[研究生入学考试]材料力学复习资料(1)

合集下载

材料力学考研复习笔记

材料力学考研复习笔记

材料力学考研复习笔记第一章绪论及基本概念一、材料力学的任务构件正常工作要求:强度、刚度、稳定性;合理选材、降低消耗、节约资金、减轻自重;材料力学要合理解决以上两方面的矛盾。

二、基本假设连续性假设:变形后(正常工作状态下)材料的主要性质不变,仍满足几何相容条件;均匀性假设:可取相应的单元体代替整体;各向同性假设:可以用简单的函数表达所要研究的问题。

材料力学的力学模型应满足以上三个假设。

另外在初级材料力学阶段,还有小变形假设、弹性变形假设。

三、研究的基本方法力的研究:静力学方面的知识运动(变形)的研究:几何学方面力与运动的关系研究:物理学方面四、杆件变形的基本形式轴向拉伸和压缩、剪切变形、扭转变形、弯曲变形。

五、体会绪论是一本书最显层次的部分,要完整地涵盖整本书或学科的最主要内容,虽然看不出什么具体的东西,但是已经讲清楚了学科的各个方面,之后的任何一章都是以此为出发点的。

因此这是全书最重要的三个章节之一,这一章是通过给出该学科的宏观的概念来起作用的,这与第二章不同。

所以对材料力学的学习,建议要从绪论开始再从绪论结束,这样才能使自己的把握具有层次。

第二章轴向拉伸和压缩首先要说明一点,根据前面知识框架的叙述,本章是《材料力学》最重要的章节之一,希望引起读者的重视。

这一章通过最简单的变形形式(轴向拉压)的介绍,给出了材料力学的大部分“微观”概念,这些概念对于其他的变形来说是大同小异的,所以介绍其他几种变形的章节就没有最重要章节的身份。

鉴于本章的重要性,记述时比较详细,以后各种变形大致均可按照这一章的思路进行学习。

一、基本概念及关系1、外力内力(轴力(图))应力强度条件以上公式所涉及的概念也是材料力学各种基本变形所共有的,区别只是计算方法和具体的意义有所不同,但统统可以归为同一种概念。

箭头则表示有已知条件推出未知条件(所求)。

其中所用到的截面法也是材料力学中的重要方法,可以代表一定的材料力学的思想,也可以反映材料力学的精度要求。

材料力学考试复习资料

材料力学考试复习资料

材料力学1. 材料与构件的许用应力值有关。

2. 切应力互等定理是由单元体静力平衡关系导出的。

3.弯曲梁的变形情况通过梁上的外载荷来衡量。

4.有集中力作用的位置处,其内力的情况为剪力阶跃,弯矩拐点。

5. 在材料力学的课程中,认为所有物体发生的变形都是小变形6. 危险截面是最大应力所在的截面。

7. 杆件受力如图所示,AB段直径为d1=30mm,BC 段直径为d2=10mm,CD段直径为d3=20mm。

杆件上的最大正应力为127.3MPa。

8. 一根两端铰支杆,其直径d=45mm,长度l=703mm,E=210GPa,σp=280MPa,λs=43.2。

直线公式σcr=461-2.568λ。

其临界压力为478kN。

9. 一个钢梁,一个铝梁,其尺寸、约束和载荷完全相同,则横截面上的应力分布相同,变形后轴线的形态不相同。

10. 当实心圆轴的直径增加1倍时,其抗扭强度增加到原来的8倍。

11. 材料力学中求内力的普遍方法是截面法。

12. 压杆在材料和横截面面积不变的情况下,采用D 横截面形状稳定性最好。

13. 图形对于其对称轴静矩和惯性矩均不为零。

14. 梁横截面上可能同时存在切应力和正应力。

15. 偏心拉伸(压缩),其实质就是拉压和弯曲的组合变形。

16. 存在均布载荷的梁段上弯矩图为抛物线。

17. 矩形的对角线的交点属于形心点。

18. 一圆轴用碳钢制作,校核其扭转角时,发现单位长度扭转角超过了许用值。

为保证此轴的扭转刚度,应增加轴的直径。

19. T形图形由1和2矩形图形组成,则T形图形关于x轴的惯性矩等于1矩形关于m轴的惯性矩与2矩形关于n轴的惯性矩的合。

20. 材料力学中关心的内力是物体由于外力作用而产生的内部力的改变量。

21.杯子中加入热水爆炸时,是外层玻璃先破裂的;单一载荷作用下的目标件,其上并不只存在一种应力。

22. 单位长度扭转角θ与扭矩、材料性质、截面几何性质有关。

23. 转角是横截面绕中性轴转过的角位移;转角是挠曲线的切线与轴向坐标轴间的夹角;转角是变形前后同一截面间的夹角24.单元体的形状可以改变;单元体上的应力分量应当足以确定任意方向面上的应力25. 可以有效改善梁的承载能力的方法是:加强铸铁梁的受拉伸一侧;将集中载荷改换为均布载荷;将简支梁两端的约束向中间移动。

[研究生入学考试]材料力学复习资料(1)

[研究生入学考试]材料力学复习资料(1)

材料力学复习资料一、填空题1、为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度;同时要求他们有足够的抵抗变形的能力,即要求它们有足够的刚度;另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性。

2、材料力学是研究构件强度、刚度、稳定性的学科。

3、强度是指构件抵抗破坏的能力;刚度是指构件抵抗变形的能力;稳定性是指构件维持其原有的平衡状态的能力。

4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。

5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

6、截面法是计算内力的基本方法。

7、应力是分析构件强度问题的重要依据。

8、线应变和切应变是分析构件变形程度的基本量。

9、轴向尺寸远大于横向尺寸,称此构件为杆。

10、构件每单位长度的伸长或缩短,称为线应变。

11、单元体上相互垂直的两根棱边夹角的改变量,称为切应变。

12、轴向拉伸与压缩时直杆横截面上的内力,称为轴力。

13、应力与应变保持线性关系时的最大应力,称为比例极限。

14、材料只产生弹性变形的最大应力,称为弹性极根;材料能承受的最大应力,称为强度极限。

15、弹性模量E是衡量材料抵抗弹性变形能力的指标。

16、延伸率δ是衡量材料的塑性指标。

δ≥5%的材料称为塑性材料;δ<5%的材料称为脆性材料。

17、应力变化不大,而应变显著增加的现象,称为屈服或流动。

18、材料在卸载过程中,应力与应变成线性关系。

19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化。

20、使材料丧失正常工作能力的应力,称为极限应力。

21、在工程计算中允许材料承受的最大应力,称为许用应力。

22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比。

23、胡克定律的应力适用范围是应力不超过材料的比例极限。

《材料力学》复习资料

《材料力学》复习资料
原始尺寸相比甚小,故对构件进行受力分析时 可忽略其变形。
内容 种类
轴向拉伸 及 压缩
Axial Tension
剪切 Shear
扭转 Torsion
平面弯曲 Bending
组合变形
杆件变形的基本形式
外力特点
变形特点
金属材料拉伸时的力学性能
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
60o
30
2
40
sin
60o
(20
)cos60o
20.3MPa
符号规定:
—拉为正,压为负 —使单元体产生顺时针转动趋势者为正,反之为负
x x
y
2
y
2
x y cos2
2
sin 2 xy cos2
xy
s
in
2
强度理论的概念
1.简单应力状态下强度条件可由实验确定;
2.复杂应力状态下的强度不能由实验确定 (不可能针对每一种应力状态做无数次实验) ; 3.强度理论:材料的强度失效分为脆性断裂与塑 性屈服两种类型,并对每种类型的破坏原因提 出相应的假说。
第一、二、三、四强度理论、摩尔强度理论
• 一、最大拉应力理论: • 应用:材料无裂纹脆性断裂失效形式(脆性材料二向或三
向受拉状态;最大压应力值不超过最大拉应力值或超过不 多)。 • 二、最大拉应变理论 • ⑴ 应用:脆性材料的二向应力状态,且压应力很大的情 况。 • 三、最大切应力理论 • ⑴ 应用:材料的屈服失效形式。 • 四、畸变能理论 • ⑴ 应用:材料的屈服失效形式。
m 9549 P (N m) n
——功率 P千瓦,转速 n转/分。
扭转截面系数

(完整版)材料力学复习重点汇总

(完整版)材料力学复习重点汇总
4.小范围屈服: 塑性区的尺寸较裂纹尺寸及净截面尺寸小一个数量级以上的屈服,这就称为小范围屈服。【P71】
6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

材料力学复习资料

材料力学复习资料

材料力学一、判断题1.拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。

( N)2.平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关。

( N)3.圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。

( Y)4.单元体上最大切应力作用面上必无正应力。

(N)6.未知力个数多于独立的平衡方程数目,则仅由平衡方程无法确定全部未知力,这类问题称为超静定问题。

( Y)7.两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。

( Y )8.主应力是过一点处不同方向截面上正应力的极值。

( Y )10.第四强度理论宜采用于塑性材料的强度计算。

(N )11.拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。

( N)12.圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。

(Y) 13.细长压杆,若其长度系数增加一倍,临界压力增加到原来的4倍。

(N)14.两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。

(Y )15.主应力是过一点处不同方向截面上正应力的极值。

( Y )16.由切应力互等定理可知:相互垂直平面上的切应力总是大小相等。

(N)17.矩形截面梁横截面上最大切应力τmax出现在中性轴各点。

(Y )18.强度是构件抵抗破坏的能力。

(Y)19.均匀性假设认为,材料内部各点的应变相同。

(N)20.稳定性是构件抵抗变形的能力。

(N)21.对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定2.0σ作为名义屈服极限,此时相对应的应变为2.0%=ε。

(N)22.任何情况下材料的弹性模量E都等于应力和应变的比值。

(N)23.求解超静定问题,需要综合考察结构的平衡、变形协调和物理三个方面。

(Y )24.第一强度理论只用于脆性材料的强度计算。

(N)25.有效应力集中因数只与构件外形有关。

(N )26.工程上将延伸率δ≥10%的材料称为塑性材料。

材料力学考研复习笔记

材料力学考研复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。

为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。

刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。

这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。

按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。

(三)各向同性假设——沿各个方向均具有相同力学性能。

具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。

外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。

福建省考研材料科学与工程复习资料材料力学重点知识点整理

福建省考研材料科学与工程复习资料材料力学重点知识点整理

福建省考研材料科学与工程复习资料材料力学重点知识点整理一、概述材料力学是材料科学与工程中重要的基础学科,它研究材料的力学性能和变形行为,为材料的设计、选择和应用提供理论基础。

本文将对福建省考研材料科学与工程中的材料力学重点知识点进行整理。

二、力学基础1. 牛顿力学原理- 牛顿第一定律:物体不受外力作用时保持静止或匀速直线运动。

- 牛顿第二定律:物体在外力作用下加速度与所受力成正比,与物体的质量成反比。

- 牛顿第三定律:任何两个物体之间存在相互作用力,且大小相等、方向相反。

2. 应力、应变与弹性模量- 应力:物体单位面积上的力,常用符号σ表示。

- 应变:物体变形与初始尺寸比之差,常用符号ε表示。

- 弹性模量:物体在弹性范围内的应力和应变之比,常用符号E表示。

3. 载荷与变形- 载荷:作用于物体上的外力或外力系统。

- 变形:物体由于载荷而发生的形状、尺寸或体积的改变。

三、材料的力学性能指标1. 强度- 屈服强度:材料在拉伸或压缩过程中发生塑性变形的应力值。

- 抗拉强度:材料在拉伸过程中最大的抗拉应力。

- 抗压强度:材料在压缩过程中最大的抗压应力。

2. 韧性- 韧性:材料在受力过程中能够吸收和消耗很大的塑性变形能量的能力。

- 断裂韧性:材料在破坏之前所吸收的总变形能量。

3. 硬度- 布氏硬度:用钢球或硬质合金球压入材料表面的深度与钢球压入材料所受力的比值。

- 洛氏硬度:用钻石圆锥头压入材料表面的深度与钻石圆锥头压入材料所受力的比值。

四、材料的变形行为1. 弹性变形- 弹性恢复:物体在外力作用移除后能够恢复到原始形状和尺寸。

- 线弹性:材料在一定应力范围内,应力与应变呈线性关系。

- 立方弹性:材料在各向同性条件下的弹性性能。

2. 塑性变形- 塑性:材料在超过弹性极限后,在应力作用下会产生持续的、不可逆的变形。

- 塑性应变:材料受到塑性变形时,应变与应力之间的关系。

3. 蠕变变形- 蠕变:材料在高温下受到持续载荷作用时,产生的时间依赖性塑性变形。

福大机械考研复试材料力学背诵版

福大机械考研复试材料力学背诵版

《材料力学》简答题第一章绪论1、构件正常工作应满足:①强度要求:在规定载荷作用下的构件不应破坏,构件应有足够的抵抗破坏的能力;②刚度要求:在载荷作用下,构件即使有足够的强度,但若变形过大,仍然不能正常工作,因此要求构件应有足够的抵抗变形的能力。

③稳定性要求:受压力作用的细长杆应该始终维持原有的平衡状态,保证不被压弯。

2、什么是变形固体?材料力学中关于变形固体的基本假设是什么?在外力作用下,一切固体都将发生变形,故称为变形固体。

材料力学中对变形固体所作的基本假设:①连续性假设:认为整个物体体积内毫无空隙地充满物质。

②均匀性假设:认为固体内到处有相同的力学性能。

③各向同性假设:认为无论沿哪个方向,固体力学性能都是相同的。

3、静载荷:若载荷缓慢地由零增加到某一定值,以后即保持不变,或变动很不显著,即为静载荷动载荷:若载荷随时间而变化,则为动载荷。

交变载荷:随时间作周期性变化的动载荷称为交变载荷。

4、内力:物体因受外力作用而变形,其内部各部分之间因相对位置改变而引起的相互作用就是内力。

应力:由外力引起的内力的集度,分为正应力和切应力正应力σ:总应力p沿截面法向的分量。

切应力(剪应力)τ:总应力p沿截面切向的分量。

应变:应变是度量一点处变形程度的基本量,分为线应变和角应变。

正应变(线应变)ε:某点沿某方向单位长度的改变量;切应变(角应变)γ:某点在某平面内直角的改变量(减小为正)5、什么是截面法?简要说明截面法的三个基本步骤。

用一个假想截面,将受力构件分开为两个部分,取其中一部分为研究对象,(将被截截面上的内力以外力的形式显示出来,根据保留部分的平衡条件,)确定该截面内力大小、性质(轴力、剪力、扭转还是弯矩,符号的正负)的一种方法。

截面法的三个基本步骤(截代平):要求某一截面上的内力时,第一步先沿该截面假象地把构建分为两部分,然后任意取其中一部分作为研究对象,另外一部分舍弃;第二步用作用于截面上的内力代替舍弃部分对取出部分的作用;第三步建立取出部分的平衡方程,从而确定内力。

《材料力学》复习资料

《材料力学》复习资料
纳米材料的应用:纳米材料具有优异的力学性能、电学性能、光学性能等特点,在材料力 学领域具有广泛的应用前景。
先进制造技术对材料力学的影响与挑战
先进制造技术的定义与特点 先进制造技术对材料力学性能的要求 先进制造技术对材料力学应用领域的拓展 先进制造技术对材料力学未来发展的挑战与机遇
未来发展趋势预测与展望
《材料力学》复习 资料
单击此处添加副标题
汇报人:
目录
添加目录项标题 材料力学基础知识 材料力学实验与案例分析 材料力学前沿技术与发展 趋势
材料力学概述
材料力学基本公式与定理 材料力学模拟计算与优化 设计
01
添加章节标题
02
材料力学概述
定义与背景
材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的科学。 材料力学在工程设计中具有重要意义,是工程师必备的基础知识之一。 材料力学的研究对象包括金属、非金属、复合材料等多种材料。 材料力学的发展历史悠久,其理论体系不断完善,为现代工程设计提供了重要的理论支持。
目的和意义
目的:掌握材料力学的基本概念、原理和 方法 单击此处输入你的正文,请阐述观点
目的:提高对材料力学重要性的认识 单击此处输入你的正文,请阐述观点
目的:了解材料力学在工程中的应用 单击此处输入你的正文,请阐述观点
目的:掌握材料力学的基本原理和方法 单击此处输入你的正文,请阐述观点
意义:为后续课程的学习和工程实践打下 基础 目的和意义 目的和意义
扭转的变形分析:扭矩角、扭转截面系数、 变形能
稳定性与疲劳
稳定性定义:结构在受到外力作 用时保持其原有平衡状态的能力
稳定性与疲劳的关系:疲劳破坏 往往与结构稳定性有关
添加标题

2024年上学期材料力学(考试)复习资料

2024年上学期材料力学(考试)复习资料

2024年上学期材料力学(考试)复习资料一、单项选择题1.钢材经过冷作硬化处理后其()基本不变(1 分)A.弹性模量;B.比例极限;C.延伸率;D.截面收缩率答案:A2.在下面这些关于梁的弯矩与变形间关系的说法中,()是正确的。

(1 分)A.弯矩为正的截面转角为正;B.弯矩最大的截面挠度最大;C.弯矩突变的截面转角也有突变;D.弯矩为零的截面曲率必为零。

答案:D3.在利用积分计算梁位移时,积分常数主要反映了:( ) (1 分)A.剪力对梁变形的影响;B.支承条件与连续条件对梁变形的影响;C.横截面形心沿梁轴方向的位移对梁变形的影响;D.对挠曲线微分方程误差的修正。

答案:B4.根据小变形条件,可以认为() (1 分)A.构件不变形;B.构件不变形;C.构件仅发生弹性变形;D.构件的变形远小于其原始尺寸答案:D5.火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。

(1 分)A.脉动循环应力;B.非对称的循环应力;C.不变的弯曲应力;D.对称循环应力答案:D6.在下列结论中()是错误的(1 分)A.若物体产生位移则必定同时产生变形;B.若物体各点均无位移则必定无变形;C.若物体产生变形则物体内总有一些点要产生位移;D.位移的大小取决于物体的变形和约束状态答案:B7.在下列三种力(1、支反力;2、自重;3、惯性力)中()属于外力(1 分)B.3和2;C.1和3;D.全部答案:D8.在一截面的任意点处若正应力ζ与剪应力η均不为零则正应力ζ与剪应力η的夹角为() (1 分)A.α=90;B.α=450;C.α=00;D.α为任意角答案:A9.拉压杆截面上的正应力公式ζ=N/A的主要应用条件是() (1 分)A.应力在比例极限以内;B.外力合力作用线必须重合于杆件轴线;C.轴力沿杆轴为常数;D.杆件必须为实心截面直杆答案:A10.构件的疲劳极限与构件的()无关。

(1 分)A.材料;B.变形形式;C.循环特性;D.最大应力。

材料力学考试知识点

材料力学考试知识点

材料力学考试知识点材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

对于工科学生来说,这是一门非常重要的基础课程。

以下是材料力学考试中常见的知识点。

一、拉伸与压缩1、内力与轴力图在拉伸或压缩杆件时,杆件内部产生的相互作用力称为内力。

通过截面法可以求得内力,将杆件沿某一截面假想地切开,取其中一部分为研究对象,根据平衡条件求出内力。

用轴力图可以直观地表示轴力沿杆件轴线的变化情况。

2、应力正应力是垂直于截面的应力,计算公式为σ = N/A ,其中 N 为轴力,A 为横截面面积。

切应力是平行于截面的应力。

3、胡克定律在弹性范围内,杆件的变形与所受外力成正比,与杆件的长度成正比,与杆件的横截面面积成反比,与材料的弹性模量成反比。

表达式为Δl = FNl/EA ,其中Δl 为伸长量, FN 为轴力,l 为杆件长度,E 为弹性模量,A 为横截面面积。

4、材料的拉伸与压缩力学性能通过拉伸试验可以得到材料的力学性能,如屈服极限、强度极限、延伸率和断面收缩率等。

二、剪切与挤压1、剪切的实用计算假设剪切面上的切应力均匀分布,根据平衡条件计算剪切面上的剪力和切应力。

2、挤压的实用计算考虑挤压面上的挤压应力,通常假定挤压应力在挤压面上均匀分布。

三、扭转1、扭矩与扭矩图扭矩是杆件受扭时横截面上的内力偶矩。

扭矩图用于表示扭矩沿杆件轴线的变化情况。

2、圆轴扭转时的应力与变形横截面上的切应力沿半径呈线性分布,最大切应力在圆轴表面。

扭转角的计算公式为φ = Tl/GIp ,其中 T 为扭矩,l 为杆件长度,G 为剪切模量,Ip 为极惯性矩。

四、弯曲内力1、剪力和弯矩剪力是横截面切向分布内力的合力,弯矩是横截面法向分布内力的合力偶矩。

通过截面法可以求出剪力和弯矩。

2、剪力图和弯矩图用图形表示剪力和弯矩沿杆件轴线的变化规律,有助于分析杆件的受力情况。

五、弯曲应力1、纯弯曲时的正应力推导得出纯弯曲时横截面上正应力的计算公式σ = My/Iz ,其中 M 为弯矩,y 为所求应力点到中性轴的距离,Iz 为惯性矩。

材料力学复习资料汇总

材料力学复习资料汇总

12材料力学一、填空1、图所示桁架中,水平杆看作刚性,三根竖杆长度相同,横截面积均为A ,材料相同,屈服极限为σy .当三杆均处于弹性阶段时,各杆轴力之比为N 1: N 2: N 3=5:2:-1.当三杆中有一杆开始屈服时,荷载P 的值为(1.5σy A ).2、一等截面圆直杆,长度为l ,直径为d ,材料的弹性模量为E ,轴向受压力P ,在弹性范围内,其最大切应力为(2P /πd 2),受载后的长度为(l -4lP /πEd 2),受载后的直径为( d +4μP /πEd ),杆件内的应变能为(2P 2l /πE d 2 )。

3、外径 D = 55 mm ,内径 d = 45 mm 的钢管,两端铰支,材料为 Q235钢,承受轴向压力 F 。

则能使用欧拉公式时压杆的最小长度是(1.78m ),当压杆长度为上述最小长度的4/5时,压杆的临界应力为(188.5kN )。

已知:E = 200 GPa ,σ p = 200 MPa ,σs = 240 MPa ,用直线公式时,a = 304 MPa , b =1.12 MPa 。

4、一等直圆杆,直径为d ,长度为l ,两端各作用一扭矩T ,材料的泊松比为μ,弹性模量为E 。

则两端面的相对转角为(64(1+μ)Tl /πEd 4),杆件内储存的应变能为(32(1+μ)T 2l /πEd 4 );又若两端各作用一弯矩M ,则按第三强度理论时,其危险点的相当应力为(22332M T d+π),按第四强度理论时,其危险点的相当应力为(22375.032M T d +π)。

6、矩形截面梁,材料的抗弯许用应力[σ]=8MPa ,梁内最大弯矩M max =24kNm ,梁截面的高宽比h /b =1.5.则梁宽b 应取( 20cm ).7、圆柱形蒸汽锅炉的外径为D ,内径为d ,壁厚为t ,若材料的许用应力为[σ].则锅炉能承受的最大内压力(工作压力)为(p=2[σ]t/d)。

材料力学(I)(学术型)

材料力学(I)(学术型)
概念题(50分):包括选择、填空
计算题(100分)
三、主要参考书目
材料力学,刘鸿文主编,高教出版社,2004年1月,第四版
四、学院审核意见
压杆稳定分析:
1.欧拉临界载荷公式。
2.欧拉临界载荷公式的适用范围,经验公式,临界应力总图;
3.压杆稳定计算;
能量法:
1.利用卡氏定理或单位载荷法计算梁、刚架、桁架的变形;
2.受冲击杆件的应力和位移,动荷系数;
3.交变应力与疲劳失效的概念;
4.一次静不定问题的求解
二、考试要求(包括题型、分数比例等)
包括选择填空计算题100分三主要参考书目材料力学刘鸿文主编高教出版社2004年1月第四版四学院审核意见
浙江工业大学2010年
硕士研究生入学考试基础课、专业基础课考试大纲
科目代码:812科目名称:材料力学(I)一源自基本内容材料力学的基本变形:
1.拉(压)、扭、弯的内力图
2.轴向拉伸和压缩的应力、变形、强度和刚度校核
3.剪切和挤压基本概念;
4.扭转的应力、变形、强度和刚度校核
5.弯曲正应力和切应力的计算、变形、强度和刚度校核
应力状态分析:
1.平面应力状态下的应力分析——解析法和莫尔圆法;
2.广义虎克定律;
3.四个强度理论;
组合变形分析:
1.拉/压与弯曲组合应力和强度计算;
2.扭弯组合应力和强度计算。
3.其它组合变形

本材料力学复习资料

本材料力学复习资料

填空1. 杆件的基本变形形式一般有 、剪切、 、弯曲四种,而应变只有线应变、 两种.2.梁段上,只有弯矩没有剪力的弯曲形式称为 弯曲。

3.将圆轴的直径增大一倍,则圆轴的强度提高 倍 4。

矩形截面梁截面宽b 高h,弯曲时横截面上最大正应力max σ出现在最大弯矩截面的 各点,=m ax σ 。

5.低碳钢试件受拉时,沿 方向出现滑移线;铸铁试件受拉时,沿 方向断裂。

6. 第三强度理论即 理论,其相当应力表达式为 。

7. 杆件的基本变形形式一般有拉压、 、扭转、 四种,而应变只有 、切应变两种。

8. 梁段上,既有弯矩又有剪力的弯曲形式称为 。

9。

将圆轴的直径增大一倍,则圆轴的刚度提高 倍。

10。

单元体中 的截面称为主平面,其上的正应力称为 .11. 如下图所示的悬臂梁,长度m kN q m l /2,5==满跨均分布荷载,则A 端右邻截面上弯矩是 ,要减小梁自由端的挠度,一般采取减小 的方法;12。

工程上将延伸率≥δ 的材料称为塑性材料.13. 所谓 ,是指材料件抵抗破坏的能材;所谓 ,是指构件抵抗变形的能力。

14. 圆截面梁,若直径d 增大一倍(其它条件不变),则梁的最大正应力降至原来的 。

15. 圆形截面的抗扭截面系数W p = 。

16. 矩形截面梁弯曲时横截面上最大切应力max τ出现在最大剪力截面的 各点,如果截面面积为F S 截面面积为A ,则=τmax 。

17. 如图所示,1-1截面上的轴力为 ,2—2截面上的轴力为 。

18。

若要求校核工字形截面钢梁腹板与冀缘交接处一点的强度,则应该用 强度理论,其强度条件(用该点横截面上的正应力σ和剪应力τ来表示)表达式是 .19.如下图示的圆截面杆受扭时,在其表面上一点处沿与杆轴成—45°角的斜面上将出现最大的 应力,而在其横、纵截面上将出现最大的 应力。

20. 矩形截面梁在横力弯曲的情况下,横截面上的剪应力是沿截面高度按规律变化的,在中性轴处的剪应力值等于。

材料力学考研专业课资料

材料力学考研专业课资料

材料力学考研专业课资料材料力学考研是研究材料性能与结构力学行为的学科。

它是材料科学与工程中的一门重要课程,对于工程技术人员和研究人员来说具有重要意义。

以下是关于材料力学考研专业课的相关资料,旨在帮助考生更好地学习和备考。

一、课程概述材料力学是研究材料受力和变形的学科,主要包括静力学、动力学、材料破坏等内容。

它是材料科学与工程中的关键基础学科,对于材料性能与结构力学行为的研究和应用具有重要意义。

二、学习方法1.理论学习学习材料力学的基本理论知识是考研的关键。

可以通过教材、课堂笔记和参考书等途径进行学习。

重点掌握材料力学的基本概念、公式和推导过程,建立起扎实的理论基础。

2.例题分析理论与实践相结合是学习材料力学的重要方法。

通过分析例题,掌握解题技巧和思路。

可以从基本题型入手,逐步提升难度。

同时,可以参考历年考研真题和模拟试题进行练习,熟悉考点和命题风格。

3.实验与实践材料力学是一门实践性较强的学科,学习过程中可以结合实验和实践进行深入理解。

可以参加实验课程、实践项目等,亲自实践操作,加深对材料力学原理的理解。

三、备考重点1.力学基础材料力学是建立在力学基础上的,因此掌握力学基本原理和方法是备考的重点。

需要重点学习和掌握静力学、动力学、动力学原理等内容,深入理解并能熟练运用。

2.材料力学基本概念材料力学中有许多基本概念和定义,如应力、应变、弹性模量等,需要准确理解。

同时,要熟练掌握材料力学相关概念的计算公式和应用方法。

3.力学模型与材料性能对于不同材料,其力学性能表现不同,因此需要学习不同的力学模型和应变变形规律。

要理解不同力学模型的物理意义和适用范围,能够准确分析和描述材料的力学性能。

四、参考资料推荐1.教材-《材料力学》(郭维敏等著):该教材是材料力学考研的主要参考教材,系统介绍了材料力学的基本理论和方法。

2.参考书-《材料力学-基础与应用》(曹志力、张卫国著):该书较为全面地介绍了材料力学的相关内容,适合进一步深入学习和理解。

材料力学复习资料

材料力学复习资料

材料力学复习资料(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--材料力学复习一一、选择题1. 图中所示三角形微单元体,已知两个直角截面上的切应力为0τ,则斜边截面上的正应力σ和切应力τ分别为 。

A 、00,στττ==;B 、0,0σττ==;C 、00,στττ=-=;D 、0,0σττ=-=。

2.构件中危险点的应力状态如图所示,材料为低碳钢,许用应力为[]σ,正确的强度条件是 。

A 、[]σσ≤;B 、[]στσ+≤;C 、[],[][]/2σσττσ≤≤=;D []σ≤。

3. 受扭圆轴,当横截面上的扭矩不变而直径减小一半时,该横截面上的最大切应力原来的最大切应力是 。

A 、2倍B 、4倍C 、6倍D 、8倍4. 两根材料相同、抗弯刚度相同的悬臂梁I 、II 如图示,下列结论中正确的是 。

梁和II 梁的最大挠度相同 梁的最大挠度是I 梁的2倍 梁的最大挠度是I 梁的4倍 梁的最大挠度是I 梁的1/2倍P题1-4 图5. 现有两种压杆,一为中长杆,另一为细长杆。

在计算压杆临界载荷时,如中长杆误用细长杆公式,而细长杆误用中长杆公式,其后果是 。

A 、两杆都安全; B 、两杆都不安全;C 、中长杆不安全,细长杆安全;D 、中长杆安全,细长杆不安全。

6. 关于压杆临界力的大小,说法正确的答案是 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关;C 与压杆所承受的轴向压力大小有关;D 与压杆的柔度大小无关。

4545题 1-1 图二、计算题(共5题,共70分)1、如图所示矩形截面梁AB ,在中性层点K 处,沿着与x 轴成45方向上贴有一电阻应变片,在载荷F 作用下测得此处的应变值为6451025.3-︒⨯-=ε。

已知200E GPa =,0.3μ=,求梁上的载荷F 的值。

2.(16分)圆杆AB 受力如图所示,已知直径40d mm =,112F kN =,20.8F kN =,屈服应力240s MPa σ=,安全系数2n =。

材料力学复习资料(DOC)

材料力学复习资料(DOC)

材料力学重点及其公式1、材料力学的任务:强度、刚度和稳定性;应力 单位面积上的内力。

平均应力 AFp m∆∆=(1.1) 全应力dAdFA F p p A m A =∆∆==→∆→∆00lim lim (1.2) 正应力 垂直于截面的应力分量,用符号σ表示。

切应力 相切于截面的应力分量,用符号τ表示。

应力的量纲:GPa MPa )m /N (Pa 2、、国际单位制: 22cm /kgf m /kgf 、工程单位制:线应变 单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。

外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。

当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM = 拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F Aσ= (3-1)式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。

图1.2公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1sin 22ατα= (3-4)式中σ为横截面上的应力。

正负号规定:α由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学复习资料一、填空题1、为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度;同时要求他们有足够的抵抗变形的能力,即要求它们有足够的刚度;另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性。

2、材料力学是研究构件强度、刚度、稳定性的学科。

3、强度是指构件抵抗破坏的能力;刚度是指构件抵抗变形的能力;稳定性是指构件维持其原有的平衡状态的能力。

4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。

5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

6、截面法是计算内力的基本方法。

7、应力是分析构件强度问题的重要依据。

8、线应变和切应变是分析构件变形程度的基本量。

9、轴向尺寸远大于横向尺寸,称此构件为杆。

10、构件每单位长度的伸长或缩短,称为线应变。

11、单元体上相互垂直的两根棱边夹角的改变量,称为切应变。

12、轴向拉伸与压缩时直杆横截面上的内力,称为轴力。

13、应力与应变保持线性关系时的最大应力,称为比例极限。

14、材料只产生弹性变形的最大应力,称为弹性极根;材料能承受的最大应力,称为强度极限。

15、弹性模量E是衡量材料抵抗弹性变形能力的指标。

16、延伸率δ是衡量材料的塑性指标。

δ≥5%的材料称为塑性材料;δ<5%的材料称为脆性材料。

17、应力变化不大,而应变显著增加的现象,称为屈服或流动。

18、材料在卸载过程中,应力与应变成线性关系。

19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化。

20、使材料丧失正常工作能力的应力,称为极限应力。

21、在工程计算中允许材料承受的最大应力,称为许用应力。

22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比。

23、胡克定律的应力适用范围是应力不超过材料的比例极限。

24、杆件的弹性模量E表征了杆件材料抵抗弹性变形的能力,这说明在相同力作用下,杆件材料的弹性模量E值越大,其变形就越小。

25、在国际单位制中,弹性模量E的单位为GPa。

26、低碳钢试样拉伸时,在初始阶段应力和应变成线性关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为弹性极限的时候。

27、在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为α,由此可知其正切tgα 在数值上相当于低碳钢拉压弹性模量E的值。

28、金属拉伸试样在进入屈服阶段后,其光滑表面将出现与轴线成45o角的系统条纹,此条纹称为滑移线。

29、使材料试样受拉达到强化阶段,然后卸载,再重新加载时,其在弹性范围内所能达到的最大荷载将提高,而且断裂后的延伸率会降低,此即材料的冷作硬化现象。

30、铸铁试样压缩时,其破坏断面的法线与轴线大致成45o的倾角。

31、铸铁材料具有抗压强度高的力学性能,而且耐磨,价廉,故常用于制造机器底座,床身和缸体等。

32、铸铁压缩时的延伸率值比拉伸时大。

33、混凝土这种脆性材料常通过加钢筋来提高混凝土构件的抗拉能力。

34、混凝土,石料等脆性材料的抗压强度远高于它的抗拉强度。

35、为了保证构件安全,可靠地工作,在工程设计时通常把许用应力作为构件实际工作应力的最高限度。

36、安全系数取值大于1的目的是为了使工程构件具有足够的强度储备。

37、设计构件时,若片面地强调安全而采用过大的安全系数,则不仅浪费材料而且会使所设计的结构物笨重。

38、约束反力和轴力都能通过静力平衡方程求出,称这类问题为静定问题;反之则称为超静定问题;未知力多于平衡方程的数目称为几次超静定。

39、构件因强行装配而引起的内力称为装配内力,与之相应的应力称为装配应力。

40、材料力学中研究的杆件基本变形的形式有拉伸或压缩、剪切、扭转和弯曲。

41、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变形是扭转变形;教室中大梁的变形是弯曲变形;建筑物的立柱受压缩变形;铰制孔螺栓连接中的螺杆受剪切变形。

42、通常把应力分解成垂直于截面和切于截面的两个分量,其中垂直于截面的分量称为正应力,用符号σ表示,切于截面的分量称为剪应力,用符号τ表示。

43、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相重合。

44、杆件轴向拉伸或压缩时,其横截面上的正应力是均匀分布的。

45、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面形心。

46、在轴向拉伸或压缩杆件的横截面上的正应力相等是由平面假设认为杆件各纵向纤维的变形大小都相等而推断的。

47、正方形截而的低碳钢直拉杆,其轴向向拉力3600N ,若许用应力为100Mp a ,由此拉杆横截面边长至少应为6mm 。

48、求解截面上内力的截面法可以归纳为“截代平”,其中“截”是指沿某一平面假想将杆 截断分成两部分;“代”是指用内力代替去除部分对保留部分的作用;“平”是指对保留部分建立平衡方程。

49、剪切的实用计算中,假设了剪应力在剪切面上是均匀分布的。

50、钢板厚为t ,冲床冲头直径为d ,今在钢板上冲出一个直径d 为的圆孔,其剪切面面积为πdt 。

51、用剪子剪断钢丝时,钢丝发生剪切变形的同时还会发生挤压变形。

52、挤压面是两构件的接触面,其方位是垂直于挤压力的。

53、一螺栓联接了两块钢板,其侧面和钢板的接触面是半圆柱面,因此挤压面面积即为半圆柱面正投影的面积。

54、挤压应力与压缩应力不同,前者是分布于两构件接触表面上的压强而后者是分布在构件内部截面单位面积上的内力。

55、当剪应力不超过材料的剪切比例极限时,剪应变与剪应力成正比。

56、构件接触面上的相互压紧的现象称为挤压,与构件压缩变形不同的。

57、凡以扭转变形为主要变形的构件称为轴。

58、功率一定时,轴所承受的外力偶矩e M 与其转速n 成反比。

59、已知圆轴扭转时,传递的功率为kW P 15=,转速为rpm n 150=,则相应的外力偶矩为=e M 954.9N.m 。

60、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的代数和;在扭转杆上作用集中外力偶的地方,所对应的扭矩图要发生突变,突变值的大小和杆件上集中外力偶之矩相同。

61、圆轴扭转时横截面上任意一点处的切应力与该点到圆心间的距离成正比。

62、当切应力不超过材料的比例极限时,切应力与切应变成正比例关系,这就是剪切胡克定律。

63、GI P 称为材料的截面抗扭刚度。

64、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,横截面上任意点的切应变与该点到圆心的距离成正比,截面边缘上各点的变形为最大,而圆心的变形为零;距圆心等距离的各点其切应变必然相等。

65、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无正应力。

66、圆轴扭转时,横截面上内力系合成的结果是力偶,力偶作用于面垂直于轴线,相应的横截面上各点的切应力应垂直于半径,切应力的大小沿半径呈线性规律分布,横截面内同一圆周上各点的切应力大小是相等的。

67、横截面面积相等的实心轴和空心轴相比,虽材料相同,但空心轴的抗扭承载能力(抗扭刚度)要强些。

68、材料的三个弹性常数是E 、G 、μ_;在比例极限内,对于各向同性材料,三者关系是2(1)E G μ=+。

69、组合截面对任一轴的静矩,等于各部分面积对同一轴静矩的代数和。

70、在一组相互平行的轴中,截面对各轴的惯性矩以通过形心轴的惯性矩为最小。

71、通过截面形心的正交坐标轴称为截面的形心轴。

72、恰使截面的惯性积为零的正交坐标轴称为截面的主惯性轴,截面对此正交坐标轴的惯性矩,称为主惯性矩。

73、有一正交坐标轴,通过截面的形心,且恰使截面的惯性积为零,则此正交坐标轴称为截面的形心主惯性轴,截面对正交坐标轴的惯性矩称为形心主惯性矩。

74、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相垂直的外力的作用。

75、以弯曲变形为主要变形的构件称为梁。

76、车床上的三爪盘将工件夹紧之后,工件夹紧部分对卡盘既不能有相对移动,也不能有相对转动,这种形式的支座可简化为固定端支座。

77、梁弯曲时,其横截面上的剪力作用线必然平行于横截面。

78、在一般情况下,平面弯曲梁的横截面上存在两种内力,即剪力和弯矩,相应的应力也有两种,即剪应力和正应力。

79、若在梁的横截面上,只有弯矩而无剪力,则称此情况为纯弯曲。

80、z EI 称为材料的抗弯刚度。

81、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为横力弯曲。

82、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对截面形心力矩的代数和;弯矩的正负,可根据该截面附近的变形情况来确定,若梁在该截面附近弯成上凹 下凸_,则弯矩为正,反之为负。

83、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为正。

84、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q ,梁长为L ,由此可知在距固定端2/L 处的横截面上的剪力为qL / 2,固定端处横截面上的弯矩为qL 2 / 2。

85、由剪力和载荷集度之间的微分关系可知,剪力图上某点的切线斜率等于对应于该点的载荷集度.86、设载荷集度q (x )为截面位置x 的连续函数,则q (x )是弯矩M (x )的二阶导函数。

87、梁的弯矩图为二次抛物线时,若分布载荷方向向上,则弯矩图为向下凸的抛物线。

88、弯矩图的凹凸方向可由分布载荷的正负符号确定。

89、在梁的某一段内,若无载荷的作用,则剪力图是平行于x 轴的直线。

90、矩形截面梁的切应力是沿着截面高度按抛物线规律变化的,在中性轴上切应力为最大,且最大值为该截面上平均切应力的1.5倍。

91、梁在纯弯曲时,其横截面仍保持为平面,且与变形后的梁轴线相垂直;各横截面上的剪力等于零,而弯矩为常量。

92、梁在弯曲时的中性轴,就是梁的中性层与横截面的交线。

它必然通过其横截面上的形心那一点。

93、梁弯曲时,其横截面的正应力按直线规律变化,中性轴上各点的正应力等于零,而距中性轴越远(填远或者近)正应力越大。

以中性层为界,靠凹边的一侧纵向纤维受压力作用,而靠凸边的一侧纵向纤维受拉应力作用。

94、对于横截面高宽度比2:=b h 的矩形截面梁,在当截面竖放时和横放时的抗弯能力(抗弯截面系数)之比为2。

95、面积相等的圆形、矩形和工字形截面的抗弯截面系数分别为圆W 、矩W 和工W ,比较其值的大小,其结论应是圆W 比矩W 小,工W 比矩W 大。

(填大或者小)96、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。

相关文档
最新文档