图形的变换综合题
中考数学复习《填空压轴题——图形变换综合》专项测试卷(含参考答案)
中考数学复习《填空压轴题——图形变换综合》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________把CD绕点D旋转,点C的对应点为点E,当DE∥AC时,1.如图,AC为矩形ABCD的对角线,AB=5,BC=154CE的长为.2.如图,将线段BC绕点B逆时针旋转120°得到线段BA,点D是平面内一动点,且D、B两点之间的距离为5,连接DA、DC,则DA+DC的最小值为.3.如图,△ABC和△AGF是等腰直角三角形∠BAC=∠G=90°,△AGF的边AF,AG交边BC于点D,E若BD=3,CE=4则AD的值是.4.如图,在四边形ABCD中点E在四边形ABCD的内部,且DE=EC,∠DEC=∠AEB=120∘已知AD= 4,BC=6则AB的长为.5.如图,点D在等边△ABC的BC边上AB=3,BD=1将△ABD绕点A逆时针旋转得到△ACE,其中点B的对应点为点C,点D的对应点为点E,BC的延长线与AE的延长线相交于点F,则cos∠AFB的值为.6.如图,已知△ABC和△ADE为等腰直角三角形∠ACB=∠AED=90°,AC=√10,AE=√2连接CE、BD.在△AED绕点A旋转的过程中当CE所在的直线垂直于AD时BD=.7.如图,在矩形ABCD中AB=4,BC=3,CE=2BE,EF=2连接AF,将线段AF绕着点A顺时针旋转90°得到AP,则线段PE的最小值为.8.如图1的一汤碗,其截面为轴对称图形,碗体ECDF呈半圆形状(碗体厚度不计),直径EF=26cm,碗底AB=10cm ∠A=∠B=90°,AC=BD=3cm.(1)如图1,当汤碗平放在桌面MN上时,碗的高度是cm.(2)如图2,将碗放在桌面MN上,绕点B缓缓倾斜倒出部分汤,当碗内汤的深度最小时,tan∠ABM的值是.9.如图.在矩形ABCD中BC=3√3点P在线段BC上运动(含B、C两点),连接AP,以点A为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为.10.如图,在平面直角坐标系中已知点A(0,2),点P(a,0)是x轴上一动点,连接P A,在P A右侧作∠PAQ=60°,以P A为半径的⊙P交射线AQ于点B.当−1≤a≤3时,点B移动路径的长为.11.如图,△ABC中∠ACB=90°,AB=3AC=6O是AB边上一点满足CA=CO将△ABC绕点A顺时针旋转至△AB′C′使点C′落在射线CO上连接BB′交CC′的延长线于点F则FB的长为.12.如图在△ABC和△ADE中AB=BC=4√2AD=DE=2∠ABC=∠ADE=90°连接CE CD点O为CE的中点连接OD.将△ADE绕点A在平面内旋转.当∠CDE=90°时OD的长为.13.平面直角坐标系中四边形OABC是正方形点A C在坐标轴上点B(8,8)P是射线OB上一点将△AOP绕点A顺时针旋转90°得到△ABQ Q是点P旋转后的对应点当BP+BQ=10√2时则点Q的坐标为.14.如图在Rt△ABC中∠ABC=90°∠C=30°点D是线段BC上的动点将线段AD绕点A顺时针旋转60°至AD′连接BD′若AB=2cm则BD′的最小值为.15.如图平行四边形ABCD中AB=16,AD=12,∠A=60°E是边AD上一点且AE=8,F是边AB上的一个动点将线段EF绕点E逆时针旋转60°得到EG连接BG、CG则BG+CG的最小值是.16.如图在△ABC中∠ACB=90°∠ABC=30°AB=6点P是在△ABC内一点连接AP BP CP 将△APB绕点A逆时针旋转60°得到△AP′B′.若点C P P′B′恰好在同一直线上则PA+PB+PC=.17.如图四边形ABCD为矩形连接BD将矩形ABCD绕点B旋转至矩形A′BC′D′使得边A′D′经过BD中点O 并交BC于点E若D′E=2A′O则AB的值为.AD18.如图在菱形ABCD中AB=2∠BAD=60°将菱形ABCD绕点A逆时针方向旋转对应得到菱形AEFG点E在AC上EF与CD交于点P.(1)EF与DC的关系是(2)DP的长为.19.在Rt△ABC中∠BAC=90°AB=AC D E是斜边BC上两点且∠DAE=45°将△ADC绕点A顺时针旋转90°后得△AFB连接EF下列结论:①△AED≌△AEF;②△AEC的面积等于四边形AFBE的面积;③∠BAD=∠AEC;④BE2+DC2=DE2;其中正确的是.20.如图在平面直角坐标系xOy中把矩形COAB绕点C顺时针旋转α角得到矩形CDEF.设若A(0,3) C(4,0)则BD2+BF2−BC2的最小值为.参考答案1.解:∵ABCD是矩形∵CD=AB=5AD=BC=154当DE∥AC且点E在CD上方时连接CE过点E作EF⊥CD交CD于点F∵DE∥AC∵∠EDF=∠DCA∵tan∠EDF=tan∠DCA即:EFDF =ADCD=1545=34设EF=3x DF=4x根据旋转的性质ED=CD=5在Rt△DEF中DE2=DF2+EF2即:52=(4x)2+(3x)2解得:x=1∵EF=3×1=3DF=4×1=4CF=CD−DF=5−4=1在Rt△FEC中CE=√EF2+CF2=√32+12=√10当DE∥AC且点E在CD下方时连接CE过点E作EF⊥CD交CD延长线于点F∵DE∥AC∵∠EDF=∠DCA∵tan∠EDF=tan∠DCA即:EFDF =ADCD=1545=34设EF=3x DF=4x根据旋转的性质ED=CD=5在Rt△DEF中DE2=DF2+EF2即:52=(4x)2+(3x)2解得:x=1∵EF=3×1=3DF=4×1=4CF=CD+DF=5+4=9在Rt△FEC中CE=√EF2+CF2=√32+92=3√10故答案为:√10或3√10.2.解:如图 把BD 绕点B 顺时针旋转120° 交DC 的延长线于点D` 过点B 作BE ⊥DD ′ 则∠DBD ′=∠ABC =120° DB =D ′B =5∵∠ABD +∠DBC =∠DBC +CBD ′=120°∵∠ABD =∠CBD ′又∵AB =CB DB =D ′B∵△ABD ≌△CBD ′(SAS )∵AD =CD ′∵AD +CD 的最小值为DD ′的值∵BE ⊥DD ′∵∠DBE =12∠DBD ′=60° DE =12DD ′∵∠BDE =30°∵BD =5∵BE =12BD =52∵DE =√52−(52)2=5√32 ∵DD ′=2×5√32=5√3故答案为:5√3.3.解:如图 将△AEC 绕点A 顺时针旋转90°到△AG ′B 位置 连接DG ′∵△ABC 和△AGF 是等腰直角三角形 ∠BAC =∠G =90°∵∠C =∠ABC =∠FAG =45° AB =AC由旋转性质可知:∠ABG′=∠C=45°BG′=CE=4AG′=AE∠BAG′=∠CAE∵∠G′BD=∠ABC+∠ABG′=90°∵DG′=√BG′2+BD2=√32+42=5∵∠BAC=90°∠FAG=45°∵∠BAD+∠CAE=∠BAD+∠G′AB=45°∵∠DAG′=∠DAE=45°又∵AG′=AE AD=AD∵△AG′D≌△AED(SAS)∵DE=DG′=5∵BC=BD+DE+CE=12过点A作AH⊥BC∵AB=AC∠BAC=90°BC=6∵BH=CH=AH=12∵DH=BH−BD=6−3=3∵AD=√DH2+AH2=√32+62=3√5故答案为3√5.4.解:如图将△AED绕点E顺时针旋转120°至△FEC连接BF过点F作FH⊥BC交BC延长线于H则AD=CF=4AE=EF∠ADE=∠FCE∵AD∥BC∴∠ADE+∠EDC+∠ECD+∠ECB=180°∵ED=EC∠CED=120°∴∠EDC=∠ECD=30°∴∠ADE+∠ECB=120°∴∠FCE+∠ECB=120°即∠FCB=120°∵∠FCH=60°∵∠CFH=30°∵CH=12CF=12×4=2FH=√CF2−CH2=2√3∴FB=√BH2+FH2=√(6+2)2+(2√3)2=2√19∵∠AEB=120°∠AEF=120°∴∠FEB=360°−120°−120°=120°∴∠AEB=∠FEB在△ABE和△FBE中{AE=EF ∠AEB=∠FEB BE=BE∴△ABE≌△FBE(SAS)∴AB=FB=2√19.5.解:如图过点A作AH⊥BF于点H过点E作EN⊥BF于点N∵△ABC为等边三角形AH⊥BF∴BH=CH=32,AH=3√32∴DH=BH−BD=12∴AD=√AH2+DH2=√7∵将△ABD绕点A逆时针旋转得到△ACE∴BD=CE=1AD=AE=√7∠B=∠ACF=60°∴∠ECN=180°−∠ACE−∠ACB=60°∵EN⊥CF∴CN=12CE=12EN=√32CN=√32∴HN=HC+CN=2∵∠AHC=∠ENF=90°∴△AHF∽△ENF∴ENAH =EFAF=EFAE+EF∴√323√32=√7+EF解得EF=√72∴NF=√EF2−EN2=1∴cos∠AFB=NFEF =2√77故答案为:2√77.6.解:∵△ABC为等腰直角三角形AC=√10∴AB=√2AC=2√5①当点E在点D上方时如图③过点A作AP⊥BD交BD的延长线于P当CE⊥AD时可证∠AEC=∠ADB=135°∵∠ADE=45°∴∠EDB=90°∴∠PDE=∠AED=∠APD=90°∴四边形APDE是矩形∵AE=DE∴矩形APDE是正方形∴AP=DP=AE=√2在Rt△APB中根据勾股定理得BP=√AB2−AP2=√(2√5)2−(√2)2=3√2∴BD=BP−PD=2√2.②当点E在点D下方时如图④同①的方法得AP=DP=AE=√2BP=3√2∴BD=BP+DP=4√2综上所述BD的长为2√2或4√2.7.解:如图连接AE过点A作AG⊥AE截取AG=AE连接PG,GE ∵将线段AF绕着点A顺时针旋转90°得到AP∵AF=AP,∠PAF=90°∵∠FAE+∠PAE=∠PAE+∠PAG=90°∵∠FAE=∠PAG.又∵AG=AE∵△AEF≌△AGP(SAS)∵PG=EF=2.∵BC=3,CE=2BE∵BE=1.∵在Rt△ABE中AE=√AB2+BE2=√17.∵AG=AE,∠GAE=90°∵GE=√2AE=√34.∵PE≥GE−PG且当点G P E三点共线时取等号∵PE的最小值为GE−PG=√34−2.故答案为:√34−2.8.(1)解:如图设半圆的圆心为O连接OC,OB过点O作直线OP⊥CD于P交AB于Q∵四边形ACPQ是矩形四边形BDPQ是矩形∵AC=PQ=3cm PD=QB∵OP⊥CD∵CP=DP=QB=5cm∵OP=√OC2−CP2=√169−25=12(cm)∵OQ=OP+PQ=15cm.∵碗的高度为15cm;故答案为:15;(2)解:如图1 OB=√OQ2+QB2=√225+25=5√10cm∵将碗放在桌面MN上绕点B缓缓倾斜倒出部分汤∵当半圆O与直线MN相切时碗内汤的深度最小如图2 设半圆O与直线MN相切于点R连接O′R连接OO′O′B过点O作OK⊥O′B于K∵旋转∵OB=O′B=5√10cm ∠ABM=∠OBO′∵半圆O与直线MN相切于点R∵O′R⊥MN∵O′R=13cm∵BR=√O′B2−O′R2=√250−169=9cm∵S△OO′B=S﹣S△OBQ﹣S△BRO′梯形OQO′R∵S△OO′B=12×(5+9)×(15+13)﹣12×15×5﹣12×13×9=100(cm2)∵12×O′B×OK=100∵12×5√10×OK=100∵OK=4√10cm∵BK=√OB2−OK2=√250−160=3√10cm∵tan∠OBO′=OKBK =√103√10=43∵tan∠MBA=43故答案为:43.9.解:如图所示以AB为边向右作等边三角形△ABF作射线FQ交AD于点E过点D作DH⊥QE于H连接PQ∵四边形ABCD是矩形∵∠ABP=∠BAD=90°∵△ABF△APQ都是等边三角形∵∠BAF=∠PAQ=60°BA=FA PA=QA∵∠BAP=∠FAQ在△BAP和△FAQ中{BA=FA ∠BAP=∠FAQ PA=QA∵△BAP≌△FAQ(SAS)∵∠ABP=∠AFQ=90°∵∠FAE=∠BAD−∠BAF=90°−60°=30°∵∠AEF=180°−∠AFQ−∠FAE=180°−90°−30°=60°∵AB =AF =3 ∠FAE =30°∵在Rt △AFE 中设FE =x 则AE =2x 根据勾股定理得x 2+32=(2x)23x 2=9x 2=3x =1√3 x 2=−√3(舍)∵FE =√3 AE =2√3∵点Q 在射线FE 上运动∵AD =BC =3√3∵DE =AD −AE =3√3−2√3=√3∵DH ⊥EF ∠DEH =∠AEF =60°∵DH =√DE 2−EH 2=√(√3)2−(√32)2=32∵垂线段最短∵当点Q 与点H 重合时 DQ 的值最小 最小值为32故答案为:32.10.解:连接PB 如图所示∵PA =PB ∠PAQ =60°∵△APB 是等边三角形.当点P 运动到原点O 时 记点B 的位置为M 如图1所示当点P 在x 轴上运动(P 不与O 重合)时∵∠PAB =∠OAM =60°∵∠PAO =∠BAM在△APO 和△ABM 中{AP=AB∠PAO=∠MAB AO=AM∵△APO≌△ABM(SAS)∵∠AMB=∠AOP=90°∵当点P在x轴上运动(P不与O重合)时∠AMB为定值90°∵点B的轨迹为一条经过点M且与AM垂直的线段.当a=−1时点P(−1,0);当a=3时点P′(3,0)如图2所示∵PP′=3−(−1)=4∵△APB△AP′B′都是等边三角形∵AP=AB AP′=AB′∠PAB=∠P′AB′=60°∵∠PAP′=∠BAB′在△PAP′和△BAB′中{AP=AB∠PAP′=∠BAB′AP′=AB′∵△PAP′≌△BAB′(SAS)∵BB′=PP′=4∵当−1≤a≤3时点B移动路径的长为4故答案为:411.解:过点C作CD⊥AB于点D∵CA=CO CD⊥AB∵AD=OD∵AB=3AC=6∵AC=2∵∠ACB=90°∵在Rt△ABC中cos∠CAB=ACAB =13则在Rt△ACD中AD=AC⋅cos∠CAB=ADAC =13即AD2=13解得:AD=23则AO=2AD=43∵BO=AB−AO=6−43=143∵△AC′B′是由△ACB旋转得到∵AC=AC′,AB=AB′,∠CAC′=∠BAB′∵AC AB =AC′AB′∵△CAC′∽△BAB′∵∠ACO=∠OBF ∵∠BOF=∠COA ∵△ACO∽△FBO∵CA BF =COBO∵CA=CO∵BO=BF=14.3故答案为:14312.解:∵AB=BC=4√2AD=DE=2∠ABC=∠ADE=90°∵AC=√AB2+BC2=8分两种情况讨论:①如下图当点D运动到线段AC上时∵∠ADE=90°∵∠CDE=180°−∠ADE=90°此时CD=AC−AD=8−2=6∵CE=√CD2+DE2=√62+22=2√10∵点O为CE的中点CE=√10;∵OD=12②如下图当点D运动到线段CA的延长线上时此时∠CDE=∠ADE=90°CD=AC+AD=8+2=10∵CE=√CD2+DE2=√102+22=2√26∵点O为CE的中点CE=√26.∵OD=12综上所述OD的长为√10或√26.故答案为:√10或√26.13.解:当点P 在线段OB 上时∵点B 的坐标为(8,8) 四边形OABC 是正方形∵OA =AB =8 ∠OAB =90° ∠AOB =45°在Rt △OAB 中OB =√OA 2+AB 2=√82+82=8√2将△AOP 绕点A 顺时针旋转90°得到△ABQ∵△AOP ≌△ABQ∵OP =BQ∵BP +BQ =BP +OP =OB =8√2与BP +BQ =10√2相矛盾故点P 不在线段OB 上当点P 在线段OB 的延长线上时 如图过点Q 作QF ⊥x 轴于点F由旋转的性质可得OP =BQ ∠AOB =∠ABQ =45°∵BP +BQ =BP +OP =10√2由图可知 OP −BP =8√2解方程组{BP +OP =10√2OP −BP =8√2解得{OP =9√2BP =√2∵BQ =OP =9√2设BQ 与x 轴交于点N∵∠OAB =∠NAB =90° ∠ABQ =45°∵∠ANB =90°−∠ABQ =90°−45°=45°∵△ABN 是等腰直角三角形∵AN =AB =8∵BN =√AB 2+AN 2=√82+82=8√2∵NQ =BQ −BN =9√2−8√2=√2∵∠QFA =90° ∠QNF =∠ANB =45°∵∠NQF =90°−∠QNF =90°−45°=45°∵△QNF 是等腰直角三角形∵QF=NF=NQ⋅sin∠NQF=√2×sin45°=√2×√22=1∵OF=OA+AN+NF=8+8+1=17∵点Q的坐标为(17,−1)故答案为:(17,−1).14.解:在AC上截取AE=AB=2作EF⊥BC于F如图∵∠ABC=90°∠C=30°∴AC=2AB=4BC=√3AB=2√3∠BAC=60°∴CE=AC−AE=2在Rt△CEF中EF=12CE=1FC=√3EF=√3∵线段AD绕点A顺时针旋转60°至AD′∴AD=AD′∠DAD′=60°∴∠BAD′=∠EAD在△ABD′和△ADE中{AB=AE∠BAD′=∠EAD AD′=AD∴△ABD′∵△AED∴DE=BD′在Rt△DEF中DE2=DF2+EF2=(√3−BD)2+12=(BD−√3)2+1∴当BD=√3时DE2有最小值1∴BD′的最小值为1.15.解:如图取AB的中点N连接EN,EC,GN作EH⊥CD交CD的延长线于H由题意可得:AE=8,DE=4,∵点N是AB的中点∵AN=NB=8,∵AE=AN,∵∠A=60°,∵△AEN是等边三角形∵EA=EN,∠AEN=∠FEG=60°,∠ANE=60°,∵∠AEF=∠NEG,∵EA=EN,EF=EG,∵△AEF≌△NEG(SAS),∵∠ENG=∠A=60°,∵∠GNB=180°−60°−60°=60°,∵点G的运动轨迹是射线NG∵BN=EN,∠BNG=∠ENG=60°,NG=NG,∵△EGN≌△BGN(SAS),∵GB=GE,∵GB+GC=GE+GC≥EC,在Rt△DEH中∠H=90°,DE=4,∠EDH=60°,DE=2,EH=2√3∵DH=12∵在Rt△ECH中EC=√EH²+CH²=√(2√3)2+182=4√21∵GB+GC≥4√21∵GB+GC的最小值为4√21;故答案为4√21.16.解:过点B′作BE′⊥AC交直线AC于点E∵在△ABC中∠ACB=90°∠ABC=30°∴∠BAC=90°−∠ABC=60°AC=12AB=12×6=3∵将△APB绕点A逆时针旋转60°得到△AP′B′∵△APB≌△AP′B′△APP′是等边三角形∵PP′=AP∴AB=AB′=6,∠BAB′=60°∴∠B′AE=180°−∠BAC−∠BAB′=60°在Rt△B′AE中∠AB′E=90°−∠B′AE=30°∴AE=12AB′=3,B′E=√AB′2−AE2=3√3∴CE=AC+AE=3+3=6若点C P P′B′恰好在同一直线上在Rt△B′EC中CB′=√CE2+B′E2=√62+(3√3)2=3√7.∴PA+PB+PC=CB′=3√7.故答案为:3√7.17.解:如图延长D′A′交AD于点F连接BF AC DE∵四边形ABCD为矩形点O是对角线BD的中点∵AC经过点O AD=BC AD∥BC∴OA =OC ∠OAF =∠OCE由旋转的性质可知:AB =A ′B ∠BAF =∠BA ′O =90°在Rt △BAF 和Rt △BA ′F 中{BA =BA ′BF =BF∵Rt △BAF ≌Rt △BA ′F (HL )∵AF =A ′F在△OAF 和△OCE 中{∠OAF =∠OCE OA =OC ∠AOF =∠COE∵△OAF ≌△OCE (ASA )∵AF =CE∵AD =BC AD∥BC∵DF =BE∵四边形BEDF 为平行四边形∵OE =OF设AF =x A ′O =a∵OE =OF =x +a D ′E =2A ′O =2a∵EF =2OF =2x +2a AD =A ′D =x +4a∵DF =BE =AD −AF =4a A ′E =x +2a∵EF 为平行四边形BEDF 的对角线∵S ▱BEDF =2S △BEF∵BE ⋅AB =2×12EF ⋅A ′B∵4a ⋅AB =2×12(2x +2a )⋅A ′B ∵AB =A ′B∵4a =2x +2a∵x =a∵AD =x +4a =5a A ′E =x +2a =3a在Rt △A ′BE 中A ′E =3a BE =4a由勾股定理得:A ′B =√BE 2+A ′E 2=√7a∵AB=A′B=√7a∵AB AD =√7a5a=√75故答案为:√75.18.解:(1)连接BD交AC于O如图所示:∵四边形ABCD是菱形∵CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=12∠BAD=30°,OA=OC,AC⊥BD∵OB=12AB=1∵OA=√3OB=√3∵AC=2√3由旋转的性质得:BC=AD=EF=FG=GA=CD=AE=AB=2∠EAG=∠BAD=60°∵CE=AC−AE=2√3−2∵四边形AEFG是菱形∵EF∥AG∵∠CEP=∠EAG=60°∵∠CEP+∠ACD=90°∵∠CPE=90°∵EF⊥DC∵EF=CD=2∵EF与DC的关系是相等且垂直故答案为:相等且垂直;(2)∵PE=12CE=√3−1PC=√3PE=3−√3∵DP=CD−PC=2−(3−√3)=√3−1.故答案为:√3−119.解:①根据旋转的性质知∠CAD=∠BAF AD=AF ∵∠BAC=90°∠DAE=45°∵∠CAD+∠BAE=45∘∵∠EAF=∠EAB+∠BAF=45°∵AD=AF AE=AE∵△AEF≌△AED(SAS)故①正确;②根据旋转的性质知△ADC≌△AFB∵△ABC的面积等于四边形AFBD的面积故②错误;③∵∠BAC=90°AB=AC∵∠ABC=∠ACB=45∘∵∠DAE=45°∵∠DAE=∠ABE=45∘∵∠ABE+∠EAB=∠DAE+∠EAB即∠BAD=∠AEC故③正确;④∵∠BAC=90°AB=AC△ADC旋转90°至△AFB∵∠ABC=∠ACB=45∘根据旋转的性质可得△ADC≌△AFB∠ABF=∠ACD=45∘∵∠FBE=45∘+45∘=90∘∵BE2+BF2=EF2∵将△ADC绕点A顺时针旋转90°后得△AFB∵△ADC≌△AFB∵BF=CD∵EF=DE∵BE2+DC2=DE2故④正确;故答案为:①③④.20.解:∵四边形OABC为矩形∵OA∥BC AB∥OC OA=BC AB=OC∠AOC=∠OAB=∠OCB=∠ABC=90°∵A(0 3) C(4 0)∵AO=BC=3 OC=AB=4由旋转可知四边形CDEF为矩形且DE=OA=3 DC=OC=4连CE则在Rt△CDE中CE=√CD2+DE2=√42+32=5过B作BG⊥EF于H且使BG=CF连GF GE则∠BHE=∠CFE=90°∵BG∥CF又∵CF∥DE CF=DE∵BG=CF BG=DE BG∥CF BG∥DE∵四边形CBGF和四边形DBGE均为平行四边形∵BC=FG BD=EG∵BG⊥EF于H∵∠BHF=∠FHG=∠GHE=∠BHE=90°∵BF2=BH2+HF2BD2=EG2=HE2+HG2∵BF2+BD2=BH2+HF2+HE2+HG2又∵BE2=BH2+HE2BC2=GF2=HF2+HG2∵BE2+BC2=BH2+HE2+HE2+HG2∵BF2+BD2=BE2+BC2∵BF2+BD2−BC2=BE2∵当BE最小时BF2+BD2−BC2才最小当C B E三点不共线时在△CBE中BE>CE−CB当C B E三点共线时(点E在CB的延长线上时)BE=CE-CB综上所述BE≥CE-CB=5-3=2即BE≥2∵BE的最小值为2当BE=2时BF2+BD2−BC2=4故答案为:4.。
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,在Rt△ABC中∠C=90°,AC=BC=5,等腰直角三角形BDE的顶点点D是边BC上的一点,且α(0°≤α<360°).的值为________,直线AE,CD相交形成的较小角的度数为________;(1)【问题发现】当α=0°时,AECD(2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明;(3)【问题解决】当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.2.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,判断线段AP与BQ的数量关系,并说明理由;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于√3,请直接4写出线段AP的长度.3.在中Rt△ABC中∠ABC=90°,AB=BC点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动;①当BE=2,BC=2√3时,则∠EAB=_________°;②猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E在射线CB上运动BC=√3,设BE=x,以A,E,C,F为顶点的四边形面积为y,请直接写出y与x之间的函数关系式(不用写出x的取值范围).4.如图1,在矩形ABCD中AB=6,AD=8把AB绕点B顺时针旋转α(0<α<180°)得到,连接,过B点作BE⊥AA′于E点,交矩形ABCD边于F点.(1)求DA′的最小值;(2)若A点所经过的路径长为2π,求点A′到直线AD的距离;(3)如图2,若CF=4,求tan∠ECB的值;(4)当∠A′CB的度数取最大值时,直接写出CF的长.5.【问题探究】(1)如图1锐角△ABC中分别以AB AC为边向外作等腰直角△ABE和等腰直角△ACD 使AE=AB AD=AC∠BAE=∠CAD=90°连接BD CE试猜想BD与CE的大小关系不需要证明.【深入探究】(2)如图2四边形ABCD中AB=5BC=2∠ABC=∠ACD=∠ADC=45°求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形将BD进行转化再计算请你准确的叙述辅助线的作法再计算;【变式思考】(3)如图3四边形ABCD中AB=BC∠ABC=60°∠ADC=30°AD=6BD =10则CD=.6.如图1所示在菱形ABCD和菱形AEFG中点A B E在同一条直线上P是线段CF的中点连接PD PG.(1)若∠BAD=∠AEF=120°请直接写出∠DPG的度数及PG的值______.PD(2)若∠BAD=∠AEF=120°将菱形ABCD绕点A顺时针旋转使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上如图2 此时(1)中的两个结论是否发生改变?写出你的猜想并加以说明.(3)若∠BAD=∠AEF=180°−2α(0°<α<90°)将菱形ABCD绕点A顺时针旋转到图3的位置求出PGPD 的值.7.如图1 在平面直角坐标系中抛物线y=ax2+bx+4与x轴交于A(﹣2 0)B两点与y轴交于点C OB=OC.连接BC点D是BC的中点.(1)求抛物线的表达式;(2)点M在x轴上连接MD将△BDM沿DM翻折得到△DMG当点G落在AC上时求点G的坐标;(3)如图2 E在第二象限的抛物线上连接DE交y轴于点N将线段DE绕点D逆时针旋转45°交ABOM直接写出点E的坐标.与点M若ON=438.[证明体验](1)如图1 在△ABC和△BDE中点A B D在同一直线上△A=△CBE=△D=90° 求证:△ABC△△DEB.(2)如图2 图3 AD=20 点B是线段AD上的点AC△AD AC=4 连结BC M为BC中点将线段BM绕点B顺时针旋转90°至BE连结DE.ME时求AB的长.[思考探究](1)如图2 当DE=√22[拓展延伸](2)如图3 点G过CA延长线上一点且AG=8 连结GE△G=△D求ED的长.9.新定义:如图1(图2图3)在△ABC中把AB边绕点A顺时针旋转把AC边绕点A逆时针旋转得到△AB′C′若∠BAC+∠BA′C′=180°我们称△AB′C′是△ABC的“旋补三角形” △AB′C′的中线AD叫做△ABC的“旋补中线” 点A叫做“旋补中心”(1)【特例感知】①若△ABC是等边三角形(如图2)BC=4则AD=________;②若∠BAC=90°(如图3)BC=6AD=_______;(2)【猜想论证】在图1中当△ABC是任意三角形时猜想AD与BC的数量关系并证明你的猜想;(提示:过点B′作B′E∥AC′且B′E=AC′连接C′E则四边形AB′EC是平行四边形.)(3)【拓展应用】如图4点A B C D都在半径为5的圆P上且AB与CD不平行AD=6△APD是△BPC的“旋补三角形” 点P是“旋补中心” 求BC的长.10.如图① 抛物线y=﹣x2+bx+c与x轴交于点A(x10) 点C(x20) 且x1x2满足x1+x2=2x1•x2=﹣3 与y轴交于点B E(m0)是x轴上一动点过点E作EP△x轴于点E交抛物线于点P.(1)求抛物线解析式.(2)如图② 直线EP交直线AB于点D连接PB.①点E在线段OA上运动若△PBD是等腰三角形时求点E的坐标;②点E在x轴的正半轴上运动若△PBD+△CBO=45° 请求出m的值.(3)如图③ 点Q是直线EP上的一动点连接CQ将线段CQ绕点Q逆时针旋转90° 得到线段QF 当m=1时请直接写出PF的最小值.11.如图△ABC与△DEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O连接BF CD.(1)如图① 当FE△AB时易证BF=CD(不需证明);(2)当△DEF绕点O旋转到如图②位置时猜想BF与CD之间的数量关系并证明;(3)当△ABC与△DEF均为等边三角形时其他条件不变如图③ 猜想BF与CD之间的数量关系直接写出你的猜想不需证明.12.已知Rt△ABC中AC=BC△C=90° D为AB边的中点△EDF=90° △EDF绕D点旋转它的两边分别交AC CB(或它们的延长线)于E F.(1)如图1 当△EDF绕D点旋转到DE△AC于E时易证S△DEF+S△CEF与S△ABC的数量关系为__________;(2)如图2 当△EDF绕D点旋转到DE和AC不垂直时上述结论是否成立?若成立请给予证明;(3)如图3 这种情况下请猜想S△DEF S△CEF S△ABC的数量关系不需证明.13.如图① 将一个直角三角形纸片ABC放置在平面直角坐标系中点A(−2,0)点B(6,0)点C在第一象限∠ACB=90°∠CAB=30°.(1)求点C的坐标;(2)以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E.①如图② 当DE∥AB时BD与y轴交于点F求点F的坐标;②如图③ 在(1)的条件下点F不变继续旋转三角形BDE当点D落在射线BC上时求证四边形FDEB为矩形;(3)点F不变记P为线段FD的中点Q为线段ED的中点求PQ的取值范围(直接写出结果即可).14.如图在Rt△ABC中∠ACB=90∘∠A=30∘点O为AB中点点P为直线BC上的动点(不与点B C重合)连接OC OP将线段OP绕点P逆时针旋转60∘得到线段P Q连接BQ.(1)如图1 当点P在线段BC上时请直接写出线段BQ与CP的数量关系;(2)如图2 当点P在CB长线上时(1)中结论是否成立?若成立请加以证明;若不成立请说明理由;(3)如图3 当点P在BC延长线上时若∠BPO=45∘AC=√6请直接写出BQ的长.15.如图在RtΔABC中∠BAC=90°AB=AC点P是AB边上一动点作PD⊥BC于点D连接AD把AD绕点A逆时针旋转90°得到AE连接CE DE PE.(1)求证:四边形PDCE是矩形;(2)如图2所示当点P运动BA的延长线上时DE与AC交于点F其他条件不变已知BD=2CD的值;求APAF(3)点P在AB边上运动的过程中线段AD上存在一点Q使QA+QB+QC的值最小当QA+QB+QC的值取得最小值时若AQ的长为2 求PD的长.16.感知:如图① △ABC和△ADE都是等腰直角三角形∠BAC=∠DAE=90°点B在线段AD上点C在线段AE上我们很容易得到BD=CE不需要证明;(1)探究:如图② 将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE此时BD=CE是否依然成立?若成立写出证明过程;若不成立说明理由;(2)应用:如图③ 当△ADE绕点A逆时针旋转使得点D落在BC的延长线上连接CE;①探究线段BC CD CE之间的数量关系.②若AB=AC=√2CD=1求线段DE的长.17.如图抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点(点A在点B的左侧)已知点B的横坐标是2 抛物线C的顶点为D.(1)求a的值及顶点D的坐标;(2)点P是x轴正半轴上一点将抛物线C绕点P旋转180°后得到的抛物线C1记抛物线C1的顶点为E抛物线C1与x轴的交点为F G(点F在点G的右侧).当点P与点B重合时(如图1)求抛物线C1的表达式;(3)如图2 在(2)的条件下从A B D中任取一点E F G中任取两点若以取出的三点为顶点能构成直角三角形我们就称抛物线C1为抛物线C的“勾股伴随同类函数”.当抛物线C1是抛物线C的勾股伴随同类函数时求点P的坐标.18.如图点B坐标为(5 2)过点B作BA△y轴于点A作BC△x轴于点C点D在第一象限内.(1)如图1 反比例函数y1=mx (x>0)的图象经过点B点D且直线OD的表达式为y=52x求线段OD的长;(2)将线段OD从(1)中位置绕点O逆时针旋转得到OD′(如图2)反比例函数y2=nx(x>0)的图象过点D' 交AB于点E交BC于点F连接OE OF EF.①若AE+CF=EF求n的值;②若△OEF=90°时设D′的坐标为(a b)求(a+b)2的值.19.已知正方形ABCD和等腰直角三角形BEF BE=EF△BEF=90° 按图1放置使点F在BC上取DF的中点G连接EG CG.(1)探索EG CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45° 再连接DF取DF中点G(见图2)(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间)再连接DF取DF中点G(见图3)(1)中的结论是否仍然成立?证明你的结论.20.如图1 已知正方形BEFG点C在BE的延长线上点A在GB的延长线上且AB=BC过点C作AB的平行线过点A作BC的平行线两条平行线相交于点D.(1)证明:四边形ABCD是正方形;(2)当正方形BEFG绕点B顺时针(或逆时针)旋转一定角度得到图2 使得点G在射线DB上连接BD和DF点Q是线段DF的中点连接CQ和QE猜想线段CQ和线段QE的关系并说明理由;(3)将正方形BEFG绕点B旋转一周时当△CGB等于45°时直线AE交CG于点H探究线段CH EG AH的长度关系.参考答案1.(1)解:Rt△ABC中∵∠C=90°,AC=BC=5∴AB=√AC2+BC2=√52+52=5√2∵ED⊥BC BD=ED=√2∴EB=√DB2+DE2=2,∠B=45°∴AE=AB-EB=5√2−2,CD=BC−DB=5−√2∴AECD =5√2−25−√2=√2故答案为:√2,45°;(2)解:(1)中的两个结论不发生变化理由如下:如图延长AE CD交于F由旋转可得∠CBD=∠ABE∵AB=5√2,BC=5,BE=2,DB=√2∴ABBC =5√25=√2EBDB=2√2=√2∴ABBC=EBDB∴ΔAEB∽ΔCDB∴AECD =ABCB=√2∠EAB=∠DCB∵∠BAC+∠ACB=90°+45°=135°∴∠BAC+∠ACD+∠DCB=∠BAC+∠ACD+∠EAB=135°即∠FAC+∠ACD=135°∴∠F=180°−(∠FAC+∠ACD)=45°∴(1)中的两个结论不发生变化.(3)解:分情况讨论:如图当点D在线段AE上时过点C作CF⊥AD于点F在RtΔABD中AB=5√2,BD=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3由(2)知ΔEAB∽ΔDCB∠ADC=45°AE=AD+DE=4√3+√2∴CDAE=CBAB∴CD4√3+√2=55√2∴CD=2√6+1在Rt△CDF中CF=CD·sin∠ADC=(2√6+1)·sin45°=2√3+√22∴S△ADC=12AD·CF=12×4√3×(2√3+√22)=12+√6;当点E在线段AD上时如图过点C作CF⊥AD于点F在RtΔADB中AB=5√2,DB=√2∴AD=√AB2−DB2=√(5√2)2−(√2)2=4√3∴AE=AD−DE=4√3−2由(2)知△CDB∽△AEB∴CDAE=BCAB∴CD4√3−2=55√2∴CD=2√6−1由(2)知∠ADC=45°∴CF=CD·sin45°=(2√6−1)×√22=2√3−√22∴SΔACD=12AD·CF=12×4√3×(2√3−√22)=12−√6综上△ADC的面积为12+√6或12−√6.2.(1)解:AP=BQ.理由如下:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ;(2)证明:在等边△ABC中AC=BC△ACB=60°由旋转可得CP=CQ△PCQ=60°△△ACB=△PCQ△△ACB﹣△PCB=△PCQ﹣△PCB即△ACP=△BCQ△△ACP△△BCQ(SAS)△AP=BQ△CBQ=△CAP=90°;△BQ=AP=AC=BC.△AP=AC△CAP=90°△△BAP=30° △ABP=△APB=75°△△CBP=△ABC+△ABP=135°△△CBD=45°△△QBD=45°△△CBD=△QBD即BD平分△CBQ△BD△CQ且点D是CQ的中点即直线PB垂直平分线段CQ;(3)解:AP 的长为:√3或√33或2√3+√212. 理由如下:①当点Q 在直线l 上方时 如图所示 延长BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△AB =AC =4△AE =BE =4√33△△BEF =60°设AP =t 则BQ =t△EQ =4√23−t在Rt △EFQ 中 QF =√32EQ =√32(4√23−t ) △S △APQ =12AP •QF =√34 即12•t √32(4√23−t )=√34 解得t =√3或t =√33.即AP 的长为√3或√33.②当点Q 在直线l 下方时 如图所示 设BQ 交l 于点E 过点Q 作QF ⊥l 于点F由题意可得AC =BC PC =CQ △PCQ =△ACB =60°△△ACP =△BCQ△△APC △△BCQ (SAS )△AP =BQ △CBQ =△CAP =90°△△CAB =△ABC =60°△△BAE =△ABE =30°△△BEF =120° △QEF =60°△AB =AC =4△AE =BE =4√33设AP =m 则BQ =m△EQ =m −4√33在Rt △EFQ 中 QF =√32EQ =√32(m −4√33) △S △APQ =12AP •QF =√34 即12•m •√32(m −4√33)=√34 解得m =2√3+√213(m =2√3-√213 负值舍去).综上可得 AP 的长为:√3或√33或2√3+√213. 3.(1)解:①△AB =BC =2√3 BE =2 △ABC =90°△tan∠EAB =BE AB =22√3=√33△△EAB =30°故答案为:30;②过点F 作FD △BC 于D 如图3△△BAE + △AEB = 90° △DEF +△AEB =90°△△BAE = △DEF△AE = EF △ABE =△EDF = 90°△△АВЕ △△ЕDF△AB = ED = BC△FD = DC△CF =√2CD AC =√2AB =√2ED△AC + CF=√2CD +√2ED=√2 (CD + ED )=√2CE ;故答案为:AC +CF =√2CE ;(2)过F 作FH △BC 交BC 的延长线于H 如图4△△AEF =90° AE =EF易证△ABE △△EHF△FH =BE EH =AB =BC△△FHC 是等腰直角三角形△CH =BE =√22FC△EC =BC -BE =√22AC -√22FC 即CA -CF =√2CE ;(3)如图3 当点E在点B左侧运动时y=12×CE×(AB+FD)=12×(√3+x)×(√3+x)=1 2x2+√3x+32;如图4 当点E在点B右侧运动时连接AF 根据勾股定理得AE=√AB2+BE2=√3+x2由旋转得AE=EF△EC=EH-CH=BC-BE=√3−x△y=12×AE×EF+12×EC×FH=1 2x2+32+12(√3−x)x=√3 2x+32综上当点E在点B左侧运动时y=12x2+√3x+32;当点E在点B右侧运动时y=√32x+32.4.(1)解:连接BD DA′ 如图△四边形ABCD是矩形△△BAD=90°△AB=6 AD=8△BD=10由旋转可得BA′=BA=6△BA′+DA′≥BD△当点A′落在BD上时DA′最小最小值为10-6=4△DA′最小值为4;(2)解:由题意得απ×6180=2π解得:α=60°△AB=A′B△△ABA′是等边三角形△△BAA′=60° AB=A′B=AA′=6△△DAA′=30°过点A′作A′M△AD于M点△A′M=12AA′=3△点A′到直线AD的距离为3(3)解:△BC=8 CF=4△BF=4√5△△BAE+△ABE=90° △CBF+△ABE=90°△△BAE=△CBF△△AEB=△BCF=90°△△ABE△△BFC△BE CF =ABBF△BE=6√55过E作EH△BC于H点△EH∥CD△△BEH△△BFC△BE BF =EHCF=BHBC△EH=65BH=125△CH=285△tan∠ECB=EHCH =314;(4)解:当A′C与以B为圆心AB为半径的圆相切时△A′CB最大此时△BA′C=90°分两种情况:当A′在BC的上方时如图1△AB=A′B AE△AA′于E△△ABF=△A′BF△BF=BF△△ABF△△A′BF△△BA′F=△BAF=90°△C A′ F在一条直线上△S△BCF=12BC×AB=12A′B×CF△CF =BC =8如图2当A ′在BC 的下方时连接AF A ′F 则AF =A ′F△A ′B =6 BC =8△A′C =2√7过A ′作A ′P △CD 垂足落在DC 的延长线上△△BCA ′+△A ′CP =90° △A ′CP +△CA ′P =90°△△BCA ′=△CA ′P△△BA ′C =△A ′PC△△A ′BC △△PCA ′△A ′B PC =BC CA ′=A ′CPA ′△A′P =72 PC =32√7△AD 2+DF 2=A ′P 2+PF 2△82+(6−CF )2=(72)2+(32√7+CF)2△CF =83(4−√7).综上 CF 的长为8或83(4−√7).5.解:(1)BD =CE .理由是:△△BAE =△CAD△△BAE +△BAC =△CAD +△BAC 即△EAC =△BAD在△EAC 和△BAD 中{AE =AB∠EAC =∠BAD AC =AD△△EAC △△BAD△BD =CE ;(2)如图2 在△ABC 的外部 以A 为直角顶点作等腰直角△BAE使△BAE =90° AE =AB 连接EAEB EC .△△ACD=△ADC=45°△AC=AD△CAD=90°△△BAE+△BAC=△CAD+△BAC即△EAC=△BAD 在△EAC和△BAD中{AE=AB ∠EAC=∠BAD AC=AD△△EAC△△BAD△BD=CE.△AE=AB=5△BE=√52+52=5√2△ABE=△AEB=45°又△△ABC=45°△△ABC+△ABE=45°+45°=90°△EC2=BE2+BC2=(5√2)2+22=54△BD2=CE2=54.(3)如图△AB=BC△ABC=60°△△ABC是等边三角形把△ACD绕点C逆时针旋转60°得到△BCE连接DE 则BE=AD△CDE是等边三角形△DE=CD△CED=60°△△ADC=30°△△BED=30°+60°=90°在Rt△BDE中DE=√BD2−BE2=√102−62=8△CD=DE=8.6.解:(1)延长GP交CD于H如图1所示:∵在菱形ABCD和菱形AEFG中AB=CD=AD BE//CD AG=FG FG//BE∴FG//CD∴∠PFG=∠PCH ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠PFG=∠PCHPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∴AG=CH∴DG=DH∴DP⊥GH(三线合一)∴∠DPG=90°;∵∠BAD=120°∴∠ADC=60°∴∠PDG=∠PDH=12∠ADC=30°∴PGPD =tan∠PDG=tan30°=√33;(2)(1)中的两个结论不发生改变;理由如下:延长GP交CE于H连接DH DG如图2所示:∵四边形AEFG为菱形∴FG//EC∴∠GFP=∠HCP ∵P是线段CF的中点∴PF=PC在△PFG和△PCH中{∠GFP=∠HCPPF=PC∠FPG=∠CPH ∴△PFG≅△PCH(ASA)∴FG=CH PG=PH∵FG=AG∴AG=CH∵四边形ABCD是菱形∴AC=CD∵∠BAD=∠AEF=120°∴∠ACD=60°∴△ACD是等边三角形∴AD=CD∴∠EAG=∠ADC=60°∠DAC=∠DCA=60°∴∠GAD=180°−∠EAG−∠DAC=60°在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴DG=DH∠ADG=∠CDH∴DP⊥GH∴∠DPG=90°∠GDH=∠ADC=60°∴∠GDP=30°∴PGPD =tan30°=√33;(3)延长GP到H使得PH=GP连接CH DG DH延长DC交EA的延长线于点M如图3所示:同(2)可证△PFG≅△PCH∴∠GFC=∠HCF FG=CH∴FG//CH∵FG//AE∴CH//EM∴∠DCH=∠M∵CD//AB∴∠M=∠MAB∴∠DCH=∠MAB∵∠BAD=∠AEF=180°−2α∴∠EAG=∠ADC=2α∴∠GAM=180°−2α∴∠GAD=∠BAM∴∠GAD=∠DCH∵AG=FG∴AG=CH在△ADG和△CDH中{AD=CD∠GAD=∠DCHAG=CH ∴△ADG≅△CDH(SAS)∴∠ADG=∠CDH DG=DH∴∠GDH=∠ADC=2α∴∠DPG =90° ∠GDP =12∠GDH =α∴ PGPD =tanα.7.(1)解:△抛物线y =ax 2+bx +4与y 轴交于点C△点C 的坐标为(0 4)△OC =4△OB=OC =4△B (4 0)将A (-2 0)和B (4 0)的坐标分别代入y =ax 2+bx +4中得:{4a −2b +4=016a +4b +4=0解得:{a =−12b =1△y =−12x 2+x +4(2)解:△A (-2 0) C (0 4)设直线AC 的解析式为y =kx +4将点A (-2 0)代入y =kx +4中 得:−2k +4=0 解得:k =2△直线AC 的解析式为y =2x +4设G (x 2x +4)△点D 是BC 的中点△D(2 2)△翻折△△MDB△△MDG△DB=DG△(x−2)2+(2x+4−2)2=(2−4)2+(2−0)2△5x2+4x=0△x1=0,x2=−45△y1=4,y2=125△G(0 4)G(−45125)(3)解:E(2−2√13314−2√139)如图过点D作DP△OC于点P DQ△OB于点Q点D作DH△DN交OB于点H∵∠PDQ=∠NDM=90°∴∠PDQ−∠NDQ=∠NDM−∠NDQ∴∠PDN=∠QDH在ΔDPN和ΔDQH中{DP=DQ∠DON=∠DQH=90°∠PDN=∠QDH∴ΔDPN≅ΔDQH(ASA)∴DN=DH∠NDM=90°−∠PDN−∠QDM=90°−∠QDH−∠QDM=∠HDM 在ΔDMN和ΔDMH中{DN=DH∠NDM=∠HDMDM=DM∴△DMN≌△DMH(SAS)∴MN=MQ+PN△ON =43OM 设OM =x 则ON =43x QM =2-x PN =2-43x △MN =MQ +PN =4-73x在Rt △OMN 中 △MON=90°MN 2=ON 2+OM 2即(4−73x)2=(43x)2+(2−x )2△2x 2−x +9=0△x =1 x =92(舍) △N (0 43) △D (2 2)设直线DN 的解析式为y =k 1x +b 1将点N (0 43)和点D (2 2)代入y =k 1x +b 1中 得:{b 1=432k 1+b 1=2 解得:{b 1=43k 1=13△直线DN 的解析式为y =13x +43△y =−12x 2+x +4 △−12x 2+x +4=13x +43△x =2−2√133 x =2+2√133(舍) △y =14−2√139 △E (2−2√133 14−2√139). 8.解:(1)证明 △△A =90° △CBE =90°△△C +△CBA =90° △CBA +△DBE =90°△△C =△DBE (同角的余角相等).又△△A =△D =90°△△ABC △△DEB ;(2)①△M绕点B顺时针旋转90°至点E M为BC中点△△BME为等腰直角三角形BEBC =BMBC=12△BE=√22ME又△DE=√22ME△BE=DE.如图过点E作EF△AD垂足为F则BF=DF △△A=△CBE=△BFE=90°△由(1)得:△ABC△△FEB△BF AC =BEBC=12△AC=4△BF=2△AB=AD-BF-FD=20-2-2=16;②如图过点M作AD的垂线交AD于点H过点E作AD的垂线交AD于点F过D作DP△AD过E作NP△DP交AC的延长线于N△M为BC中点MH△AC∴MHAC =BMBC=BHAB=12△MH=12AC=2BH=AH△△MHB=△MBE=△BFE=90°由(1)得:∠HBM=∠FEB△MB=EB△△MHB△△BFE△BF=MH=2 EF=BH设EF=x则DP=x BH=AH=x EP=FD=20-2-2x=18-2x GN=x+8 NE=AF=2x+2由(1)得△NGE△△PED△PE NG =PDNE即18−2xx+8=x2x+2解得x1=6x2=−65(舍去)△FD=18-2x=6△ED=√EF2+FD2=√62+62=6√2.9.(1)解:①△△ABC是等边三角形BC=4△AB=AC=4∠BAC=60°△AB′=AC′=4∠B′AC′=120°△AD为等腰△AB′C′'的中线△AD⊥B′C′∠C′=30°△∠ADC′=90°在Rt△ADC′'中∠ADC′=90°AC′=4∠C′=30°△AD=12AC′=2;②△∠BAC=90°△∠B′AC′=90°在△ABC和△AB′C′'中{AB=AB′∠BAC=∠B′AC′AC=AC′△△ABC≌△AB′C′(SAS)△B′C′=BC=6△AD=12B′C′=3;故答案为:①2;②3(2)AD=12BC理由如下:证明:在图1中过点B′作B′E∥AC′且B′E=AC′连接C′E DE则四边形AB′EC是平行四边形.△∠BAC+∠B′AC′=180°∠B′AC′+∠AB′E=180°△∠BAC=∠AB′E又△AC=AC′△CA=EB′在△BAC和△AB′E中{BA=AB′∠BAC=∠AB′E CA=EB′△△BAC≌△AB′E(SAS)△BC=AE又△AD=12AE△AD=12BC;(3)如图过点P作PF⊥BC则BF=CF△PB=PC PF⊥BC△PF为△BC的中线△PF=12AD=3.在Rt△BPF中∠BFP=90°PB=5PF=3△BF=√PB2−PF2=4△BC=2BF=8.10.(1)解:△x 1 x 2满足x 1+x 2=2 x 1•x 2=﹣3△b =2 c =3△抛物线的解析式为y =﹣x 2+2x +3(2)解:①抛物线y =﹣x 2+2x +3与x 轴交于点A (x 1 0) 点C (x 20) 与y 轴交于点B △当y =0时 ﹣x 2+2x +3=0解得x 1=3 x 2=-1当x =0时y =3△A (3 0) C (-1 0) B (0 3)△△AOB 为等腰直角三角形△△BAO =45°又EP △x 轴△△ADE 为等腰直角三角形△△ADE =45°又△△PDB =△ADE△△PDB =45°设直线AB 的解析式为y =kx +b则{3k +b =0b =3 解得{k =−1b =3△直线AB 的解析式为y =-x +3△E (m 0) 直线EP 交直线AB 于点D△设点D 为(m -m +3) 点P 为(m ﹣m 2+2m +3)点E 在线段OA 上运动 若△PBD 是等腰三角形 则0<m <3当PD =PB 时△PBD 是以P 为直角顶点的等腰直角三角形△﹣m 2+2m +3-(-m +3)=m解得m=2或m=0(舍去)△点E为(2 0)当BD=BP时△PBD是以B为直角顶点的等腰直角三角形△2 m =﹣m2+2m+3-(-m+3)解得m=1或m=0(舍去)△点E为(1 0)当DB=DP时△PBD是以D为顶点的等腰三角形△△OBD=45°△BD=√2OE=√2m△√2m=﹣m2+2m+3-(-m+3)解得m=3-√2或m=0(舍去)△点E为(3-√20)综上可知点E为(2 0)或(1 0)或(3-√20)②当P在x轴上方时连接BC延长BP交x轴于点F△△BAO=△ABO=45°又△PBD+△CBO=45°△△CBP=90°△△OBF+△CBO=90°又△BCO+△CBO=90°△△OBF=△BCO△△BOC△△FOB△BO FO =OC OB△C(-1 0) B(0 3)△3 FO =1 3△OF=9△点F为(9 0)设直线PB 的解析式为y =mx +n则{9m +n =0n =3解得{m =−13n =3△直线PB 的解析式为y =-13x +3△P B 都在抛物线上△{y =−13x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =73y =209△点P 为(73 209)△m =73当P 在x 轴下方时连接BC 设BP 与x 轴交于点H△△PBD +△CBO =45° △OBH +△PBD =45°△△CBO =△OBH又OB =OB △COB =△BOH∴△BOH △△BOC (ASA )△OC =OH =1△点H (1 0)设直线BH 解析式为:y =kx +b△{k +b =0b =3 解得{k =−3b =3△直线BH 解析式为:y =-3x +3△联立方程组{y =−3x +3y =−x 2+2x +3解得{x =0y =3 (舍去){x =5y =−12△点P 为(5 -12)△m =5综上可知 m 的值为73或5. (3)解:当m =1 得点E (1 0) P (1 4)过点F 作FH △PE又PE △x 轴 △CQF =90°△△CQH +△FQH =90° △CQH +△QCH =90°°△QEC =△QHF =90°△△FQH =△QCH△线段CQ 绕点Q 逆时针旋转90° 得到线段QF△CQ=QF△△QCE △△FQH (AAS )△CE=QH QE=FH又E (1 0) C (-1 0)△CE=QH =2令Q 为(1 a )QE=FH=a△点F 的坐标为(1+a a -2)△PF=√(1+a −1)2+(a −2−4)2=√2a 2−12a +36△2>0△当a =-−122×2=3时 PF 有最小值 且最小值为3√2.11.解:(1)证明:如图① 连接OC∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵FE⊥AB于O∴C F O三点共线在ΔBOF与ΔCOD中{∠OB=OC∠BOF=∠COD=90°OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(2)解:猜想BF=CD理由如下:如图② 连接OC OD∵ΔABC与ΔDEF都是等腰直角三角形AC=BC DE=DF.边AB EF的中点重合于点O∴OC⊥AB OC=12AB=OB OD⊥EF OD=12EF=OF∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF ∴∠BOF=∠COD.在ΔBOF与ΔCOD中{OB=OC∠BOF=∠COD OF=OD∴ΔBOF≅ΔCOD(SAS)∴BF=CD;(3)解:猜想BF=√33CD理由如下:如图③ 连接OC OD.∵ΔABC为等边三角形点O为边AB的中点∴∠BCO=∠ACO=30°∠BOC=90°∴tan∠BCO=OBOC=tan30°=√33∵ΔDEF为等边三角形点O为边EF的中点∴∠FDO=∠EDO=30°∠DOF=90°∴tan∠FDO=OFOD=tan30°=√33∴OBOC =OFOD=√33∵∠BOF=∠BOC+∠COF=90°+∠COF∠COD=∠DOF+∠COF=90°+∠COF∴∠BOF=∠COD∴ΔBOF∽ΔCOD∴BFCD =OBOC=√33∴BF=√33CD.12.解:(1)当△EDF 绕D 点旋转到DE △AC 时 四边形CEDF 是正方形.设△ABC 的边长AC =BC =a 则正方形CEDF 的边长为12a .△S △ABC =12a 2 S 正方形DECF =(12a )2=12a 2 即S △DEF +S △CEF =12S △ABC ;故答案为:S △DEF +S △CEF =12S △ABC ; (2)(1)中的结论成立;证明:过点D 作DM △AC DN △BC 则△DME =△DNF =△MDN =90°又△△C =90°△DM △BC DN △AC△D 为AB 边的中点由中位线定理可知:DN =12AC MD =12BC △AC =BC△MD =ND△△EDF =90°△△MDE +△EDN =90° △NDF +△EDN =90°△△MDE=△NDF在△DME 与△DNF 中{∠DME =∠DNFMD =ND ∠MDE =∠NDF△△DME △△DNF (ASA )△S △DME =S △DNF△S 四边形DMCN =S 四边形DECF =S △DEF +S △CEF由以上可知S 四边形DMCN =12S △ABC △S △DEF +S △CEF =12S △ABC .(3)连接DC证明:同(2)得:△DEC △△DBF △DCE =△DBF =135°△S △DEF =S 五边形DBFEC=S △CFE +S △DBC=S △CFE +S ΔABC2△S △DEF -S △CFE =S ΔABC2.故S △DEF S △CEF S △ABC 的关系是:S △DEF -S △CEF =12S △ABC .13.(1)解:如图 过点C 作C G ⊥x 轴∵点A(−2,0)点B(6,0)△AB=8 又∵∠ACB=90°∠CAB=30°△在Rt△ABC中BC=4 在Rt△GBC中BG=2 CG=2√3.又∵点C在第一象限△C(4,2√3);(2)①∵以点B为中心顺时针旋转三角形ABC得到三角形BDE点A C的对应点分别为D E 且DE//AB△∠FBA=∠EDB=∠CAB=30°.△在Rt△FOB中∵OB=6△OF=2√3.△F(0,2√3);②△点D落在射线BC上△∠ABD=60°.由①知∠FBA=30°△∠FBD=30°.△∠FBD=∠BDE△DE//FB.又DE=FB=4√3△四边形FDEB是平行四边形.又∠BED=90°△四边形FDEB是矩形.(3)如图连接PQ,FE∵P,Q分别为FD,DE的中点∴PQ=1EF2∵FB=4√3BE=4∵旋转则点E在以B为圆心BE为半径的圆上运动∴FB−BE≤EF≤FB+BE 即4√3−4≤EF≤4√3+4∴2√3−2≤PQ≤2√3+2 14.(1)解:CP=BQ理由:如图1 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS);(2)解:CP=BQ理由:如图2 连接OQ由旋转知PQ=OP△OPQ=60°△△POQ是等边三角形△OP=OQ△POQ=60°在Rt△ABC中O是AB中点△OC=OA=OB△△BOC=2△A=60°=△POQ△△COP=△BOQ在△COP和△BOQ中{OC=OB∠COP=∠BOQOP=OQ△△COP△△BOQ(SAS)△CP=BQ;(3)解:BQ=√6−√22.在Rt△ABC中△A=30° AC=√6△BC=AC·tan A=√2如图③ 过点O作OH△BC于点H△△OHB=90°=△BCA△OH △AC△O 是AB 中点△CH =12BC =√22 OH =12AC =√62△△BPO =45° △OHP =90°△△BPO =△POH△PH =OH =√62△CP =PH -CH =√62-√22=√6−√22连接OQ 同(1)的方法得 BQ =CP =√6−√22. 15.(1)证明:△AB =AC △BAC =90°△△B =△ACB =45°△△DAE =△BAC =90° AD =AE△△BAD =△CAE在△BAD 和△CAE 中 {AB =AC∠BAD =∠CAE AD =AE△△BAD △△CAE (SAS )△△B =△ACE =45° BD =CE△△ECD =△ACE +△ACB =90°△PD △BC△△BDP =△ECD =90°△PD △CE△△B =△BPD =45°△PD =BD△PD =EC△四边形PDCE 是平行四边形△△PDC =90°△四边形PDCE 是矩形;(2)解△如图 过点A 作AM △BC 于点M 过点F 作FN △BC 于点N设CD =2m 则BD =2CD =4m BC =6m△AB =AC △BAC =90° AM △BC△BM =MC =3m△AM =BM =3m AB =AC =3√2m DM =CM -CD =m△BD =PD =4m△PB =4√2m△P A =√2m△△ABD △△ACE△BD =EC =4m设CN =FN =x△FN △CE△△DFN △△DEC△FN EC =DN DC△FNDN =EC DC=4m2m =2 △DN =12x△12x +x =2m△x =43m △CF =4√23 m△AF =AC -CF =3√2m -4√23m =5√23m △AP AF =√2m 5√23m=35;(3)即:如图 将△BQC 绕点B 顺时针旋转60°得到△BNM 连接QN△BQ=BN QC=NM△QBN=60°△△BQN是等边三角形△BQ=QN△QA+QB+QC=AQ+QN+MN△当点A点Q点N点M共线时QA+QB+QC值最小如图连接MC△将△BQC绕点B顺时针旋转60°得到△BNM△BQ=BN BC=BM△QBN=60°=△CBM△△BQN是等边三角形△CBM是等边三角形△△BQN=△BNQ=60° BM=CM又△AB=AC△AM垂直平分BC△AD△BC△BQD=60°△△DBQ=30°BQ△QD=12△BD=√3QD△AB=AC△BAC=90° AD△BC△AD=BD此时P与A重合设PD=x则DQ=x-2△x=√3(x-2)△x=3+√3△PD=3+√3.16.(1)解:成立理由是:△△ABC和△ADE都是等腰直角三角形△AB=AC AD=AE△将△ADE绕点A逆时针旋转α(0<α<90°)连结BD和CE△∠BAD=∠CAE△△ABD≌△ACE(SAS)△BD=CE;(2)解:①△AB=AC∠BAD=∠CAE AD=AE△△ACE≌△ABD(SAS)△BD=CE△BC+CD=BD=CE.②△△ACE≌△ABD△∠ACE=∠ABD=45°又△∠ACB=45°△∠BCE=∠ACB+∠ACE=90°在Rt△BAC中△AB=AC=√2△BC=√AB2+AC2=2又△CD=1CE=BC+CD=3△在Rt△CDE中17.(1)解:△抛物线C:y=ax2+6ax+9a−8与x轴相交于A B两点点B的横坐标是2△B (2,0)△a ×22+6a ×2+9a −8=0解得a =825△抛物线C 的解析式为:y =825x 2+4825x −12825 对称轴:x =−48252×825=−3△当x =−3时 y =825×(−3)2+4825×(−3)−12825=−8 △顶点D 的坐标为(−3,−8).△a =825 D (−3,−8).(2)△抛物线C 与x 轴相交于A B 两点△当y =0时 得:825x 2+4825x −12825=0 即(x +8)(x −2)=0解得:x 1=−8 x 2=2△A (−8,0)△点P 与点B 重合△点P 的坐标为(2,0)当抛物线C 绕点P 旋转180°后得到的抛物线C 1 且点P 与点B 重合时△在抛物线C 1中 点B 的坐标仍为(2,0)△点F 与点A 关于点P 对称△点F 的坐标为(12,0)同理点E 与点D 关于点P 对称 设E (m,n ) 则△点P 的坐标为(m−32,n−82) △{m−32=2n−82=0△{m =7n =8△点E 的坐标为(7,8)设抛物线C 1的表达式为:y =a 1(x −12)(x −2)△(7−12)×(7−2)a 1=8△a 1=−825 △y =−825(x −12)(x −2)=−825x 2+11225x −19225 △抛物线C 1的表达式为:y =−825x 2+11225x −19225.(3)根据题意可知 在构成的直角三角形三个顶点中 有两个顶点是从点E F G 中选取 有一个点是从A B D 中任取.由图可知 当点为E G 或F G 时 与A B D 中任意一点构成的三角形是钝角三角形 故只有点E F 为直角三角形其中的两个顶点.设P (m,0)又△抛物线C 绕点P 旋转180°后得到的抛物线C 1 A (−8,0) B (2,0) D (−3,−8)△E (2m +3,8) F (2m +8,0)①当A 为顶点时△在抛物线C 1中 ∠EFO 是一个锐角 点A 在点P 的左侧△∠AEF =90°△AE 2+EF 2=AF 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(2m +16)2解得:m =910;②当B 为顶点时同理可得∠BEF =90°△BE 2+EF 2=BF 2△[√(2m +1)2+82)2+(√52+(−8)2)2=(2m +6)2 解得:m =5910;③当D 为顶点时分两种情况:第一种:∠DEF =90°△DE 2+EF 2=DF 2△(√(2m +6)2+(8+8)2)2+(√52+(−8)2)2=(√(2m +11)2+82)2解得:m =495第二种:∠DFE =90°△DF 2+EF 2=DE 2△(√(2m +11)2+82)2+(√52+(−8)2)2=(√(2m +6)2+(8+8)2)2 解得:m =910.△点P 的坐标为(910,0)或(5910,0)或(495,0). 18.(1)解:∵D 在直线y =52x 上 ∴设D(t,52t)∵y 1=m x 经过点B (5,2). ∴m =10.∵D(t,52t)在反比例函数的图象上∴52t 2=10 ∴t =2(负值已舍去).∴由两点间的距离公式可知:OD =√22+52=√29.(2)解:①∵函数y 2=n x 的图象经过点E ∴OA ⋅AE =OC ⋅CF =n .∵OC =5 OA =2∴AE =52CF .∴可设:AE =52t∴EF =AE +CF =72t EB =5−52t在Rt △EBF 由勾股定理得:EF 2=BF 2+BE 2 ∴494t 2=(5−52t)2+(2−t)2. 解得t =7√29−2910∴n =5t =7√29−292. ②∵∠OEF =90°∴∠AEO +∠BEF =90°∵BA ⊥y 轴 BC ⊥x 轴∴∠ABC=90°∴∠BEF+∠BFE=90°∴∠AEE=∠BFE∴△AOE∽△BEF∴OA:AE=BE:BF∵CF=n5,AE=n2,BE=5−n2,BF=2−n5∴2:n2=(5−n2):(2−n5)解得:n=85或n=10(舍)∵D′(a,b)∴ab=8 5由(1)得OD=√29∴OD′=√29∴a2+b2=29∴(a+b)2=29+2×85=1615故(a+b)2的值为1615.19.解:(1)EG=CG且EG△CG.证明如下:如图① 连接BD.△正方形ABCD和等腰Rt△BEF△△EBF=△DBC=45°.△B E D三点共线.△△DEF=90° G为DF的中点△DCB=90°△EG=DG=GF=CG.△△EGF=2△EDG△CGF=2△CDG.△△EGF+△CGF=2△EDC=90°即△EGC=90°△EG△CG.(2)仍然成立证明如下:如图② 延长EG交CD于点H.。
中考专题 图形变换(精选17题)(平移、轴对称、旋转)练习及答案
中考复习专题:图形变换(精选17题)(平移、轴对称、旋转)练习及答案一、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化.翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴.解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素.翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意.1.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥2.(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米3.(2012泰安)如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.B.(C.(2012泰安)D.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A 与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯6.(2012•连云港)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是( )A.+1B.+1 C.2.5 D.7、(2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.8、.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交与点F、G(如图1),23AF ,求DE的长;(2)如果折痕FG分别与CD、AB交与点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.9、.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC 于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.专题二.、旋转1. (2011四川成都,14,4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到R t △ADE ,点B 经过的路径为 BD,则图中阴影部分的面积是___________.2.(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 33.(2012•烟台)如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB=2.将△ABC 绕顶点A 顺时针方向旋转至△AB ′C′的位置,B ,A ,C ′三点共线,则线段BC 扫过的区域面积为 .4.(2012•中考)如图,Rt △ABC 的边BC 位于直线l 上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC 由现在的位置向右滑动地旋转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为(结果用含有π的式子表示)B①② ③123… l5.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.6.(2012成都)(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=9 2 a时,P、Q两点间的距离 (用含a的代数式表示).7、(2011安徽,22,12分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BC B′.求证:S △ACA ′ :S △BC B′ =1:3;(3)如图(3),设AC 中点为E ,A ′B ′中点为P ,AC =a ,连接EP ,当 = °时,EP 长度最大,最大值为 .Aθ A ′B ′BCA ′B ′BCAθ8、 (2011四川凉山州,21,8分)在平面直角坐标系中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴画出ABC △,并求出AC 所在直线的解析式。
中考数学专题复习(六)(有答案)图形变换综合题
专题八 图形变换综合题类型一 点动型综合题(2020青岛)如图,在四边形ABCD 和Rt △EBF 中,AB ∥CD ,CD >AB ,点C 在EB 上,∠ABC =∠EBF =90°,AB =BE =8 cm ,BC =BF =6 cm ,延长DC 交EF 于点M .点P 从点A 出发,沿AC 方向匀速运动,速度为2 cm/s ;同时,点Q 从点M 出发,沿MF 方向匀速运动,速度为1 cm/s.过点P 作GH ⊥AB 于点H ,交CD 于点G .设运动时间为t (s)(0<t <5).解答下列问题:(1)当t 为何值时,点M 在线段CQ 的垂直平分线上?(2)连接PQ ,作QN ⊥AF 于点N ,当四边形PQNH 为矩形时,求t 的值;(3)连接QC ,QH ,设四边形QCGH 的面积为S (cm 2),求S 与t 的函数关系式;(4)点P 在运动过程中,是否存在某一时刻t ,使点P 在∠AFE 的平分线上?若存在,求出t 的值;若不存在,请说明理由.解:(1)∵AB ∥CD ,∴CM BF =CE BE ,即CM 6=8-68.∴CM =32. ∵点M 在线段CQ 的垂直平分线上,∴CM =MQ ,∴1×t =32.∴t =32. (2)如图1,∵∠ABC =∠EBF =90°,AB =BE =8 cm ,BC =BF =6 cm ,∴AC =AB 2+BC 2=64+36=10(cm),EF =BF 2+EB 2=36+64=10(cm). ∵CE =2 cm ,CM =32cm ,∴EM =CE 2+CM 2=4+94=52. ∵sin ∠P AH =sin ∠CAB ,∴PH AP =BC AC ,即PH 2t =610.∴PH =65t .同理可求QN =6-45t . ∵四边形PQNH 是矩形,∴PH =QN .∴6-45t =65t .解得t =3. (3)如图2,过点Q 作QN ⊥AF 于点N ,由(2)可知QN =6-45t . ∵cos ∠P AH =cos ∠CAB ,∴AH AP =AB AC ,即AH 2t =810.∴AH =85t . ∵四边形QCGH 的面积=S 梯形GMFH -S △CMQ -S △HFQ . 即S =12×6×⎝⎛⎭⎫8-85t +6+8-85t +32-12×32×⎣⎡⎦⎤6-⎝⎛⎭⎫6-45t -12×⎝⎛⎭⎫6-45t ⎝⎛⎭⎫8-85t +6=-1625t 2+15t +572. (4)存在,理由如下:如图3,连接PF ,延长AC 交EF 于点K .∵AB =BE ,BC =BF ,AC =EF ,∴△ABC ≌△EBF (SSS).∴∠E =∠CAB ,又∵∠ACB =∠ECK ,∴∠ABC =∠EKC =90°.∵S △CEM =12×EC ×CM =12×EM ×CK ,∴CK =2×3252=65. ∵PF 平分∠AFE ,PH ⊥AF ,PK ⊥EF ,∴PH =PK .∴65t =10-2t +65.解得t =72. ∴当t =72时,点P 在∠AFE 的平分线上.(2020沈阳改编)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 的坐标为(4,4),点B 的坐标为(6,0),动点P 从O 开始以每秒1个单位长度的速度沿y 轴正方向运动,设运动的时间为t 秒(0<t <4),过点P 作PN ∥x 轴,分别交AO ,AB 于点M ,N .(1)AO 的长为 42 ,AB 的长为 25 ;(2)当t =1时,求点N 的坐标;(3)用含t 的代数式表示MN 的长;(4)点E 是线段MN 上一动点(点E 不与点M ,N 重合),△AOE 和△ABE 的面积分别表示为S 1和S 2,当t =43时,求S 1·S 2(即S 1与S 2的积)的最大值.解:(2)设直线AB 的解析式为y =kx +b ,将A (4,4),B (6,0)代入,得⎩⎪⎨⎪⎧4k +b =4,6k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =12, ∴直线AB 的解析式为y =-2x +12,由题意,得点N 的纵坐标为1,令y =1,得1=-2x +12.∴x =112.∴N ⎝⎛⎭⎫112,1. (3)当0<t <4时,令y =t ,代入y =-2x +12中,得x =12-t 2.∴N ⎝ ⎛⎭⎪⎫12-t 2,t . ∵∠AOB =∠AOP =45°,∠OPM =90°,∴OP =PM =t ,∴MN =PN -PM =12-t 2-t =12-3t 2. (4)如图,当t =43时,MN =12-3×432=4.设EM =m ,则EN =4-m . 由题意,S 1·S 2=12×m ×4×12(4-m )×4=-4m 2+16m =-4(m -2)2+16. ∵-4<0,∴当m =2时,S 1·S 2有最大值,最大值为16.(2020宁夏)如图1放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B,F,C,E在同一条直线上,如图2,AB与DF,DE分别交于点P,M,AC与DE交于点Q,其中AC=DF=3,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?解:(1)∵Rt△ABC中∠B=30°,∴∠BAC=60°.∵∠E=30°,∴∠EQC=∠AQM=60°.∴△AMQ为等边三角形.如图2,过点M作MN⊥AQ,垂足为点N.在Rt△ABC中,AC=3,BC=AC·tan A=3,∴EF=BC=3,根据题意可知CF=x,∴CE=EF-CF=3-x,CQ=CE·tan E=33(3-x),∴AQ=AC-CQ=3-33(3-x)=33x,∴AM=AQ=33x,而MN=AM·sin A=12x,∴S△MAQ =12AQ·MN=12×33x·12x=312x2.(2)由(1)知BF=CE=3-x,PF=BF·tan B=33(3-x),∴S重叠=S△ABC-S△AMQ-S△BPF=12AC·BC-12AQ·MN-12BF·PF=12×3×3-312x2-12(3-x)×33(3-x)=-34x2+3x=-34(x-2)2+3,∴当x=2时,重叠部分面积有最大值,最大值是 3.。
专题17图形的变换(共50题)-2020年中考数学真题分项汇编【全国通用】
2020年中考数学真题分项汇编(全国通用)专题17图形的变换(共50题)一.选择题(共20小题)1.(2020•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)2.(2020•乐山)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.3.(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.4.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2)B.(0,2)C.(﹣6,2)D.(﹣6,﹣2)5.(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE =5,BF=3,则AO的长为()A .√5B .32√5C .2√5D .4√56.(2020•枣庄)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是( )A .3√3B .4C .5D .67.(2020•广东)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .28.(2020•内江)如图,矩形ABCD 中,BD 为对角线,将矩形ABCD 沿BE 、BF 所在直线折叠,使点A 落在BD 上的点M 处,点C 落在BD 上的点N 处,连结EF .已知AB =3,BC =4,则EF 的长为( )A .3B .5C .5√136D .√139.(2020•哈尔滨)如图,在Rt △ABC 中,∠BAC =90°,∠B =50°,AD ⊥BC ,垂足为D ,△ADB 与△ADB '关于直线AD 对称,点B 的对称点是点B ',则∠CAB '的度数为( )A .10°B .20°C .30°D .40°10.(2020•滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√311.(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154 C .4 D .92 12.(2020•河北)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CDD .应补充:且OA =OC13.(2020•天津)如图,在△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC =DEB .BC =EF C .∠AEF =∠D D .AB ⊥DF14.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)15.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α16.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C.D.17.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)18.(2020•齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°19.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A .(−√3,3)B .(﹣3,√3)C .(−√3,2+√3)D .(﹣1,2+√3)20.(2020•苏州)如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB 'C '.若点B '恰好落在BC 边上,且AB '=CB ',则∠C '的度数为( )A .18°B .20°C .24°D .28°二.填空题(共23小题)21.(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 .22.(2020•衡阳)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 .23.(2020•滨州)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为.24.(2020•泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.25.(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为.(用含a,b的代数式表示)26.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.27.(2020•武威)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为.28.(2020•襄阳)如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=√52,则矩形ABCD的面积为.29.(2020•牡丹江)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点A'处,连接A'B,交AC于点F.若A'E⊥AE,cos A=45,则A′FBF=.30.(2020•武汉)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.31.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.32.(2020•黑龙江)如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC、GC.求EC+GC的最小值为.33.(2020•凉山州)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为.34.(2020•黑龙江)在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为.35.(2020•达州)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=.36.(2020•德州)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是 .37.(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP ;再将△PCQ ,△ADQ 分别沿PQ ,AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∠P AQ 的大小为 °;(2)当四边形APCD 是平行四边形时,ABQR 的值为 .38.(2020•甘孜州)如图,有一张长方形纸片ABCD ,AB =8cm ,BC =10cm ,点E 为CD 上一点,将纸片沿AE 折叠,BC 的对应边B ′C ′恰好经过点D ,则线段DE 的长为 cm .39.(2020•聊城)如图,在直角坐标系中,点A (1,1),B (3,3)是第一象限角平分线上的两点,点C 的纵坐标为1,且CA =CB ,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为 .40.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.41.(2020•常德)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.42.(2020•铜仁市)如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.43.(2020•杭州)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三.解答题(共7小题)44.(2020•绥化)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.45.(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.46.(2020•达州)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.47.(2020•黑龙江)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.48.(2020•武威)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.49.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√22AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG 与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.50.(2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12AC;(2)变式求异如图2,若∠C=90°,m=6√2,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.。
初中图形变换试题及答案
初中图形变换试题及答案一、选择题1. 以下哪个图形经过旋转后与原图形重合?A. 正方形B. 长方形C. 等边三角形D. 圆答案:D2. 一个图形经过轴对称变换后,以下哪个说法是正确的?A. 图形的形状和大小都发生了改变B. 图形的形状不变,大小发生了改变C. 图形的形状和大小都不变D. 图形的形状发生了改变,大小不变答案:C3. 在平移变换中,图形的位置会发生变化,而以下哪个属性不会改变?A. 形状B. 大小C. 颜色D. 以上所有答案:D二、填空题4. 如果一个图形绕着某一点旋转180度后与原图形重合,那么这个图形具有______对称性。
答案:中心5. 平移变换不改变图形的______和______。
答案:形状、大小三、解答题6. 给定一个等腰直角三角形ABC,其中∠C=90°,AC=BC=2cm。
请画出经过以下变换后的图形:(1) 将三角形ABC绕点C顺时针旋转90度;(2) 将旋转后的三角形沿AC边平移3cm。
答案:根据题目描述,首先画出等腰直角三角形ABC,然后进行旋转和平移变换,得到变换后的图形。
7. 已知一个矩形,长为4cm,宽为2cm。
请计算经过以下变换后的图形的周长:(1) 将矩形沿长边方向平移2cm;(2) 将平移后的矩形绕其中心点旋转180度。
答案:由于平移和旋转变换不改变图形的形状和大小,所以变换后的图形周长与原图形周长相同,即(4+2)×2=12cm。
四、综合题8. 给定一个正五边形,边长为3cm。
请回答以下问题:(1) 正五边形具有哪种对称性?(2) 如果将正五边形绕其中心点旋转72度,旋转后的图形与原图形的关系是什么?答案:(1) 正五边形具有轴对称性和中心对称性;(2) 旋转后的图形与原图形重合。
2020年中考数学图形的变换专题(附答案)
2020年中考数学图形的变换专题(附答案)一、单选题(共12题;共24分)1.若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A. 4cmB. 9cmC. 4cm或9cmD. 以上答案都不对2.如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A. 2:3B. 3:2C. 6:4D. 9:43.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( )A. (,)B. (,3)C. (,)D. (,)4.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A. 5.1米B. 6.3米C. 7.1米D. 9.2米5.设a、b、c分别为△ABC中∠A,∠B和∠C的对边,则△ABC的面积为()A. B. C. D.6.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③7.如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A. △BEFB. △DCFC. △ECFD. △EBC8.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米。
若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A. 3sina米B. 3cosa米。
中考数学《图形的变换》总复习训练含答案解析
图形的变换一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()第1页(共19页)A.110°B.115°C.120°D.130°6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()A.1个B.2个C.3个D.4个10.以下图形中,是轴对称图形的是()A.B.C.D.11.下边的图形中,是中心对称图形的是()第2页(共19页)A.B.C.D.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE=cm,△ABC的面积=cm2.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是cm.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;第3页(共19页)(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:(1)在方案一中,d1= km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第4页(共19页)第5页(共19页)图形的变换参照答案与试题分析一、选择题1.以下几何图形中,必定是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【剖析】对于某条直线对称的图形叫轴对称图形.【解答】解:全部图形沿某条直线折叠后直线两旁的部分能够完整重合,那么必定是轴对称图形的有5个,应选D.【评论】轴对称图形的判断方法:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形.2.有一个四平分转盘,在它的上、右、下、左的地点分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下地点的两个字牌对换,同时将位于左右位置的两个字牌对换,再将转盘顺时针旋转90°,则达成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则达成第9次变换后,“众”字位于转盘的地点是()A.上B.下C.左D.右【考点】旋转的性质.【专题】压轴题;操作型;规律型.第6页(共19页)【剖析】依据题意可知每一次变换后相当于逆时针旋转了90°,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,相当于第一次变化后的位置关系,剖析比较可得答案.【解答】解:依据题意可知每一次变换后相当于逆时针旋转了90度,经过4次变换后会回到原始地点,因此按上述规则达成第9次变换后,“众”字位于转盘的地点是应当是第一次变换后的地点即在左侧,比较可得C切合要求.应选C.【评论】本题考察旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三因素:①定点为旋转中心;②旋转方向;③旋转角度.重点是找到旋转的方向和角度.3.以下图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形B.平行四边形C.正三角形D.矩形【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和等腰梯形、平行四边形、正三角形、矩形的性质解答.【解答】解:A、是轴对称图形,不是中心对称图形,不切合题意;B、不是轴对称图形,是中心对称图形,不切合题意;C、是轴对称图形,不是中心对称图形,不切合题意;D、是轴对称图形,也是中心对称图形,切合题意.应选D.【评论】掌握中心对称图形与轴对称图形的观点.假如一个图形沿着一条直线对折后两部分完整重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.假如一个图形绕某一点旋转180°后能够与自己重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.第7页(共19页)4.如图①~④是四种正多边形的瓷砖图案.此中,是轴对称图形但不是中心对称的图形为()A.①③B.①④C.②③D.②④【考点】中心对称图形;轴对称图形.【剖析】依据轴对称图形与中心对称图形的观点和各图的特色求解.【解答】解:①、是轴对称图形,不是中心对称图形;②、是轴对称图形,也是中心对称图形;③、是轴对称图形,不是中心对称图形;④、是轴对称图形,也是中心对称图形.知足条件的是①③,应选A.【评论】掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【剖析】依据折叠的性质,对折前后角相等.【解答】解:依据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,第8页(共19页)AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.应选B.【评论】本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.下边四张扑克牌中,图案属于中心对称图形的是图中的()A.B.C.D.【考点】中心对称图形;生活中的旋转现象.【剖析】依照中心对称图形的定义即可求解.【解答】解:此中A选项、C选项及D选项旋转180度后新图形中间的桃心向下,原图形中间的桃心向上,因此不是中心对称图形.应选B.【评论】本题考察中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完整重合.7.下边的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.第9页(共19页)【考点】中心对称图形;轴对称图形.【专题】惯例题型.【剖析】依据轴对称图形与中心对称图形的观点求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.应选:C.【评论】本题考察了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转180度后两部分重合.8.将如下图的图案按顺时针方向旋转90°后能够获得的图案是()A.B.C.D.【考点】生活中的旋转现象.【剖析】依据旋转的意义,找出图中眼,眉毛,嘴 5个重点处按顺时针方向旋转90°后的形状即可选择答案.【解答】解:依据旋转的意义,图片按顺时针方向旋转90°,即正立状态转为顺时针的横向状态,从而可确立为A图,应选A.【评论】本题考察了图形的旋转变化,学生主要要看清是顺时针仍是逆时针旋转,旋转多少度,难度不大,但易错.9.若将图中的每个字母都当作独立的图案,则这七个图案中是中心对称图形的有()第10页(共19页)A.1个B.2个C.3个D.4个【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解:依据中心对称图形的观点可知,图案O、I是中心对称图形;而图案L、Y、M、P、C都不是中心对称图形.应选B.【评论】解答本题要掌握中心对称图形的观点:在同一平面内,假如把一个图形绕某一点旋转180度,旋转后的图形能和原图形完整重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.10..以下图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【剖析】依据轴对称图形的定义:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也能够说这个图形对于这条直线(成轴)对称,从而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.11.下边的图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.第11页(共19页)【剖析】依据中心对称图形的观点求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;应选B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180度后与原图重合.二、填空题12.如图,点G是△ABC的重心,CG的延伸线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°获得△BDE,则DE= 2 cm,△ABC的面积18cm2.【考点】旋转的性质.【专题】压轴题.【剖析】三角形的重心是三条中线的交点,依据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.【解答】解:∵点G是△ABC的重心,DE=GD=GC=2,CD=3GD=6,GB=3,EG=GC=4,BE=GA=5,BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,S△ACD=S△BCD,∴S△ABC△ACDS△BCD△BCD2.填:2,18.=S+=2S=2××BG×CD=18cm第12页(共19页)【评论】本题考察旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所组成的旋转角相等.要注意旋转的三因素:①定点﹣旋转中心;②旋转方向;③旋转角度.13.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 4 .【考点】等腰三角形的性质;勾股定理.【剖析】依据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.【解答】解:依据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再依据勾股定理得:底边上的高为4.故答案为:4【评论】考察等腰三角形的三线合一及勾股定理的运用.14.将线段AB平移1cm,获得线段A′,B′则点A到点A′的距离是 1 cm.【考点】平移的性质.【专题】压轴题.【剖析】依据题意,画出图形,由平移的性质直接求得结果.【解答】解:在平移的过程中各点的运动状态是同样的,此刻将线段平移1cm,则每一点都平移1cm,即AA′=1cm,∴点A到点A′的距离是1cm.【评论】本题考察了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应当借助图形,理解掌握平移的性质.三、解答题15.如图,方格纸中的每个小正方形的边长均为1.(1)察看图1、2中所画的“L型”图形,而后各补画一个小正方形,使图1中所成的图形是轴对称图形,图2中所成的图形是中心对称图形;(2)补画后,图1、2中的图形是否是正方体的表面睁开图?(填“是”或“不是”)第13页(共19页)【考点】利用旋转设计图案;利用轴对称设计图案.【专题】网格型.【剖析】(1)依据轴对称图形与中心对称的定义即可作出,第一确立对称轴,即可作出所要作的正方形;2)利用折叠的方法进行考证即可.【解答】解:(1)如图(画对一个得3分).2)图1(不是)或图2(是),图3(是).【评论】掌握轴对称的性质:沿着向来线折叠后重合.中心对称的性质:绕某一点旋转180°此后重合.16.如图,在平面直角坐标系中,△ABC和△A1B1C1对于点E成中心对称.1)画出对称中心E,并写出点E、A、C的坐标;2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P(2a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的地点关系.(直接写出结果)第14页(共19页)【考点】作图﹣旋转变换;作图﹣平移变换.【专题】作图题;压轴题.【剖析】(1)连结对应点,对应点的中点即为对称中心,在网格中可直接得出点E、A、C的坐标;2)依据“(a+6,b+2)”的规律求出对应点的坐标A2(3,4),C2(4,2),按序连结即可;(3)由△A2B2C2和△A1B1C1的地点关系直接看出是对于原点O成中心对称.【解答】解:(1)如图,E(﹣3,﹣1),A(﹣3,2),C(﹣2,0);(4分)2)如图,A2(3,4),C2(4,2);(8分)3)△A2B2C2与△A1B1C1对于原点O成中心对称.(10分)【评论】本题考察的是平移变换与旋转变换作图.作平移图形时,找重点点的对应点也是重点的一步.平移作图的一般步骤为:①确立平移的方向和距离,先确立一组对应点;②确立图形中的重点点;③利用第一组对应点和平移的性质确立图中所相重点点的对应点;④按原图形次序挨次连结对应点,所获得的图形即为平移后的图形.第15页(共19页)作旋转后的图形的依照是旋转的性质,基本作法是①先确立图形的重点点;②利用旋转性质作出重点点的对应点;③按原图形中的方式按序连结对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特别状况.17.在一平直河岸l同侧有A,B两个乡村,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个乡村供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的表示图,设该方案中管道长度为d1,且d1=PB+BA(km)(此中BP⊥l于点p);图2是方案二的表示图,设该方案中管道长度为d2,且d2=PA+PB(km)(此中点A'与点A对于I对称,A′B与l交于点P.察看计算:1)在方案一中,d1=a+2km(用含a的式子表示);2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的协助线,请你按小宇同学的思路计算,d2= km(用含a的式子表示).研究概括(1)①当a=4时,比较大小:d1()d2(填“>”、“=或”“<”);②当a=6时,比较大小:d1()d2(填“>”、“=或”“<”);(2)请你参照右侧方框中的方法指导,就a(当a>1时)的全部取值状况进行剖析,要使铺设的管道长度较短,应选择方案一仍是方案二?第16页(共19页)【考点】作图—应用与设计作图.【专题】压轴题;阅读型;方案型.【剖析】运用勾股定理和轴对称求出d2,依据方法指导,先求d12﹣d22,再依据差进行分类议论选用合理方案.【解答】解:(1)∵A和A'对于直线l对称,PA=PA',d1=PB+BA=PB+PA'=a+2;故答案为:a+2;2)由于BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24因此d2= .研究概括:(1)①当a=4时,d1=6,d2= ,d1<d2;②当a=6时,d1=8,d2= ,d1>d2;∴(2)=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,d1﹣d2>0,d1>d2;第17页(共19页)②当4a﹣20=0,即a=5时,d12﹣d22=0,d1﹣d2=0,d1=d2③当4a﹣20<0,即a<5时,d12﹣d22<0,d1﹣d2<0,d1<d2综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5(缺a>1不扣分)时,选方案一.【评论】本题为方案设计题,综合考察了学生的作图能力,运用数学知识解决实际问题的能力,以及察看研究和分类议论的数学思想方法.第18页(共19页)中考数学《图形的变换》总复习训练含答案解析第19页(共19页)21 / 2121。
图形转换练习题
图形转换练习题
在这个练习题中,我们将通过一系列图形转换来考察你对几何图形的理解和应用能力。
请根据以下要求完成练习,并在每个题目的下方画出所要求的图形。
题目1:平移
将图形A沿x轴正方向平移5个单位,并标注出新图形的位置。
题目2:旋转
将图形B绕原点逆时针旋转90度,并标注出新图形的位置。
题目3:对称
以原点为对称中心,将图形C进行对称,并标注出新图形的位置。
题目4:放缩
将图形D沿y轴方向放大2倍,并标注出新图形的位置。
题目5:组合转换
将图形E进行一次平移、旋转和放缩的组合转换,并标注出新图形的位置。
具体要求如下:
- 先将图形E沿y轴方向平移10个单位;
- 再将平移后的图形E绕原点顺时针旋转45度;
- 最后将旋转后的图形E沿x轴方向放大1.5倍。
完成以上练习后,请检查答案并进行自我评估。
同时,你可以继续探索更多关于图形转换的练习,提升自己的几何图形思维和空间想象能力。
希望这个图形转换练习能够帮助你加深对几何图形变化的理解,提高解决问题的能力。
祝你成功!。
专题10图形变换综合题探究专题(解析版)
专题十图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。
【解题攻略】图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。
2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。
3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。
【解题类型及其思路】1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。
【典例指引】类型一【图形的平移】【典例指引1】1.两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC =DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【答案】(1)10;(2)见解析;(3)3 . 【解析】分析:(1)由锐角三角函数,得到BG 的长,进而得出GE 的长,又矩形的性质可求解;(2)分类讨论:①当0≤t <4时,根据三角形的面积公式可得答案;②当4≤t <8时,③当810x ≤≤时,根据面积的和差求解;(3)根据点与直线上所有点的连线中垂线段最短,可得M 在线段NG 上,根据三角形的中位线,可得NG 的长,根据锐角三角函数,可得MG 的长,然后根据线段的和差求解. 详解:(1)如图: 作CG ⊥AB 于G 点.在Rt △ABC 中,由AC =4,∠ABC =30,得 BC =tan 30ACo=43.在Rt △BCG 中,BG =BC •cos 30°=6. 四边形CGEH 是矩形, CH =GE =BG +BE =6+4=10cm , 故答案为:10 .(2)①当04x ≤<时,如解图∵∠GDB =60°,∠GBD =30°,∴DB=x,DG =x,BG=x,重叠部分的面积y=DG ·BG=×x×x=x2②48x≤<时,如解图BD=x,DG =x,BG=x ,BE=x-4,EH=(x-4)重叠部分的面积y=S△BDG-S△BEH=DG·BG-BE·EH,即y=×x×x-(x-4)×(x-4),化简得:234383y x x=-+-③当810x≤≤时,如解图AC=4,BC=4,BD=x,BE=x-4,EG=(x-4)重叠部分的面积y=S△ABC-S△BEG=AC·BC-BE·EG,即y=×4×4-(x-4)×(x-4),化简得:2343163y x x=+综上所述,)2223(04)34383(48)2433343163810xy x x xx x x⎧≤<⎪⎪⎪⎪=-+-≤<⎨⎪⎪+≤≤⎪⎪⎩(3)3【名师点睛】此题主要考查了几何变换综合,①利用锐角三角函数和矩形的性质,②利用三角形的面积,面积的和差,分类讨论是解题关键,以防遗漏,③利用垂线段最短,三角形的中位线定理,锐角三角函数解答即可.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图①中,通过观察、测量,猜想直接写出AB与AP满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想写出BQ 与AP满足的数量关系和位置关系,并说明理由.【答案】(1)AB=AP且AB⊥AP,(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ【解析】分析:(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠P AC=45°,求出∠BAP=90°即可;(2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠P AC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠P AC+∠AQG=90°,求出∠AGQ=90°即可.详解:(1)AB=AP且AB⊥AP。
初中数学四边形图形变换专项习题
四边形图形变换专项习题一、综合题(共17题;共203分)1.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.(1)如图1,已知△ABC,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BE.通过证明△ADC≌△ABE,得到DC=BE;(2)如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH= BD,同理可得FG∥BD,FG= BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;拓展应用①如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,四边形EFGH的形状是________.【答案】(1)解:如图1,∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△ADC和△ABE中,∴△DAC≌△BAE(SAS),∴DC=BE(2)证明:四边形EFGH为菱形;理由如下:连接AC、BD,如图3,∵∠APB=∠CPD,∴∠APB+APD=∠CPD+∠APD,即∠BPD=∠APC,在△PBD和△APC中,∴△PBD≌△APC,∴BD=AC,∵HG= AC,HE= BD,∴HG=HE,∵四边形HEFG为平行四边形,∴四边形EFGH为菱形(3)正方形2.已知,如图正方形ABCD中,E为BC上任意一点,过E作EF⊥BC,交BD于F,G为DF的中点,连AE 和AG.(1)如图1,求证:∠FEA+∠DAG=45°;(2)如图2在(1)的条件下,设BD和AE的交点为H,BG=8,DH=9,求AD的长.【答案】(1)证明:作GM⊥BC于M,连接GE、GC,如图1,∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG,∴AG=CG,∠DAG=∠1,∠AGD=∠CGD,∵G点为DF的中点,FE⊥BC,GM⊥BC,DC⊥BC,∴GM为梯形CDFE的中位线,∴EM=CM,∴GE=GC,∠5=∠4,∴GM平分∠EGC,∴∠2=∠3,∴∠1=∠6=∠DAG,GA=GE,∵GM∥CD,∴∠MGD=180°﹣∠GDC=135°,即∠2+∠DGC=135°,∴∠AGD+∠3=∠2+∠DGC=135°,∴∠AGE=90°,∴△AGE为等腰直角三角形,∴∠AEG=45°,即∠FEA+∠6=45°,∴∠FEA+∠DAG=45°;(2)解:把△ADG绕点A顺时针旋转90°得到△ABQ,连接QH,如图2,∴∠ABQ=∠ABD=45°,AQ=AD,BQ=DG,∠QAG=90°,∵∠FEA+∠DAG=45°;而∠FEA=∠BAE,∴∠BAE+∠DAG=45°;∴∠EAG=45°,∴∠QAE=45°,在△QAH和△GAH中,∴△QAH≌△GAH,∴HQ=HG,设BH=x,则HG=BG﹣BH=8﹣x,∴HQ=8﹣x,∵DH=BG+DG﹣BH,∴DG=9﹣8+x=x+1,∴BQ=x+1,∵∠ABQ+∠ABD=45°+45°=90°,∴△BQH为直角三角形,∴BQ2+BH2=QH2,即(x+1)2+x2=(8﹣x)2,解得x=3,∴BD=BH+DH=3+9=12,∴AD= BD=6 .3.如图所示,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.【答案】(1)证明:由折叠的性质可得:∠ANM=∠CNM .∵四边形ABCD是矩形,∴ AD∥BC .∴∠ANM=∠CMN .∴∠CMN=∠CNM .∴ CM=CN(2)解:过点N作NH⊥BC于点H,如图所示:则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴= = =3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC= =2 x,∴HN=2 x,在Rt△MNH中,MN= =2 x,∴= =24.综合题(1)感知:如图①,四边形ABCD、CEFG均为正方形.易知BE=DG.(2)探究:如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(3)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD的延长线上.若AE=3ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为________ .【答案】(1)证明:∵四边形ABCD、四边形CEFG均为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG,∴BE=DG.(2)∵四边形ABCD、四边形CEFG均为菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,∵∠A=∠F,∴∠BCD=∠ECG,∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG,∴△BCE≌△DCG.,∴BE=DG.(3)205.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= (4+x)•x﹣•(4﹣x)•x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=(4 ﹣4)2=48﹣32 .6.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图1,当四边形EFGH为正方形时,求△GFC的面积;(2)如图2,当四边形EFGH为菱形时,设BF=x,△GFC的面积为S,求S关于x的函数关系式,并写出函数的定义域.【答案】(1)解:如图1,过点G作GM⊥BC,垂足为M.由矩形ABCD可知:∠A=∠B=90°,由正方形EFGH可知:∠HEF=90°,EH=EF,∴∠1+∠2=90°,又∠1+∠3=90°,∴∠3=∠2,∴△AEH≌△BFE.∴BF=AE=2,同理可证:△MGF≌△BFE,∴△MGF≌△AEH,∴GM=AE=2,又FC=BC﹣BF=12﹣2=10,∴S△GFC= FC•GM= ×10×2=10.(2)解:如图2,过点G作GM⊥BC,垂足为M,连接HF.由矩形ABCD得:AD∥BC,∴∠AHF=∠HFM,由菱形EFGH得:EH∥FG,EH=FG,∴∠1=∠2,∴∠3=∠4,又∠A=∠M=90°,EH=FG,∴△MGF≌△AEH,∴GM=AE=2,又BF=x,∴FC=12﹣x,∴S△GFC= FC•GM= (12﹣x)•2=12﹣x,即:S=12﹣x,定义域:.7.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,解答下列问题:(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系是什么?写出它们之间的数量关系.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,请证明?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC (点C、F重合除外)?直接写出条件,不需要证明.(3)若AC=4 ,BC=3,在(2)的条件下,求△ABC中AB边上的高.【答案】(1)解:①如图1,∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∵AB=AC,∠BAC=90°,∴∠BAD+∠DAC=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴∠B=∠ACF,∴∠B+∠BCA=90°,∴∠BCA+∠ACF=90°,即CF⊥BD;②当点D在BC的延长线上时,①的结论仍成立.如图2,由正方形ADEF得:AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC.∴∠DAB=∠FAC.又∵AB=AC,∴△DAB≌△FAC(SAS).∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°.∴∠BCF=∠ACB+∠ACF=90°,即CF⊥BD(2)解:当∠BCA=45°时,CF⊥BD;理由如下:如图3,过点A作AC的垂线与CB所在直线交于G,∵∠ACB=45°,∴△AGC等腰直角三角形,∴AG=AC,∠AGC=∠ACG=45°,∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠GCF=∠GCA+∠ACF=90°,∴CF⊥BC;(3)解:当具备∠BCA=45°,AC=4 ,BC=3时,如图4,过点A作AQ⊥BC交CB的延长线于点Q,∵∠BCA=45°,∴AQ=CQ=4.∴△ABC为钝角三角形,∴BQ=1,由勾股定理得:则AB= = ,设AB边上的高为h,S△ABC= AB•h= BC•AQ,∴h= ×3×4,∴h= ,答:△ABC中AB边上的高为.8.如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)①如图1,当点P为线段EC中点时,易证:PR+PQ= (不需证明).②如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(2)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.【答案】(1)解:图2中结论PR+PQ= 仍成立.证明:连接BP,过C点作CK⊥BD于点K.∵四边形ABCD为矩形,∴∠BCD=90°,又∵CD=AB=3,BC=4,∴BD= =5.∵S△BCD= BC•CD= BD•CK,∴3×4=5CK,∴CK= .∵S△BCE= BE•CK,S△BEP= PR•BE,S△BCP= PQ•BC,且S△BCE=S△BEP+S△BCP,∴BE•CK= PR•BE+ PQ•BC,又∵BE=BC,∴CK= PR+ PQ,∴CK=PR+PQ,又∵CK= ,∴PR+PQ= ;(2)解:过C作CF⊥BD交BD于F,作CM⊥PR交PR于M,连接BP,S△BPE﹣S△BCP=S△BEC,S△BEC 是固定值,BE=BC为两个底,PR,PQ 分别为高,图3中的结论是PR﹣PQ=9.已知:四边形ABCD是正方形,E是AB边上一点,F是BC延长线上一点,且DE=DF.(1)如图1,求证:DF⊥DE;(2)如图2,连接AC,EF交于点M,求证:M是EF的中点.【答案】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠DCB=90°.∴∠DCF=180°﹣90°=90°.∴∠DAE=∠DCF.在Rt△DAE和Rt△DCF中,,∴Rt△DAE≌Rt△DCF(HL).∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DF⊥DE(2)证明;过点F作GF⊥CF交AC的延长线于点G,则∠GFC=90°.∵正方形ABCD中,∠B=90°,∴∠GFC=∠B.∴AB∥GF.∴∠BAC=∠G.∵四边形ABCD是正方形,∴AB=BC,∴∠BAC=∠BCA=45°.∴∠BAC=∠BCA=∠FCG=∠G=45°.∴FC=FG.∵△DAE≌△DCF,∴AE=CF.∴AE=FG.在△AEM和△GFM中,,∴△AEM≌△GFM(AAS).∴ME=MF.即M是EF的中点10.(1)如图1,四边形ABCD是正方形,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系是________,位置关系是________.请直接写出结论.(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当α=90°时,连接BE、DF,若正方形的边长为1,猜想当AE=________时,直线DF垂直平分BE.请写出计算过程.(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论:________.【答案】(1)BE=DF;BE⊥DF(2)中的结论仍然成立.理由:如图2中,延长DF交BE于H.∵四边形ABCD是正方形,∴AD=AB,AF=AE,∠DAB=∠FAE=90°,在△DAF和△BAE中,,∴△DAF≌△BAE,∴DF=BE,∠ADF=∠ABR,∵∠AFD=∠BFH,∴∠DAF=∠BHF=90°,∴DF⊥BE(3)﹣1(4)正方形11.如图1,四边形ABCO为正方形.(1)若点A坐标为(0,)①求点B的坐标;②如图2,点D为y轴上一点,连接BD,若点A到BD的距离为l,求点C到BD的距离;(2)如图3,连接正方形ABCO的对角线AC,OB交于点Q,点F为线段BC上一点,以OF为直角边向上构造等腰Rt△EOF,∠EOF=90°,EF交AC于P.若PQ=1,求CF的长度.【答案】(1)解:①∵A(0,),∴OA= ;在正方形ABCD中,BA=BC=OA= ;∵BA⊥y轴,BC⊥x轴,∴B(,);②如图2,分别过点A,点B作AM⊥BD,CN⊥BD;∵∠1+∠2=90°,∠1+∠3=90°∴∠2=∠3;在△ABM与△BNC中,,∴△AMB≌△BNC(ASA),∴BM=CN.∵AB= ,AM=1,∴BM= =3,∴CN=3,∴点C到BD的距离为3(2)解:如图3,连接AE,作FG∥AB交AC于点G;∵△EOF为等腰直角三角形,∴OE=OF,∠EOF=90°;而∠AOC=90°,∴∠AOE=∠COF;在△AOE与△COF中,,∴△AOE≌△COF(SAS),∴AE=CF,∠EAO=∠FCO=90°,∴AE∥FG,∵∠ACB=45°,∴GF=CF;可得AE=GF,在△AEP和△FGP中∴△AEP≌△FGP(AAS),∴EP=FP,∴P为EF中点;连接AF,取AF的中点H,连接PH,QH,则PH∥AE,PH= AE;QH∥CF,QH= CF;∵AE=CF,AE⊥CF,∴△PQH为等腰直角三角形;∵PQ=1,∴QH= ,∴CF= .12.数学课上林老师出示了问题:如图,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,点E是边BC的中点,且EF交∠DCG的平分线CF于点F,求证:AE=EF.同学们作了一步又一步的研究:(1)、经过思考,小明展示了一种解题思路:如图1,取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,小明的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)、小颖提出一个新的想法:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(3)、小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【答案】(1)解:正确.∵M是AB的中点,E是BC的中点AB=BC∴AM=EC BM=BE∴∠BME=45°∠AME=135°∵CF是∠DCG的平分线∴∠DCF=45°∠ECF=135°∴∠AME=∠ECF∵∠AEB+∠BAE=90°∠AEB+∠CEF=90°∴∠BAE=∠CEF∴△AME≌△BCF(ASA)∴AE=EF(2)解:正确.在AB上取一点M,使AM=BC,连接ME.∴BM=BE ∴∠BME=45°∴∠AME=135°,∵CF是∠DCG的平分线∴∠DCF=45°∠ECF=135°∴∠AME=∠ECF∵∠AEB+∠BAE=90°∠AEB+∠CEF=90°∴∠BAE=∠CEF∴△AME≌△BCF(ASA)∴AE=EF(3)解:正确.在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE ∠N=∠PCE=45°∵AD∥BE ∴∠DAE=∠BAE ∴∠NAE=∠CEF ∴△ANE≌△ECF(ASA)∴AE=EF13.根据题意解答(1)观察发现:如图(1),已知直线m∥n,点A、B在直线n上,点C、P在直线m上,当点P在直线m上移动到任意一位置时,总有________与△ABC的面积相等.(2)实践应用①如图(2),在△ABC中,已知BC=6,且BC边上的高为5,若过C作CE∥AB,连接AE,BE,则△BAE的面积=________;(3)②如图(3),A、B、E三点在同一直线上,四边形ABCD和四边形BEFG都是邻边相等的平行四边形,若AB=5,AC=4,求△ACF的面积.(4)拓展延伸如图(4),在四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A 画一条直线平分四边形ABCD面积(简单介绍作法,不必说明理由)【答案】(1)△APB(2)15(3)解:如图(3),过点B作BH⊥AC于点H,连接BF.∵AB=BC,∴AH= AC=2.在直角△AHB中,BH= = = .∴S△ABC= ×4× =2 .∵四边形ABCD和四边形BEFG都是邻边相等的平行四边形,∴S△ACF=S△ABC=2(4)解:如图所示.过点B作BE∥AC交DC的延长线于点E,连接AE.∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴有S△ABC=S△AEC,∴S=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;四边形ABCD∵S△ACD>S△ABC,所以面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线.14.四边形ABCD为菱形,点P为对角线BD上的一个动点.(1)如图1,连接AP并延长交BC的延长线于点E,连接PC,求证:∠AEB=∠PCD.(2)如图1,当PA=PD且PC⊥BE时,求∠ABC的度数.(3)连接AP并延长交射线BC于点E,连接PC,若∠ABC=90°且△PCE是等腰三角形,求∠PEC的度数.【答案】(1)证明:∵四边形ABCD是菱形,∴∠PDA=∠PDC,AD=CD AD∥BC,在△PAD与△PCD中,,∴△PAD≌△PCD(SAS),∴∠PAD=∠PCD,又∵AD∥BC,∴∠AEB=∠PAD=∠PCD(2)解:如图1,(方法一)∵PA=PD,∴∠PAD=∠PDA,设∠PAD=∠PDA=x,则∠BPC=∠PDC+∠PCD=∠PDA+∠PAD=2x∴2x+x=90°,∴x=30°,∴∠ABC=2x=60°;(方法二):延长CP交AD于M,∵AD∥BC,PC⊥BC,∴CM⊥AD∵PA=PD,∴△PAM≌△PDM (HL),∴AM=DM,∴CM垂直平分AD连接AC,则AC=CD=BC=AB,∴△ABC是等边三角形,∴∠ABC=60°(3)解:①当点E在BC的延长线上时,如图2,△PCE是等腰三角形,则CP=CE,∴∠BCP=∠CPE+∠CEP=2∠CEP∵四边形ABCD是菱形,∠ABC=90°,∴菱形ABCD是正方形,∴∠PBA=∠PBC=45°,在△ABP与△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP=2∠CEP∵∠BAP+∠PEC=90°,2∠PEC+∠PEC=90°,∴∠PEC=30°;②当点E在BC上时,如图3,△PCE是等腰三角形,则PE=CE,∴∠BEP=∠CPE+∠PCE=2∠ECP,∵四边形ABCD是菱形,∠ABC=90°∴菱形ABCD是正方形,∴∠PBA=∠PBC=45°,又AB=BC,BP=BP,∴△ABP≌△CBP,∴∠BAP=∠BCP,∵∠BAP+∠AEB=90°,2∠BCP+∠BCP=90°∴∠BCP=30°,∴∠AEB=60°,∴∠PEC=180°﹣∠AEB=120°,综上所述:∠PEC=30°或∠PEC=120°.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;(2)将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并证明你的判断.【答案】(1)解:延长BG交DE于点H,在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠GBC=∠EDC,BG=DE,∵∠BGC=∠DGH,∴∠DHB=∠BCG=90°,∴BG⊥DE(2)解:BG=DE,BG⊥DE仍然成立如图2,∠BCD+∠DCG=∠ECG+∠DCG,即∠BCG=∠DCE,在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠GBC=∠EDC,BG=DE,∵∠BHC=∠DHG,∴∠BCD=∠DOB=90°,即BG⊥DE16.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH(2)△PHD的周长不变为定值8.证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4﹣BE)2+x2=BE2.解得,.∴.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴.即:.配方得,,∴当x=2时,S有最小值6.17.如图1,直线AB交x轴于点A(4,0),交y轴于点B(0,﹣4),(1)如图,若C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【答案】(1)解:∵a=4,b=﹣4,则OA=OB=4.∵AH⊥BC于H,∴∠OAP+∠OPA=∠BPH+∠OBC=90°,∴∠OAP=∠OBC在△OAP与△OBC中,,∴△OAP≌△OBC(ASA)∴OP=OC=1,则P(0,﹣1)(2)解:过O分别做OM⊥CB于M点,ON⊥HA于N点,在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS)∴OM=ONHO平分∠CHA,∴∠OHP= ∠CHA=45°(3)解:S△BDM﹣S△ADN的值不发生改变.S△BDM﹣S△ADN=4.连接OD,在等腰Rt△AOB中,D为AB的中点∴OD=AD,OD⊥AB ,∠OAB=∠BOD=45°又∵DN⊥DM ,∴∠MDO=∠NDA=90°﹣∠MDA ,∵∠DOM=180°-∠BOD ,∠DAN=180°-∠OAB ,∴∠DOM=∠DAN在△ODM与△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD= S△AOB= × AO•BO= × ×4×4=4。
中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)
中考数学总复习《图形变换综合压轴题》专题测试卷(附答案)1.线段AB与CD的位置关系如图1所示AB=CD=m,AB与CD的交点为O,且∠AOC=60°,分别将AB和AC平移到CE,BE的位置(如图2).(1)求CE的长和∠DCE的度数;(2)在图2中求证:AC+BD>m.2.如图,在Rt△ABC中∠ACB=90°,∠B=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C,且点B′、A′、B在同一直线上.请仅用无刻度的直尺完成以下作图.(1)在图1中,作出一个以AB为边的等边三角形;(2)在图2中,作出一个菱形.3.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别A(1,4),B(2,0),C(3,2)(1)画出将△ABC沿AC翻折得到的△AB1C1;(2)画出将△ABC沿x轴翻折得到的△A2BC2;(3)观察发现:△A2BC2可由△AB1C绕点(填写坐标)旋转得到(4)在旋转过程中,点B1经过的路径长为.∠ABC.以点B为旋转中心,4.如图1,在△ABC中BA=BC,D、E是AC边上的两点,且满足∠DBE=12将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.5.如图,将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,连接CE,连接CG交BE于点H.(1)求证:CE平分∠BED;(2)取BC的中点M,连接MH,求证:MH∥BG;(3)若BC=2AB=4,求CG的长.6.已知,△ABC为等边三角形,点D,E为直线BC上两动点,且BD=CE.点F,点E关于直线AC成轴对称,连接AE,顺次连接A,D,F.(1)如图1,若点D,点E在边BC上,试判断△ADF的形状并说明理由;(2)如图2,若点D,点E在边BC外,求证:∠BAD=∠FDC.7.如图,正方形ABCD中∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交BC、DC(或它们的延长线)于点M、N.(1)如图1,求证:MN=BM+DN;(2)当AB=6,MN=5时,求△CMN的面积;(3)当∠MAN绕点A旋转到如图2位置时线段BM、DN和MN之间有怎样的数量关系?请写出你的猜想并证明.8.如图1 在△ABC中AB=AC点DE、分别在边AB、AC上AD=AE连接DC点P、Q、M分别为DE、BC、DC的中点连接MQ、PM.(1)求证:PM=MQ;(2)当∠A=50°时求 PMQ的度数;(3)将△ADE绕点A沿逆时针方向旋转到图2的位置若∠PMQ=120°判断△ADE的形状并说明理由.9.已知△ABC∠ACB=90°AC=BC=4D是射线CB上一点连接AD将AD绕点A逆时针旋转90°点D落在点E处连接BE交射线AC于点F.(1)如图1当点D与点C重合时求AF的长;(2)如图2当点D在线段BC上时连接CE在点D的运动过程中请问△AEC的面积是否会发生变化?如果不会求出它的面积;如果会请说明理由;(3)当BD=1时求AF的长.10.在等边△BCD中DF⊥BC于点F点A为直线DF上一动点以点B为旋转中心把BA顺时针旋转60°至BE.(1)如图1 点A在线段DF上连接CE求证:CE=DA;(2)如图2 点A在线段FD的延长线上请在图中画出BE并连接CE当∠DEC=45°时连接AC求出∠BAC的度数;(3)在点A的运动过程中若BD=6求EF的最小值11.如图一个含60°角的纸片顶点与等边△ABC的点B重合将该纸片绕点B旋转使纸片60°角的一边交直线AC于点D在另一边上截取点E使BE=BD连接AE.(1)当点D在边AC上时如图① 求证:AC=AD+AE;(2)当点D在边AC所在直线上如图②、如图③时线段AD,AC,AE之间又有怎样的数量关系?请直接写出结论.(3)在图③中AD、BE交于点K若AE=4,BC=6则AD=_______ DK=______.12.已知四边形ABCD中AB⊥AD,BC⊥CD AB=BC,∠ABC=120°∠MBN=60°,∠MBN绕B点旋转它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1)求证:AE+CF=EF.(2)当∠MBN绕B点旋转到AE≠CF时在图2种情况下求证:AE+CF=EF.(3)当∠MBN绕B点旋转到AE≠CF时在图3种情况下上述结论是否成立?若成立请给予证明;若不成立线段AE,CF EF又有怎样的数量关系?请写出你的猜想不需证明.13.如图在平行四边形ABCD中AC是对角线AB=AC点E是BC边上一点连接AE将AE绕着点A 顺时针旋转α得到线段AF.(1)如图1 若α=∠BAC=90°连接BF BF=3BC=8求△ABE的面积;(2)如图2 若α=2∠BAC=120°连接CF交AB于H求证:2AH+CE=AD;(3)若在(2)的条件下3CE=BC=9点P为AB边上一动点连接EP将线段EP绕着点E顺时针旋转60°得到线段EQ连接CQ当线段CQ取得最小值时直接写出四边形BHQE的面积.14.已知:正方形ABCD以A为旋转中心旋转AD至AP连接BP、DP.(1)若将AD顺时针旋转30°至AP如图1所示求∠BPD的度数?(2)若将AD顺时针旋转α度(0°<α<90°)至AP求∠BPD的度数?(3)若将AD逆时针旋转α度(0°<α<180°)至AP请分别求出0°<α<90°、α=90°、90°<α<180°三种情况下的∠BPD的度数(图2、图3、图4).15.已知如图1正方形ABCD的边长为5点E、F分别在边AB、AD的延长线上且BE=DF连接EF.(1)证明:EF⊥AC;(2)将△AEF绕点A顺时针方向旋转当旋转角α满足0°<α<45°时设EF与射线AB交于点G与AC交于点H如图所示试判断线段FH、HG、GE的数量关系并说明理由.(3)若将△AEF绕点A旋转一周连接DF、BE并延长EB交直线DF于点P连接PC试说明点P的运动路径并求线段PC的取值范围.16.【问题思考】如图1 点E是正方形ABCD内的一点过点E的直线AQ以DE为边向右侧作正方形DEFG 连接GC直线GC与直线AQ交于点P则线段AE与GC之间的关系为______.【问题类比】如图2 当点E是正方形ABCD外的一点时【问题思考】中的结论还成立吗?若成立请证明你的结论;若不成立请说明理由;【拓展延伸】如图3 点E是边长为6的正方形ABCD所在平面内一动点【问题思考】中其他条件不变则动点P到边AD的最大距离为______(直接写出结果).17.(1)【问题发现】如图1 在Rt△ABC中AB=AC∠BAC=90°点D为BC的中点以BD为一边作正方形BDFE点F恰好与点A重合则线段CF与AE的数量关系为_______;(2)【拓展探究】在(1)的条件下如果正方形BDFE绕点B顺时针旋转连接CF AE BF线段CF与AE 的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题解决】当AB=AC=6且(2)中的正方形BDFE绕点B顺时针旋转到E F C三点共线时求出线段AE的长.18.综合与实践:问题情景:如图1、正方形ABCD与正方形AEFG的边AB AE(AB<AE)在一条直线上正方形AEFG以点A为旋转中心逆时针旋转设旋转角为α在旋转过程中两个正方形只有点A重合其它顶点均不重合连接BE DG.(1)操作发现:当正方形AEFG旋转至如图2所示的位置时求证:BE=DG;(2)操作发现:如图3 当点E在BC延长线上时连接FC求∠FCE的度数;(3)问题解决:如图4 如果α=45°AB=2AE=4√2请直接写出点G到BE的距离.19.如图①在正方形ABCD中连接BD点E是边AB上的一点EF⊥AB交BD于点F点P是FD的中点连接EP、CP.(1)如图① 探究EP与CP有何关系并说明理由;(2)若将△BEF绕点B顺时针旋转90° 得到图② 连接FD取FD的中点P连接EP、CP请问在该条件下①中的结论是否成立并说明理由;(3)如果把△BEF绕点B顺时针旋转180° 得到图③ 同样连接FD取FD的中点P连接EP、CP请你直接写出EP与CP的关系.20.综合与实践问题情境:数学活动课上老师向大家展示了一个图形变换的问题.如图1.将正方形纸片ABCD折叠使边AB AD都落在对角线AC上展开得折痕AE AF连接EF.试判断△AEF的形状.独立思考:(1)请解答问题情境提出的问题并写出证明过程.实践探究:(2)如图2.将图1中的∠EAF绕点A旋转使它的两边分别交边BC CD于点P Q连接PQ.请猜想线段BP PQ DQ之间的数量关系并加以证明.问题解决:(3)如图3.连接正方形对角线BD若图2中的∠PAQ的边AP AQ分别交对角线BD于点M N将图3中的正方形纸片沿对角线BD剪开如图4所示.若BM=7DN=24求MN的长.参考答案1.(1)解:∵将AB和AC平移到CE,BE的位置∵AB=CE,AB∥CE∵∠AOC=∠DCE∵∠AOC=60°AB=CD=m∵∠DCE=60°CE=AB=m;(2)证明:如图连接DE由(1)得:∠DCE=60°CE=AB=m∵AB=CD=m∵CD=CE∵△CDE是等边三角形∵DE=CD=m∵将AB和AC平移到CE,BE的位置∵AC=BE在△BDE中BD+BE>DE即AC+BD>m.2.(1)解:△ADB是等边三角形即为所求理由如下:如图延长AC交BB′于一点D∵∠ACB=90°∠CBA=30°将Rt△ABC绕点C顺时针旋转得到Rt△A′B′C ∵∠A=60°,∠B′=30°,BC=B′C∵∠B′BC=30°,∠ABD=60°∵∠BDA=180°−60°−60°=60°∵△ADB是等边三角形;(2)解:四边形ABDE是菱形即为所求理由如下:过点D作DE平行于AB交BC的延长线于一点即为点E连接AE如图:由(1)知△ADB是等边三角形且∠ACB=90°∵BC⊥AD∵DC=AC∵∠DEB =∠ABC∵∠DCE =∠ACB∵△DCE ≌△ACB∵BC =EC∵四边形ABDE 是菱形.3.解:(1)如图:(2)如图:(3)(5 0)(4)B 1经过的路径是以(5 0)为圆心 BB 1为半径的圆弧∵C =14×2×π×3=32π;4.(1)证明:∵∠DBE =12∠ABC∵∠ABD +∠CBE =∠DBE =12∠ABC∵△ABF 由△CBE 旋转而成∵BE =BF ∠ABF =∠CBE∵∠DBF =∠DBE在△DBE 与△DBF 中{BE =BF ∠DBE =∠DBF BD =BD∵△DBE ≌△DBF (SAS )(2)证明:∵将△CBE按逆时针方向旋转得到△ABF∵BA=BC∠ABC=90°∵∠BAC=∠BCE=45°∵图形旋转后点C与点A重合CE与AF重合∵AF=EC∵∠FAB=∠BCE=45°∵∠DAF=90°在Rt△ADF中DF2=AF2+AD2∵AF=EC∵DF2=EC2+AD2同(1)可得DE=DF∵DE2=AD2+EC2.5.(1)证明:∵将矩形ABCD绕着点B逆时针旋转得到矩形GBEF使点C恰好落到线段AD上的E点处∴BE=BC∴∠BEC=∠BCE∵AD∥BC∴∠BCE=∠DEC∴∠BEC=∠DEC∴CE平分∠BED;(2)证明:过点C作CN⊥BE于N如图:∵CE平分∠BED CD⊥DE CN⊥BE∴CD=CN∴BG=AB=CD=CN∵∠BHG=∠NHC∠GBH=∠CNH=90°BG=CN∴△BHG≌△NHC(AAS)∴GH=CH即点H是CG中点∵点M是BC中点∴MH是△BCG的中位线∵MH∥BG;(3)解:过点C作CN⊥BE于N过G作GR⊥BC于R如图:∵BC=2AB=4∴BG=AB=CD=CN=2∴CN=12 BC∴∠NBC=30°∵∠GBE=90°∴∠GBR=60°∴BR=12BG=1GR=√3BR=√3在Rt△GRC中CG=√GR2+CR2=√(√3)2+(1+4)2=2√7∴CG的长为2√7.6.解:(1)△ADF为等边三角形理由如下:∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°即∠DAF=60°,∵△ADF为等边三角形.(2)∵△ABC为等边三角形∵AB=AC,∠ABC=∠ACB=60°.在△ABD和△ACE中{AB=AC∠ABC=∠ACBBD=CE∴△ABD≅△ACE(SAS)∴AD=AE,∠BAD=∠CAE.∵点F 点E关于直线AC成轴对称∴AF=AE,∠CAF=∠CAE ∴AD=AF,∠CAF=∠BAD.∵∠BAD+∠DAC=60°∴∠CAF+∠DAC=60°∵△ADF为等边三角形.∴∠ADF=∠FDC+∠ADC=60°∵∠BAD+∠ADC=∠ABC=60°∵∠BAD=∠FDC7.(1)解:如图将△ABM绕点A逆时针旋转90°得到△ADM′则:△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵四边形ABCD为正方形∵∠BAD=90°∵∠MAN=45°∵∠MAB+∠NAD=45°∵∠M′AD+∠NAD=∠M′AN=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N=M′D+DN=BM+DN;(2)解:∵四边形ABCD为正方形∵AD=AB=6S正方形=62=36∵△AMN≌△AM′N∵MN′=MN=5∵S△AMN=S△AM′N=12M′N⋅AD=12×5×6=15∵△ABM≌△ADM′∵S△ABM+S△ADN=S△ABM′+S△ADN=S△AM′N=15∵S△CMN=S正方形−S△AMN−S△ADN−S△AMB=36−15−15=6;(3)解:DN=BM+MN理由如下:如图将△ABM绕点A逆时针旋转90°得到△ADM′连接MN 则:∠MAM′=90°△ABM≌△ADM′∵AM=AM′,BM=DM′,∠BAM=∠DAM′∵∠MAN=45°∵∠M′AN=∠M′AM−∠MAN=90°−45°=45°∵∠MAN=∠M′AN又∵AM=AM′,AN=AN∵△AMN≌△AM′N(SAS)∵MN=M′N∵DN=M′D+M′N=BM+MN.8.(1)证明:∵AB=AC AD=AE∵BD=CE∵P M分别为DE DC的中点∵PM=12CE PM∥CE∵M Q分别为DC CB的中点∵MQ=12DB MQ∥OB∵PM=MQ;(2)解:∵点P、Q、M分别为DE、BC、DC的中点∵MQ∥DB PM∥AC∵∠MQC=∠B∵∠PMQ=∠DMP+∠DMQ=∠ACD+∠BCD+∠MQC=∠ACD+∠BCD+∠B =180°−50°=130°;(3)解:∵ADE是等边三角形理由如下:由旋转的性质可知∠BAC=∠DAE∵∠BAD=∠CAE在△BAD和△CAE中{AB=AC ∠BAD=∠CAE AD=AE∵∵BAD∵∵CAE(SAS)∵BD=CE∠ABD=∠ACE ∵P M为DE DC的中点∵PM∥EC∵∠PMD=∠ECD∵M Q为DC BC的中点∵MQ∥DB∵∠MQC=∠DBC∵∠MPQ=∠DMP+∠DMQ=∠DCE+∠MQC+∠MCQ=∠ACD+∠ACE+∠DBC+∠MCQ=∠ACD+∠MCQ+∠DBC+∠ABD=∠ACB+∠ABC=120°∵∠BAC=180°−120°=60°∵∠DAE=∠BAC=60°又∵AD=AE∵∵ADE是等边三角形.9.(1)解:∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°∵点D与点C重合∵AC=AE∵BC=AC=AE又∵∠AFE=∠BFC∠EAF=∠BCF=90°∵△BCF≌△EAF(AAS)∵AF=CF∵AC=BC=4∵AF=CF=2;(2)解:△AEC的面积不会变化理由如下:如图过点E作EH⊥AC于H∵将AD绕点A逆时针旋转90°∵AD=AE,∠DAE=90°=∠ACB∵∠DAC+∠CAE=90°=∠DAC+∠ADC∵∠ADC=∠CAE∵△ADC≌△EAH(AAS)∵EH =AC =4∵S △ACE =12×AC ⋅EH =8;(3)解:当点D 在线段BC 上时∵BD =1,BC =4∵CD =3∵△ADC ≌△EAH∵CD =AH =3∵CH =1∵∠EHF =∠ACB =90° ∠AFE =∠BFC ,AC =EH =BC∵△EFH ≌△BFC(AAS)∵FH =FC =12 ∵AF =AF +FH =72;当点D 在线段CB 的延长线时 过点E 作EH ⊥直线AC 于H∵BD =1,BC =4∵CD =5同理可证△ACD ≌△EHA∵CD =AH =5∵CH =1同理可证:△BCF ≌△EHF∵FH =FC =12 ∵AF =AC +FC =92综上所述:AF 的长为72或92.10.(1)解:由旋转得 BA =BE ∠ABE =60°∵△BCD 是等边三角形∵BD=BC∠DBC=60°∵∠ABE=∠DBC∵∠DBA+∠ABC=∠ABC+∠CBE ∵∠DBA=∠CBE在△DBA与△CBE中{BD=BC ∠DBA=∠CBE BA=BE∵△DBA≌△CBE(SAS)∵DA=CE.(2)解:如图3由(1)可知△DBA≌△CBE∵DA=CE∠BDA=∠BCE又∵△BCD是等边三角形∵∠BDC=∠BCD=60°DB=DC∵DB=DC∵∵BCD是等腰三角形∵DF⊥BC∵∠BDF=12∠BDC=30°∵∠BDA=180°−∠BDF=150°∵∠BCE=150°∠CDA=360°−∠BDA−∠BDC=150°∵∠DCE=∠BCE−∠BCD=90°∵∠DEC=45°∵∠EDC=45°∵∠DEC=∠EDC ∵CE=CD∵DB=DC=DA∵∠BAD=180°−∠BDA2=15°∠CAD=180°−∠CDA2=15°∵∠BAC=∠BAD+∠CAD=30°.(3)解:∵由图1可知当点A在线段DF上时∠BCE=∠BDA=30°;由图3可知当点A在线段FD的延长线上时∠BCE=∠BDA=150°;由图4可知当点A在线段DF的延长线上时∠BCE=∠BDA=30°;∵综上所述当点A在直线DF上运动时直线CE与直线BC的夹角始终为30°即点E的运动轨迹为一条直线过点F作FE′⊥EC于点E′则当点E运动到点E′时此时EF的长度最短∵BD=CD=BC=6DF⊥BC∵CF=12BC=3又∵FE′⊥EC∠BCE=30°∵FE′=12CF=32∵EF的最小值为32.11.((1)证明:∵△ABC是等边三角形∵AB=BC∠ABC=60°.∵∠EBD=60°∵∠EBA+∠ABD=∠CBD+∠ABD即:∠ABE=∠CBD∵BD=BE∵△ABE≌△CBD(SAS)∵AE=CD.∵AC=AD+CD∵AC=AD+AE.(2)如图2 当点D在CA的延长线时∵∵DBE=∵ABC=60°∵∵DBE+∵ABD=∵ABC+∵ABD即∵ABE=∵CBD∵AB=BC BE=BD∵∵ABE∵△CBD(SAS)∵AE=CD=AC+AD∵AD=AE-AC;如图3 当点D在AC的延长线上时∵∵ABC=∵DBE=60°∵∵ABC-∵CBE=∵DBE-∵CBE即∵ABE=∵CBD∵AB=BC BD=BE∵△ABE∵△CBD(SAS)∵AE=CD=AD-AC∵AC=AD-AE;综上当点D在CA延长线时AD=AE-AC;当点D在AC的延长线上时AC=AC-AE;(3)解:由(2)得∵ABE∵∵CBD∵CD=AE=4 ∵BAE=∵BCD=180°-∵ACB=120°∵AD=AC+CD=6+4=10 ∵CAE=∵BAE-∵BAC=60°∵∵CAE=∵ACB∵AE∵BC∵∵AKE∵∵CKB∵AK CK =AEBC=46∵AK =23CK又∵AK +CK =AC =BC =6∵53 CK =6∵CK =185∵DK =CK +CD =185+4=385.12.解:(1)∵AB ⊥AD,BC ⊥CD,∵∠A =∠C ,在△ABE 与△CBF 中{AB =BC ∠A =∠C AE =CF ∵△ABE ≅△CBF(SAS),∵∠ABE =∠CBF,BE =BF,∵∠ABC =120°,∠MBN =60°,∵∠ABE =∠CBF =30°,∵AE =12BE,CF =12BF,∵∠MBN =60°,BE =BF∵△BEF 为等边三角形∵BE =BF =EF,∵AE =CF =12EF,∵AE +CF =EF;(2)如图 将Rt △ABE 顺时针旋转120°得△BCG∵BE=BG,AE=CG,∠A=∠BCG,∵AB=BC,∠ABC=120°,∵点A与点C重合∵∠A=∠BCF=90°,∵∠BCG+∠BCF=180°,∵点G、C、F三点共线∵∠ABC=120°,∠MBN=60°,∠ABE=∠CBG,∵∠GBF=60°,在△GBF与△EBF中{BG=BE∠GBF=∠EBFBF=BF∵△GBF≅△EBF(SAS),∵FG=EF,∵EF=AE+CF;(3)不成立EF=AE−CF理由如下:如图将RtΔABE顺时针旋转120° 得ΔBCG∵AE=CG由(2)同理得点C、F、G三点共线∵AB=BC,∠ABC=120°,∵点A与点C重合∵BG=BE,∵∠ABC=∠ABE+∠CBE=120°,∵∠CBG+∠CBE=∠GBE=120°,∵∠MBN=60°,∵∠GBF=60°,在ΔBFG与ΔBFE中{BG=BE∠GBF=∠EBFBF=BF∵△BFG≅△BFE(SAS)∵GF=EF,∵EF=AE−CF.13.(1)解:如图:过点A作BC的垂线交BC于点M∵α=∠BAC=90°∴∠FAB=∠EAC在△FAB和△EAC{FA=EA ∠FAB=∠EAC BA=CA∴△FAB≅△EAC(SAS)∴FB=CE又∵BF=3BC=8∴BE=BC−CE=8−3=5又∵∠BAC=90°AB=AC ∴AM=12BC=4∴S△ABE=12BE×AM=12×5×4=10.(2)解:在BH上截取BP=CE连接CP∵α=2∠BAC=120°∵∠BAC=60°∵AB=AC∵△ABC是等边三角形∵∠B=∠ACB=60°BC=AC 在△CBP和△ACE中{BP=CE∠B=∠ACB=60°BC=AC∴△CBP≅△ACE∴CP=AE=AF∠BPC=∠AEC=60°+∠BAE ∴∠APC=180°−(∠BAE+60°)∵∠FAB=120°−∠BAE∴∠APC=∠FAB在△AHF和△CPH中{∠APC=∠FAB ∠AHF=∠PHC CP=AF∵△AHF≅△PHC(AAS)∴AH=PH∵BP=CE∴AB=BC=AD=AH+PH+CE=2AH+CE.(3)解:如图:∵3CE=BC=9∵CE=3BE=BC−CE=6,连接EH由(2)可知∠BAC=∠ABC=60°∵△BHE是等边三角形∵∠BEH=60°,BE=HE∵将线段EP绕着点E顺时针旋转60°得到线段EP1∵PE=P1E∠PEP1=60°即∠HEP1=∠BEP,在△BPE和△HEP1中{PE=P1E∠HEP1=∠BEPBE=HE,∵△BEP≅△HEP1(SAS),∵∠B=∠EHP1=60°,∵∠BEH=60°∵∠BEH=∠EHP1=60°,∵HP1∥BC点P1的轨迹为过点H且平行BC的直线过H作HP1∥BC其延长线角CD于M过C作CQ⊥BP1于Q由点到直线的距离垂线段最短可知:当CQ⊥MH时即CQ有最小值∵BH∥CM,BC∥HM∵四边形BHMC是平行四边形∵CM=BH=6∠HMC=∠B=60°∵∠QCM=30°∵MQ=12CM=3∵CQ=√CM2−MQ2=3√3∵边形BHQE的面积为BE⋅CQ=6×3√3=18√3.14.(1)解:∵AD顺时针旋转30°至AP∵AD=AP∠PAD=30°∵∠APD=12(180°−30°)=75°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−30°=60°∵∠BPA=12(180°−60°)=60°∵∠BPD=60°+75°=135°.(2)∵AD顺时针旋转α至AP ∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°−α∵∠BPA=12[180°−(90−α)]=45°+α2∵∠BPD=(90°−α2)+(45°+α2)=135°.(3)①当0°<α<90°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+α∵∠BPA=12[180°−(90+α)]=45°−α2∵∠BPD=(90°−α2)−(45°−α2)=45°.②当α=90°时∵AD逆时针旋转90°至AP∵AD=AP∠PAD=90°∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=90°+90°=180°即点P、A、B三点共线∵∠BPD=∠APD=12(180°−90°)=45°.③当90°<α<180°时∵AD逆时针旋转α至AP∵AD=AP∠PAD=α∵∠APD=12(180°−α)=90°−α2∵四边形ABCD为正方形∵AB=AD=AP∠BAD=90°∵∠BAP=360°−90°+α=270°−α∵∠BPA=12[180°−(270°−α)]=α2−45°∵∠BPD=(90°−α2)+(α2−45°)=45°.15.(1)证明:如图1:∵四边形ABCD是正方形∴AD=AB∠DAC=∠BAC∵BE=DF ∴AD+DF=AB+BE即AF=AE∴AC⊥EF.(2)解:FH2+GE2=HG2理由如下:如图2过A作AK⊥AC截取AK=AH连接GK、EK∵∠CAB=45°∴∠CAB=∠KAB=45°∵AG=AG∴△AGH≅△AGK(SAS)∴GH=GK由旋转得:∠FAE=90°AF=AE∵∠HAK=90°∴∠FAH=∠KAE∴△AFH≅△AEK(SAS)∴∠AEK=∠AFH=45°FH=EK∵∠AEH=45°∴∠KEG=45°+45°=90°Rt△GKE中KG2=EG2+EK2即:FH2+GE2=HG2.(3)解:如图3∵AD=AB∠DAF=∠BAE AE=AF∴△DAF≅△BAE(SAS)∴∠DFA=∠BEA∵∠PNF=∠ANE∴∠FPE=∠FAE=90°∴将△AEF绕点A旋转一周总存在直线EB与直线DF垂直∴点P的运动路径是:以BD为直径的圆如图4当P与C重合时PC最小PC=0当P与A重合时PC最大为5√2.∴线段PC的取值范围是:0≤PC≤5√2.16.解:问题思考:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;问题类比:问题思考中的结论仍然成立理由如下:设AQ和BC交于点H∵四边形ABCD和四边形DEFG都为正方形∵∠ADC=∠EDG=90°DA=DC,DE=DG ∵∠ADC−∠EDC=∠EDG−∠EDC即∠ADE=∠CDG∵△DAE≌△DCG(SAS)∵AE=CG∠DAE=∠DCG∵∠DAB=∠DCB=90°∵∠DAE+∠HAB=∠DCG+∠PCH即∠BAH=∠PCH∵∠AHB=∠CHP∵∠B=∠CPA=90°即AE⊥CG故答案为:AE=GC AE⊥GC;拓展应用:∵∠CPA=90°∵点P的运用轨迹即为以AC为直径的⊙O上如图:当点P位于AD右侧PH⊥AD且经过圆心O时动点P到边AD的距离最大∵正方形的边长为6∵AC=6√2OH=3∵OP=OC=12AC=3√2∵PH=OH+OP=3+3√2即动点P到边AD的最大距离为3+3√2故答案为:3+3√2.17.(1)解:如图1 ∵四边形BDFE是正方形∵FE=BE∠E=90°∵BF=√BE2+FE2=√2FE2=√2FE∵点F与点A重合AB=AC∵CF=AC=AB=BF FE=AE∵CF=√2AE故答案为:CF=√2AE;(2)无变化理由如下:证:如图2 ∵EB=EF∠BEF=90°∵∠EBF=∠EFB=45°BF=√EB2+EF2=√2EB2=√2EB∵AB=AC∠BAC=90°∵∠ABC=∠ACB=45°BC=√AB2+AC2=√2AB2=√2AB∵BF EB =BCAB=√2∠CBF=∠ABE=45°−∠ABF∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE;(3)如图2 E F C三点共线且点F在线段CE上∵BC=√2AB AB=AC=6∵BC=√2×6=6√2由(1)得BD=12BC∵BE=EF=BD=12×6√2=3√2∵∠BEC=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE−EF=3√6−3√2∵CF=√2AE∵AE=√22CF=√22×(3√6−3√2)=3√3−3;如图3 E F C三点共线且点F在线段CE的延长线上∵BF EB =BCAB=√2∠CBF=∠ABE=45°+∠CBE∵△CBF∽△ABE∵CF AE =BCAB=√2∵CF=√2AE∵∠BEF=90°∵∠BEC=180°−∠BEF=90°∵CE=√BC2−BE2=√(6√2)2−(3√2)2=3√6∵CF=CE+EF=3√6+3√2∵AE=√22CF=√22×(3√6+3√2)=3√3+3综上所述线段AE的长为3√3−3或3√3+3.18.(1)证明:∵四边形ABCD是正方形∵AB =AD ∠BAE +∠EAD =90°又∵四边形AEFG 是正方形∵AE =AG ∠EAD +∠DAG =90°∵∠BAE =∠DAG .在△ABE 与△ADG 中{AB =AD,∠BAE =∠DAG AE =AG,∵△ABE ≅△ADG (SAS )∵BE =DG ;(2)解;过F 作FH ⊥BE 垂足为H∵∠AEF =∠ABE =∠EHF =90°∵∠AEB +∠FEH =90° ∠FEH +∠EFH =90°∵∠AEB =∠EFH∵四边形AEFG 是正方形∵AE =EF在△ABE 与△EHF 中{∠ABE =∠EHF ∠AEB =EFH AE =EF∵△ABE≌△EHF (AAS )∵AB =EH BE =FH∵AB =BC =EH∵BC +EC =EH +EC∵BE =CH =FH又∵∠EHF =90°∵∠FCE=45°(3)解:如图连接GB GE过点B作BH⊥AE于点H ∵GE是正方形AEFG的对角线∵∠AEG=45°∵∠EAB=45°∵AB∥GE∵S△BEG=S△AEG=12S正方形AEFG=12×4√2×4√2=16∵AB=2∵BH=AH=√2∵HE=4√2−√2=3√2在Rt△BHE中BE=√(√2)2+(3√2)2=2√5设点G到BE的距离为h∵S△BEG=12×BE×ℎ∵1 2×2√5×ℎ=16解得:ℎ=16√55∵点G到BE的距离为16√55.19.解:(1)EP=CP且EP⊥CP.证明:过PH⊥AB于点H延长HP交CD于点I作PK⊥AD于点K.则四边形PIDK是正方形四边形AKPH是矩形∴AK=HP KD=DI=PI=AH∵AD=CD∴IC=HP ∵AD∥PH∥EF P是DF的中点∴HA=HE∴HE=PI 在Rt△HPE和Rt△ICP中{HE=PI ∠PHE=∠CIP HP=IC∴Rt△HPE≌Rt△ICP(SAS)∴EP=CP∠HPE=∠PCI∠HEP=∠CPI∴∠HPE+∠CPI=90°∴∠EPC=90°∴EP⊥CP;(2)成立.证明:图2中作PH⊥BC则EF∥PH∥CD又∵P是DF的中点∴EH=CH 则PH是EC的中垂线∴PE=CP∵EF=EB∴EF+CD=EC ∵P是DF的中点EH=CH则PH=12(EF+CD)∴PH=12 EC∴△EPC是等腰直角三角形∴EP=CP且EP⊥CP;(3)图3中延长FE交DC延长线于M连MP.∵∠AEM=90°∠EBC=90°∠BCM=90°∴四边形BEMC是矩形.∴BE=CM∠EMC=90°由图(2)可知∵BD平分∠ABC∠ABC=90°∴∠EBF=45°又∵EF⊥AB∴△BEF为等腰直角三角形∴BE=EF∠F=45°.∴EF=CM.∵∠EMC=90°∴MP=12FD=FP.∵BC=EM BC=CD∴EM=CD.∵EF=CM∴EF+EM=CM+DC 即FM=DM又∵FP=DP∠CMP=12∠EMC=45°∴∠F=∠PMC.在△PFE和△PMC中{FP=MP ∠F=∠PMC EF=CM∴△PFE≌△PMC(SAS).∴EP=CP∠FPE=∠MPC.∵∠FMC=90°MF=MD FP=DP∴MP⊥FD∴∠FPE+∠EPM=90°∴∠MPC+∠EPM=90°即∠EPC=90°∴EP⊥CP.20.(1)解∵ ∵AEF是等腰三角形理由如下∵∵四边形ABCD是正方形∵AB=AD=BC=CD∵BAD=∵B=∵D=90°∵∵ABC∵ADC都是等腰三角形∵∵BAC=∵DAC=45°根据题意得∵∵BAE=∵CAE=22.5° ∵DAF=∵CAF=22.5°(∠BAC+∠DAC)=45°∵BAE=∵DAF=22.5°∵∠EAF=12∵∵B=∵D=90° AB=AD∵∵BAE∵∵DAF(ASA)∵AE=AF∵∵AEF是等腰三角形;(2)解∵ PQ=BP+DQ理由如下∵如图延长CB到T使得BT=DQ.∵AD=AB∵ADQ=∵ABT=90° DQ=BT∵∵ADQ∵∵ABT(SAS)∵AT=AQ∵DAQ=∵BAT由(1)得∵∵P AQ=45°∵∵P AT=∵BAP+∵BAT=∵BAP+∵DAQ=45°∵∵P AT=∵P AQ=45°∵AP=AP∵∵P AT∵∵P AQ(SAS)∵PQ=PT∵PT=PB+BT=PB+DQ∵PQ=BP+DQ;(3)解:如图将∵ADN绕点A顺时针旋转90°得到∵ABR连接RM.∵∵BAD=90° ∵MAN=45°∵∵DAN+∵BAM=45°∵∵DAN=∵BAR∵∵BAM+∵BAR=45°∵∵MAR=∵MAN=45°∵AR=AN AM=AM∵∵AMR∵∵AMN(SAS)∵ RM=MN∵∵D=∵ABR=∵ABD=45°∵∵RBM=90°∵RM2=BR2+BM2∵ DN=BR MN=RM∵BM2+DN2=MN2.∵BM=7DN=24∵MN=√72+242=25.。
图形的变换练习题
图形的变换练习题一、选择题1. 下列哪种变换不是图形变换的基本类型?A. 平移B. 旋转B. 缩放D. 颜色变换2. 在进行图形的平移变换时,图形的哪个属性不会改变?A. 形状B. 面积C. 角度D. 颜色3. 旋转变换中,图形绕哪个点进行旋转?A. 任意点B. 原点C. 图形的中心点D. 旋转轴上的点4. 缩放变换中,图形的面积会如何变化?A. 保持不变B. 按比例增加C. 按比例减少D. 无法确定5. 以下哪个选项不是图形变换的属性?A. 变换前后图形的相似性B. 变换前后图形的对应点连线平行或共线C. 变换前后图形的对应角相等D. 变换前后图形的对应边颜色相同二、填空题6. 图形的平移变换是指图形上的每一点在平面上按照某个_________方向作相同距离的移动。
7. 旋转变换中,图形绕某一点旋转_________度,图形上的所有点都绕该点旋转相同的角度。
8. 缩放变换中,图形上的所有点都按照相同的比例因子向_________或远离中心点移动。
9. 图形的反射变换是指图形沿某一条直线翻转,这条直线称为_________。
10. 图形的相似变换是指图形按照相同的比例因子进行平移、旋转和缩放,使得变换后的图形与原图形_________。
三、简答题11. 简述图形的平移变换有哪些特点,并给出一个平移变换的例子。
12. 解释图形的旋转变换,并说明旋转中心和旋转角度对图形的影响。
13. 描述图形的缩放变换,并解释缩放因子对图形大小和形状的影响。
14. 什么是图形的反射变换?请说明反射轴的作用。
15. 什么是图形的相似变换?它与图形的缩放变换有何不同?四、计算题16. 给定一个正方形,边长为4cm,进行平移变换,移动距离为3cm,求平移后正方形的边长。
17. 一个圆形的半径为5cm,进行旋转变换90度,求旋转后圆形的半径。
18. 一个矩形的长为6cm,宽为4cm,进行缩放变换,缩放因子为1.5,求缩放后矩形的长和宽。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题
2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
小学数学五年级下册《图形变换》综合练习题
精选资料欢迎下载
人教版小学数学五年级下册《图形变换》综合练习题
一、先观察右图,再填空。
( 1)图 1 绕点“ O”逆时针旋转 900到达图()的位置;
( 2)图 1 绕点“ O”逆时针旋转 1800到达图()的位置;
2(3)图 1绕点“ O”顺时针旋转(0)到达图 4的位置;3
(4)图 2绕点“ O”顺时针旋转(0)到达图 4的位置;
(5)图 2绕点“ O”顺时针旋转 900到达图()的位置;1
O (6)图 4绕点“ O”逆时针旋转 900到达图()的位置;4
二、画出图形的另一半,使它成为一个轴对称图形。
三、 (1)画出三角形 AOB 绕 O 点(2)绕O点顺时针旋转90°
顺时针旋转 90 度后的图形。
(3)绕 O 点逆时针旋转 90°(4)绕O点顺时针旋转90°。
精选资料欢迎下载
四、画出绕点“ O”顺时针旋转 90 度后的图形。
画出绕点“A”逆时针旋转 90 度后的图形。
O A
五、画出三角形 AOB 围绕 O 顺时针或逆时针旋转后的图形。
00
逆时针旋转 90顺时针旋转 90
A A
B
B
O O
六、填空题。
①号三角形绕 A 点按 ______时针方向旋转了 ______度。
②号梯形绕 B 点按 ______时针方向旋转了 ______度。
③号三角形绕 C 点按 ______时针方向旋转了 ______度。
④号平行四边行绕 D 点按 ______时针方向旋转了 ______度。
(完整版)图形的变换专题
图形的变换专题训练知识框架模块一平移1.如图,矩形ABCD,AC=10,BC=8,则图中五个小矩形的周长之和为()A.14B.16C.20D.281题图2题图3题图2.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是.3.(2016•广州)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为cm.4题图5题图6题图4.如图,边长为4cm的正方形ABCD先向右平移1cm,再向上平移2cm,得到正方形A′B′C′D′,则阴影部分的面积为cm2.5.(2016•济宁)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()6.(2015•广元)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C 落在直线y=2x﹣6上时,线段BC扫过的面积为()7.(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.38.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC向右平移2.5个单位得到△DEF,连接AD,AE,则下列结论中不成立的是()A.AD∥BE,AD=BE B.∠ABE=∠DEFC.ED⊥AC D.△ADE为等边三角形9.(2014•济南)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.10.(2013•宜宾)如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.11.(2015•泰安)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,B.(3,C.(4,D.(3,12.如图,将△ABC向右平移3个单位长度,然后再向上平移2个单位长度,可以得到△A1B1C1.(1)画出平移后的△A1B1C1;写出△A1B1C1三个顶点的坐标;(2)求四边形A1B1BA的周长(3)已知点P在x轴上,以A1、B1、P为顶点的三角形面积为4,求P点的坐标.13.两块完全相同的三角板△ABC和△EFD重叠在一起,其中∠ACB=∠EDF=90°,∠B=∠DFE=30°,AC=10cm.固定三角板Ⅰ不动,将三角板△EFD进行如下操作:(1)如图①,将三角板△EFD沿斜边BA向右平移(即顶点F在斜边BA内移动),连接CD、CF、DA,四边形CF AD的形状在不断的变化,它的面积是否变化?如果不变请求出其面积;如果变化,说明理由.(2)如图②,当顶点F移到AB边的中点时,请判断四边形CF AD的形状,并说明理由.模块二 旋转旋转条件:⎧⎨⎩等线段共顶点,(旋转多出现在等腰三角形、等边三角形、等腰直角三角形、正方形、对角互补的四边形中);图1图2如图1:若将△ABC 绕点A 逆时针旋转角度α,则:①''ABC AB C ≌△△(对应边、对应角都相等);②'''BAB CAC BDB α∠=∠=∠=(对应边的夹角都等于旋转角); ③''BAB CAC 、△△都是等腰三角形;特殊的,若旋转60°则是等边三角形,若旋转90°,则是等腰直角三角形.如图2:若将△ABC 绕点O 顺时针旋转90°,则:①''ABC AB C ≌△△(对应边、对应角都相等);②'''90BOB COC AOA ∠=∠=∠=o (对应点与旋转中心连线的夹角等于旋转角);③'''OA OA OB OB OC OC ===,,(旋转中心到对应点的距离相等;旋转中心在对应点连线的垂直平分线上);OB 'C '考法一:中心对称图形1.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考法二:网格作图2.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.3.(2016•宁夏)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.4.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°得到点B,则点B的坐标是.5.(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;并求出旋转过程中点B转过的路径长和线段OA旋转扫过的面积;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P 点的坐标.考法三:旋转性质,求线段长、角度、坐标6.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()6题图7题图7.如图,在直角坐标系中,点A(0,5),点P(2,3).将△AOP绕点O顺时针方向旋转,使OA边落在x轴上,则PP′=.8.(2016•威海一模)将一个含45°角的三角板ABC如图摆放在平面直角坐标系中,将其绕点C顺时针旋转75°,点B的对应点B′恰好落在x轴上,若点C的坐标为(1,0),则点B′的坐标为.9.如图所示,P是等边△ABC内的一点,连结P A、PB、PC,将△BAP绕B点顺时针旋转60°得△BCQ,连结PQ,若P A2+PB2=PC2,则∠APB等于()A.150°B.145°C.140°D.135°8题图9题图10.如图,在平面直角坐标系xOy中,直线y=经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.10题图11题图12题图11.如图,点A的坐标为(0),点B的坐标为(0,1),将△AOB绕原点O顺时针旋转60°到△A'OB',A'B'恰好过点B,则B'的坐标为,重叠部分△BOE的面积为.12.(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.13.(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.14.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得道△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①③④C.①②④D.①②③13题图14题图15.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④四边形AO BO′的面积为6+33;⑤S△AOC +S△AOB=6+93.其中正确的结论是()A.①②③B.①②③④C.①②③⑤D.①②③④⑤16.(2016•广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.考法四:找规律17.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为.18.如图,将边长为2的等边三角形沿x轴正方向连续翻折2015次,依次得到点P1,P2,P3,…P2015,则点P2015的坐标是.19.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△OA1B1的顶点A1的坐标是;△B6A7B7的顶点A7的坐标是;△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.19题图20题图20.如图,将正方形沿x轴正方向连续翻转2013次,(即:每次旋转都以正方形右下角所在顶点为旋转中心,旋转90°)点P依次落在P1,P2,P3,…P2013的位置,若P(1,1),则P2013的坐标为.21.(2015•邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π22.如图,平面直角坐标系中有一个正方形ABCD,其中C,D的坐标分别为(4,0)和(7,0).若在无滑动的情况下,将这个正方形沿着x轴向右滚动,则在滚动过程中,这个正方形的顶点A、B、C、D中,过点(2014,32)的是点.23.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为.24.(2016•槐荫区二模)如图,等边三角形OA1B1边长为1,且OB1在x轴上,第一次将△OA1B1边长变为原来的两倍后,将所得到的图形绕O逆时针旋转60°得到△OA2B2;第二次将△OA2B2边长变为原来的两倍后,将所得到的图形绕O逆时针旋转60°得到△OA3B3…依此类推,则点A2016的坐标为.25.已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=3,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是.26.如图,坐标系中,四边形OABC与CDEF都是正方形,OA=2,M、D分别是AB、BC的中点,当把正方形CDEF绕点C旋转某个角度或沿y轴上下平移后,如果点F的对应点为F′,且O F′=OM.则点F′的坐标是.考法五:旋转型全等手拉手全等:由一个公共顶点出发,两组等线段,且等线段的夹角相等,用SAS判定三角形全等;【例题】如图,点C为线段AB上一点,ACM△、CBN△是等边三角形.请你证明:⑴AN BM=;⑵60MFA∠=o.证明:ACM BCNACM MCN BCN MCNACN BCM∠=∠∴∠+∠=∠+∠=∠Q在ACN△和MCB△中()AC MCACN MCBCN CBACN MCB SASAN BM=⎧⎪∠=∠⎨⎪=⎩∴∴=Q≌△△ACN MCBCAN CMB∴∠=∠Q≌△△在ACD△和MFD△中60CAN CMBCDA MDFACD MFD∠=∠∠=∠∴∠=∠=oQ补充:在手拉手中证明拉手的三角形全等并求第三组边的夹角(本题AN和BM的夹角)是考察较多也较基础的;此外,本题还有许多其他结论:①CF平分∠AFB(过点C向AN、BM分别作垂线)②△CDE是等边三角形(ACD MCE≌△△或CBE CND≌△△③AF MF CFBF NF CF=+=+(截长补短)NM FEDC BA【练习1】如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【练习2】(2014•天津)在平面直角坐标系中,O为原点,点A(﹣2,0),点B (0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(1)如图①,当α=90°时,求AE′,BF′的长;(2)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(3)(还未学习,可看答案)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【练习3】(2013•潍坊)(16年春济外期中)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.【练习4】(16年春历城区期中)(2016年市中区一模) 如图1,已知90DAC ∠=︒,ABC △是等边三角形,点P 为射线AD 上任意一点(点P 与点A 不重合),连接CP ,将线段CP 绕点顺时针旋转60︒得到线段CQ ,连接QB 并延长直线AD 于点E .(1)猜想1,猜想QEP ∠=___________︒;(2)如图2,3,若当DAC ∠是锐角或钝角时,其它条件不变,猜想QEP ∠的度数,选取一种情况加以证明;(3)如图3,若135DAC ∠=︒,15ACP ∠=︒,且4AC =,求BQ 的长.图1D PEQC BA图2QPED C BA图3ACEBQPD【练习5】(2015•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)(还未学习,可看答案)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD,其他条件不变,求线段AM的长.DF ECBA一般旋转型全等【例题】如图,五边形ABCDE 中,AB AE =,BC DE CD +=,180ABC AED ∠+∠=︒,连结AD .求证:DA 平分CDE ∠.证明:如图,连结AC ,延长DE 到F ,使得EF =BC ,连结AF ∵180ABC AED ∠+∠=︒,且180AEF AED ∠+∠=︒ ∴ABC AEF ∠=∠∵BC EF =,ABC AEF ∠=∠,AB AE = ∴()ABC AEF SAS △≌△ ∴BC EF =,AC AF = ∵BC DE CD +=∴EF DE CD +=,即FD CD = 且AC AF =,AD AD = ∴()ADC ADF SSS △≌△ ∴CDA FDA ∠=∠ ∴DA 平分CDE ∠补充:此题相当于把△ABC 绕点A 逆时针旋转∠BAE 的度数得到△AEF ,对角互补保证了旋转之后的共线,也就使得DE +BC 变成了一条线段.EC BA【练习1】(16年春历下区期中)如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN 是否仍然成立?若成立,请给出写出结论,不用证明.【练习2】(2015•赤峰)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)(还未学习,看答案)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?【练习3】(2016•潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.AC;(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=13(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于小并指明旋转方向.图1NMD CBA图2NM A DCB图3NMDCBA考法六:半角模型常见半角模型有90°夹45°、120°夹60°、60°夹30°.半角模型的处理方法比较固定,旋转一条等线段+半角的一边+目标线段所在的三角形,再得以半角另一边所在直线为对称轴的一组对称型全等.【例题】已知:正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.解:(1)BM +DN =MN 成立.证明:如图,延长CB 到点E ,使得BE =DN ,连结AE , 在△ADN 与△ABE 中,AD AB EBA NDA EB ND =⎧⎪∠=∠⎨⎪=⎩∴△ADN ≌△ABE (SAS ), ∴AE AN EAB DAN=∠=∴∠EAM =90°﹣∠NAM =45°, ∴在△AEM 与△ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩ENMADCQNM D CB A∴△AEM ≌△ANM (SAS ), ∴ME =MN ,∵ME =BE +BM =DN +BM , ∴DN +BM =MN ; (2)DN ﹣BM =MN .在线段DN 上截取DQ =BM ,连结AQ 在△ADQ 与△ABM 中,∵AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩, ∴△ADQ ≌△ABM (SAS ), ∴∠DAQ =∠BAM ,∴∠QAN =90°-∠BAN -∠DAQ =45° 在△AMN 和△AQN 中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△AQN (SAS ), ∴MN =QN , ∴DN ﹣BM =MN .补充:本题第一问实质是把△ADN 绕点A 顺时针旋转90°,得到△ABE ,第二问是把△ABM 绕点A 逆时针旋转90°,得到△ADQ ,不过不建议大家直接在过程中写旋转,如果要写那么旋转后的位置关系是要证明的,比如本题中要证明共线. 正常描述辅助线则证两次全等,判定方法都是SAS .【练习1】如图1,在四边形ABCD 中,AB AD =,180B D +=︒∠∠,E 、F 分别是边BC 、CD 上的点,且12EAF BAD =∠∠.图1 图2 图3⑴ 在图2中,若90B D ==︒∠∠,请你直接写出线段EF 与线段BE FD 、的数量关系为_____________;⑵ 在图1中,B D ≠∠∠,其他条件不变,请你探究⑴中的结论是否成立?并完成证明;⑶ 如图3,在四边形ABCD 中,AB AD =,180B D +=︒∠∠,E 、F 分别是边BC 、CD 延长线上的点,且12EAF BAD =∠∠,⑴中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.EFDCBAFEDCBAFEDCB A【练习2】(2013•达州)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF ,则EF =BE +DF ,试说明理由.图1 图2 图3 (1)思路梳理 ∵AB =AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合. ∵∠ADC =∠B =90°,∴∠FDG =180°,点F 、D 、G 共线.根据 ,易证△AFG ≌ ,得EF =BE +DF . (2)类比引申如图2,四边形ABCD 中,AB =AD ,∠BAD =90°点E 、F 分别在边BC 、CD 上,∠EAF =45°.若∠B 、∠D 都不是直角,则当∠B 与∠D 满足等量关系 时,仍有EF =BE +DF . (3)联想拓展①如图3,在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 均在边BC 上,且∠DAE =45°.猜想BD 、DE 、EC 应满足的等量关系,并写出推理过程.②若点D 落在CB 的延长线上,其他条件不变,则①中的结论是否成立?请证明你的猜想.GFEDCBAAE【练习3】在等边ABC △的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC △外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别在直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN △的周长Q 与等边ABC △的周长L 的关系.(1)如图①,当点M ,N 在边AB ,AC 上,且DM DN =时,BM ,NC ,MN 之间的数量关系式_________;此时QL=__________. (2)如图②,当点M ,N 在边AB ,AC 上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)如图③,当点M ,N 在边AB ,CA 的延长线上时,若AN x =,则Q =_________.(用x ,L 表示)图①M ND CBA 图②MND CBAN图③MD CBA【练习4】(16年春天桥区期中)已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连接D′E.(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E.(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由. (3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC 是等腰直角三角形?(直接写出结论,不必说明理由).【练习5】(2016年济南市中考27)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究. (一)尝试探究如图1,在四边形ABCD 中,AB =AD ,∠BAD =60°,∠ABC =∠ADC =90°,点E 、F 分別在线段BC 、CD 上,∠EAF =30°,连接EF .(1)如图2,将△ABE 绕点A 逆时针旋转60°后得到△A ′B ′E ′(A ′B ′与AD 重合),请直 接写出∠E ′AF =________度,线段BE 、EF 、FD 之间的数量关系为________;(2)如图3,当点E 、F 分别在线段BC 、CD 的延长线上时,其他条件不变,请探究线 段BE 、EF 、FD 之间的数量关系,并说明理由. (二)拓展延伸(还未学习,可以看答案)如图4,在等边△ABC 中,E 、F 是边BC 上的两点,∠EAF =30°,BE =1,将△ABE 绕点A 逆时针旋转60°得到△A ′B ′E ′(A ′B ′与AC 重合),连接EE ′,AF 与EE ′交于点N ,过点A 作AM ⊥BC 于点M ,连接MN ,求线段MN 的长度.图3图4ME'FBE图2图1E'CCD考法七:旋转特殊角度:旋转60°产生等边三角形;旋转90°产生等腰直角三角形;旋转180°产生中心对称图形(类似倍长中线). 60°的旋转△3.如图,将BPC绕点B顺时针旋转60°,△得到BP′A△△可证Rt PP′A,等边BPP′∠APB=∠P′PB+∠P′PA=60°+90°=150°△4.如图,将BPC绕点C逆时针旋转60°,△得到AP′C△△可证Rt PP′A,等边CPP′∠APB=360°-(∠APC+∠BPC)=360°-(∠APC+∠AP′C)∠APC=∠APP′+∠P′PC=∠APP′+60°∠AP′C=∠AP′P+∠PP′C=∠AP′P+60°∠APP′+∠AP′P=90°∠APC+∠=210°∠APB=360°-210°=150°P'A【练习1】如图,P 是等边ABC △内一点,若1PA =,2PB =,PC =APB ∠、APC ∠、CPB ∠的度数.△6.如图,将APC 绕点A 逆时针旋转60°,△得到AP′B△△可证Rt PP′B ,等边APP′∠APB=∠P′PA+∠P′PB =60°+90° =150°△5.如图,将APC 绕点C 顺时针旋转60°,△得到BP′C△△可证Rt PP′B ,等边CPP′∠APB=360°-(∠APC+∠BPC ) =360°-(∠BP′C+∠BPC )∠BP′C=∠BP′P+∠PP′C =∠BP′P+60°∠BPC=∠BPP′+∠P′PC =∠BPP′+60°∠BPP′+∠BP′P=90°∠APC+∠BPC=60°+60°+90° =210°∠APB=360°-210°P'BAPCBAACB P【练习2】如图,P 是等边△ ABC 外的一点,P A =3,PB =4,PC =5,求∠ APB 的度数.【练习3】⑴ P 是等边ABC △内一点,又APB ∠、BPC ∠、CPA ∠的大小之比是567∶∶,则以PA 、PB 、PC 为边的三角形的三个内角的大小之比是( )A .2:3:4B .3:4:5C .4:5:6D .不能确定⑵ 在等边ABC △中,P 为BC 边上一点,设以AP 、BP 、CP 为边组成的新三角形的最大内角为θ,则( )A .90θ︒≥B .120θ︒≤C .120θ=︒D .135θ=︒【练习4】(2013•常州)在Rt △ABC 中,∠C =90°,AC =1,BCO 为Rt △ABC 内一点,连接A 0、BO 、CO ,且∠AOC =∠COB =BOA =120°,按下列要求画图(保留画图痕迹):以点B 为旋转中心,将△AOB 绕点B 顺时针方向旋转60°,得到△A ′O ′B (得到A 、O 的对应点分别为点A ′、O ′),并回答下列问题: ∠ABC = ,∠A ′BC = ,OA +OB +OC = .PCBAPCBAOBCADCB A【练习5】如图,已知:四边形ABCD 中,AD CD =,75ABC =︒∠,60ADC =︒∠,2AB =,BC =,⑴ 以线段BD ,AB ,BC 作为三角形的三边,①则这个三角形为 三角形(填:锐角三角形、直角三角形、钝角三角形); ②求BD 边所对的角的度数;⑵ 求四边形ABCD 的面积.EDCBA90°的旋转【例题】如图,已知在ABC △中,AB AC =,90BAC =︒∠,点D 是线段BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论. 探究得到的关系为:2222BD CD AD +=.证明:过点A 作AE AD ⊥,且AE AD =,连接DE 、CE . 则BAD CAE =∠∠ 在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪=⎨⎪=⎩∠∠ ∴ ABD ACE △≌△∴ BD CE =,ABC ACE =∠∠ ∵ 90ABC ACD +=︒∠∠ ∴ 90ACE ACD +=︒∠∠ 即90DCE =︒∠ ∴ 222ED CD CE =+ 又∵ AE AD ⊥∴ 222ED AD AE =+∴ 2222AD AE CD CE +=+ ∴ AE AD =,CE BD =∴ 2222AD AD CD BD +=+ 即2222AD CD BD =+.当点D 与点B C 、重合时,仍然满足.补充:此题相当于把△ABD 绕点A 逆时针旋转90°得到△ACE ,原来的两个角互余保证了旋转之后垂直的位置关系,连结对应点D 、E 得到等腰直角△ADE .【练习1】(2015•南充)如图,点P 是正方形ABCD 内一点,点P 到点A 、B 和D 的距离分别为1,ADP 沿点A 旋转至△ABP ′,连结PP ′,并延长AP 与BC 相交于点Q .(1)求证:△APP ′是等腰直角三角形; (2)求∠BPQ 的大小; (3)(改编)求AB 的长.【练习2】如图,点D 是等腰直角三角形ABC 内一点,且BD =1,CD =2,AD =3.求: (1)∠BDC 的度数; (2)△ABC 的面积.【练习3】四边形ABCD 被对角线BD 分为等腰直角三角形ABD 和直角三角形CBD ,其中A ∠和C ∠都是直角,另一条对角线AC 的长度为2,求四边形ABCD 的面积.DBC ADCB A【练习4】(2015•铁岭)已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD,直接写出∠BAD的度数.180°的旋转27.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形或全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;(3)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作∠EDF为60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.考法八:其他以旋转为背景28.(2014•抚顺)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.29.(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC≌△ADP时,则C点的坐标是,Q点的坐标是.。
备考2024年中考数学二轮复习-图形的变换_平移、旋转变换_旋转的性质-综合题专训及答案
备考2024年中考数学二轮复习-图形的变换_平移、旋转变换_旋转的性质-综合题专训及答案旋转的性质综合题专训1、(2017营口.中考真卷) 在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.2、(2011南通.中考真卷) 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.3、(2017昌平.中考模拟) 如图,在正方形ABCD中,E为AB边上一点,连接DE,将△ADE绕点D逆时针旋转90°得到△CDF,作点F 关于CD的对称点,记为点G,连接DG.(1)依题意在图1中补全图形;(2)连接BD,EG,判断BD与EG的位置关系并在图2中加以证明;(3)当点E为线段AB的中点时,直接写出∠EDG的正切值.4、(2019南京.中考模拟) 如图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A 处时,停止旋转,此时点D落在点B处.(1)求证:PB与⊙O相切;(2)当PD=2 ,∠DPC=30°时,求⊙O的半径长.5、(2011义乌.中考真卷) 如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.6、(2017宁德.中考模拟) 在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.7、(2017日照.中考模拟) 问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.(1)【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F 之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)8、(2018济南.中考真卷) 如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1) AE=,正方形ABCD的边长=;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若 =30°,求菱形的边长.9、(2017黄冈.中考模拟) 在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,﹣1),B(3,﹣1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.过P作PQ⊥OA于Q.设P点运动的时间为t秒(0<t<2),△OPQ与四边形OABC重叠的面积为S.(1)求经过O、A、B三点的抛物线的解析式并确定顶点M的坐标;(2)用含t的代数式表示P、Q两点的坐标;(3)将△OPQ绕P点逆时针旋转90°,是否存在t,使得△OPQ的顶点O或Q落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由;(4)求S与t的函数解析式.10、(2020如皋.中考模拟)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB= ,请直接写出当点C 与点M重合时AC的长.11、(2020玉林.中考真卷) 如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD= AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.12、(2020阜新.中考真卷) 如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:,;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,求证:;②当时,若,,请直接写出线段的长13、(2020绍兴.中考模拟) 如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D不与A、C重合,ED⊥AC.(1)当sinB=时,①求证:BE=2CD;②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2 ,求线段CD的长.14、(2020立山.中考模拟) 如图1,在中, , ,点分别是的中点,连接 .(1)探索发现:图1中,的值为________;的值为________;(2)拓展探究若将绕点逆时针方向旋转一周,在旋转过程中的大小有无变化,请仅就图2的情形给出证明;(3)问题解决当旋转至三点在同一直线时,直接写出线段的长.15、如图,已知;抛物线y=x2+bx+c经过点A(0,2),点C(4,0),且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求三角形ACM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O'A',若线段O'A’与抛物线只有一个公共点,请结合函数图象,求m的取值范围.旋转的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
基础强化京改版九年级数学下册第二十三章 图形的变换综合测评试题(含答案及详细解析)
九年级数学下册第二十三章 图形的变换综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,Rt △ABC 中,∠A =90°,∠B =30°,AC =1,将Rt △ABC 延直线l 由图1的位置按顺时针方向向右作无滑动滚动,当A 第一次滚动到图2位置时,顶点A 所经过的路径的长为( )AB C D .(π2、点()2,3--关于x 轴对称的点的坐标是( )A .()2,3B .()2,3-C .()2,3-D .()3,23、如图,E 是正方形ABCD 中CD 边上的点,以点A 为中心,把△ADE 顺时针旋转,得到△ABF .下列角中,是旋转角的是( )A.∠DAE B.∠EAB C.∠DAB D.∠DAF4、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=()A.﹣1 B.1 C.﹣5 D.55、在平面直角坐标系xOy中,若ABC在第三象限,则ABC关于x轴对称的图形所在的位置是()A.第一象限B.第二象限C.第三象限D.第四象限6、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是()A.B.C.D.OA OD ,则ABC与DEF的面积比为7、如图,ABC与DEF位似,点O为位似中心.已知:1:3()A.1:3B.2:3C.4:5D.1:98、如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到△AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DE=x,△AEC'的面积为y,则y与x的函数图象大致为()A.B.C.D.9、下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.10、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m ()A.m=B.m=4 C.4≤m D.m第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图 , 在 Rt ABC 中, 390,sin 5C BD ∠==. 是边 BC 的中点, 点E 在边 AB 上, 将 BDE 沿直线 DE 翻折, 使得点 B 落在同一平面内的点F 处. 如果线段 FD 交边 AB 于点G , 当 FD AB ⊥ 时, :AE BE 的值为________.2、如图所示,将一个顶角∠B =30°的等腰三角形ABC 绕点A 顺时针旋转α(0°<α<180°),得到等腰三角形AB 'C ',使得点B ',A ,C 在同一条直线上,则旋转角α=_____度.3、点(2,5)P -关于x 轴对称的点的坐标为________.4、若一次函数y =kx +8(k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,当k 的取值变化时,点A 随之在x 轴上运动,将线段AB 绕点B 逆时针旋转90°得到BQ ,连接OQ ,则OQ 长的最小值是 ___.5、如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向60旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=2,BE=4,求AD的长.2、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A 1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A 2B2C2,并写出点A2的坐标;(3)A 1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.3、综合与实践问题情境:数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相AD=.同),已知矩形纸片宽6动手实践:(1)如图1,腾飞小组将矩形纸片ABCD折叠,点A落在DC边上的点A'处,折痕为DE,连接A E',然后将纸片展平,得到四边形AEA D'.试判断四边形AEA D'的形状,并加以证明.(2)如图2,永攀小组在矩形纸片ABCD的边BC上取一点F,连接DF,使30∠=︒,将CDF沿CDF线段DF折叠,使点C正好落在AB边上的点G处.连接DG,GF,将纸片展平,①求DFG的面积;②连接CG,线段CG与线段DF交于点M,则CG=______.深度探究:DN A N'=,将(3)如图3,探究小组将图1的四边形AEA D'剪下,在边A D'上取一点N,使:1:2△,连接A D'',探究并直接写出A D''的长度.△沿线段AN折叠得到AND'AND4、如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)A1B1与AB的位置关系.5、(阅读理解)射线OC是∠AOB内部的一条射线,若∠COA=1∠BOC,则称射线OC是射线OA在∠AOB内的一条“友2∠BOC,所以射线OC是射线OA在∠AOB 好线”.如图1,∠AOB=60°,∠AOC=20°,则∠AOC=12内的一条“友好线”.(解决问题)(1)在图1中,若作∠BOC的平分线OD,则射线OD射线OB在∠AOB内的一条“友好线”;(填“是”或“不是”)(2)如图2,∠AOB的度数为n,射线OM是射线OB在∠AOB内的一条“友好线”,ON平分∠AOB,则∠MON的度数为;(用含n的代数式表示)(3)如图3,射线OB从与射线OA重合的位置出发,绕点O以每秒3°的速度逆时针旋转;同时,射线OC从与射线OA的反向延长线重合的位置出发,绕点O以每秒5°的速度顺时针旋转,当射线OC与射线OA 重合时,运动停止.问:当运动时间为多少秒时,射线OA 、OB 、OC 中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?-参考答案-一、单选题1、C【分析】根据题意,画出示意图,确定出点A 的运动路径,再根据弧长公式即可求解.【详解】解:根据题意可得,Rt △ABC 的运动示意图,如下:Rt △ABC 中,∠A =90°,∠B =30°,AC =1,∴60ACB ∠=︒,2BC =,AB =由图形可得,点A 的运动路线为,先以C 为中心,顺时针旋转120︒,到达点1A ,经过的路径长为120121803ππ⨯=,再以1B 为中心,顺时针旋转150︒,到达点2A ,顶点A 所经过的路径的长为23π=【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点A的运动路线.2、B【分析】根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.【详解】解:∵点A的坐标为(-2,-3),∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).故选:B.【点睛】本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.3、C【分析】根据“旋转角是指以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线,这两条线的夹角”,由此问题可求解.【详解】解:由题意得:旋转角为∠DAB或∠EAF,故选C.【点睛】本题主要考查旋转角,熟练掌握求一个旋转图形的旋转角是解题的关键.4、B根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.【详解】解:∵点P(﹣2,b)和点Q(a,﹣3),又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选:B.【点睛】本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.5、B【分析】设ABC内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设ABC内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即ABC在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.6、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.7、D【分析】根据相似比等于位似比,面积比等于相似比的平方即可求解【详解】OA OD=,解:ABC与DEF位似,点O为位似中心.已知:1:3∴ABC与DEF的相似比为1:3∴ABC与DEF的面积比为1:9故选D【点睛】本题考查了位似图形的性质,相似三角形的性质,掌握位似比等于相似比是解题的关键.8、B【分析】先证△ABF ≌△AC ′E (ASA ),再证△B ′FD ≌△CED (AAS ),得出DE +DC =DE +DB ′=B ′E =x ,利用锐角三角函数求出2B C GC '''==AG =AC′sin30°=1,根据三角形面积列出函数解析式12y x =是一次函数,即可得出结论.【详解】解:设BC 与AB ′交于F ,∵△ABC 绕点A 逆时针旋转α(0<α<120°)得到△AB 'C ',∴∠BAF =∠C ′AE =α,∵AB =AC =AB ′=AC ′,∠B =∠C =∠B ′=∠C ′=30°,在△ABF 和△AC ′E 中,B C AB AC CAF C AE ∠=∠⎧⎪=⎨⎪∠=∠''⎩', ∴△ABF ≌△AC ′E (ASA ),∴AF =AE ,∵AB ′=AC ,∴B ′F =AB ′-AF =AC -AE =CE ,在△B ′FD 和△CED 中,B C FDB EDC B F CE '''∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△B ′FD ≌△CED (AAS ),∴B ′D =CD ,FD =ED ,∴DE +DC =DE +DB ′=B ′E =x ,过点A 作AG ⊥B′C′于G ,∵AB ′=AC ′,∴B′G =C′G ,∵AC ′=2,∴cos C ′=2GC GC AC ''==',∴B G GC ''==∴2B C GC '''==∴AG =AC ′sin30°=1∴EC ′=B C B E x '''-=∴()1111222y EC AG x x '=⋅=⨯⨯=∴12y x =是一次函数,当x =0时,y =故选择B .【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键.9、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A .不是中心对称图形,也不是轴对称图形,故此选项不合题意;B .是轴对称图形,也是中心对称图形,故此选项符合题意;C .是轴对称图形,不是中心对称图形,故此选项不合题意;D .不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.10、D【分析】根据题意作出图形,根据垂径定理可得2EF QF =,设OQ x =,则2216QF x =-,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为EPF ,P 为切点,设点D 为EPF 所在的圆心,,O D 的半径相等,即CO DP =,连接,,,DE EO FO DF ,设,OD EF 交于点Q ,根据折叠的性质可得,DE OE DF OF ==,又OE OF =则四边形DEOF 是菱形,且142OF AB == 22216OF OQ QF =+=设OQ x =,则2216QF x =-则当QO 取得最大值时,QF 取得最小值,即EF 取得最小值,当QO 取得最小值时,EF 取得最大值,根据题意,当点P 于点B 重合时,四边形CDPO 是正方形则OD =此时EF OD ==当点P 与点O 重合时,此时OQ 最小,OQ 122CO ==则2216QF x =-16412=-=即QF =则EF =m ∴≤≤故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得EF 的最大值与最小值是解题的关键.二、填空题1、1:4【分析】过点E 作EH ⊥AC 与H ,EI ⊥BC 与I ,设AC =3m ,根据三角函数可求AB =353sin 5AC m m B ==,根据勾股定理4BC m =,根据点D 是边 BC 的中点,得出CD =BD=2m ,DG =BD sin B =36255m m ⨯=,根据BDE 沿直线 DE 翻折,得到△FDE ,得出∠EDC =∠EDF ,可证△EID ≌△EGD (AAS ),得出ID =GD =65m ,再证四边形HCIE 为矩形HE =CI =45m ,HE∥CI 即HE∥CB ,证明△AEH ∽△ABC ,4554m AE m m m=⨯=即可.【详解】解:过点E 作EH ⊥AC 与H ,EI ⊥BC 与I ,设AC =3m ,390,sin 5C B ∠==, ∴AB =353sin 5AC m m B ==,根据勾股定理4BC m ===,∵点D 是边 BC 的中点,∴CD =BD =2m ,∵FD AB ⊥, ∴DG =BD sin B =36255m m ⨯=, ∵BDE 沿直线 DE 翻折,得到△FDE ,∴∠EDC =∠EDF ,∵EI ⊥BC ,∴∠EID =90°=∠EGD ,在△EID 和△EGD 中,EID EGD EDI EDG ED ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EID≌△EGD(AAS),∴ID=GD=65 m,∴CI=CD-ID=2m-6455m m=,∵EH⊥AC,∴∠EHC=90°,∵∠HCI=∠ACB=90°,∠EIC=90°,∴∠EHC=∠HCI=∠EIC=90°,∴四边形HCIE为矩形,∴HE=CI=45m,HE∥CI即HE∥CB,∴∠AHE=∠ACB,∠AEH=∠B,∴△AEH∽△ABC,∴AE HEAB CB=即4554mAEm m=,解得4554mAE m mm=⨯=,∴BE=AB-AE=5m-m=4m,∴::41:4AE BE m m==.2、105【分析】利用等腰三角形的性质求出∠BAC,可得结论.【详解】解:∵BC =BA ,∠B =30°,∴∠C =∠BAC =12(180°﹣30°)=75°,∴旋转角α=180°﹣∠BAC =105°,故答案为:105.【点睛】本题考查了等腰三角形性质以及旋转的角度问题,解题的关键是理解旋转角就是对应线段的夹角.3、 (-2,-5)【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,5P -关于x 轴对称点的坐标为:()2,5--, 故答案为:()2,5--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.4、8【分析】 根据一次函数解析式可得:80A k ⎛⎫- ⎪⎝⎭,,()08B ,,过点B 作MN x ∥轴,过点A 作AM MN ⊥,过点Q 作QN MN ⊥,由旋转的性质可得AB BQ =,90ABQ ∠=︒,依据全等三角形的判定定理及性质可得:ΔΔΔΔ≅ΔΔΔΔ,MA NB =,NQ MB =,即可确定点Q 的坐标,然后利用勾股定理得出OQ 的长度,最后考虑在什么情况下取得最小值即可.【详解】解:函数8y kx =+得:80A k ⎛⎫- ⎪⎝⎭,,()08B ,,过点B 作MN x ∥轴,过点A 作AM MN ⊥,过点Q 作QN MN ⊥,连接OQ ,如图所示:将线段BA 绕点B 逆时针旋转90︒得到线段BQ , ∴AB BQ =,90ABQ ∠=︒,∴9090ABM MAB MBA NBQ ∠+∠=︒∠+∠=︒,, ∴MAB NBQ ∠=∠,在ΔΔΔΔ与ΔΔΔΔ中,BMA QNB MAB NBQ AB BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴8MA NB ==,8NQ MB k==, 点Q 的坐标为88,8k ⎛⎫- ⎪⎝⎭,∴OQ =当1k =或1k =-时,OQ 取得最小值为8,故答案为:8.【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.5、【分析】连接OD ,做BP ⊥x 轴,垂足为M ,作AP ⊥y 轴,垂足为N ,AP 、BP 相交于点P .根据旋转作图和“心”形的对称性得到∠COB =30°,∠BOG =60°,设OM =m ,得到点B 坐标为()m ,把点B 代入26y x =-+,求出m ,即可得到点A 、B 坐标,根据勾股定理即可求出AB . 【详解】解:如图,连接OD ,做BP ⊥x 轴,垂足为M ,作AP ⊥y 轴,垂足为N ,AP 、BP 相交于点P . ∵点C 绕原点O 旋转60°得到点D ,∴∠COD =60°,由“心”形轴对称性得AB 为对称轴,∴OB 平分∠COD ,∴∠COB =30°,∴∠BOG =60°,设OM =m ,在Rt△OBM 中,BM =tan OM BOM ∠=,∴点B 坐标为()m , ∵点B 在抛物线26y x =-+上,∴26m -+=,解得12m m ==-∴点B 坐标为),点A 坐标为()6--,∴AP =BP =9,在Rt△ABP 中,AB ==故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B 坐标是解题关键.三、解答题1、(1)23°;(2)【分析】(1)由旋转的性质可得AB =AC ,∠ADC =∠E ,∠CAB =∠DAE =60°,由三角形的内角和定理可求解;(2)连接DE ,可证△AED 是等边三角形,可得∠ADE =60°,AD =DE ,由旋转的性质可得△ACD≌△ABE,可得CD=BE=4,由勾股定理可求解.【详解】解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°−97°−60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=4,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE=90°,∴DE∴AD=DE=【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.2、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可.【详解】解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);(3)△A 1B 1C 1与△A 2B 2C 2关于y 轴成轴对称,对称轴为y 轴.【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、(1)四边形AEA D '是正方形;理由见详解;(2)①=S CG =(3)A D ''=. 【分析】(1)由正方形的判定定理进行证明,即可得到结论成立;(2)①由折叠的性质,则DC =DG ,求出∠ADG =30°,利用勾股定理得到AG =,DG =再求出4CF =,由面积公式即可求出面积;②求出60CDG ∠=︒,CD DG =,则△CDG 是等边三角形,即可求出CG 的长度;(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,先求出2DN =,4A N '=,设PD x '=,然后表示出6D Q x '=-,2AQ =,再利用勾股定理,求出65x =,然后利用勾股定理,即可求出答案.【详解】解:(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,由折叠的性质,则90DA E '∠=︒,AD DA '=,∴四边形AEA D '是正方形;(2)①如图,由折叠的性质,则DC =DG ,CF =FG ,∵30CDF ∠=︒,∴30GDF CDF ∠=∠=︒,∴90303030ADG ∠=︒-︒-︒=︒, ∴12AG DG =, ∴1122AG DC AB ==;由勾股定理,则222DG AG AD =+, ∴2221()62DG DG =+,∴DG =∴12AG =⨯在直角△BFG 中,由勾股定理,则 ∵BG AG ==66BF CF FG =-=-,∴222BG BF FG +=,∴222(6)FG FG +-=,∴4FG =,∴DFG 的面积为:11422S FG DG ==⨯⨯②由①可知,30GDF CDF ∠=∠=︒,DC =DG ,∴303060CDG ∠=︒+︒=︒,∴△CDG 是等边三角形, ∴CG DG ==故答案为:(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,如图所示,∴PQ ⊥A D ',PQ ⊥AE ,由(1)可知,四边形AEA D '是正方形,∴6AD A D AE A E ''====,由折叠的性质,则6AD AD '==,∵:1:2DN A N '=,∴2DN =,4A N '=,∴2D N DN '==,设PD x '=,则PN∴4A P '=6D Q x '=-,∴4QE A P '==∴6(42AQ =-=在直角AQD '∆中,由勾股定理,则222AD AQ QD ''=+∴22(2(6)36x +-=,整理化简得:812x -+,23x -+,∴2249124x x x -=-+, 解方程,得165x =,20x =(舍去); ∴65PD '=;∴85PN ==, ∴812455A N '=-=,∴A D ''==【点睛】本题考查了折叠的性质,正方形的判定和性质,矩形的性质,勾股定理,解一元二次方程,等边三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.本题涉及的知识点综合,应用能力强,难度大,学生需要仔细分析.4、(1)见解析;(2)平行【分析】(1)将△ABC 向右平移3个单位长度,再向上平移2个单位长度,画出111A B C △即可;(2)根据平移的性质:对应线段平行且相等,即可得出答案.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)根据平移的性质:对应线段平行且相等,故答案为:平行.【点睛】此题考查了作图﹣平移、平移的性质,熟练掌握平移的有关性质是解题的关键.5、(1)是;(2)16n ;(3)907或36019或1807或30秒 【分析】(1)根据“友好线”定义即可作出判断;(2)根据“友好线”定义即可求解;(3)利用分类讨论思想,分四种情况进行计算即可.【详解】解:(1)∵OB是∠BOC的平分线,∴∠BOD=∠COD,∵∠COA=12∠BOC,∴∠BOD=12∠AOD,∴射线OD是射线OB在∠AOB内的一条“友好线”.(2)∵射线OM是射线OB在∠AOB内的一条“友好线”,∠AOB的度数为n,∴∠BOM=13∠AOB=13n,∵ON平分∠AOB,∴∠BON=12∠AOB=12n,∴∠MON=∠BON﹣∠BOM=12n﹣13n=16n;(3)设运动时间为x(x≤36)秒时,射线OA、OB、OC中恰好有一条射线是其余两条射线中某条射线的“友好线”.当射线OB是射线OA在∠AOC内的一条“友好线”时,则∠AOB=12∠COB,所以3x=12(180﹣5x﹣3x),解得x=907(符合题意),即运动时间为907秒时,射线OB是射线OA的“友好线”.当射线OB是射线OC在∠AOC内的一条“友好线”时,则∠COB=12∠AOB,所以180﹣5x﹣3x=12×3x,解得x=36019(符合题意),即运动时间为36019秒时,射线OB是射线OC的“友好线”.当射线OC是射线OB在∠AOB内的一条“友好线”时,则∠COB=12∠AOC,所以3x+5x﹣180=12(180﹣5x),解得x=1807(符合题意),即运动时间为1807秒时,射线OC是射线OB的“友好线”.当射线OC是射线OA在∠AOB内的一条“友好线”时,则∠AOC=12∠COB,所以180﹣5x=12(5x+3x﹣180),解得x=30(符合题意),即运动时间为30秒时,射线OC是射线OA的“友好线”.综上所述,当运动时间为907或36019或1807或30秒时,符合题意要求.【点睛】本题主要考查了角平分线的定义,角的运算,理解新定义,并用数形结合思想解答是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;
(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
(1)HD:GC:EB=1::1……………………………3分
(2)连结AG、AC,∵△ADC和△AHG都是等腰直角三角形,∴AD:AC=AH:AG =1:
∠DAC=∠HAG=45°,
∴∠DAH=∠CAG…………………………………………………………4分
∴△DAH∽△CAG ,∴HD:GC=AD:AC=
1:……………………………………………5分
∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE,又∵AD=AB,AH=AE,
∴△DAH≌△BAE,∴HD=EB
∴HD:GC:EB=
1::1………………………………………………………………………
6分
(3)有变化,HD:GC:EB=
……………………………………………………8分
21.在Rt⊿POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,
旋转三角尺,三角尺的两直角边与⊿POQ
的两直角边分别交于点A、B,
(1)求证:MA=MB
(2)连接AB,探究:在旋转三角尺的过程
中,⊿AOB的周长是否存在最小值,若存
在,求出最小值,若不存在。
请说明理由。