高三复习导学案——推理、证明、数学归纳法(含详细答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
合情推理与演绎推理导学案
【学习要求】
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异.
【课前准备】
自主梳理
推理⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧
合情推理⎩⎪⎨⎪⎧
⎩⎨⎪
⎧
定义:由个别事实推演出 的结论.特点:是由 到整体、由 到一般的
推理. ⎩⎪⎨⎪⎧
定义:由两个(或两类)对象之间在某些方 面的相似或相同推演出它们在其他方
面也相似或相同.
演绎推理⎩⎪⎨⎪⎧
模式:三段论⎩⎪⎨⎪⎧ ①大前提——已知的 ;
②小前提——所研究的 ;③结论——根据一般原理,对
作出的判断.特点:演绎推理是由 到 的推理.
【自我检测】
1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________.
2.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):
①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;
②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;
③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是________________________________________________________.
3.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.
4.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.
5.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为____________________________________________________.
【活动探究】
探究点一 归纳推理
例1 在数列{a n }中,a 1=1,a n +1=2a n
2+a n
,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理
由.
变式迁移1 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=3
4
.
由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.
探究点二 类比推理
例2 在平面内,可以用面积法证明下面的结论:
从三角形内部任意一点,向各边引垂线,其长度分别为p a ,p b ,p c ,且相应各边上的高分别为h a ,h b ,h c ,则有p a h a +p b h b +p c
h c
=1.
请你运用类比的方法将此结论推广到四面体中并证明你的结论.
变式迁移2 在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 2
2
,将此结
论类比到空间有___________________________________________
探究点三 演绎推理
例3 在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E 的距离相等.
变式迁移3 指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?
证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数.
【课堂小结】
1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:
从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.
2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.
3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.
【课后作业】
一、填空题(每小题6分,共48分)
1.定义A *B ,B *C ,C *D ,D *A 的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果分别为________________.