电阻焊
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电阻焊
电阻焊是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法,
` 电阻焊的种类很多,按接头形式可分为搭接电阻焊和对接电阻
焊两种。结合工艺方法,搭接电阻焊又可分为点焊、缝焊和凸焊三种,对接电阻焊一般有电阻对焊和闪光对焊两种
在点焊过程中,影响焊点质量的因素有:焊接电流、焊接压力、电极的端面形状、穿过电极的铁磁性物质及分流等。特别在阻焊设备较多的焊接车间,同时工作的焊机相互感应,对电网产生影响,导致焊接质量的稳定性和一致性较差。因此,电阻点焊控制技术显得尤为重要。目前,控制模式已由单模式控制发展为多模式控制,调节参量已由初始的单变量调节发展为多变量调节,在焊接过程中可同时对焊接电流、焊接时间和焊接压力进行调节。
特点:
(1)利用电流通过工件焊接处的电阻而产生的热量对工件加热。
即热量不是来源于工件之外,而是内部热源。
(2)整个焊接过程都是在压力作用校完成的,即必须施加压力。
(3)在焊接处不需加任何填充材料,也不需任何保护剂。
形成电阻焊接头的基本条件只有电极压力和焊接电流。
1.点焊
点焊是利用在焊件间形成的一个个焊点来联接焊件的。两焊件
被压紧于两柱形电极之间并通以强大的电流,利用电阻热将工
件焊接区加热到形成应有尺寸的熔化核心为止。然后切断电
流,熔核在压力作用下冷却结晶形成焊点。点焊在车身制造中
应用最广。点焊的形式很多,但按供电方向来分只有单面点焊
和双面点焊两种。在这两种点焊中按同时完成的焊点数又可分
为单点、双点和多点焊。
。
A.焊点质量的一般要求
点焊结构靠单个或若干个合格的焊点实现接头的连接,接头质量的好坏完全取决于焊点质量及点距。焊点质量除了取决于焊点尺寸外,还与焊点表面与内部质量有关。
焊点外观上要求表面压坑浅、平滑呈均匀过渡,无明显凸肩或局部挤压的表面鼓起;外表面没有环状或颈项裂纹,也无熔化、烧伤或粘附的铜合金。从内部看,焊点形状应规则、均匀,无超标的裂纹和缩孔等内部缺陷及热影响区金属的组织与力学性能有无发生明显的变化等。不同厚度板和多层板的焊接,点焊和板厚的关系
点焊时产生的热量由下式决定: Q=12RtU
工件表面的氧化物、污垢、油和其他杂质增大了接触电阻>局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。
1。当工件和电极一定时,工件的电阻取决与它的电阻率。因此,电阻率是被焊材料的重要性能。电阻率高的金属其导电性差,电阻率低的金属其导电性好。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易。点焊时,前者可用较小电流,而后者就必须用很大电流。电阻率不仅取决与金属种类,还与会属的热处理状态、加工方式及温度有关。
接触电阻存在的时问是短暂的,一般存在于焊接初期,由两方面原因形成:
(1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。
(2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而
增加了接触处的电阻。
2.
,电流对产热的影响是平方关系,比电阻和时间两者都大。因此,在焊接过程中,它是一个必须严格控制的参数。引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因为回路的几何形状变化,或因在次级回路中引入了不同量的磁性金属。
3.
为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。为了获得一定强度的焊点,可以采用大电流和短时间。
4.
电极压力对两电极问总电阻R有明显的影响,随着电极压力的增大,R显著减小,10但电流增加而使产热递增的幅度并不大,解决的办法是在增大焊接压力的同时,增大焊接电流。但电极压力过大,容易在焊接过程中将液态会属挤到熔核周围,反而使点焊质量降低。
5.
由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。
。
焊工艺参数选择
点焊工艺的主要规范参数是焊接电流、焊接时问、电极压力。通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。
3.1.1.电极压力对点焊质量的影响
(
,在通电电流和时问不变的钱提下,电极最大位移与点焊质量具有良好的对应关系,二者随压力的变化趋势基本一致。随着焊接压力的增大,在一定范围内,点焊强度稍有增大,基本稳定在一定水平,波动很小;但随电极压力进一步增大时,焊接强度下降较快。【2.电极压力F电极压力的大小一方面影响电阻的数值.从而影响析热t的多少.另一方面影晌烽件向电极的散热情况。过小的电极压力将导致电阻增大、析热t过多且散热较差,引起前期飞溅;过大的电极压力将导致电阻减小、析热t少、散热良好、熔核尺寸缩小.尤其是焊透率显著下降。因此从节能角度来考虑.应选择不产生飞溅的最小电极压力。此值与电流值有关,可参照文献中广为推荐的临界飞溅曲线图。目前均建议选用临界飞溅曲线附近无
飞溅区内的工作点。】
3.1.2.通电电流对点焊质量的影响
随着通电电流的升高,焊接质量总体上有提高的趋势。根掘实验的记录情况,压力越大,越不容易出现飞溅,所以不同压力情况下的电流给定范围有所不同,我们是根掘出现飞溅时的电流值作为实验电流的上限。电极最大位移基本随通电电流的增大而增大,和点焊强度具有较好的一致性,个别情况有位移减小的趋势,主要是因为出现较大飞溅引起的。在电极压力和通电电流不变的情况下,电极最大位移和焊接质量随通电时间的增加而增加,焊接质量基本上由通电时间来决定。【3.焊接时间通电时间的长短直接影响输入热的大小,在目前广为采用的同期控制点焊机上,通电时间是周的整倍数。在其它参数固定的情况下,只有通电时间超过某最小值时才开始出现熔核,而后随通电时间的增长,熔核先快速增大,拉剪力亦提高。当选用的电流适中时.进一步增加通电时间,熔核增长变慢.渐趋恒定。但由于加热时间过长.组织变差,正拉力下降.会使塑性指标(延性比Fa 爪)下降。当选用的电流较大时,则熔核长大到一定极限后会产生飞溅。】
3.1.3通电时间对点焊质量的影响
显然,在电极压力和通电电流不变的情况下,电极最大位移和焊接质量随通电时间的增加而增加,焊接质量基本上由通电时间来决定。【4.焊接电流助析出热t与电流的平方成正比,所以焊接电流对焊点性能影响最敏感。在其它参数不变时,当电流小于某值熔核不能形成.超过此值后,随电流增加.熔核快速增大,焊点强度上升,而后因散热t的增大而熔核增长速度减缓,禅点强度增加缓、慢,如进一步提高电流,则导致产生飞溅,焊点强度反而下降。所以一般建议选用对熔核直径变不敏感的适中电流来焊接。】
3.2焊接规范参数的确定原则
l)保证焊核直径;
2)
3)尽量采用硬规范以提高生产节拍,提高接头综合性能。
以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。当采用工频交流电源时,点焊参数的选择应首先确定电极
3.3 调整方法:
1)根据工件厚度,选定焊机容量,确定焊点直径范围;
2)选定焊钳型号和电极尺寸,焊钳的最大电极压力一般要求达到300oN(按管路气压为0.6MPa考虑);
3)初步设定焊接时间,根据料厚及层数组合状况,一般可调为8至14周波;
4)将焊接电流逐渐增大,直到焊点直径达到要求。若焊点直径没有达到要求即产生飞溅,则适当减小焊接电流而增加通电时间,直至达到规定的直径。
以上参数调整过程中,同时注意保证压坑深度,一般压坑深度小于板厚的15%~20%,若压坑过深,则适当减小气压并视情况调整电流和焊接时间。合工艺试验和车间生产的具体实际情况,我们归纳出低碳钢板的最佳规范如上表: