排列组合中分组(分堆)与分配问题
排列组合的题型与方法
(二)分组分配问题 5.限制条件的分配问题分类法: 例6.某高校从某系的10名优秀毕业生中选4人分别到西 部四城市参加中国西部经济开发建设,其中甲同学不 到银川,乙不到西宁,共有多少种不同派遣方案?
A 60 种。 A
5 5 2 2
(一)排序问题 4.定位问题优先法:某个或几个元素要排在指定位 置,可先排这个或几个元素;再排其它的元素。
例4.现有1名老师和4名获奖同学排成一排照相留念, 若老师不站两端则有不同的排法有多少种?
解析:老师在中间三个位置上选一个有 A1 种 ,
3
种,4名同学在其余4个位置上有 A4 种方法; 4
解析、(1)先从10人中选出2人承担甲项任务,再从剩下的8人中 选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务, 2 1 1 不同的选法共有 C10 C8C7 2520 种
(二)分组分配问题 2.有序分配问题逐分法:有序分配问题指把元素分成若 干组,可用逐步下量分组法.
例3、(2)12名同学分别到三个不同的路口进行流量的 调查,若每个路口4人,则不同的分配方案有( A )
(2)5本不同的书,全部分给4个学生,每个学生至少 一本,不同的分法种数为( B ) A、480种 B、240种 C、120种 D、96种
2 4 C5 A4 240
(二)分组分配问题
4.名额分配问题隔板法(无差别物品分配问题隔板法): 例5:10个三好学生名额分到7个班级,每个班级至少 一个名额,有多少种不同分配方案?
排列组合问题,常见解题策略
排列组合问题,常见解题策略曹永玉排列组合问题是高考的必考内容,也是高考题中正确率最低的题目之一。
究其原因,是因为其思维方式独特,解题思路新颖,如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。
教学中,提高学生解排列组合题的有效途径是将一些常见题型进行方法归类,构造模型解题,这样有利于学生认识模式,进而熟练应用。
本文列举了几种常见的排列组合问题的解题策略,以期对大家有所帮助。
一、排列问题1.某个(或某几个)元素要排在指定位置——特殊元素“优先法”。
例1. 乒乓球队的10 名队员中有3名主力队员,派5名参加比赛,3名主力要排在第一、三、五位置,其余7队员中选2名排在第二、四位置,那么不同的出场安排共有多少种?解析:3名主力的位置确定在第一、三、五位中选,将他们优先安排,有A72A33种可能,然后从其他队员中选2 人安排在第二、四位置,有A72种排法,因此结果有A33种。
点评:先排特殊(特殊元素或特殊位置)是解决排列问题的基本方法。
2.某个元素不排在指定位置——排除法。
例2. 5个人排队,其中甲不在排头的排法有多少?解析1:(排除法)5人的全排列数A55,其中甲在排头的排列数A44,故甲不在排头的排列数A55 --A44=96种解析2:(特殊元素优先法):先从余下的4个位置中选一位置排上,甲有A41种方法,然后其他4个元素排在余下的四个位置A44,所以总计A44A41种排法。
解析3:(特殊元素优先法):先从甲以外的4人中选出一人排在特殊位置——排头A41,然后其他四个元素排在余下的4个位置A44,所以总计A41A44种排法。
3. 相邻问题——捆绑法例3. 4名男生和4名女生排成一排照相,要求4名女生必须相邻,有多少种排法?解析:4名女生看作一个整体(捆绑),与4名男生共五个元素全排列A55,但这4名女生内部又有顺序A44,故A44A55种不同排法。
4. 小团体问题——捆绑法例4.5人站一排,其中甲、乙之间有且只有一人的站法有多少?解析:先从甲、乙之外的3人中选一人,然后将甲、乙排在他的两边有C31A22种方式,3人形成一个小团体,看作一个元素再与余下的2人排列有A33种。
排列组合中的分堆问题
C120C82C62C44
(2)按2∶2A∶332∶4分给甲、乙、丙、丁四个人有
多少种不同的分法?
C120C82C62C44 A33
A44
非均分问题
例1:6本不同的书 (1)按1∶2∶3分成三堆有多少种不同的分法?
C16C52C33
(2)按1∶2∶3分给三个人有多少种不同的分法?
C16C52C33 A33
பைடு நூலகம்(3)甲两本,乙、丙各五本;
C122
C150C55 A22
A22
C122C150C55
(4)一人两本,另两人各五本·
C122
C150C55 A22
A33
3C122C150C55
A33
C62C42C22
(2)12支笔按3:3:2:2:2分给A、B、C、
D、E五个人有多少种不同的分法?
C132C93C62C42C22 A22 A33
A55
练习
1:12本不同的书平均分成四组有多少种不同分法?
C132C39C36C33 A44
2:10本不同的书
(1)按2∶2∶2∶4分成四堆有多少种不同的分法?
注意
(1)非均分问题只要按比例分完再用乘法原理作积
(2)分组安排工作要把组数当作元素个数再作排列。
非均分问题
例2.有六本不同的书分给甲、乙、丙三名同学,按 下条件,各有多少种不同的分法?
(1)每人各得两本;C62C42C22
(2)甲得一本,乙得两本,丙得三本;C16C52C33
(3)一人一本,一人两本,一人三本;C16C52C33 A33
法?
C142C84C44 A33
5775
(2)按2∶2∶2∶6分成四堆有多少种不同的分法?
行测数量关系技巧:排列组合异素不均分的分堆与分配问题
⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题 公务员⾏测考试主要是考量⼤家的数学推理能⼒和逻辑分析能⼒,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系技巧:排列组合异素不均分的分堆与分配问题 公务员考试⾏测卷中,要说最难的题型,可能⼀千个读者⼼中有⼀千个哈姆雷特,各有各的说法。
但是要说到最容易出错的题型,那⾮排列组合不可。
但是排列组合在⺫前的公务员考试中尤其是国考,⼏乎是每年必考的题型,所以还是需要花精⼒去学习掌握。
今天带⼤家⼀起来学习其中的⼀个⼩知识点,即异素不均分的分堆与分配问题,主要是为了和我们之前所说的异素均分的分堆与分配形成对⽐和区分。
⼀、异素不均分的分堆与分配 概念并不难理解,所谓的异素,就是指被分的元素是不相同的,有区别的。
⽽不均分则是指分完后每⼀份数量不⼀样,⽐如说四个不同颜⾊的⼩球,分作两份,分别为1个和3个,这就是个异素不均分的问题。
⽽分堆与分配,⼜是有区别的,分堆就是把元素按照要求分开就⾏,⽐如说分成1个和3个,就可以了。
分配则是在分堆的基础上需要将分好的堆再分配给相应的对象。
⽐如说4个颜⾊不同的⼩球,分给⼩⺩和⼩李,其中⼀⼈拿3个,另⼀⼈则拿1个,这就是不均分的分配问题。
⼆、实际应⽤中的具体计算⽅法 我们通过⼀个例题来理解两种不同的分堆分配⽅式的具体计算。
例1:将标有A、B、C、D的四本书分作两组,其中⼀组3本,⼀组1本,有多少种分法? 【解析】通过上边的描述我们知道,这属于异素不均分的分堆问题,直接按照分步思想来操作就可以了,第⼀步从4本书中选出3本,第⼆步则选出剩下的1本,即 所以当我们把不同元素进⾏不均分分堆时,只需要按照基本的分步思想去操作即可。
例2:将标有A、B、C、D的四本书分给甲、⼄两个⼈,其中甲1本,⼄2本,有多少种分法? 【解析】这个题属于不均分分堆之后的指定分配,当我们分好堆的时候,其实已经确定了每⼀堆的归属,所以计算⽅式和结果,和例题1是⼀样的。
高中数学分堆分配问题
高中数学分堆分配问题篇一:高中数学排列组合中的分组分配问题排列组合中的分组分配问题分组分配问题是排列组合教学中的一个重点和难点。
某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。
下面就排列组合中的分组分配问题,谈谈自己在教学中的体会和做法。
一、提出分组与分配问题,澄清模糊概念n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。
二、基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.22分析:(1)分组与顺序无关,是组合问题。
分组数是C26C4C2=90(种) ,这90种分组实际上重复了6次。
我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。
以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数A3所以分法是3,222C6C4C2=15(种)。
(2)先分A3323组,方法是C1那么还要不要除以A3由于每组的书的本数是不一样的,6C5C3,3?我们发现,23因此不会出现相同的分法,即共有C16C5C3=60(种) 分法。
11(3)分组方法是C46C2C1=30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,CC2C1=15(种)。
排列组合中的分组、分配问题的有效解法
图6
2= 4.
(2)由旋转体的定义可知,阴影部分绕直线 BC 旋
转一周形成的几何体为圆柱中挖掉一个半球和一个圆
锥 . 该圆柱的底面半径 R=BA=2,母线长 l=AD=2,故该圆
柱的体积 V1=π × 22 × 2 = 8π,半球的半径为 1,其体积
个不同对象,称为分配问题 . 包括定向分配和不定向分
配两类 . 其关键词:
不同元素、不同对象、条件、分配 .
2 分组 . 把 n 个不同元素按照确定的条件分成 m 组
(或 m 堆),称为分组问题,包括平均分组、非平均分组和
混合分组三类 . 其关键词:
不同元素、条件、分组 .
从以上概念的关键词足以看出,分配与分组联系紧
平面 ABB1A1⊥平面 A1BC.
点评:立体几何证明题,是历年高考必考题型,难度
不大,命题者一般不会在试题的难度上下“猛药”,而是
处处考查考生的转化思想,如要证线垂直于线,常常通
过线面垂直转化,要证线平行于面,常常通过线面平行
或面面平行转化 .
转化,是数学解题的主旋律,尤其是对于立体几何
来说更是如此 . 只要掌握Fra bibliotek转化的方法与技巧,那么立
1 4
2π
V2= × π ×13 =
;圆锥的底面半径为 2,高为 1,其体
2 3
3
1
4
积 V3= π × 22 × 1= π,所以阴影部分绕直线 BC 旋转一
3
3
周形成的几何体的体积 V=V1-V2-V3=6π.
点评:割补法适用于求不规则几何体的体积,就是
排列组合中的分组分配问题完整
五非均分组分配对象确定问题
例6 六本不同的书按1∶2∶3分给甲、乙、丙三个人 有多少种不同的分法?
C61C52C33
非均分组有分配对象要把组数当作元素个数 再作排列。
五非均分组分配对象不固定问题
例7 六本不同的书分给3人,1人1本,1人2本,1人3本 有多少种分法
C
2 10
C
2 8
C
2 6
C
4 4
A
3 3
C
2 10
C
2 8
C
2 6
C
4 4
3 有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法?
(1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
排列组合中的分组分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
一、 提出分组与分配问题,澄清模糊概念 n 个不同元素按照某些条件分配给 k 个不同得对象,称为
分配问题,分定向分配和不定向分配两种问题;将 n 个不同 元素按照某些条件分成 k 组,称为分组问题.分组问题有不平 均分组、平均分组、和部分平均分组三种情况。分组问题和 分配问题是有区别的,前者组与组之间只要元素个数相同是 不区分的;而后者即使 2 组元素个数相同,但因对象不同, 仍然是可区分的.对于后者必须先分组后排列。
C61C52C33 A33
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
排列组合中的分堆问题最新版
例2:(1)6本不同的书按2∶2∶2平均分给甲、 乙、丙三个人,有多少种不同的分法?
方法:先分再排法。分成的组数看成元 素的个数·
(1)均分的三组看成是三个元素在三 个位置上作排列
(1)
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
例2:(1)6本不同的书按 2∶2∶2平均分给甲、乙、丙三个 人,有多少种不同的分法?
一:均分不安排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
14 2 C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
(2)
C
12 2 C
120C82
C
6 6
A
3 3
二:分堆安排工作的问题
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
Aቤተ መጻሕፍቲ ባይዱ
1 3
C
4 6
C
1 2
C
1 1
练习3
练习:12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法?
排列与组合-分组与分配问题
第一次分组:先取4个人,取到1, 2, 3, 4作为第一组,再取到 5作为第二组,剩下6作为第三组,这是一种分组的方法.
第二次分组:先取到1, 2, 3, 4作为第一组,再取到6作为第二 组,剩下5作为第三组,这两种分组方法是一样的,所以有重复.
4 个项目进行培训,每名志愿者只分配到 1 个项目,每个项目至少分配 1 名志愿者,则不同的分配方案共有多少种?
解:根据题意,可以将5名志愿者按照2,1,1,1分成4组,再分配到4个
项目,则有:
C52
C31 C21 A33
C11
A44
240
故共有240种不同的分配方案.
课堂小结
分组问题
完全非均匀分组:分步组合; 完全均匀分组:分步组合后除以组数的阶乘; 部分均匀分组:分步组合后,若有m组元素个数相同,则除以m!
法?
解析:本题可先按照问题3将书分成三堆,分堆方法数是
C64
C21 A22
C11
15
种,再分给甲、乙、丙三人,排列方法数有 A33 种,再根据分步乘法计
数原理 ,分配方法数是
C64
C21 A22
C11
A33
90
种
.
点拨:先分组、再分配!
解决问题
情境: 将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶
思考:这样分组有什么问题吗?
探究新知
思考:这样分组有什么问题吗? 分步骤而人为增加了顺序!!
答 : 可以假设这6个人编号为1, 2, 3, 4, 5, 6号. 第一次分组:先取到1, 2作为第一组,再取3, 4作为第二组,剩
6、排列组合问题之分组分配问题
排列组合问题之分组分配问题(一)(五个方面)一、非平均分组 (分步组合法)“非平均分组”是指将全部元素分成元素个数互相不相等的组。
例 1、 7 人参加义务劳动,按以下方法分组有多少种不相同的分法?①分成 3组,分别为 1人、 2 人、 4 人;②选出 5个人分成 2 组,一组 2 人,另一组 3人。
解:①先选出 1人,有 C 17 种,再由剩下的 6 人选出 2 人,有 C 62 种,最后由剩下的 4 人为一组,有 C 44 种。
由分步计数原理得分组方法共有C 71C 62 C 44 105 (种)。
②可 选分同步 。
先从 7 人中选出 2 人,有 C 72 种,再由剩下的 5 人中选出 3 人,有 C 53种,分组方法共有 C 72C 53210 (种)。
也可 先选后分 。
先选出 5 人,再分为两组,由分步 计数原理得分组方法共有C 75C 52 C 33 210 (种)。
二、平均分组 (去除重复法)“平均分组”是指将全部元素分成全部组元素个数相等或部分组元素个数相等的组。
㈠全部平均分组 (去除重复法)23例 2、 7人参加义务劳动,选出6人,有多少种不相同的分法?个人,分成 组,每组都是 解: 可选分同步 。
先选 3 人为一组,有 C 73 种;再选 3 人为另一组,有 C 43 种。
又有 2 组都 是 3人,每 A 22 种分法只能算一种,因此不相同的分法共有 C 73C 43 70 (种)。
A 22也可 先选后分 。
不相同的分法共有 C 76 C 63C 3370 (种)。
A 22㈡部分平均分组 (去除重复法)例 3、 10个不相同零件分成 4 堆,每堆分别有 2 、 2 、 2 、 4 个,有多少种不相同的分法?解:分成 2 、 2 、 2 、 4 个元素的 4 堆,分别有 C 102 、 C 82 、 C 62 、 C 44 种,又有 3 堆都是 2个元素,每 A 33 种分法只能算一种,因此不相同的分组方法共有C 102C 82 C 62 C 44 3150 (种)。
排列组合问题的解题方法总结学生版(1)
排列组合问题的解题方法总结一、相邻问题“捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?二、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。
例2:学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有个.三、特殊元素(或位置)“优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。
例3:在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个.分析根据所求四位数对首末两位置的特殊要求可分三步:第一步:排个位;第二步;排首位;第三步:排中间两位。
解排列组合应用问题的十种思考方法
“解排列、组合应用问题”的思维方法一、优先考虑:对有特殊元素(即被限制的元素)或特殊位置(被限制的位置)的排列,通常是先排特殊元素或特殊位置,再考虑其它的元素或其它的位置。
例1.(1)由0、1、2、3、4、可以组成 个无重复数字的三位数。
(2) 由1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有个。
(3) 5个人排成一排,其中甲不排在两端也不和乙相邻排列的排列共有种。
二、“捆”在一起:有要求元素相邻(即连排)的排列问题,可以先将相邻的元素看作一个“整体”与其它元素排列,然后“整体”内部再进行排列。
例2.(1) 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有 种。
(2) 有2位老师和6名学生排成一排,使两位老师之间有三名学生,这样的排法共有 种。
三、插空档:有要求元素不相邻(即间隔排)的排列问题,可以制造空档插空。
例3.(1)五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有 种陈列方法。
(2)6名男生6名女生排成一排,要求男女相间的排法有 种。
四、减去特殊情况(即逆向思考):先算暂时不考虑限制条件的排列或组合种数,然后再从中减去所有不符合条件的排列或组合数。
例4.(1)以正方体的顶点为顶点的四面体共有 个。
(2) 由0、1、2、3、4、可以组成 个无重复数字的三位数。
(3)集合A 有8个元素,集合B 有7个元素,B A 有4个元素,集合C 有3个元素且满足下列条件:Φ≠Φ≠⊂B C A C B A C ,,的集合C 有几个。
(4)从6名短跑运动员中选4人参加4⨯100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有多少种参赛方案?五、先组后排:排列、组合综合题,通常都是先考虑组合后考虑排列。
例5(1)用1、2、3、 9这九个数字,能组成由3个奇数数字、2个偶数数字的不重复的五位数有个。
(2)有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
排列组合中的分堆与分配问题
排列组合中的分堆与分配问题作者:陈学帅来源:《中国校外教育·综合(上旬)》2015年第13期摘要:介绍了排列、组合中比较困难的分堆与分配问题的解决方法。
从分给的对象和被分的元素是否相同(即有无差别)两个方面分别进行了研究。
分给的对象相同(即无差别)但被分的元素不相同是分堆问题,当各堆的元素数不同时是非平均分堆,一堆一堆的拿开即可;当各堆(或部分堆)的元素数相同时是平均分堆,按堆拿开后,若有k堆元素数相等,再除以;分给的对象不同(即有差别)是分配问题,给不同的对象逐次拿开或先分堆再分配。
关键词:排列组合分堆分配解决方法排列、组合中的分堆与分配问题是近几年高考中的一个热点问题,同时也是学生学习中的一个难点,本文就从被分的元素和分给的对象两端这两个方面来探讨一下此类问题的解决方法。
在将某些元素进行分配的问题中,我们按分给的对象是否相同(即有无差别)分为分堆问题与分配问题。
一、分堆问题分堆是研究将元素所分给的对象相同(即无差别)但被分的元素不相同的一类问题。
当各堆(或部分堆)分得的元素数相同时,称为平均分堆;当每堆分得的元素数各不相同时,称为非平均分堆。
1.非平均分堆例:将6名运动员分成三组,其中有一组1人的,一组2人的,一组3人的,有多少种不同的分法?解:本题中由于分给的对象无差别,并且每组的人数各不相同,所以这是一个非平均分堆问题,按题设要求逐堆随机拿开即可。
二、分配问题将元素所分给的对象不相同(即有差别)时的问题叫做分配问题。
分配问题按被分的元素是否相同又分为被分的元素相同(无差别)的分配问题与被分的元素不相同(即有差别)的分配问题两类:(一)被分的元素相同(无差别)的分配问题此类分配问题中,由于被分的元素无差别,因此在分配中,若将若干个元素平均分给几个对象,则只有一种分法;若几个对象所得元素数各不相同,则存在不同的分法。
例2.要从7个班中选10人参加数学竞赛,每个班至少出1人,共有多少种不同的选法?分析:本例其实就是将10个参加数学竞赛的名额分给7个班的分配问题,被分的名额是无差别的,但分给的对象即7个班是不同的。
排列组合问题之分组分配问题
排列组合问题之 分组分配问题(—)(五个方面)一、非均匀分组(分步组合法)“非均匀分组”是指将所有元素分成元素个数彼此不相等的组。
例1、7人参加义务劳动,按下列方法分组有多少种不同的分法① 分成3组,分别为1人、2人、4人;② 选出5个人分成2组,一组2人,另一组3人。
解:①先选出1人,有C ;种,再由剩下的6人选出2人,有C ;种,最后由剩下的4人为一 组,有C 4种。
由分步计数原理得分组方法共有 C 7C 6C 4 105 (种)。
②可选分同步。
先从7人中选出2人,有C ;种,再由剩下的5人中选出3人,有C 3 种,分组方法共有 C ^C l 210 (种)。
也可先选后分。
先选出5人,再分为两组,由分步 计数原理得分组方法共有 C l C ;C ; 210 (种)。
、均匀分组(去除重复法)“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。
㈠全部均匀分组(去除重复法)例2、7人参加义务劳动,选出 6个人,分成2组,每组都是3人,有多少种不同的分法 解:可选分同步。
先选3人为一组,有C ;种;再选3人为另一组,有C :种。
又有2组都㈡部分均匀分组(去除重复法)例3、10个不同零件分成 4堆,每堆分别有2、2、2、4个,有多少种不同的分法解:分成2、2、2、4个元素的4堆,分别有C 0、C ;、Cf 、C :种,又有3堆都是2个_3元素,每A 3种分法只能算一种,所以不同的分组方法共有 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是 均匀的,都有A m 种顺序不同的分法只能算一种分法。
】三、编号分组 ㈠非均匀编号分组(分步先组合后排列法)例4、7人参加义务劳动,选出 2人一组、3人一组,轮流挖土、运土,有多少种分组方法 解:分组方是3人,每 A 种分法只能算一种,所以不同的分法共有 C y'C 70 (种)。
也可先选后分。
不同的分法共有C 6 CeC 70 (种)。
顿悟排列组合80题(精华)
顿悟排列组合80题【分堆(分组)与分配】1、8本不同的书,按照以下要求分配,各有多少种不同的分法?⑴一堆1本, 一堆2本, 一堆5本;⑵甲得1本,乙得2本,丙得5本;⑶三人,一人1本, 一人2本, 一人5本;⑷平均分给甲、乙、丙、丁四人;⑸平均分成四堆;⑹分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本, 一人2本, 一人2本。
2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有______3、6名旅客安排在3个房间,每个房间至少安排一名旅客,则不同的安排方法种数共____4、把A、B、C、D四个小球平均分成两组,有_________种分法5、七个人参加义务劳动,按下列方法分组有______种不同的分法(1)分成三组,分别为1人、2人、4人;(2)选出5个人再分成两组,一组2人,另一组3人。
6、四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有_____种7、5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为(A)480 (B)240 (C)120 (D)96 (E)808、将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A.70 B.140 C.280 D.840 E. 809、将9个(含甲、乙)平均分成三组,甲、乙分在不同组,则不同分组方法的种数为A.220 B.240 C.420 D.210 E. 18010、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A.300 B.240 C.144 D.96 E. 28011、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有___种.(A)480 (B)600 (C)430 (D)500 (E)48012、将9本不同的书分成3堆,问:(1)每堆3本,有多少种不同的分法?若分给三人,每人3本,又有多少种不同分法?(2)一堆5本,其余两堆各2本,有多少种不同的分法?若分给甲,乙,丙3人,①每人拿一堆,有多少种不同的分法?②若甲得5本,乙与丙各得2本,又有多少种分法?(3)如果一堆4本,一堆3本,一堆2本,又有多少种的分法?【排队、排座位(元素--位置):相邻捆绑与相间插空】13、6人排成一排照相,甲不排在左端,乙不排在右端,共有______种不同的排法14、n 个人围圆桌而坐,一共有_________种不同的排法15、7人照相,要求排成一排,甲乙两人相邻但不排在两端,不同的排法共有______种。
排列组合问题
排列组合综合问题的应用
一、分组分堆问题
处理原则:先分堆再分配
将标号为1,2,3,4,5,6的6张卡片放入三个不同的信封中,若每个信封放两张,其中标号为1,2的卡片放入同一信封,则不同的放法有多少种?
二、插空法
解决一些不相邻问题,先排其它元素,将不相邻的元素进行插空。
7人排成一排,甲乙不相邻有几种排法?
三、捆绑法
将相邻的元素捆绑在一起,看成一个整体再进行排列!
6人排成一排,甲乙必须相邻,有几种排法/
四、留空法(消序法)
先让其它元素进行排列,留下来的就只有一种顺序。
或者先不考虑顺序问题,排列后再除以定序元素的排列!
12名同学合影,站成前排4人后排8人,现在要从后排抽取2人到前排,其它人的想对顺序保持不变,则有多少种调整方案?五、隔板法
n个小球放入m个盒子中,要求每个盒子里,至少有一个小球的放法
某校准备参加今年数学联赛,把16个名额分配到1---4个教学班,每班至少有一个名额,则不同的分配方案有多少种/
六、特殊元素优先
特殊元素优先排列
某台小型晚会由6个节目组成,演出顺序如下要求;节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,共有多少种编排方案?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太奇MBA 数学助教
李瑞玲
一.分组(分堆)与分配问题
将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。
将n 个不同元素按照某些条件分成k 组,称为分组问题。
分组问题有不平均分组,平均分组,部分平均分组三情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。
对于后者必须先分组后排列。
一.基本的分组问题
例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?
(1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本
(部分平均分组问题)
分析:(1)分组和顺序无关,是组合问题。
分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。
现把六本不同的书标上
6,5,4,3,2,1六个号码,先看一下这种情况:
(1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4)
(5,6)(3,4)(1,2)
由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种
情况下这六种分法是同一种分法,于是可知重复了6次。
以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组
的顺序,即除以3
3
P ,于是最后知分法为156
90
332
22426==P C C C .
(2)先分组,分组方法是603
32516=C C C ,那么还要不要除以33P ???(很
关键的问题)
由于每组的书的本数是不一样的,因此不会出现相同的分法,即
共有60332516=C C C 。
(3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需
要好好考虑)
现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)5
6
(1,2,3,4)6
5
2)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下
5
(1,2,3,4)6
6(1,2,3,4)5
3)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下
5
6(1,2,3,4)
6
5(1,2,3,4)
由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为
152
30
2
21
11246==P C C C .通过以上三个小题的分析,可以得出分组问题的一般结论如下:一般地,将n 个不同的元素分成p 组,各组内元素个数分别为
p m m m ,,,21⋯,其中k 组内元素个数相等,那么分组方法数为
()k
k m
m m m m m n m m n m n P C C C C p
p i i ⋯⋯⋯121211−+++−−,即选完元素后要除以元素相同
的总组数的全排列!
三.基本的分配问题1.定向分配问题
例2六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?
(1)甲两本,乙两本,丙两本(2)甲一本,乙两本,丙三本(3)甲四本,乙一本,丙一本
分析:由于分配给三人,每人分几本是一定的,属于分配问题中的定向分配问题。
由分步计数原理得(1)222426C C C =90(2)60
3
32516=C C C (3)30
1
11246=C C C 2.不定向分配问题
例3.六本不同的书,分给甲乙丙三人,求在下列条件下各有多少种不同的分法?(1)每人两本
(2)一人一本,一人两本,一人三本(3)一人四本,一人一本,一人一本
分析:此题属于分配中的不定向分配问题。
由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。
实际上可看作是“六本不同的书分为三组,再将这三组分给甲乙丙三人”,因此只要将元素的分组的方法数再乘以所分配对象的全排列即可!
所以有(1)90333
3
2
2
2426=×P P C C C (2)360333
32516=×P C C C (3)90332
2
1
1
1246=×P P C C C 结论:一般地,如果把n 个不同的元素分配给k 个不同的对象,并且每个不同的对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,结果为分组方案数乘以不同对象数的全排列。
解不定向分配题的一般原则是:先分组后排列!
数学讲义上第95页排列组合本章作业
第4题属于不定向分配问题(需要先分组,再分配,其中分组为不
平均分组)结果为36033332516=×P C C C ,故选B 。
第5题属于定向分配问题,所以为60332516=C C C ,故选D 。
第6题属于不定向分配问题(需要先分组,再分配,其中分组为平均
分组)结果为903
33
3
2
22426=×P P C C C ,故选C 。
第28题也属于不定向分配问题,同第6题,结果为
4
448412333
3
4448412C C C P P C C C =×,故选A 。
元素种类
(1)元素相同(2)元素不同
1)分配对象相同2)分配对象不同1)分配对象相同2)分配对象不同分组(分堆)问题隔板法解决分组(分堆)问题可重复和不可重复此时要依据每组的数量来区别
要依据每组的数量和元素特征来区别可重复:投信,人进房间问题不可重复:组合,排列问题
例:现有6个球,4个盒子,每个盒子至少一个球,在下列各种情况下各有多少种放法?
(1)球不同,盒子不同(2)球不同,盒子相同(3)球相同,盒子不同(4)球相同,盒子相同解:(1)属于组合,排列问题,需要先分组,再分配给不同的对象。
分组有两种分法:1)2211
2)3111
则有33111213362211122426P C C C C P C C C C +,最后结果为44331
11213362211122426P P C C C C P C C C C ×⎟⎟⎠
⎞⎜⎜⎝⎛+.(2)由于分配对象相同,没有区别,所以实质上为分组问题。
分组有两种分法:1)2
2112)3
1
11
则有3
31
1
1213362211122426P C C C C P C C C C +,即为最后结果。
(3)球相同,即元素相同,但分配对象不同,又要求每个盒子至少一个球,故
为隔板问题,需用隔板法来解决,即103
5=C 种。
(4)球相同,盒子相同,就有两种方法,即2211和3111这两
种方法。