高等数学教学ppt 曲线积分

合集下载

曲线积分2-32页PPT精品文档

曲线积分2-32页PPT精品文档





x
y
z
dS

x
y
z
PQR
PQ R
Pdx QdR y dzro A n td S A tds
斯托克斯公式成立的条件
斯托克斯公式的物理意义
练习题
一 、 计 算 3 ydx xzdy yz 2dz , 其 中 是 圆 周 x 2 y 2 2z , z 2 若 从z 轴 正 向 看 去, 这 圆 周 是 逆时针方向 .
五 、 求 向 量 场 A ( x z ) i ( x 3 yz ) j 3 xy 2 k 沿 闭 曲 线 为圆 周 z 2 x 2 y 2 , z 0 (从 z 轴 正 向 看 依逆 时 针 方 向 )的 环 流 量 .
六 、设 u u ( x , y , z ) 具 有 二 阶 连 续 偏 导 数 , 求 rot ( gradu ) .
0 y 1,0 z 1的表面所得的截痕,若从 ox
轴的正向看去,取逆时针方向.
解 取Σ 为平面 x y z 3 2
z
n

的上侧被 所围成的部分.

则 n 1 {1,1,1}
o
y
x
3
即 co sco sco s1,
3
1
1
1
3

I

x
例1 计算曲线积分zdxxdyyd,z
其中是平面xyz1被三坐标面所截成的
三角形的整个边界,它的正向与这个三角形上侧
的法向量之间符合右手规则. z
解 按斯托克斯公式, 有
1
n
zdxxdyydz
0 D xy

高等数学课件 §9.6第一型曲线积分计算

高等数学课件 §9.6第一型曲线积分计算

R
xds
L
R
xR
R2x2
dx 0
R2 x2
(法二 ):L: xy R Rcsion s ,0
ds R2sin2R2co2sd
xd R s2co d sR 2 sin 0
L
0
0
例 2 L (x y )d,L s :连接 O (0 ,0 )A 三 ,( 1 ,0 )B ,( 点 0 ,1 ) 的.
§9.6 第一型曲线积分的计算
一、第一型曲线积分的概念 曲线形物体的质量
设 曲 线 形 物 体 在 x平 o 面 上 占 y 有 可 求 长 曲 线 L ,
其 线 密 度 为 连 续 函 数 f ( x , y ) , 求 该 物 体 的 质 量 m 。
y
M1 M2 A
M i1MiBiblioteka (i,i) LM n1

OA
:
y
0
0 x
1
ds dx
y
B
y 1 x
AB
:
0
x
1
ds
2 dx
x 0
o
OB
:
0
y 1
ds dy
Ax
1
1
1
L(xy)ds0xdx0 2dx 0ydy
1x2 1 21y2 1 1 2
20
20
例 3 计L算 (x2y2z2)d,其 s L:中 x2 xy 2 z z2 19 2.
B
o
x
( 1 ) 分 割 在 L 上 任 取 点 列 M 1,M 2, M n 1, 把 L分n小 为 段
si(i 1 ,2 , ,n ), 同 时 也 以 si 表 示 第 i小 段 弧 长 。 ( 2 ) 近 似

高数课件11曲线积分曲面积分

高数课件11曲线积分曲面积分
L L1 L2
f (x, y ) ds.
(2) 若积分曲线 L 关于 y 轴对称, y 轴两侧的区域分别记为 L1 , L2 . i. 若 f (x, y ) 关于 x 为奇函数, 则 ˆ f (x, y ) ds = 0.
L
ii. 若 f (x, y ) 关于 x 为偶函数, 则 ˆ ˆ ˆ f (x, y ) ds = 2 f (x, y ) ds = 2
È
如果曲线方程为 x = φ(y ), y ∈ [a, b], 则曲线的参数方程为
8 > > < > > :
x = φ(y ),
a ≤ y ≤ b,
y = y, ˆ
b a
因此,
ˆ f (x, y ) ds =
L
8 > > > > > < > > > > &+ φ′2 (y ) dy.
ˆ 例 4 计算 分.
L
(x2 + y 2 ) ds, 其中 L 是以原点为圆心, 半径为 R 的圆周的左半部
y R
R
O
x
−R
6
解: 显然, 曲线的参数方程为
8 > > < > > :
x = R cos θ, y = R sin θ, ˆ
π 3π ≤θ≤ . 2 2
因此,
ˆ (x + y ) ds =
y
1
B
Mn−1
F (ξi , ηi ) Mi (ξi , ηi ) Mi−1 A M1 M2
O
x
#» 解: 首先, 如果力 F 是恒力, 且移动路线是从 A 沿直线到 B, 则所作的功为 #» # » W = F · AB. 其次, 在曲线 L 上依次插入 n−1 个分点 M1 (x1 , y1 ), M2 (x2 , y2 ), · · · , Mn−1 (xn−1 , yn−1 ), 将此曲线段分割为 n 个小段曲线, 以 AM1 , M1 M2 , · · · , Mn−1 B 9

第10章-曲线积分与曲面积分 高等数学教学课件

第10章-曲线积分与曲面积分 高等数学教学课件

f (x, y) d s
f (x, y) d s.
L( A,B)
L( B, A)
性质2 设, 为常数,则
L[ f (x, y) g(x, y)]d s L f (x, y)d s L g(x, y)d s.
性质3 若积分路径L可分成两段光滑曲线弧L1,L2, 则
f (x, y) d s f (x, y) d s f (x, y) d s.
把 L分成n个有向小弧段
¼ A0 A1, ¼ A1A2,L , ¼ Ai1Ai ,L , ¼ An1An, (A0(x0, y0) A, An (xn, yn) B).
令xi xi xi1, yi yi yi1,在¼ Ai1Ai上任取点Mi (i ,i ), i 1, 2,L , n,若当小弧段的长度的最大值 0时,和
若L是闭曲线,即L的两个端点重合,那么f (x, y)
在闭曲线L上对弧长的曲线积分记为
ÑL f (x, y) d s.
函数f (x, y, z)在曲线弧上对弧长的曲线积分为
n
f (x, y, z) d s lim 0
i 1
f (xi , yi , zi )si.
性质1 对弧长的曲线积分与曲线L的方向无关,即
方程为x =a cos t, y =a sin t, z = kt, 0 t 2p, k>0.
解 Q x' t asint, y' t a cost, z' t k,
[x '(t)]2 [( y '(t)]2 [z '(t)]2 a2 k2 ,
(x2 y2 z2 ds 2p (a2 k 2t2 ) a2 k 2 dt
d r d xi d yj d zk,即有

《曲线积分》课件

《曲线积分》课件

换元法
总结词
换元法是通过引入新的变量替换原变量,将曲线积分转化为更容易计算的定积分的方法。
详细描述
换元法的基本思想是通过引入新的变量替换原变量,将曲线积分转化为定积分。通过选择合适的换元函数,可以 将曲线积分的积分路径转化为直线或简单的几何形状,从而简化计算过程。这种方法在处理复杂的曲线积分时非 常有效。
经济学中的应用
在经济学中,曲线积分可以用于研究商品价格变动对需求量 的影响,以及投资回报率等问题。
曲线积分的分类
第一型曲线积分
第一型曲线积分是计算函数在曲线上 的定积分,用于计算曲线下的面积和 长度等。
第二型曲线积分
第二型曲线积分是计算函数关于某个 变量的变差,用于计算速度和加速度 等物理量。
02
曲线积分背景
曲线积分是微积分学中的重要概 念,它与定积分、重积分等概念 有密切联系,是解决许多实际问 题的重要工具。
曲线积分的应用
1 2
3
物理学中的应用
曲线积分在物理学中有广泛的应用,如计算曲线运动的轨迹 长度、速度和加速度等。
工程学中的应用
在工程学中,曲线积分被广泛应用于计算各种曲线形状的物 体在运动过程中的物理量,如管道流速、机械零件的振动等 。
电场线的积分与电荷量
电场线的积分
电场线是描述电场分布的几何图形,电 场线的积分可以用来计算电场中的电荷 量。通过曲线积分的方法,可以计算出 电场线上各点的电场强度,从而得到整 个电场的电荷量分布。
VS
电荷量
电荷量是描述电场中电荷数量的物理量, 它表示电场中电荷的多少。在物理学中, 电荷量可以通过电场线的积分来计算,并 用于研究电场的性质和行为。
06
曲线积分的综合应用

高等数学高数课件 11.1第一类曲线积分

高等数学高数课件 11.1第一类曲线积分

L
证: 根据定义
n
lim
0 k 1
f
(k
,k
)sk
设各分点对应参数为
点 (k ,k )对应参数为
sk
tk tk 1
2 (t ) 2 (t ) d t
2 ( k ) 2 ( k ) tk ,

n
lim
0
k
f
1
[
(
k
)
,
(
k
)
]
注意 2 (t) 2 (t ) 连续
n
lim
0
k
1
f
1 2
: y 2sin
0 2

z
1 2
2 cos
ds ( 2 sin )2
( 2 sin )2 d 2d
I
9 2
2
0
2d
18
三、利用对称性计算对弧长的曲线积分
曲线积分计算基本方法是将其转化为定积分来计算,在 计算中,可以利用被积函数奇偶性和积分曲线的对称 性以及积分曲线的轮换对称性来简化积分的计算。
(0 t
),
所以 I ( x2 y2 )ds L
[R2(1 cos t)2 R2 sin2 t] 0
(Rsin t)2 (Rcos t)2dt
2R3
(1
cos
t
)dt
2R3[t
sin
t]
0
0
2R3 .
例2 计算半径为 R, 中心角为 2 的圆弧 L 对于它
的对称轴的转动惯量 I (设线密度 1).
如果曲线第一类曲线积分的计算如果曲线第一类曲线积分的计算如果曲线的参数方程为中心角为的圆弧为计算方便利用cossin其中l是抛物线因此dsyds其中积分弧段是由折线oab组成dxdsoaydsdyds所以abyds从而oabydsaboaydsyds在极坐标系下它在第一象限部分为计算其中为球面曲线积分计算基本方法是将其转化为定积分来计算在计算中可以利用被积函数奇偶性和积分曲线的对称性以及积分曲线的轮换对称性来简化积分的计算

高等数学 曲线积分PPT课件

高等数学 曲线积分PPT课件

P( x, y)dx
L
2 f ( x, y)dx L 关于x轴对称,f ( x, y)为y的奇函数
L1
0
L 关于y轴对称,f ( x, y)为x的偶函数
Q(x, y)dy
L
2 Q( x, y)dy L 关于y轴对称,f ( x, y)为x的奇函数
L1
第6页/共41页
三、对坐标的曲线积分的计算方法
y x
du Pdx Qdy, (x, y)G —单连域.
第9页/共41页
四、两类曲线积分之间的联系
L Pdx Qdy L (P cos Q cos )ds.
其中, 为有向曲线弧 L 在点( x, y) 处的切向量的方向角.
五、对坐标的曲线积分的解题方法
第10页/共41页
解题方法流程图
1.直接计算法:(化为定积分计算) “描述代入”法 (1)参数方程:
设 L : x (t), y (t); t 从 变到 ; 则
P( x, y)dx Q( x, y)dy
{P[(t), (t)](t) Q[(t), (t)] (t)}dt
L
设 : x (t), y (t), z (t) ; t 从 变到 ; 则
L
1
第3页/共41页
(4)参数方程:若 : x (t), y (t), z (t) ( t ); 则
f ( x, y, z)ds
f [(t), (t),
(t)]
2(t) 2(t) 2(t) dt
注: 被积函数可用积分曲线方程化简!
四、对弧长的曲线积分的应用
1.几何应用 求曲线的弧长 s ds.
43
而被积函数 2xy 3x2 4 y2中又含有3x2 4 y2 ,故可将 3x2 4 y2 12

高数课件第十章 曲线积分与曲面积分

高数课件第十章 曲线积分与曲面积分

Σ: x−y+z = 在第四卦限部分的上侧 1 在第四卦限部分的上侧.
解: (c sα,c sβ,c sγ) = 1 ( ,− ,1 o o o 1 1) 3 1 I =∫∫ [f (x y z)+x−2f (x y z)−y+f (x y z)+z]dS , , , , , , ∑ 3 1 =∫∫ [x−y+z]dS ∑ 3 1 1 3 1 =∫∫ dS= . = ∑ 3 3 2 2
+∫ ( x y−3 y2 +y2) d 32 x y u(x y =∫ 5x d , ) x 0
4 0
x
y
32 2 3 1 3 =x + x y −xy + y 3 2 因此方程的通解为 5 3 2 2 3 1 3 x + x y −xy + y =C 2 3
5
y
(x y , )
o (x0 x ,)
2π R 2 2 2
π
+ ∫ dθ ∫π dϕ ∫
2 0 3

π
2 R cos ϕ
0
r cos ϕ ⋅ r sin ϕ dr
2 2 2
第十章 曲线积分与曲面积分
1. 第一类曲线积分 物质曲线质量) (物质曲线质量) 2. 第二类曲线积分 变力作功) (变力作功) 3. 第一类曲面积分 曲面薄板质量) (曲面薄板质量) 4. 第二类曲面积分 通量) (通量)
曲线积分
曲面积分
1. 第一类曲线积分的计算
(1)利用参数方程化为定积分 利用参数方程化为定积分 • 对光滑曲线弧
f (x y d =∫ f[ ( )ψ( ) φ 2( )+ ′2( )dt ∫ , ) s α φt , t ] ′ t ψ t L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档