,与照射辐射的入射方向亦无关 , 对于朗伯面面言,其双向反射率分布函数是一个常数,即:
f Lr 常数 Ei
朗伯面的反射亮度在空间的分布与几何位置无关。 可计算出单位面积辐射源向2π空间辐射 的总出射率为:
M dM L cos d L
dL r , r cos r dr Li i , i cos i di
2. 双向反射率(r双)
r双=
f i , i ; r , r cos r dr
r双无量纲。由式(3.1.3)可知,双向反射率与测量 条件直接有关。测量值受“照射源一目标物一测量仪器 ”之间相对位置的影响,而不能精确地反映目标物的固 有反射特性。以至在不同测量条件下取得的双向反射率 值,难以进行比较。 图 双向反射率
1.52 1.25
υ 1+υ 2+υ 3υ
3
0.91
0.98
1.02
(水汽红外透过率光谱)
(液态水红外透过率光谱)
在土壤、矿物、岩石的光谱上,只要含水, 就有两个吸收带,一个在1.45μm附近(倍频 2ν3),另一个在1.9μm附近(组合合频ν3十 ν2)。这两个带的有无,常用作含水分与否 的诊断依据。如果这两个带很狭窄,说明水 分子占据确切有序的位置;反之则说明水分 子杂乱无序。谱带的确切位置和形状反映了 水分子与无机物的特定关系。图 以不同含 水材料的光谱说明了这一效应。谐音(倍频) 2ν3和组合谐音(合频)ν3十ν2以及谱形、 位置的变化均在图中清晰可见。
3. 双向反射比因子(BRF)。
在野外环境中,难以测量BRDF,一般测 量目标的双向反射比因子( BRF)。它是 通过测量在相同的照射和观测条件下目标 反射的辐亮度和全反射漫射体反射的辐亮 度,然后求比值得到的。
R i , i , r , r
R i , i , r , r
《定量遥感》课程讲座-5 ----地物反射辐射
谢 东 海 首都师范大学 资源环境与旅游学院 2013年10月16日
内 容

引 言 基本概念
水体的光谱特性
植物的光谱特性 土壤的光谱特性 岩石矿物的光谱特性 Fra bibliotek工目标的光谱特性
地物光谱特性的影响因素
地物光谱观测技术与分析方法
图 表面光滑度的几何关系
2.镜面 满足于瑞利准则的表面,定义为光滑面,也称为 镜面。镜面反射的特点,是反射能量集中分布在反射 角θr等于入射角θi的方向上。 3.漫反射面 不满足瑞利准则的表面,定义为粗糙面,它也是 漫反射面。漫反射面的辐射亮度是一个常数,即是在 入射辐照度不变的情况下,漫反射面的反射亮度与观 测的角度无关。理想的漫反射面(体)称为朗伯面(体), 它满足朗伯定理: B B0 cos 式中B(θ)为偏离表面法线θ角的辐射亮度,Bo是表面法线方向的辐射亮度。图 中Rp在p点所观测 的面辐射源s的辐射亮度,等于面源s’垂直于轴向的投影s面的辐射亮度。太阳可以看成是朗伯辐 射体,它的表面近似于朗伯面。
相关文档
最新文档