(完整版)初中数学九年级旋转知识点总结

合集下载

九年级数学旋转知识点总结

九年级数学旋转知识点总结

九年级数学旋转知识点总结数学中的旋转,是指图形在平面内绕某一点或者某一直线旋转成相似的图形。

在九年级的数学学习中,旋转是一个重要的知识点,它有着广泛的应用。

下面是对九年级数学旋转知识点的总结。

一、旋转的基本概念在数学中,旋转就是将一个点或一个图形绕某一点或某一直线旋转一定角度,得到与原图形形状相似的新图形。

旋转可以分为顺时针旋转和逆时针旋转两种。

二、旋转的基本性质1. 旋转不改变图形的大小和形状。

2. 旋转保持图形的对称性。

3. 旋转可以使得图形在平面上任意位置进行变换。

三、旋转的表示方法1. 点的旋转:对于给定一个点P(x,y),绕原点旋转θ度,旋转后的点为P'(x', y')。

根据旋转的性质,我们可以得到点的旋转公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ2. 图形的旋转:对于给定一个图形,绕某一点O旋转θ度,旋转后的图形与原图形相似。

在平面直角坐标系中,可以通过点的旋转来实现对图形的旋转。

四、旋转的应用场景1. 图形的变换:通过旋转,可以实现图形的转动,可以用于制作动画、机械运动等领域。

例如,风电机组的叶片通过旋转来转动风车。

2. 几何问题的解决:旋转在解决几何问题时可以起到关键作用。

例如,在解决平行四边形相关问题时,可以通过旋转把问题转化成熟悉的几何形状进行求解。

3. 数学建模:旋转可以应用于数学建模中,来解决与旋转相关的实际问题。

例如,在建筑设计中,通过数学方法模拟旋转来计算建筑物的结构和力学性能。

五、旋转相关定理1. 旋转定理:旋转不改变图形的面积和周长。

2. 旋转对称性:旋转图形保持图形对称特点不变。

3. 点的旋转定理:若直角坐标系中有点P(x,y)绕原点顺时针旋转θ度得到点Q(x',y'),则有:x' = x*cosθ + y*sinθy' = -x*sinθ + y*cosθ六、旋转的练习题请你计算以下图形绕指定点或直线旋转后的新图形坐标:1. 将点A(3,4)绕原点逆时针旋转90度。

初中数学旋转的知识点归纳总结

初中数学旋转的知识点归纳总结

初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
旋转章节的要求是让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察。

那么接下来的旋转内容请同学们认真记忆了。

旋转知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

4.中心对称的性质:
关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

九年级上册数学旋转知识点总结

九年级上册数学旋转知识点总结

九年级上册数学旋转知识点总结
九年级上册数学中的旋转知识点主要包括以下内容:
1. 平面图形的旋转:旋转是指围绕一个中心点将图形旋转一定角度的变换。

主要涉及正方形、矩形、正三角形、等边三角形等图形的旋转。

2. 旋转中心和旋转角度:在平面图形旋转中,旋转中心是一个确定的点,旋转角度是指图形相对于旋转中心旋转的角度。

3. 旋转的性质和特点:旋转是一种保持形状不变的变换,旋转前后的图形是全等的。

旋转也满足交换律和结合律。

4. 旋转图形的坐标变化:根据图形的旋转中心和旋转角度,可以得到旋转后图形的新坐标。

5. 旋转的几何应用:旋转广泛应用于解决几何问题,例如确定图形的对称轴、找出图形的对称点等。

6. 旋转变换的表示方法:旋转变换可以用矩阵表示,通过矩阵运算可以得到旋转后的新坐标。

以上是九年级上册数学中关于旋转的主要知识点总结。

在学习中,需要了解旋转的基本性质和特点,掌握旋转图形的坐标变化方法,并能应用旋转解决几何问题。

九年级下册旋转知识点总结

九年级下册旋转知识点总结

九年级下册旋转知识点总结在九年级下册的数学学习中,旋转是一个重要的知识点。

通过对旋转的学习,可以帮助我们更好地理解平面图形和空间图形的性质及其变换规律。

本文将对九年级下册旋转的知识点进行总结。

一、平面图形的旋转1. 旋转的概念和表示旋转是指将一个平面图形按照一定的角度和中心点进行转动。

在表示旋转时,可以使用中心点和旋转角度来描述,常用的表示方法有顺时针和逆时针。

2. 旋转的性质旋转后的图形与原图形具有以下性质:- 线段长度保持不变;- 线段之间的夹角不变;- 平行线保持平行;- 中心对称。

3. 旋转的变换规律对于平面上的任意一个点,在旋转后的位置可以通过坐标变换规律来求解。

以顺时针旋转为例,若旋转中心为(x0,y0),旋转角度为θ,对于点P(x,y),旋转后的位置可以计算为:x' = (x - x0) * cosθ - (y - y0) * sinθy' = (x - x0) * sinθ + (y - y0) * cosθ4. 平面图形的旋转分类常见的平面图形旋转包括点的旋转、线段的旋转、角的旋转和图形的旋转。

通过对不同类型的旋转进行研究,可以更好地理解旋转的特点和性质。

二、空间图形的旋转1. 空间图形的旋转除了平面图形的旋转外,九年级下册还涉及到空间图形的旋转。

空间图形的旋转是指将一个三维图形按照一定的角度和轴线进行转动。

2. 空间图形的旋转分类常见的空间图形旋转包括直线的旋转、平面的旋转和立体图形的旋转。

对于不同类型的空间图形旋转,我们需要研究其旋转轴线和旋转角度,以便更好地进行图像分析和计算。

三、应用举例1. 平面上的图案设计旋转可以应用于平面图案设计中,通过将基本图形进行旋转并重复排列,可以创造出各种美观的图案。

2. 空间图形的位置关系分析在几何体的研究中,旋转可以帮助我们分析空间图形的位置关系,如确定两个立体图形是否重合、判断立体图形在空间中的相对位置等。

3. 人工建筑设计在人工建筑设计中,旋转也是普遍应用的技术之一。

九年级上册数学第23章《旋转》知识点梳理完整版

九年级上册数学第23章《旋转》知识点梳理完整版

【学习目标】九年级数学上册第 23 章《旋转》知识点梳理1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转..点 O 叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点 A 经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A'B'C').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲 B. 乙 C. 丙 D. 丁【答案】B.【解析】因为圆被平分为 8 部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图 1 的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理 O 点也在BB′的垂直平分线上∴两条垂直平分线的交点 O 就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2015•裕华区模拟)如图,点 O 是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接 OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当 a 为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出 OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD 不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使 OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使 OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知 D 是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A 逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形 ABCD 中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点 D,C,E 三点共线.∴BD+DC=CE+DC=DE.又∵∠DAE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形 ABCD 中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.【思路点拨】利用 AD=CD 可以将△BCD绕点D 逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明: ∵AD=CD,∠ADC=60°,∴△BCD 绕点 D 逆时针旋转 60°,得到△EAD, ∴∠BDE=∠CDA=60°,△BCD≌△EAD. ∴BC=AE, BD=DE ,∠DAE=∠DCB, ∴△BDE 为等边三角形. ∴BE=BD.∵在四边形 ABCD 中,∠ABC=30°,∠ADC=60°, ∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°. ∴∠BAE=90°. ∵在 Rt△BAE 中, ,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有 30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5 、正方形 ABCD 和正方形 AEFG 有一个公共点 A ,点 G 、E 分别在线段 AD 、AB 上(1) 如图连结 DF 、BF ,试问:当正方形 AEFG 绕点 A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例.(2) 若将正方形 AEFG 绕点 A 顺时针方向旋转,连结 DG ,在旋转过程中,能否找到一条线段的长度与线段 DG的长度相等,并画图加以说明. 【答案与解析】(1) 如图, DF 、BF 的长度不是始终相等,当点 F 旋转到 AB 边上时,DF>AD>BF.(2)线段BE=DG如图: ∵正方形 ABCD 和正方形 AEFG∴AD=AB,AG=AE, ∠1+∠2=∠2+∠3 ∴∠DAG=∠BAE ∴△ADG≌△ABE ∴ DG=BE【总结升华】利用旋转图形的不变性确定全等三角形. 举一反三:【变式】(2015•沈阳)如图,正方形 ABCD 绕点 B 逆时针旋转 30°后得到正方形 BEFG ,EF 与 AD 相交于点 H ,延长DA 交 GF 于点 K .若正方形 ABCD 边长为,求 AK 的长?【答案与解析】 解:连接 BH ,如图所示:∵四边形 ABCD 和四边形 BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在 Rt△ABH 和 Rt△EBH 中,,∴Rt△ABH≌△Rt△EBH(HL ), ∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴AH= ×=1,∴EH=1, ∴FH=﹣1,在 Rt△FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3; 故答案为: 2 3 .6. 如图,已知△ABC 为等腰直角三角形,∠BAC=900,E 、F 是 BC 边上点且∠EAF=45°.求证: .3【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵ △ABC为等腰直角三角形且∠BAC=90°∴ AB=AC,将△CAF 绕点 A 顺时针旋转90°,如图,得到∴∴ ,,,,∴ ,连结,则在,中,∴ ①,又∵ ,∵ .又∵∴ 在与,中,.∴ ②,∴ 由①②得:. 【总结升华】旋转性质:旋转前,后的图形全等.。

(完整版)初三数学旋转知识点总结

(完整版)初三数学旋转知识点总结

第23章旋转知识点总结一、旋转1、定义把一个图形绕某一点O转动一个角度的叫做旋转,其中O叫做,叫做旋转角。

2、性质(1)对应点到的距离相等。

(2)对应点与旋转中心所连线段的夹角等于。

二、中心对称1、定义把一个图形绕着某一个点旋转,如果旋转后的图形能够和原来的图形互相 ,那么这个图形叫做中心对称图形,这个点就是它的 .2、性质(1)关于中心对称的两个图形是形。

(2)关于中心对称的两个图形,对称点连线都经过对称,并且被对称中心。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点 ,那么这两个图形关于这一点对称。

三、坐标系中对称点的特征1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号,即点P(x,y)关于原点的对称点为P’( , ) 。

2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x ,y的符号,即点P(x,y)关于x轴的对称点为P’( , ) .3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,相等,的符号相反,即点P(x,y)关于y轴的对称点为P'( ,) .旋转练习题一、细心选一选(每题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是 ( ).2.如果一个多边形绕它的中心旋转60°,才和原来的图形重合,那么这个多边形是 ( ) A .正三角形B .正四边形C .正五边形D .正六边形3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A 。

3个B 。

4个 C.5个 D.6个4.如图1,四边形ABCD 是正方形,ΔADE 绕着点A 旋转900后到达ΔABF 的位置,连接EF ,则ΔAEF 的形状是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等边三角形5.如图2,把ΔABC 绕点C 顺时针旋转90°得到ΔDEC ,若∠A=25°, 则∠CED=________。

旋转知识点总结

旋转知识点总结

旋转知识点总结旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转。

定点O称为旋转中心,转动的角称为旋转角。

如果图形上的点P经过旋转到点P',那么这两个点叫做这个旋转的对应点。

如图1,线段AB绕点O顺时针转动90度得到AB',这就是旋转,点O就是旋转中心,∠BOB'和∠AOA'都是旋转角。

说明:旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。

决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向。

知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。

由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同。

⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。

⑶对应点到旋转中心的距离相等。

⑷对应线段相等,对应角相等。

例1:如图2,D是等腰Rt△ABC内一点,BC是斜边,如果将△ADB绕点A逆时针方向旋转到△ADC的位置,则∠ADD'的度数是()。

分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决。

由△ADC是由△ADB旋转所得,可知△ADB≌△ADC,∴AD=AD',∠DAB=∠D'AC,∵∠DAB+∠___,∴∠D'AC+∠___,∴∠ADD'=45,故选D。

评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键。

知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角。

2.理解作图的依据:(1)旋转的定义:在平面内,将一个图形绕一个定点O沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等。

九年级旋转知识点

九年级旋转知识点

九年级旋转知识点一、旋转的定义。

1. 在平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点叫做旋转中心,转动的角叫做旋转角。

- 例如,将三角形ABC绕点O顺时针旋转30°,点O就是旋转中心,30°就是旋转角。

2. 旋转三要素:旋转中心、旋转方向(顺时针或逆时针)、旋转角度。

二、旋转的性质。

1. 对应点到旋转中心的距离相等。

- 在图形旋转过程中,若点A旋转后得到点A',那么OA = OA',这里O为旋转中心。

2. 对应点与旋转中心所连线段的夹角等于旋转角。

- 假设图形绕点O旋转,点B的对应点是B',那么∠BOB'就是旋转角。

3. 旋转前后的图形全等。

- 即旋转不改变图形的形状和大小。

如果四边形ABCD绕点P旋转得到四边形A'B'C'D',那么四边形ABCD≌四边形A'B'C'D'。

三、旋转作图。

1. 确定旋转中心、旋转方向和旋转角度。

2. 找出原图形的关键点(如多边形的顶点)。

3. 连接关键点与旋转中心,按照旋转方向和旋转角度旋转这些线段。

- 例如,要将三角形ABC绕点O逆时针旋转60°,先连接OA、OB、OC,然后将OA绕点O逆时针旋转60°得到OA',同理得到OB'和OC',最后连接A'B'、B'C'、C'A'得到旋转后的三角形A'B'C'。

4. 顺次连接旋转后的关键点,得到旋转后的图形。

四、中心对称。

1. 定义。

- 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

- 例如,平行四边形ABCD中,点O是对角线AC与BD的交点,那么平行四边形ABCD绕点O旋转180°后能与自身重合,平行四边形ABCD就是中心对称图形,点O是对称中心。

旋转的知识点九年级上册

旋转的知识点九年级上册

旋转的知识点九年级上册旋转中的几何图形在几何学中,旋转是一种常见的变换方式。

当一个图形绕着固定点旋转时,其形状与尺寸都保持不变,只是方向发生了改变。

本文将介绍九年级上册中与旋转相关的知识点,包括旋转的定义、旋转矩阵以及旋转对称等概念。

一、旋转的定义在几何学中,旋转是指一个图形按照某个轴或点进行转动的操作。

旋转可以分为顺时针旋转和逆时针旋转,取决于旋转角度的正负。

顺时针旋转角度为正,逆时针旋转角度为负。

二、旋转矩阵旋转矩阵是一种表示平面上图形旋转的数学工具。

对于一个平面上的点P(x, y),绕着原点旋转角度θ后得到的新点P'(x', y')可以用旋转矩阵表示:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,cosθ表示旋转角度θ的余弦值,sinθ表示旋转角度θ的正弦值。

三、旋转对称旋转对称是指一个图形在某个点旋转180°后与原图形完全重合。

具有旋转对称的图形,无论如何旋转,都无法与原图形区分开来。

九年级上册的知识点中有一些具有旋转对称性质的图形,比如正方形、正三角形等。

对于这些图形,可以利用旋转对称的性质来求解相关的问题。

四、旋转的性质1. 旋转不改变长度和角度:在旋转过程中,图形的边长和角度都保持不变。

因此,可以利用旋转来判断两个图形是否全等。

2. 旋转可以叠加:多次旋转操作可以叠加在一起。

例如,先绕一个点旋转90°,再绕同一个点旋转180°,相当于绕该点旋转270°。

3. 旋转与平移的关系:旋转和平移是两种不同的几何变换,但可以相互转换。

通过旋转和平移的结合,可以实现更复杂的几何图形变换。

五、旋转的应用旋转在几何学中有广泛的应用。

它可以用于解决与对称性有关的问题,比如判断图形是否具有旋转对称性。

同时,旋转还可以用于证明一些几何定理,推导出一些几何公式。

在实际应用中,旋转也被广泛运用于计算机图形学、游戏开发等领域。

初三数学下旋转--知识讲解 +巩固练习

初三数学下旋转--知识讲解 +巩固练习

旋转--知识讲解【学习目标】1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计;3、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;4、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;5、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、旋转定义、性质、作图1.旋转的定义:在平面内,一个图形绕着某一点O转动一个角度的图形变换叫做旋转.如下图,点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(3)旋转中心是唯一不动的点;''').(4)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转对称图形:在平面内,一个图形绕着一个定点旋转一定角度θ(0°<θ<360°)后,能够与原图形重合,这样的图形叫做旋转对称图形.例如等边三角形,平行四边形都是旋转对称图形.4.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.4.关于原点对称的点的坐标特征:关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、旋转的概念与性质1.如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6) AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5) 四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示2. 如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型二、旋转的作图3. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心.⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.举一反三【变式1】如图,在正方形网格中,每个小正方形的边长均为1个单位.将向下平移4个单位,得到,再把绕点顺时针旋转,得到,请你画出和(不要求写画法).【答案与解析】【总结升华】注意平移和旋转中关键点移动规律的不同.∆绕点O逆时针旋转100︒所得到的图形.【变式2】如图,画出ABC【答案】(∠AOA′=∠BOB′=∠COC′=100°)类型三、中心对称和中心对称图形4. 下列图形不是中心对称图形的是 ( )A.①③ B.②④ C.②③ D.①④【答案】D【解析】中心对称图形要求绕中心旋转180°与原图形重合,①④两个图形绕中心旋转180°不能与原图形重合,所以选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A5. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.旋转--巩固练习【巩固练习】一. 选择题1. 下图中,不是旋转对称图形的是( ).2. 在线段、等腰梯形、平行四边形、矩形、菱形、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个B.4个C.5个D.6个3. 有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个 B.2个 C.3个 D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是( ).A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC6. 如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二.填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____度.8. 在下列四种图形变换中,本题图案包含的变换是___________.(填序号即可)①中心对称②旋转③轴对称④平移9.正三角形绕其中心至少旋转__________ 度,可与其自身重合.10.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为_____________.11.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.12. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,•PC=10,若将△PAC绕点A逆时针旋转后,•得到△P′AB,•则点P•与点P′之间的距离为_____,∠APB=_______°.三.综合题13. 已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.14. 如图,E 是正方形ABCD 的边BC 上一点,F 是DC 的延长线上一点,且∠BAE=∠FAE. 求证:BE+DF=AF.15.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O 点处,并将纸板绕O 点旋转,其半径分别交AB 、AD 于点M N 、, 求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a321BM CDNOA16. 已知:直线l 的解析式为y =2x +3,若先作直线l 关于原点的对称直线l 1,再作直线l 1关于y 轴的对称直线l 2,最后将直线l 2沿y 轴向上平移4个单位长度得到直线l 3,试求l 3的解析式.【答案与解析】一、选择题 1.【答案】B ; 2.【答案】B ;【解析】既是轴对称图形,又是中心对称图形的图形有线段、矩形、菱形、正方形. 3.【答案】D 4.【答案】B【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心。

九年级数学知识点旋转

九年级数学知识点旋转

九年级数学知识点旋转旋转是几何学中的一个重要概念,也是九年级数学中的一项重要知识点。

通过旋转,我们可以改变几何图形的位置和形状,进而解决一些与几何相关的问题。

本文将介绍九年级数学中的旋转知识点,包括旋转的定义、旋转的性质、旋转的公式以及旋转在几何问题中的应用。

一、旋转的定义旋转是指围绕一个中心点,将一个图形按照一定的角度转动的操作。

在旋转中,中心点是固定不动的,只有图形发生位置和形状的改变。

旋转可以使得图形在平面上发生移动,使得我们可以观察到图形在不同位置和不同角度下的特征。

二、旋转的性质1. 旋转可以改变图形的位置和形状,但不改变图形的面积和周长。

这是因为旋转只是对图形进行了转动操作,而没有改变图形内部的构造和尺寸。

2. 旋转不改变图形的对称性。

如果一个图形具有对称性,那么它的旋转图形也将具有相同的对称性。

3. 旋转操作可以通过多次重复进行。

如果我们将一个图形按照一定的角度旋转一次之后,再按照同样的角度再次进行旋转,那么我们将得到一个新的图形,这个新的图形是原图形旋转后的结果。

三、旋转的公式在几何中,我们可以使用一些公式来描述旋转的操作。

关于旋转的公式有以下几种:1. 计算旋转中心:给定一个图形和它在旋转后的位置,我们可以通过求解方程组来计算旋转中心。

假设原图形中某点坐标为(x, y),它在旋转后的位置为(x', y'),则有如下方程组:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,(x', y')为旋转后点的坐标,θ为旋转的角度。

2. 计算旋转后的坐标:将一个点绕旋转中心旋转一定的角度,可以使用如下公式计算旋转后的坐标:x' = (x - h) * cosθ - (y - k) * sinθ + hy' = (x - h) * sinθ + (y - k) * cosθ + k其中,(x, y)为原始点的坐标,(x', y')为旋转后点的坐标,(h, k)为旋转中心的坐标,θ为旋转的角度。

数学九年级旋转知识点

数学九年级旋转知识点

数学九年级旋转知识点旋转是数学中的一个重要概念,它在几何学中有着广泛的应用。

在九年级的数学学习中,旋转作为一个知识点,不仅帮助我们理解几何图形的性质,还能提高我们的空间思维能力。

本文将对数学九年级旋转知识点进行详细的介绍。

一、平面图形的旋转1. 点的旋转点的旋转是指围绕某一中心旋转一个点。

在平面直角坐标系中,点的旋转可以通过坐标的变化来描述。

设原始点的坐标为(x, y),旋转角度为θ,旋转中心为(x0, y0),则旋转后点的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθy' = (x - x0) * sinθ + (y - y0) * cosθ2. 直线的旋转直线的旋转是指围绕某一中心旋转一条直线。

为了旋转直线,我们需要知道直线上的两个点,然后对这两个点进行旋转,再连接旋转后的两个点即可得到旋转后的直线。

3. 多边形的旋转多边形的旋转是指围绕某一中心旋转一个多边形。

旋转后,多边形的各个顶点的坐标都会发生变化。

为了旋转多边形,我们需要知道多边形上各个顶点的坐标,并根据点的旋转公式对每个顶点进行计算,得到旋转后的坐标。

二、立体图形的旋转1. 直线的旋转立体图形中的直线旋转与平面图形中的直线旋转类似,只是要考虑到立体图形的三维性质。

可以通过确定旋转轴和旋转角度来进行直线的旋转。

2. 平面的旋转立体图形中的平面旋转是指围绕某一中心旋转一个平面。

旋转后,平面上的点的坐标发生变化,同时平面上的直线也发生旋转。

为了旋转平面,我们可以选择平面上的一个点作为旋转中心,然后对平面上的每个点进行旋转。

3. 空间图形的旋转空间图形的旋转是指围绕某一中心旋转一个空间图形,如球体、立方体等。

旋转后,空间图形的形状和位置都会发生变化。

为了旋转空间图形,我们需要确定旋转中心、旋转轴以及旋转角度,然后对空间图形中的每个点进行旋转。

结语旋转是数学九年级中一个重要的知识点,它在几何学中有着广泛的应用。

九年级数学上册旋转知识点

九年级数学上册旋转知识点

九年级数学上册旋转知识点在九年级数学上册中,旋转是一个重要的知识点,它涉及到几何图形旋转后的性质和变化。

在本文中,我们将深入探讨旋转的概念、旋转的性质以及如何运用旋转来解决问题。

一、旋转的概念旋转是一种几何运动,它将一个图形围绕一个点或一条线旋转一定角度后得到一个新的图形。

旋转可以分为顺时针旋转和逆时针旋转两种方式。

旋转的中心可以是任意一点,也可以是图形内部的一个点或多边形的中心。

二、旋转的性质1. 相似性:旋转不改变图形的形状和大小,只改变位置和方向。

旋转后的图形仍与原图相似。

2. 旋转角度:旋转角度是旋转的基本概念,它表示图形旋转的角度大小。

顺时针旋转角度为负值,逆时针旋转角度为正值。

3. 旋转中心:旋转中心是旋转的参考点,图形围绕旋转中心旋转。

旋转中心可以是图形内部的一个点,也可以是任意一点。

4. 不变性:旋转不改变图形的面积、周长和内角和。

只要旋转角度相同,图形的这些性质不会发生改变。

三、旋转的应用1. 图形的旋转:可以通过旋转图形来找出图形的对称轴,以及解决一些与对称有关的问题。

例如,我们可以通过旋转一个正方形90度来发现它有4个对称轴,分别是水平轴、垂直轴和两条对角线。

这有助于我们更好地理解图形的对称性质。

2. 图形的判断:通过旋转图形,我们还可以判断一个图形是否与另一个图形相似。

例如,我们可以通过旋转一个三角形180度,使其与另一个三角形重叠。

如果两个三角形完全重合,那么它们就是相似的。

3. 问题的求解:在解决一些几何问题时,旋转可以帮助我们更好地理清思路和寻找解题方法。

例如,当我们需要计算一个图形的面积时,可以将图形旋转一定角度,使其变成一个更简单的图形,然后计算这个简单图形的面积,最后通过旋转角度计算出原图形的面积。

四、旋转的思维拓展1. 与平移和缩放的关系:旋转与平移和缩放是几何变换的三种基本变换,它们之间存在着一定的联系。

例如,通过不同的旋转角度和旋转中心,可以实现平移和缩放的效果。

旋转九年级上册知识点

旋转九年级上册知识点

旋转九年级上册知识点旋转是数学中的一个基本概念,也是几何中重要的技巧。

在九年级上册的数学课程中,旋转是一个重要的知识点。

本文将详细介绍旋转的定义、性质以及相关运算。

一、旋转的定义旋转是指将一个图形绕定点旋转一定角度后得到的新图形。

旋转是一个平面运动,它保持了图形的形状和大小不变,只改变了其位置和方向。

二、旋转的性质1. 旋转角度:表示旋转的角度可以是正数、负数或零。

正数表示逆时针旋转,负数表示顺时针旋转,零表示无旋转。

2. 旋转中心:表示固定不动的点,被称为旋转中心。

所有图形的每个点绕着此点旋转。

3. 旋转方向:正数表示逆时针旋转,负数表示顺时针旋转。

旋转方向与旋转角度有关。

4. 旋转角的作用:旋转角的绝对值越大,旋转后的图形与原图形之间的角度越大。

三、旋转的运算旋转的运算包括绕定点旋转和绕坐标轴旋转两种情况。

1. 绕定点旋转:对于一个图形A,绕点O旋转θ度后得到的新图形记作A'。

可以通过以下步骤实现绕定点旋转:a) 将点O作为旋转中心,连接OA。

b) 在OA的一侧取点O',使得∠AOA' = θ。

c) 连接AA',则AA'即为旋转后的图形A'。

2. 绕坐标轴旋转:对于一个图形A,绕坐标轴旋转θ度后得到的新图形记作A'。

可以通过以下步骤实现绕坐标轴旋转:a) 若绕x轴旋转,则连接OA,其中O为原点。

b) 在OA的一侧取点O',使得∠AOA' = θ。

c) 连接AA',则AA'即为绕x轴旋转θ度后的图形。

d) 若绕y轴旋转,则按照类似的步骤进行旋转。

四、旋转的应用旋转不仅仅是一个数学概念,在实际生活和其他学科中都有着广泛的应用。

以下是一些常见的旋转应用:1. 制作艺术品和雕塑:在艺术品和雕塑制作中,旋转技巧常常被用来改变形状和方向,创造出不同的艺术效果。

2. 机械工程:在机械设计和制造中,通过旋转转轴、齿轮等部件来实现不同部件之间的运动和传递力量。

九年级上册旋转知识点

九年级上册旋转知识点

九年级上册旋转知识点旋转是几何中的一种基本变换,通过围绕某个中心点旋转图形,可以产生新的图形。

在九年级上册数学课程中,我们学习了一些与旋转相关的知识点,包括旋转的定义、旋转图形的性质以及旋转的应用。

下面将为大家详细介绍这些知识点。

一、旋转的定义旋转是将一个图形围绕一个中心点按一定角度转动的操作。

在平面几何中,按照旋转的角度可以将旋转分为顺时针旋转和逆时针旋转。

我们可以用R(α)表示一个顺时针旋转α度的变换,用R(-α)表示一个逆时针旋转α度的变换。

二、旋转图形的性质1. 旋转图形的位置性质:旋转前后的图形位置保持不变,只是方向和大小可能发生改变。

2. 旋转图形的角度性质:旋转图形的内角和外角不变。

例如,一个正方形旋转90度后,仍然是一个正方形,其内角和外角的度数都保持不变。

3. 旋转图形的边长和面积性质:旋转图形的边长与面积可能发生变化。

边长的改变可以通过等比例尺进行计算,而面积的改变与旋转的角度有关。

三、旋转的应用1. 旋转的几何应用:旋转可以用于解决一些与图形对称性相关的问题,如判断图形是否关于某个中心对称、判断两个图形是否全等等。

2. 旋转的艺术应用:旋转在艺术设计中有着广泛的应用。

通过旋转图形可以产生出各种各样的视觉效果,给人以美的享受。

3. 旋转的物理应用:旋转在物理学中也有很多应用。

例如,地球的自转和公转使得昼夜的交替和季节的变化;风力发电机通过旋转产生动能转化为电能。

四、例题分析下面通过几个例题来进一步理解旋转的应用。

例题一:一个正方形绕中心点旋转90度后得到一个新图形,判断这两个图形是否全等,并说明理由。

解析:一般情况下,一个正方形绕中心点旋转90度后得到的图形并不是一个全等的正方形。

旋转正方形后,虽然边长不变,但是旋转后的正方形方向改变了,因此不能说它们全等。

但是它们是相似的图形,内角和外角的度数保持不变。

例题二:一个长方形绕中心点旋转180度后得到一个新图形,判断这两个图形是否全等,并说明理由。

人教版初中数学九年级上册旋转重点知识归纳

人教版初中数学九年级上册旋转重点知识归纳

人教版初中数学九年级上册旋转重点知识归纳知识点1旋转的相关概念1.概念:在同一平面内,将一个图形绕某一个定点O沿某个方向转动一个角度,这样的图形运动叫旋转。

定点O叫旋转中心,转动的角称为旋转角。

2.旋转对称图形:绕某一点旋转一定角度后能与自身完全重合的图形。

3.图形旋转三要素:旋转中心、旋转方向、旋转角知识点2 旋转的性质1.旋转的性质:只改变位置,不改变图形的形状和大小。

(1)对应点到旋转中心的距离相等;(2)对应点与对应中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

2.旋转中心的确定:旋转中心是两对对应点所连线段的垂直平分线的交点。

3.旋转作图具体步骤(1)定:确定图形中的每一个关键点和旋转中心;(2)连:连接图形中每一个关键点和旋转中心;(3)转:把连线按要求绕旋转中心转动一定角度(作旋转角);(4)截:在角的另一边上截取与对应的关键点到旋转中心距离相等的线段,得到各点的对应点;(5)连:顺次连接所得到的各对应点;(6)写:写出结论,说明作出的图形。

【核心提示】找、连、作。

找出关键点,连线并转动一定的角度,连接对称点并作出图形。

4.旋转与平移、轴对称的相同点和不同点知识点3 中心对称如果把一个图形(如△ABO)绕定点O旋转180º,它能够与另一个图形(如△CDO)重合,那么就说这两个图形△ABO与图形△CDO关于这个点对称或中心对称,点O就是对称中心。

知识点4 中心对称性质1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线);2.中心对称的两个图形是全等形。

4.中心对称与中心对称图形的区别与联系知识点5 中心对称图形1.定义:一个图形绕某个点旋转180度,如果旋转后的图形能与原来的图形完全重合,则这个图形叫做中心对称图形。

其中,这个点叫做该图形的对称中心。

2.中心对称图形判定依据(三要素):①绕某点;②旋转180º;③与本身重合。

初三数学知识点:旋转

初三数学知识点:旋转

以下是为⼤家整理的关于初三数学知识点:旋转的⽂章,供⼤家学习参考!
1、概念:
把⼀个图形绕着某⼀点O转动⼀个⾓度的图形变换叫做旋转,点O叫做旋转中⼼,转动的⾓叫做旋转⾓.
旋转三要素:旋转中⼼、旋转⽅⾯、旋转⾓
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中⼼的距离相等
(3)两个对应点与旋转中⼼的连线段的夹⾓等于旋转⾓
3、中⼼对称:
把⼀个图形绕着某⼀个点旋转180°,如果它能够与另⼀个图形重合,那么就说这两个图形关于这个点对称或中⼼对称,这个点叫做对称中⼼.
这两个图形中的对应点叫做关于中⼼的对称点.
4、中⼼对称的性质:
(1)关于中⼼对称的两个图形,对称点所连线段都经过对称中⼼,⽽且被对称中⼼所平分.
(2)关于中⼼对称的两个图形是全等图形.
5、中⼼对称图形:
把⼀个图形绕着某⼀个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中⼼对称图形,这个点就是它的对称中⼼.
6、坐标系中的中⼼对称
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P′(-x,-y).。

数学旋转知识点总结

数学旋转知识点总结

数学旋转知识点总结1. 旋转的定义旋转是指物体绕某一点或某一轴进行旋转运动的几何变换。

在数学中,我们通常将旋转运动描述为一个平面上的点绕着另一个点进行旋转,或者一个图形绕着平面上的某一点进行旋转。

旋转可以分为顺时针旋转和逆时针旋转两种方向。

2. 旋转的表示方法旋转可以通过不同的表示方法来描述,其中最常见的是使用坐标变换的方式来表示。

假设我们要对一个点P(x, y)进行旋转,旋转角度为θ,则旋转后的点P'(x', y')的坐标可以表示为:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ这个公式称为旋转矩阵,通过它我们可以计算出旋转后的点的坐标。

另外,我们也可以使用复数来表示旋转。

假设我们有一个复数z = a + bi,表示平面上的一个点,我们将z乘以一个复数e^(iθ)就可以得到z关于原点旋转θ角度后的新坐标。

3. 旋转的性质旋转具有一些重要的性质,包括保持向量长度不变、保持向量夹角不变、满足结合律和分配律等。

这些性质使得旋转在几何变换中具有重要的作用,它可以帮助我们理解和分析各种几何关系,也为我们解决问题提供了便利。

另外,旋转还具有周期性,即当一个点或一个图形进行多次旋转后,最终还会回到它原来的位置和形状,这对于解决一些周期性问题非常有用。

4. 旋转的应用旋转在各个领域都有重要的应用,特别是在几何学和物理学中。

在几何学中,旋转可以帮助我们解决各种几何问题,如图形的对称性、旋转体的体积和表面积等;在物理学中,旋转则可以用来描述物体的旋转运动、角动量的变化等。

另外,在计算机图形学中,旋转也是一个重要的概念,它可以帮助我们实现各种图形变换和动画效果。

通过旋转,我们可以实现物体的三维旋转、平面上的图形变换等操作,这对于计算机图形的渲染和建模有着很大的意义。

5. 旋转的扩展除了在平面上旋转,我们还可以将旋转的概念扩展到更高维度的空间中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学九年级旋转知识点总结
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

如下图所示:
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

3.旋转的性质
(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

4.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能
与自身重合,那么我们就说,这个图形成中心对称图形。

中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

5.中心对称和中心对称图形的区别
区别:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称.成中心对称的两个图形中,其中一个上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称.中心对称图形上所有点关于对称中心的对称点都在这个图形本身上。

如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称。

6.中心对称图形的判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

7.中心对称的性质:
关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

8.坐标系中对称点的特征
(1)关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
(2)关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
(3)关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)。

相关文档
最新文档