中央空调表冷器设计计算书

合集下载

中央空调设计计算说明书资料

中央空调设计计算说明书资料

计算说明书一、 工程概况1.本工程位于南宁市五一路,本工程性质为综合楼,总建筑面积 ,空调建筑面积5722㎡,二、室外设计参数夏季空调室外计算干球温度34.2℃,夏季空调室外计算湿球温度27.5℃,夏季通风室外计算干球温度32℃,冬季空调室外计算干球温度5℃,冬季通风室外计算干球温度13℃,冬季室外计算相对湿度75﹪三、 负荷计算①、计算公式1.墙体和屋面传热得热引起的冷负荷()[]()W t K K t t KF OLQ N a d l -+=ρττ,式中:K ——墙体或屋面的传热系数 F ——墙体或屋面的传热面积 t N ——室内空气温度t l ,τ——墙体或屋面冷负荷计算温度 t d ——冷负荷计算温度地点修正系数 K a ——外表面放热系数的修正值 K ρ——外表面吸收系数的修正值2.玻璃窗传热得热引起的冷负荷()[]()W t K K t t KF CLQ N d l a -+='',ρττ式中:K ——窗的传热系数 F ——窗的传热面积 t l ,τ——窗冷负荷计算温度t d ——窗的冷负荷计算温度地点修正系数K ‘a ——不同类型窗框的玻璃传热系数的修正值 K ‘ρ——有内遮阳设施玻璃窗的传热系数修正值3.玻璃窗日射引起的冷负荷无外遮阳: CL j n s f C K C FC OLQ max ,,=τ (W )式中:K j,max ——不同纬度带各朝向7月份日射得热因数得最大值,W/m 2 F ——玻璃窗得有效面积,m 2,是窗得面积乘以有效面积系数C a C s ,C n ——玻璃窗遮挡系数和窗内遮阳设施得这样系数;C CL ——玻璃窗冷负荷系数,以北纬27度30分为界划分为南,北两区; 有外遮阳阴影部分得日射冷负荷:N CL N j n s s C D C C F )()(CL max ,,s ,qf =τ (W)照光部分得日射冷负荷:N CL N J n s r y qf C D C C F CL )()(max ,,,=τ (W)式中:F s ——窗户得阴影面积,m 2 F r ——窗户的照光面积,m 2(DJ,max)N ——北向的日射得热因数最大值,W/m 2 (C CL )N ——北向玻璃窗的冷负荷系数 4.人体冷负荷 人体得热量:Q=qn 1n 2式中:q ——不同室温和劳动性质时成年男子的全热散热量 n 1——室内人数 n 2——群集系数人体得热量引起的冷负荷CLQ τ=Q S C CL + Q τ式中:Qs ——人体显热得热量 Q τ——人体潜热得热量 C CL ——人体的冷负荷系数5.灯光冷负荷 照明得热量:Q τ=N (白帜灯) Q τ=n 1n 2N (荧光灯)式中:N ——照明灯具所需功率 n 1——镇流器消耗功率系数 n 2——灯光隔热系数照明冷负荷CLQ τ=Q τC CL式中:Q τ——照明得热量 C CL ——照明冷负荷系数6.设备冷负荷 工艺设备散热得热量ηNn n n Q 3211000=式中:N ——电机设备的安装功率 η——电动机效率n 1——利用系数,一般取0.7-0.9 n 2——同时使用系数,一般取0.5-0.8 n 3——负荷系数,一般取0.5左右无保温密闭罩的电热设备散热量的得热量N n n n n Q 43211000=式中:n 4——考虑排风带走热量的系数工艺设备得热引起的冷负荷CLQτ=QS CCL+ Qτ式中:Qs——设备显热得热量Qτ——设备潜热得热量CCL——设备的冷负荷系数②计算结果及设备选型建筑总冷负荷:1136.2KW建筑物总冷负荷指标:198.6W/㎡2.通风设计1、卫生间排风卫生间通风主要采用自然进风,机械排风为主,每一层卫生间面积为,男卫:12㎡,女卫12㎡,按排风量L=n*v(n:换气次数,v:房间体积)得男卫与女卫计算方法一样,以下取一个卫生间计算L=15*12*3.9=702m³/h(层高按标准层3.9m计算)卫生间的排风量为702 m³/h 选择的排风机为:LINEO型混流通风器1台,风量为200-2000 m³/h3.设备选型1).车库送风机HL系列Y225L-4型型1台L=61806 m³/h H=1448Pa n=1450rpm N=37kw(2). 车库排风(烟)机PYHL系列Y280S-6型1台L=72271m3/h H=1457Pa n=960rpm N=45kw3).设备用房送风机HLF-INo7型1台L=11780m3/h H=470Pa n=1450rpm N=3kw(4). 设备用房排风(烟)机XGF-I No5.5型1台L=12000m3/h H=592Pa n=2900rpm N=4kw4.电梯与前室合用的送风电梯与前室合用采用加压送风,加压风机装在电梯机房,通过加压送风井来进行送风,风井没层设一个送风口JS3每层开一个送风口平时所以的送风口均关闭,在火灾发生时打开。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书之老阳三干创作(二)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s②空气进、出口温度:干球:35/17℃℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈②查《部份空气冷却器的接触系数ε2》表:那时:GLⅡ六排的ε2从这我们可以看出:六排管即可满足要求.(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增年夜换热面积来提高换热总量总是不年夜理想,即使强行增加排数仍旧帮手不年夜.我近30遍的手工计算也证明了这一点.提高水流速和降低水温对提高换热总量有更为积极的贡献.通过计算我们可以发现钢管的水阻实在太年夜,稍微增加一点,水阻就年夜的吓人.于是我设计采纳了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回.这样就呈现了年夜流量小温差的情况,水流速ω可以提高.在冷冻水里添加乙二醇,使冷冻水的冰点下降.很容易我们发现对数平均温差提高了很多.从而到达了提高换热总量的目的.)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈(235760Kcal/h)⊙由六排管的水阻△Pω≤70Kpa得:管内水流速ω≤[水阻的年夜小和水程的长短也有密切的关系,经验公式没有对此给个说法.推论:八排管(即实际上的二排管)在流速一按时的水阻必为六排管的1/3.理论上可以使△Pω≤70Kpa,有ω≤1.8874m/s,但知识告诉我们:不能如此取值,可以判定八排管(即实际上的二排管)的ω≤1.5m/s为合理.] 平安起见,设令:ω=1.2m/s⊙要求V,可初估迎面尺寸(计算标明风速和流速的增加,将带来K值的增加,但K值的增加,却招致迎面的减小,间接使整个换热面积A的减小,我对Vy=2.8m/s进行的计算标明,K值的增加,A值减小,K×A之积增加其实不明显.从这点来看牺牲K值换A值较为有利于整体换热效果,特另外要保6~8排的K值,换来的是将在以后用4~6排的增加面积来弥补,是很得失相当的,况且那时K值还得再按0.8倍计算.但按Vy=2.0m/s计算标明:A值增加,K×A之积也反而减小,K=65.336,考虑其它因数K=54.23,β≈,γ≈;ε1≈0.5665534,提出t w1℃的分歧理要求.由屡次的计算看出存在一个K×A最佳年夜值,即以下的分析计算).控制V左右,有:迎风面积Ay=q vg2令:表冷器长L=1500 L’=1500+120+120+60=1800表冷器高≈迎面换热管数n=h/39≈(根)取n=29根同时总供水根数N=29×4=116根有:表冷器高h=1131 h’=1131+84=1215迎风面积2迎面风速Vy= q vg≈⊙可提供的冷水流量 q mw:经反复屡次验算,按△tw =℃左右较为合理.冷冻水量q mw=Q/C×△tw×==18.71L/s(67.356CMH)根据所提供的110CMH的水量分配到前表冷器可在75CMH左右(由于水泵的选年夜,实际流量已在120CMH以上,分配到前表冷器可达80CMH).通水截面Aw= n× Ad =116×1.54×10-4=1.7864×10-2m2ω= q mw /Aw≈提高到ω=m/s 有 q mw = L/s(77.17248CMH)则:△tw≈3.0544℃≈3.1℃④表冷器结构尺寸(GLⅡ型)查《实用制冷与空调工程手册》page584~586《空气冷却器性能参数》表:肋管D18×2+φmm单位长度管传热面积:Fd=0.64㎡/m考虑局部存有片距为3.2~3.4㎜,统一按Fd=0.61㎡/m计.换热面积A:A=n×8×L×Fd =29=28㎡⑤析湿系数:ξ⑥传热系数:K8yξ8)]-1≈99.077W/㎡℃K8计= K8×η×≈82.234W/㎡℃η—修正系数(考虑排数、污垢、概况积灰、计算误差等平安因素)⑦计算热交换效率系数ε1:计算传热单位数:β=KA/ξq mg Cp×28/3.231×4.667×1.01×103≈计算水当量比:γ=ξq mg Cp/q mw C≈ε1=[1-e-(1-γ)β]/[ 1-γe-(1-γ)β]≈≈⑧校核计算冷冻水初始温度t w1:⊙t w1=t g1-(t g1-t g2)/αε15×0.656432≈℃(根据〈简明空调设计手册〉page150介绍:考虑平安系数α=0.94.这是针对冷冻水从头走究竟的情况,我们选取的是八排四进四出,冷排管始终坚持一个平均高温状态,可以使平安系数α=0.95~1,取α=0.95)t w1=℃>6℃满足可提供6℃的冷冻水要求.取t w1=℃⊙我们的结构更多的可能是α=1:t w1=t g1-(t g1-t g2)/αε1=35-(35-17)/1×0.656432≈℃⊙t w2= t w1+△tw =6+3.℃⑨校核计算传热量⊙对数平均温差△tm△tm=[(35-9.1)-(17-6)]/ln[(35-9.1)/(17-6)]≈℃⊙Q=KA△≈303736(w)≈3(Kw)⊙平安系数≈10.8%分析:由于我们在参数的取值设定上已是最晦气的情况,而计算又充沛考虑了余量,且使用的计算公式自己就是根据实验得出的经验公式,在此基础上还有余量是平安合理的.⑩风阻校核计算:六排:△P≈八排:△P×8/6≈1≈175Pa⑾水阻校核计算:六排:△PωKPa这里八排管(即实际上的二排管)估取△Pw=40Kpa,满足要求.(二)后表冷器a. 已知:⑪风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s⑫空气进、出口温度:干球:/14.5℃湿球:℃⑬空气进、出口焓值:/29.79KJ/㎏⑭进水温度:6℃,流量:110CMH(前、后冷却器)⑮阻力:水阻<70KPa,风阻700Pa(前、后冷却器)b. 计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-()/()≈0.7843②查《部份空气冷却器的接触系数ε2》表:当Vy=3m/s时:GLⅡ六排的ε2-6>0.78922、GLⅡ四排的ε2-4通过我以前屡次的计算比力,选取12排才华较好的满足K×A的要求,为不使水阻过限,分三组每组走四排(两个来回).③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(55.62-29.79)≈Kw(112735Kcal/h)⊙控制Vy=3m/s,可初估迎面尺寸:Ay=q vg3≈1.2963≈1.3m2令:L=1500(统一外型宽度)L’=1500+120+120+60=1800h=Ay/L=1.3≈mn=h/39≈22.23根取n=22根、 N=22×3=66根有:h=858 h’=858+84=942Ay= L×h=×0.858=1.287m2Vy= q vg287≈m/s⊙管内水流速ω根据在前表冷器的分析,设令:ω≤1.1m/s⊙可提供的冷水流量 q mw:经反复屡次验算,按△tw =℃估:q mw=Q/C×△tw×≈kg/s=L/s(CMH)根据所提供的110CMH的水量分配到后表冷器可在35CMH左右(由于水泵的选年夜,实际流量已在120CMH以上,分配到前表冷器可达40CMH).Aw= n× Ad =66×1.54×10-4=1.0164×10-2m2ω= q mw /Aw≈m/s(小于设定的ω≤1.1m/s)q mw = L/s(40CMH)可提高到ω=m/s则:△tw≈℃≈℃④表冷器结构尺寸(GLⅡ型)查《实用制冷与空调工程手册》page584~586《空气冷却器性能参数》表:肋管D18×2+φmm单位长度管传热面积:Fd=0.64㎡/m考虑局部存有片距为3.2~3.4㎜,统一按Fd=0.61㎡/m计.换热面积:A=n×12×L×Fd =22×12=241.56㎡⑤析湿系数:ξ=1(因为没有除湿)⑥传热系数:K12yξ8)]-1≈43.64W/㎡℃K12计= K12×η×≈≈31W/㎡℃η—修正系数(考虑排数、污垢、概况积灰、计算误差等平安因素)⑦计算热交换效率系数ε1:⊙计算传热单位数:β=KA/ξq mg Cp=31×2/1×4.667×1.01×103≈⊙计算水当量比:γ=ξq mg Cp/q mw C=1≈01336⊙ε1=[1-e-(1-γ)β]/[ 1-γe-(1-γ)β]≈≈⑧校核计算冷冻水初始温度t w1:⊙t w1=t g1-(t g1-t g2)/αε1=-(-1)/×≈℃t w1=℃>6℃满足可提供6℃的冷冻水要求.取t w1=℃⊙t w2= t w1+△tw ℃⑨校核计算传热量⊙对数平均温差△tm△tm=[(-)-(1-6)]/ln[(3-)/(1-6)]创作时间:二零二一年六月三十日=/ln/≈1℃⊙Q=KA△tm=31×2×1≈130722(w)≈(Kw)⊙平安系数≈8.44%分析:由于我们在参数的取值设定上已是最晦气的情况,而计算又充沛考虑了余量,且使用的计算公式自己就是根据实验得出的经验公式,在此基础上还有余量是平安合理的.⑩风阻校核计算:6排:△P≈12排:△P×12/6≈≈315Pa⑾水阻校核计算:6排:△PωKPa这里12排管(即实际上的4排管)估取△Pw=60Kpa,满足要求.创作时间:二零二一年六月三十日。

表冷器计算书【范本模板】

表冷器计算书【范本模板】

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4。

667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30。

9/16。

5℃③空气进、出口焓值:105。

26/46。

52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1—t s1)=1-(17-16。

5)/(35—30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0。

875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回.这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的.)③选型分析:⊙冷负荷 Q= q mg×(h1—h2)4.667×(105。

26-46.52)≈274。

14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1。

04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法.推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3.理论上可以使△Pw=21。

表冷器计算介绍模板之欧阳数创编

表冷器计算介绍模板之欧阳数创编

表冷器计算书(一)(二)前表冷器a.已知:①风量:14000CMH空气质量流量q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×/3600≈s空气体积流量 q vg=14000/3600≈s②空气进、出口温度:干球:35/17℃湿球:℃③空气进、出口焓值:㎏④(⑤进水温度:6℃,流量:110CMH(前、后冷却器)⑥阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-/≈②查《部分空气冷却器的接触系数ε2》表:当Vy=~s时:GLⅡ六排的ε2=~从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:、⊙冷负荷 Q= q mg×(h1-h2)×-≈(235760Kcal/h)⊙由六排管的水阻△Pw=ω≤70Kpa得:管内水流速ω≤s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

理论上可以使△Pw=ω≤70Kpa,有ω≤s,但常识告诉我们:不能如此取值,可以判定八排管(即实际上的二排管)的ω≤s为合理。

] 安全起见,设令:ω=s⊙要求Vy=~s,可初估迎面尺寸(计算表明风速和流速的增加,将带来K值的增加,但K值的增加,却导致迎面的减小,间接使整个换热面积A的减小,我对Vy=s进行的计算表明,K值的增加,A值减小,K×A之积增加并不明显。

表冷器计算书

表冷器计算书

表冷器计较书之五兆芳芳创作(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s②空气进、出口温度:干球:35/17℃℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计较:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈②查《部分空气冷却器的接触系数ε2》表:当时:GLⅡ六排的ε2从这我们可以看出:六排管便可满足要求.(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即便强行增加排数仍旧帮忙不大.我近30遍的手工计较也证明了这一点.提高水流速和下降水温对提高换热总量有更加积极的奉献.通过计较我们可以发明钢管的水阻实在太大,稍微增加一点,水阻就大的吓人.于是我设计采取了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回.这样就出现了大流量小温差的情况,水流速ω可以提高.在冷冻水里添加乙二醇,使冷冻水的冰点下降.很容易我们发明对数平均温差提高了良多.从而达到了提高换热总量的目的.)③选型阐发:⊙冷负荷 Q= q mg ×(h1-h2)4.667×)≈(235760Kcal/h)⊙由六排管的水阻△Pω≤70Kpa得:管内水流速ω≤[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法.推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3.理论上可以使△Pω≤70Kpa,有ω≤1.8874m/s,但知识告知我们:不克不及如此取值,可以判定八排管(即实际上的二排管)的ω≤1.5m/s为公道.] 平安起见,设令:ω=1.2m/s⊙要求V,可初估迎面尺寸(计较标明风速和流速的增加,将带来K值的增加,但K值的增加,却导致迎面的减小,直接使整个换热面积A的减小,我对Vy=2.8m/s进行的计较标明,K值的增加,A值减小,K×A之积增加其实不明显.从这点来看牺牲K值换A值较为有利于整体换热效果,特此外要保6~8排的K值,换来的是将在以后用4~6排的增加面积来弥补,是很得不偿失的,况且那时K值还得再按0.8倍计较.但按Vy=2.0m/s计较标明:A值增加,K×A之积也反而减小,K=65.336,考虑其它因数K=54.23,β≈,γ≈;ε1≈0.5665534,提出t w1℃的不公道要求.由多次的计较看出存在一个K×A最佳大值,即以下的阐发计较).控制V左右,有:迎风面积Ay=q vg2令:表冷器长L=1500 L’=1500+120+120+60=1800表冷器高≈迎面换热管数n=h/39≈(根)取n=29根同时总供水根数N=29×4=116根有:表冷器高h=1131 h’=1131+84=1215迎风面积2迎面风速Vy= q vg≈⊙可提供的冷水流量 q mw:经频频多次验算,按△tw =℃左右较为公道.冷冻水量q mw =Q/C×△tw×==18.71L/s(67.356CMH)按照所提供的110CMH的水量分派到前表冷器可在75CMH左右(由于水泵的选大,实际流量已在120CMH以上,分派到前表冷器可达80CMH).通水截面Aw= n×Ad =116×1.54×10-4=1.7864×10-2m2ω= q mw /Aw≈提高到ω=m/s 有q mw= L/s (77.17248CMH)则:△tw≈3.0544℃≈3.1℃④表冷器结构尺寸(GLⅡ型)查《实用制冷与空调工程手册》page584~586《空气冷却器性能参数》表:肋管D18×2+φmm单位长度管传热面积:Fd=0.64㎡/m考虑局部存有片距为 3.2~3.4㎜,统一按Fd=0.61㎡/m计.换热面积A:A=n×8×L×Fd =29=28㎡⑤析湿系数:ξ⑥传热系数:K8yξ8)]-1≈99.077W/㎡℃K8计= K8×η×≈82.234W/㎡℃η—修正系数(考虑排数、污垢、概略积灰、计较误差等平安因素)⑦计较热互换效率系数ε1:计较传热单元数:β=KA/ξq mg Cp×28/3.231×4.667×1.01×103≈计较水当量比:γ=ξq mg Cp/q mw C≈ε1=[1-e-(1-γ)β]/[ 1-γe-(1-γ)β]≈≈⑧校核计较冷冻水初始温度t w1:⊙t w1=t g1-(t g1-t g2)/αε15×0.656432≈℃(按照〈简明空调设计手册〉page150介绍:考虑平安系数α=0.94.这是针对冷冻水从头走到底的情况,我们选取的是八排四进四出,冷排管始终保持一个平均低温状态,可以使平安系数α=0.95~1,取α=0.95)t w1=℃>6℃满足可提供6℃的冷冻水要求.取t w1=℃⊙我们的结构更多的可能是α=1:t w1=t g1-(t g1-t g2)/αε1=35-(35-17)/1×0.656432≈℃⊙t w2= t w1+△tw =6+3.℃⑨校核计较传热量⊙对数平均温差△tm△tm=[(35-9.1)-(17-6)]/ln[(35-9.1)/(17-6)]≈℃⊙Q=KA△≈303736(w)≈3(Kw)⊙平安系数≈10.8%阐发:由于我们在参数的取值设定上已是最倒霉的情况,而计较又充分考虑了余量,且使用的计较公式自己就是按照实验得出的经验公式,在此根本上还有余量是平安公道的.⑩风阻校核计较:六排:△P≈八排:△P×8/6≈1≈175Pa⑾水阻校核计较:六排:△PωKPa这里八排管(即实际上的二排管)估取△Pw=40Kpa,满足要求.(二)后表冷器a. 已知:⑪风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s⑫空气进、出口温度:干球:/14.5℃湿球:℃⑬空气进、出口焓值:/29.79KJ/㎏⑭进水温度:6℃,流量:110CMH(前、后冷却器)⑮阻力:水阻<70KPa,风阻700Pa(前、后冷却器)b. 计较:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-()/()≈0.7843②查《部分空气冷却器的接触系数ε2》表:当Vy=3m/s时:GLⅡ六排的ε2-6>0.78922、GLⅡ四排的ε2-4通过我以前多次的计较比较,选取12排才干较好的满足K×A的要求,为不使水阻过限,分三组每组走四排(两个来回).③选型阐发:⊙冷负荷 Q= q mg ×(h1-h2)4.667×)≈Kw(112735Kcal/h)⊙控制Vy=3m/s,可初估迎面尺寸:Ay=q vg3≈1.2963≈1.3m2令:L=1500(统一外型宽度)L’=1500+120+120+60=1800h=Ay/L=1.3≈mn=h/39≈22.23根取n=22根、N=22×3=66根有:h=858 h’=858+84=942Ay= L×h=×0.858=1.287m2Vy= q vg287≈m/s⊙管内水流速ω按照在前表冷器的阐发,设令:ω≤1.1m/s⊙可提供的冷水流量 q mw:经频频多次验算,按△tw =℃估:q mw =Q/C×△tw×≈kg/s=L/s(CMH)按照所提供的110CMH的水量分派到后表冷器可在35CMH左右(由于水泵的选大,实际流量已在120CMH以上,分派到前表冷器可达40CMH).Aw= n× Ad =66×1.54×10-4=1.0164×10-2m2ω= q mw/Aw≈m/s(小于设定的ω≤1.1m/s)q mw = L/s(40CMH)可提高到ω=m/s则:△tw≈℃≈℃④表冷器结构尺寸(GLⅡ型)查《实用制冷与空调工程手册》page584~586《空气冷却器性能参数》表:肋管D18×2+φmm单位长度管传热面积:Fd=0.64㎡/m考虑局部存有片距为 3.2~3.4㎜,统一按Fd=0.61㎡/m计.换热面积:A=n×12×L×Fd =22×12=241.56㎡⑤析湿系数:ξ=1(因为没有除湿)⑥传热系数:K12yξ8)]-1≈43.64W/㎡℃K12计= K12×η×≈≈31W/㎡℃η—修正系数(考虑排数、污垢、概略积灰、计较误差等平安因素)⑦计较热互换效率系数ε1:⊙计较传热单元数:β=KA/ξq mg Cp=31×2/1×4.667×1.01×103≈⊙计较水当量比:γ=ξq mg Cp/q mw C=1≈01336⊙ε1=[1-e-(1-γ)β]/[ 1-γe-(1-γ)β]≈≈⑧校核计较冷冻水初始温度t w1:⊙t w1=t g1-(t g1-t g2)/αε1=-(-1)/×≈℃t w1=℃>6℃满足可提供6℃的冷冻水要求.取t w1=℃⊙t w2= t w1+△tw ℃⑨校核计较传热量⊙对数平均温差△tm△tm=[(-)-(1-6)]/ln[(3-)/(1-6)]=/ln/≈1℃⊙Q=KA△tm=31×2×1≈130722(w)≈(Kw)⊙平安系数≈8.44%阐发:由于我们在参数的取值设定上已是最倒霉的情况,而计较又充分考虑了余量,且使用的计较公式自己就是按照实验得出的经验公式,在此根本上还有余量是平安公道的.⑩风阻校核计较:6排:△P≈12排:△P×12/6≈≈315Pa⑾水阻校核计较:6排:△PωKPa这里12排管(即实际上的4排管)估取△Pw=60Kpa,满足要求.。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 qmg=(14000×/3600≈s空气体积流量 qvg=14000/3600≈s②空气进、出口温度:干球:35/17℃湿球:℃③空气进、出口焓值:㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(tg2-ts2)/(tg1-ts1)=1-/≈②查《部分空气冷却器的接触系数ε2》表:当Vy=~s时:GLⅡ六排的ε2=~从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= qmg ×(h1-h2)×-≈(235760Kcal/h)⊙由六排管的水阻△Pw=ω≤70Kpa得:管内水流速ω≤s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

理论上可以使△Pw=ω≤70Kpa,有ω≤s,但常识告诉我们:不能如此取值,可以判定八排管(即实际上的二排管)的ω≤s为合理。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量qmg=(14000×1、2)/3600≈4、667kg/s空气体积流量qvg=14000/3600≈3、889m3/s②空气进、出口温度:干球:35/17℃湿球:30、9/16、5℃③空气进、出口焓值:105、26/46、52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(tg1-t s1)=1-(17-16、5)/(35-30、9)≈0、878②查《部分空气冷却器得接触系数ε2》表:当Vy=2、3~2、5m/s时:GLⅡ六排得ε2=0、887~0、875从这我们可以瞧出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制得情况下,我们从增大换热面积来提高换热总量总就是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍得手工计算也证明了这一点。

提高水流速与降低水温对提高换热总量有更为积极得贡献。

通过计算我们可以发现钢管得水阻实在太大,稍微增加一点,水阻就大得吓人。

于就是我设计采用了两组双排供、双排回得表冷器,在两组总排数仅8排得表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差得情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水得冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量得目得。

)③选型分析:⊙冷负荷Q= q mg×(h1-h2)4、667×(105、26-46、52)≈274、14Kw(235760Kcal/h)⊙由六排管得水阻△Pw=64、68ω1、854≤70Kpa得:管内水流速ω≤1、04356m/s[水阻得大小与水程得长短也有密切得关系,经验公式没有对此给个说法。

推论:八排管(即实际上得二排管)在流速一定时得水阻必为六排管得1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书之欧侯瑞魂创作(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s②空气进、出口温度:干球:35/17℃℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈②查《部分空气冷却器的接触系数ε2》表:当时:GLⅡ六排的ε2从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮忙不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采取了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈(235760Kcal/h)⊙由六排管的水阻△Pω≤70Kpa得:管内水流速ω≤[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

理论上可以使△Pω≤70Kpa,有ω≤1.8874m/s,但知识告诉我们:不克不及如此取值,可以判定八排管(即实际上的二排管)的ω≤1.5m/s为合理。

中央空调表冷器设计计算书

中央空调表冷器设计计算书
对数传热温差ΔT=((t1-tw2)-(t2-tw1))/ln((t1-tw2)/(t255 tw1)) 56 传热量Q=K*F*ΔT 57 2排接触系数η'=0.985916-0.020056Vy
101325 27 19
46.32 14 12 90%
34.08 27.36 85.55
Pa ℃ ℃ kJ/kg ℃ ℃
kJ/kg ℃
kJ/kg
-0.312006118 26.52
0.941538462 42.34292254 10.49675841 12.39210189 0.93641329
kW
W/m2℃ ℃ kW
58 下面对计算结果进行校核验证:
59 换热偏差:(Q-Q0) / Q0 *100%
-53.27261731
投标单 位投:标项 目:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27
28 29 30 31
32
Ф9.52表冷器设计计算书(完整版)
设计风量 设计冷量 本机采用铜管套铝片表冷器,其结构参数如下: 翅片形状 每排管管数N= 管排数P= 分路数n= 每路水程数m= 盘管组合数Z= 每组盘管集水管规格S= 每组盘管集水管内径Di= 翅片密度FPI= 片间距e= 管间距s1= 排间距s2= 叠片长度L= 铜管内径di= 铜管外径do= 翅片厚度δ= 则: 每米肋管长的肋片表面积Af=(s1*s2-π*do2/4)*2/e 每米肋管长的肋片间基管外表面积Ap=π*do*(e-δ)/e 每米换热管外表面的换热面积为A=Af+Ap 每米换热管内表面的换热面积为Ai=π*di 肋化系数τ=A/Ai 肋通系数(每米肋管外表面积与迎风面之比)a=A/s1 净面比(最窄流通断面积与迎风面之比) ε=(s1-do)(e-δ)/s1/e 总的换热面积 F=A*总换热管长 迎风面积 Fy=N*s1*L*Z 迎面风速 Vy=Qf/Fy/3600 最小流动截面的风速v=Vy/ε 空气流通段面的当量直径 de=2*(s1-di)*(e-δ)/((s1-di)+(e-δ))

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4。

667kg/s空气体积流量 q vg=14000/3600≈3。

889m3/s②空气进、出口温度:干球:35/17℃湿球:30。

9/16。

5℃③空气进、出口焓值:105.26/46。

52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1—(t g2—t s2)/(t g1-t s1)=1—(17—16。

5)/(35—30。

9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2。

3~2。

5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高.在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1—h2)4。

667×(105。

26-46.52)≈274。

14Kw(235760Kcal/h) ⊙由六排管的水阻△Pw=64。

68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4。

667kg/s空气体积流量 q vg=14000/3600≈3。

889m3/s②空气进、出口温度:干球:35/17℃湿球:30。

9/16。

5℃③空气进、出口焓值:105。

26/46。

52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1—(t g2—t s2)/(t g1—t s1)=1-(17-16。

5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0。

887~0。

875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大.我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1—h2)4。

667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64。

68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

℃ ℃ m3/h m/s m/s
根据给定的设计参数、室外参数和进风温度,可以计算表冷器进出风状态点的参数如下: 大气压力 进风干球温度t1 进风湿球温度ts1 进风焓 i1 出风干球温度t2 出风湿球温度ts2 出风相对湿度rh% 出风焓 i2 机器露点 t3 101325 27 19 46.32 14 12 90% 34.08 27.36 85.55 kJ/kg ℃ kJ/kg Pa ℃ ℃ kJ/kg ℃ ℃
33 34 35 36 37 38 39 40 41 4 52 53 54 55 56 57 58 59 60 61 62 63
进水温度tw1 出水温度tw2 水量 换热管内水流速ω 集水管内水流速ω ' Kvs=Gv/[(ΔP)^0.5]
7 12 1.719690456 0.295545731 0.834315627 2.719069493
投标单位: 投标项目:
Ф 9.52表冷器设计计算书(完整版)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 设计风量 设计冷量 本机采用铜管套铝片表冷器,其结构参数如下: 翅片形状 每排管管数N= 管排数P= 分路数n= 每路水程数m= 盘管组合数Z= 每组盘管集水管规格S= 每组盘管集水管内径Di= 翅片密度FPI= 片间距e= 管间距s1= 排间距s2= 叠片长度L= 铜管内径di= 铜管外径do= 翅片厚度δ = 则: 每米肋管长的肋片表面积Af=(s1*s2-π *do2/4)*2/e 每米肋管长的肋片间基管外表面积Ap=π *do*(e-δ )/e 每米换热管外表面的换热面积为A=Af+Ap 每米换热管内表面的换热面积为Ai=π *di 肋化系数τ =A/Ai 肋通系数(每米肋管外表面积与迎风面之比)a=A/s1 净面比(最窄流通断面积与迎风面之比) ε =(s1-do)(e-δ )/s1/e 总的换热面积 F=A*总换热管长 迎风面积 Fy=N*s1*L*Z 迎面风速 Vy=Qf/Fy/3600 最小流动截面的风速v=Vy/ε 空气流通段面的当量直径 de=2*(s1-di)*(e-δ )/((s1-di)+(e-δ )) 0.454381651 0.029664154 0.484045805 0.029091147 16.63893819 19.05692145 0.576283713 27.88103836 0.73152 2.468224458 4.283002286 0.003569537 m2 m2 m/s m/s m m2 m2 m2 m2 波纹 24 2 24 2 1 DN25 0.027 12 0.002116667 0.0254 0.022 1.2 0.00926 0.00996 0.00011 根 排 路 程 个 m m 片/英寸 m m m m m m m 6500 10 m3/h kW
-0.312006118 26.52 0.941538462 42.34292254 10.49675841 12.39210189 0.93641329 W/m2℃ ℃ kW kW
-53.27261731
%
66.38190028 57.82254664 1.371850857
Pa Pa kPa
机器露点温度对应的焓i3 则: 达到空气处理过程所需要的冷却效率η =(i1-i2)/(i1-i3) 达到空气处理过程所需要的制冷量 Q0=G*ρ *(i1-i3) 空气处理过程中的析湿系数ξ =(i1-i2)/(t1-t2)/cp 2排传热系数K=1/(1/(51.676Vy0.442ξ0.508)+1/(177.283ω0.8)) 对数传热温差Δ T=((t1-tw2)-(t2-tw1))/ln((t1-tw2)/(t2tw1)) 传热量Q=K*F*Δ T 2排接触系数η'=0.985916-0.020056Vy 下面对计算结果进行校核验证: 换热偏差:(Q-Q0) / Q0 *100% 负偏差,请重新设计 2排干工况空气阻力Hg=13.486Vy1.764 2排湿工况空气阻力Hs=13.083Vy1.744ξ1.488 水阻力Hw=1.099mLω 2+0.489(m-1)π s1ω 2+9.953ω 2+0.386ω '2
相关文档
最新文档