(完整版)初中数学之三角形中线、高线、角平分线知识点

合集下载

三角形角平分线、中线、高线

三角形角平分线、中线、高线

三角形角平分线线、中线和高线知识点:1、三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.2、三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.3、三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.总结:三角形的高、中线、角平分线都是一条线段。

知识点梳理与典型例题讲解知识点一:认识并会画三角形的高线,利用其解决相关问题1、作出下列三角形三边上的高:2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交三角形的 ;(3)钝角三角形的三条高所在直线相交三角形的 ;(4)直角三角形的三条高相交三角形的 ;(5)交点我们叫做三角形的垂心(外心)。

.4、如图所示,画△ABC 的一边上的高,下列画法正确的是( ).A CB A CB知识点二:认识并会画三角形的中线,利用其解决相关问题1、 作出下列三角形三边上的中线2、AD 是△ABC 的边BC 上的中线,则有BD = =21 , 3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交三角形的 ;(3)钝角三角形的三条中线相交三角形的 ;(4)直角三角形的三条中线相交三角形的 ;(5)交点我们叫做三角形的重心。

初中数学之三角形中线高线角平分线知识点

初中数学之三角形中线高线角平分线知识点

初中数学之三角形中线高线角平分线知识点三角形是初中数学中一个重要的几何图形,它有很多性质与定理,其中三角形的中线、高线和角平分线是十分重要的知识点。

下面将详细介绍一下这三个概念的定义,性质和应用。

一、中线1.定义:三角形的中线是三角形的一个边上的中点与对立顶点连接而成的线段。

2.性质:(1)任意一条中线上的点到两个对立边的距离相等,即中线上各点到两个对立边的距离相等。

(2)三角形中线的三个交点互相连接,可以在三角形的内部形成三条交叉的线段,这三条线段的交点就是三角形的重心。

重心是三角形内部所有中线的交点,它离三个顶点的距离都相等,也就是说重心到三个顶点的距离相等。

(3)三角形的三条中线互相平分对立顶点的内角,即三角形的三条中线互相平分对立顶点的内角。

(4)三角形三条中线的交点离三个顶点等距离,即三角形的中线互相交于一点,且该点到三个顶点的距离相等。

(5)中线的比例定理:在三角形ABC中,如果D、E、F分别是BC、AC、AB上的中点,那么AD∶DF=1∶2,BE∶DE=1∶2,CF∶EF=1∶23.应用:中线在三角形的性质研究和解题中起到重要的作用,特别是在证明几何定理的过程中,常常会用到三角形的中线性质。

同时,中线还可以用来求三角形的面积,当一个三角形ABC的中线EF垂直于BC且EF等于BC的一半时,EF可以作为底边,AC可以作为高,求三角形ABC的面积。

二、高线1.定义:三角形的高线是从三角形的一个顶点引垂线与对立边相交而成的线段。

2.性质:(1)三角形的三条高线交于一点,该点叫做三角形的垂心。

垂心到三角形的三边的距离互不相等。

(2)垂线和对立的边垂直,即垂线和对立的边成为直角。

(3)垂线平分对立的边。

(4)如果三角形的高线重合、重合的部分等于底边长,则该三角形为等腰直角三角形。

(5)如果三角形是等腰三角形,则该三角形的高线也是中线。

3.应用:高线在三角形的研究和解题中有很多应用。

通过高线的性质,可以判断三角形是否是等腰三角形、直角三角形,还可以求解三角形的面积,等等。

初中数学:三角形中的角平分线、中线、高线和中垂线

初中数学:三角形中的角平分线、中线、高线和中垂线

一. 教学内容:三角形中的角平分线、中线、高线和中垂线二. 教学内容1. 三角形的角平分线和中线2. 三角形的高线和中垂线3. 角平分线性质定理、中垂线性质定理三. 教学目标和要求1. 理解三角形角平分线、中线、高线和中垂线的概念,并能画出相应的线。

2. 掌握三角形角平分线、中线、高线及中垂线的一些特征,并能在解题中灵活应用。

四. 教学重点、难点1. 重点:角平分线性质定理及中垂线性质定理的运用2. 难点:三角形中线在面积方面的应用,角平分线性质定理、中垂线性质定理的运用是本周难点。

五. 知识要点1. 角平分线性质定理2. 中垂线性质定理3. 三角形中的三条角平分线4. 三角形中的三条中线5. 三角形中的三条高线6. 三角形中三边上的中垂线【典型例题】例1. 如图,△ABC的两条角平分线AD,CE相交于P,PM⊥BC于M,PN ⊥AB于N,则PN=PM,请说明理由。

解:过P作PF⊥AC,垂足为F∵AD平分∠BAC,PN⊥AB,PF⊥AC∴PN=PF (为什么)∵CE平分∠ACB,PM⊥BC,PF⊥AC∴PM=PF∴PM=PN (为什么)例2. 如图,BP、CP分别为△ABC的两个外角的平分线,则点P到△ABC三边的距离相等吗?若相等,请说明理由。

解析:略例3. 已知△ABC ,要把它分成面积相等的6块,且只能画三条线,应怎样分?并说明分法的正确性。

解:分法:分别画△ABC 的三条中线AD 、BE 、CF ,交于P 点,所分得的6块面积相等。

理由:∵AD 为中线∴BD =CD ∴S △PBD =S △PCD 设S △PBD =S △PCD =a同理:可设S △PCE =S △PEA =b ;S △PAF =S △PBF =c ∵AD 为△ABC 的中线 ∴S △ABD =S △ACD 即a+2c =a+2b ∴c =b同理可得a =b ∴a =b =c∴△ABC 三条中线分得的6块三角形面积相等。

2我的个性化教材--中线、高线、角平分线汇总

2我的个性化教材--中线、高线、角平分线汇总

第二讲与三角形有关线段中考要求知识点睛1、三角形的高线:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线。

2、三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

3、三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线注:三角形的中线和角平分线都交于一点,且都在三角形的内部4、三角形的重心:三角形中三条中线的交点叫做三角形的中心.注:到顶点的距离:对边中点距离=2:15、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

6、四边形的不稳定性重、难点重点:三角形的中线、高线、角平分线;三角形的稳定性难点:三角形的中线、高线、角平分线例1、如图,在△ABC中,D ,E 分别为BC ,AD 的中点,且△ABC 的面积为4,则图中阴影部分的面积是.例2、已知:在△ABC 中,AD,AE 分别是△ABC 的高和角平分线,若∠B=30∘,∠C=50∘ (1)求∠DAE 的度数。

(2)试写出∠DAE 与∠C −∠B有何关系?(不必证明)1、如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且ABC ΔS =82cm ,则阴影部分的面积等于______.3、如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且△ABC 的面积为8,则图形中阴影部分的面积是( )A.2B.1C.12D.144、如图,△ABC 的角平分线AD 、中线BE 相交于点O ,则①AO 是△ABE 的角平分线;②BO 是△例题精讲ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A. 1个B. 2个C. 3个D. 4个5、如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A. 2B. 3C. 6D. 不能确定6、如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长。

初中数学知识归纳三角形的中线角平分线高线

初中数学知识归纳三角形的中线角平分线高线

初中数学知识归纳三角形的中线角平分线高线初中数学知识归纳:三角形的中线、角平分线、高线三角形是初中数学学习中最基础的几何图形之一,它具有丰富的性质和特点。

本文将归纳总结三角形的中线、角平分线和高线的相关性质,帮助读者更好地理解和掌握这些概念。

一、三角形的中线中线是连接三角形的两个顶点和中点的线段。

三角形的中线有以下特点:1. 任意三角形的三条中线交于一点,这一点称为三角形的重心。

重心所在的位置离三角形的三个顶点距离相等,且重心将中线分成2:1的比例。

2. 三角形的重心到顶点的距离是中线对应中点到顶点距离的2倍,也就是说,如果连接重心和顶点,那么重心到顶点的距离是连接中点和顶点的线段的2倍。

3. 在等边三角形中,三条中线重合,即三条中线交于一点,同时这个点也是三角形的重心。

二、三角形的角平分线角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。

三角形的角平分线有以下特点:1. 三角形的三条角平分线交于一点,称为三角形的内心。

内心所在的位置距离三角形的三条边的距离相等,且内心到三边的距离之和等于三角形的周长。

2. 在等腰三角形中,三条角平分线重合,即三条角平分线交于一点,同时这个点也是三角形的内心。

3. 角平分线和对边、邻边有如下关系:角平分线等分对边和邻边上的对应角;对边和邻边上的线段与角平分线比例相等。

三、三角形的高线高线是从一个顶点出发,与对边垂直相交的线段。

三角形的高线有以下特点:1. 任意三角形都有三条高线,它们分别从三个顶点出发,并与对边垂直相交。

2. 等腰三角形的高线同时也是角平分线和中线。

3. 在直角三角形中,高线就是斜边上的中线。

总结:三角形的中线、角平分线和高线都有各自的特点和性质。

通过了解和掌握这些性质,我们可以更好地理解和解决与三角形相关的问题。

在实际应用中,这些概念和性质也有着广泛的应用,例如在建筑、制图、几何证明等方面都可以看到它们的身影。

通过本文的归纳和总结,我们希望读者能够对三角形的中线、角平分线和高线有更全面的了解,并在实际问题中能够运用到这些知识,提高数学解题的能力。

专题02_三角形的高、中线、角平分线_(知识点串讲)(解析版)

专题02_三角形的高、中线、角平分线_(知识点串讲)(解析版)

专题02 三角形的高、中线、角平分线重点突破知识点一三角形的高概念:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

知识点二三角形的中线概念:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形三条中线的交于一点,这一点叫做“三角形的重心”。

重心到顶点的距离是它到对边中点距离的2倍。

(选学)三角形的中线可以将三角形分为面积相等的两个小三角形。

知识点三三角形的角平分线概念:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

考查题型考查题型一画三角形的高典例1(2020·泉州市期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A【提示】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A是作BC边上的高,C是作AB边上的高,D是作AC边上的高.故选A.变式1-1.(2018·梁平区期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A.1个B.2个C.3个D.4个【答案】D【解析】试题解析:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选D.变式1-2.(2020·海淀区期末)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.【答案】D【解析】详解:三角形的高必须是从三角形的一个顶点向对边或对边的延长线作的垂线段.可以判断A,B,C虽然都是从三角形的一个顶点出发的,但是没有垂直对边或对边的延长线.故选D.变式1-3.(2020·苏州市期中)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD【答案】B【解析】试题提示:根据图形,BE是△ABC中AC边上的高.故选B.变式1-4.(2019·杭州市期中)如图AD⊥BC于点D,那么图中以AD为高的三角形的个数有()A.3 B.4 C.5 D.6【答案】D【解析】结合三角形高的定义可知,以AD为高的三角形有:△ABD,△ABE,△ABC,△ADE,△ADC,△AEC,共6个.故选D考查题型二与三角形高有关的计算典例2.(2019·济南市期中)如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大【答案】C【提示】根据三角形的面积公式、角和线段大小的比较以及三角形高的定义进行解答即可.【详解】解:A、在直角三角形ABC中,S△ABC=12BC•AC,点B沿CB所在直线远离C点移动时BC增大,则该三角形的面积越大.故A正确;B、如图,随着点B的移动,∠CAB的度数随之增大.故B正确;C、BC边上的高是AC,线段AC的长度是不变的.故C错误.D、如图,随着点B的移动,边AB的长度随之增大.故D正确;故选:C.【名师点拨】本题考查了三角形的面积,角和线段大小的比较以及三角形高的定义,解题时要注意“数形结合”数学思想的应用.变式2-1.(2020·毕节市期末)如图,△ABC 中,D ,E 分别是BC 上两点,且BD=DE=EC ,则图中面积相等的三角形有( )A .4对B .5对C .6对D .7对【答案】A 【提示】根据三角形的面积公式,知:只要同底等高,则两个三角形的面积相等,据此可得面积相等的三角形.【详解】由已知条件,得△ABD ,△ADE ,△ACE ,3个三角形的面积都相等,组成了3对,还有△ABE 和△ACD 的面积相等,共4对.故选A.【名师点拨】本题考查了三角形的相关知识,解题的关键是熟练的掌握三角形面积公式与运用.变式2-2.(2020·龙岩市期中)如图,AD ,CE 是△ABC 的两条高,已知AD=10,CE=9,AB=12,则BC 的长是( )A .10B .10.8C .12D .15【答案】B 【解析】∵AD ,CE 是△ABC 的两条高,AD=10,CE=9,AB=12,∴△ABC 的面积=12×12×9=12BC ⋅AD=54, 即12BC ⋅10=54,解得BC=10.8.故选B.变式2-3.(2018·合肥市期中)如图所示,AD CE BF 、、是ABC ∆的三条高,654AB BC AD ===,,,则CE =( )A .245B .152C .103D .3【答案】C【提示】根据三角形的面积公式解答即可. 【详解】解:因为AD 、CE 、BF 是△ABC 的三条高,654AB BC AD ===,,,所以可得:12BC•AD=12AB•CE , 可得:CE=•BC AD AB =546⨯=103. 故选C .【名师点拨】此题考查三角形的面积,关键是根据同一三角形面积相等来提示.变式2-4.(2018·烟台市期末)如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=50°,则∠BPC 等于( )A .90°B .130°C .270°D .315°【答案】B 【详解】根据∠A=50°可得∠ABC+∠ACB=130°,根据CD ⊥AB ,BE ⊥AC 可得∠ABE=40°,∠ACD=40°,则∠PBC+∠PCB=130°-40°-40°=50°,则∠BPC=180°-50°=130°. 故选:B.变式2-5.(2019·荆门市期末)如图,三角形ABC ,∠BAC =90︒,AD 是三角形ABC 的高,图中相等的是( ).A .∠B =∠CB .∠BAD=∠BC .∠C =∠BAD D .∠DAC=∠C【答案】C 【提示】根据直角三角形的性质可得∠B +∠C =90︒,由AD 是三角形ABC 的高,可得∠BDA=∠ADC =90︒,再运用三角形内角和定理依次判断即可.【详解】∵∠BAC =90︒,∴∠B +∠C =90︒,故选项A 错误;∵AD 是三角形ABC 的高,∴∠BDA=90︒,∴∠BAD+∠B=90︒,故选项B 错误;∵∠BAC =90︒,∴∠BAD+ ∠DAC=90︒,又∵∠ADC =90︒,∴∠DAC+ ∠C=90︒,∴∠C=∠BAD,故选项C正确,选项D错误.故选C.【名师点拨】本题考查了三角形的高线以及三角形的内角和定理,属于基础题型.变式2-6.(2019·济南市期中)如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为( )A.12 B.14 C.16 D.18【答案】D【提示】连接AE和CD,要求三角形DEF的面积,可以分成三部分(△FCD+△FCE+△DCE)来分别计算,三角形ABC是一个重要的条件,抓住图形中与它同高的三角形进行提示计算,即可解得△DEF的面积.【详解】解:连接AE和CD,∵BD=AB,∴S△ABC=S△BCD=1,S△ACD=1+1=2,∵AF=3AC,∴FC=4AC,∴S△FCD=4S△ACD=4×2=8,同理可以求得:S△ACE=2S△ABC=2,则S△FCE=4S△ACE=4×2=8;S△DCE=2S△BCD=2×1=2;∴S△DEF=S△FCD+S△FCE+S△DCE=8+8+2=18.故选:D.【名师点拨】本题考查三角形面积及等积变换的知识,注意高相等时三角形的面积与底成正比的关系,并在实际问题中的灵活应用,有一定难度.考查题型三三角形中线有关的长度计算典例3.(2018·秦皇岛市期中)如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( )A .2B .3C .4D .6【答案】A【解析】试题解析:∵AE 是△ABC 的中线,EC=4,∴BE=EC=4,∵DE=2,∴BD=BE-DE=4-2=2.故选A .变式3-1.(2019·肇庆市期中)已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm ,则AB 与AC 的差为( ) A .2cm B .3cm C .4cm D .6cm【答案】B【提示】根据三角形中线的定义可得BD=CD ,然后根据三角形的周长公式列式计算即可得解.【详解】解:∵AD 是△ABC 的中线,∴BD=DC ,∴△ABD 与△ACD 的周长之差=(AB+AD+BD )-(AC+AD+CD )=AB-AC ,∵△ABD 比△ACD 的周长大3cm ,∴AB 与AC 的差为3cm .故选B .【名师点拨】本题考查了三角形的中线,熟记概念并求出两三角形周长的差等于AB-AC 是解题的关键.变式3-2.(2020·哈尔滨市期中)如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定【答案】C【解析】解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.变式3-3.(2019·临清市期末)如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB 与AC的和为13cm,那么AC的长为()A.8cm B.9cm C.10cm D.11cm【答案】B【提示】根据中线的定义知CD=BD.结合三角形周长公式知AC-AB=5cm;又AC+AB=13cm.易求AC的长度.【详解】∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长-△ABD的周长=5cm.∴AC-AB=5cm.又∵AB+AC=13cm,∴AC=9cm.即AC的长度是9cm.故选B.【名师点拨】本题考查了三角形的中线,根据周长的差表示出AC-AB=5cm,是解题的关键.考查题型四三角形中线有关的面积计算典例4.(2020·渠县期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2B.1cm2C.0.5 cm2D.0.25 cm2【答案】B【提示】依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEF ABC SS ∆=从而求得△BEF 的面积.【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点, 1111,,,2222ABD ABC BDE ABD CDE ADC BEF BEC S S S S S S S S ∆∆∆∆∆∆∆∆∴==== 14BEF ABC S S ∆∆∴= ∵△ABC 的面积是4,∴S △BEF =1.故选:B【名师点拨】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S=12×底×高,得出等底同高的两个三角形的面积相等.变式4-1.(2018·鄂尔多斯市期中)如图,△ABC 的面积为12cm 2,点D 在BC 边上,E 是AD 的中点,则△BCE 的面积是( )A .4cm 2B .6cm 2C .8cm 2D .6cm 2【答案】B 【解析】∵E 是AD 的中点,∴S △BDE =12S △ABD ,S △DEC =12S △ADC , ∴△BCE 的面积=S △BDE +S △DEC =12×(S △ABD +S △ADC )=12×△ABC 的面积=6, 故选B .名师点拨:本题考查的是三角形的面积的计算,掌握三角形的一条中线把三角形分为面积相等的两部分是解题的关键.变式4-2.(2019·沧州市期末)如图,D ,E ,F 分别是边BC ,AD ,AC 上的中点,若S 阴影的面积为3,则△ABC 的面积是( )A .5B .6C .7D .8【答案】D【提示】利用三角形中线将三角形分成面积相等的两部分,111222ABD ACD ABC BDE ABD ADF ADC SS S S S S S ====,,,再得到1148BDE ABC DEF ABC S S S S ==,,所以83ABC S S =阴影部分即可得出. 【详解】∵D 为BC 的中点 ∴1122BDE ABD ADF ADC S S S S ==,,12DEF ADF S S =∴1148BDE ABC DEF ABC S S S S ==, ∴BDE S △+DEF S △=14ABC S +18ABC S =38ABC S ∴ABC S =83S 阴影部分=83×3=8 故选:D【名师点拨】三角形的中线将三角形分成两个面积相等的三角形,根据中线找出图中三角形的面积关系是解决本题的关键.变式4-3.(2019·温州市期中)如图,在△ABC 中,点D 是BC 边上的一点,E ,F 分别是AD ,BE 的中点,连结CE ,CF ,若S △CEF =5,则△ABC 的面积为( )A .15B .20C .25D .30【答案】B 【提示】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F 是BE 的中点,S △CFE =S △CFB =5,∴S △CEB =S △CEF +S △CBF =10,∵E 是AD 的中点,∴S △AEB =S △DBE ,S △AEC =S △DEC ,∵S △CEB =S △BDE +S △CDE∴S △BDE +S △CDE =10∴S △AEB +S △AEC =10∴S △ABC =S △BDE +S △CDE +S △AEB +S △AEC =20故选:B.【名师点拨】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用. 考查题型五三角形重心的有关性质典例5.(2019·北京市期中)如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三边中线的交点【答案】D【提示】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.【详解】解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选D.【名师点拨】考查了三角形的重心的概念和性质.注意数学知识在实际生活中的运用.变式5-1.(2019·泉州市期中)如图,在△ABC中,D,E分别是BC,AC的中点,AD和BE相交于点G,若AD=6,则AG的长度为()A.2 B.3 C.4 D.5【答案】C【提示】根据D、E分别是边BC,AC的中点,AD、BF相交于G,即可得出G为三角形的重心,利用重心的性质得出AG的长即可.【详解】∵D、E分别是边BC,AC的中点,AD、BF相交于G∴G为△ABC的重心∴AG=2DG∵AD=6∴AG=4故选C.【名师点拨】本题考查的是三角形的重心性质,能够判断出点G 是三角形的重心是解题的关键.考查题型六 三角形的角平分线典例6.(2019·滨州市期末)如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°【答案】A 【详解】根据题意可得,在△ABC 中,70,48︒︒∠=∠=C ABC ,则62︒∠=CAB ,又AD 为△ABC 的角平分线,1262231︒︒∴∠=∠=÷=又在△AEF 中,BE 为△ABC 的高∴90159359︒︒︒∠=-∠=∴∠=∠=EFA EFA变式6-1.(2019·宁德市期末)如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°【答案】C 【提示】由三角形的内角和定理,可求∠BAC=82°,又由AE 是∠BAC 的平分线,可求∠BAE=41°,再由AD 是BC 边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE ,问题得解.【详解】在△ABC 中,∵∠ABC=34°,∠ACB=64°, ∴∠BAC=180°−∠B−∠C=82°,∵AE 是∠BAC 的平分线,∴∠BAE=∠CAE=41°. 又∵AD 是BC 边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°.【名师点拨】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.变式6-2.(2019·信阳市期中)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.5【答案】B【解析】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC=×4×2+AC×2=7,解得AC=3.故选B.变式6-3.(2019·合肥市期中)如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE 等于()A.20°B.18°C.45°D.30°【答案】A【提示】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAD=14°,∠CAD=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故选:A .【名师点拨】此题主要考查了高线以及角平分线的性质,得出∠DAE 的度数是解题关键.变式6-4.(2020·泰兴市期中)如图,BE 、CF 是△ABC 的角平分线,∠A=50°,BE 、CF 相交于D ,则∠BDC 的度数是( )A .115°B .110°C .100°D .90°【答案】A【提示】由于∠A=50°,根据三角形的内角和定理,得∠ABC 与∠ACB 的度数和,再由角平分线的定义,得∠DBC+∠DCB 的度数,进而求出∠BDC 的度数.【详解】∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE 、CF 是△ABC 的角平分线,∴1122EBC ABC FCB ACB ∠=∠∠=∠,,∴()1652EBC FCB ABC ACB ∠+∠=⨯∠+∠=︒,∴∠BDC=180°﹣65°=115°,故选A .【名师点拨】考查三角形内角和定理以及角平分线的性质,熟练掌握角平分线的性质是解题的关键.变式6-5.(2019·西安市期末)如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为()A .135°B .120°C .90°D .60°【答案】B【提示】由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.【详解】∵O到三边的距离相等∴BO平分∠ABC,CO平分∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【名师点拨】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.。

中考数学三角形知识点总结归纳

中考数学三角形知识点总结归纳

中考数学三角形知识点总结归纳提高学习效率并非一朝一夕之事,需要长期的探索和积累,前人的经验是可以借鉴的,但必须充分结合自己的特点。

下面是小编为大家整理的关于中考数学三角形知识点总结,希望对您有所帮助!初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

专题四 三角形中的中线、角平分线、高线处理

专题四 三角形中的中线、角平分线、高线处理

专题5 解三角形中的中线、角平分线、高线处理解三角形类问题在考查时除了结合正弦定理,余弦定理,勾股定理设置题目外,往往还和三角形的一些常见元素:中线,角平分线,高线结合在一起考查。

在处理相关题目时,我们除了要充分运用正余弦定理处理边角关系,还要结合角平分线,中线,高线自身的一些性质进行解题。

小专题 中线【知识准备】如图,在△ABC 中,角C B A ,,的对边分别为,,a b c ,D 为BC 的中点 (一)余弦定理法在ABD ∆中,ADB AD a AD a c ∠⋅-+=cos )21(222①在ACD ∆中,)cos()21(222ADB AD a AD a b ∠-⋅-+=π②①+②得)(22222AD BD c b +=+ (二)向量法由于)(21BA BC BD += 所以)cos 2(41222A bc c b AD ++=(三)倍长中线法借助平行四边形性质:平行四边形对角线的平方和等于四边的平方和。

易得2222)2()(2AD BC AB AC +=+ (四)中线公式在△ABC 中,BC 边上的中线和三边有如下关系(可以用上面三种方法推导):2)(2222a c b AD -+=一、余弦定理/倍长中线法【题目】在△ABC 中,角,,A B C 的对边分别为,,a b c(1)若0cos sin =+A b B a ,求角A.(2)若D 为BC 的中点,4==AD BC ,求AC AB +的取值范围.ACDB【解析】(1)由正弦定理0cos sin sin sin =+A B B A所以1tan -=A ,又因为),0(π∈A ,43π=∴A (2)解法一利用余弦定理因为D 为BC 的中点,所以4==AD BC由余弦定理,在ABD ∆中,ADB AB ∠⨯⨯-+=cos 42242222① 在ACD ∆中,)cos(42242222ADB AC ∠-⨯⨯-+=π② ①+②得4022=+AC AB所以54)(222=+≤+AC AB AC AB又因为三角形两边之和大于第三边,所以]54,4(∈+AC AB 解法二利用倍长中线由知识准备知80)(2)2(2222=+=+AC AB BC AD 所以4022=+AC AB所以54)(222=+≤+AC AB AC AB又因为三角形两边之和大于第三边,所以]54,4(∈+AC AB 二、向量法【题目】已知ABC ∆的面积为33,且内角C B A ,,依次成等差数列.(1)若A C sin 3sin =,求边AC 的长;(2)设D 为AC 的中点,求线段BD 长的最小值.【解析】(1)依题内角C B A ,,依次成等差数列,则3π=B所以33sin 21==∆B ac S ABC ,即12=ac 又因为A C sin 3sin =,结合正弦定理得a c 3=,所以6,2==c a 在ABC ∆中,由余弦定理得28cos 2222=-+=B ac c a b 解得72=b ,故72=AC (2)因为D 为AC 的中点,所以)(21BA BC BD +=即943)(41)cos 2(4122222=≥++=∠++=ac ac c a ABC ac c a BD当且仅当c a =时等号成立 所以线段BD 长的最小值为3题后反思以上四种处理中线的方法殊途同归,亦可以相互转化,其中倍长中线法和中线公式在使用时需要证明,不可以直接代入处理大题,因此更实用于小题解答;而向量法则可以进行推广,即点D 为BC 边上的三等分点时,也可用向量处理;余弦定理的处理手段则属于通性通法,适用于我们处理与中线有关的大题。

三角形及其角平分线、中线和高线

三角形及其角平分线、中线和高线

三角形及其角平分线、中线和高线知识导引1、三角形的有关概念:定义:由不在通一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

外角:三角形一条边的延长线和另一条相邻的边组成的角。

三角形的中线:连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。

三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线。

三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

注意:三角形的中线、高线、角平分线都是线段。

2、三角形的边角关系:边与边的关系:三角形的任意一边大于另外两边之差,并小于另外两边之和。

角与角的关系:三角形的内角和等于180°,外角和等于360°;三角形的一个外角等于和它不相邻的两个内角的和,且大于任何一个和它不相邻的内角。

边与角的关系:在一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。

3三角形的分类:按角分:三角形可分为锐角三角形、直角三角形、钝角三角形。

按边分:三角形可分为不等边三角形、等腰三角形。

典例精析例1:现有2cm,4cm,5cm,8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A、1个B、2个C、3个D、4个例2:如图,AD是△ABC的角平分线,AE是BC边上的高线,∠B=20°,∠C=40°,求∠DAE 的度数。

例3:如图所示,平面上的六个点A、B、C、D、E、F构成一个封闭的折线图形。

求∠A+∠B +∠C+∠D+∠E+∠F的值。

例3—1:求如图1所示图形中∠A+∠B+∠C+∠D+∠E 的大小。

例3—2:如图所示,(∠1+∠2-∠3)+(∠4+∠5-∠6)+(∠7+∠8-∠9)=例4:如图所示,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点D ,且∠D=30°,求∠A 的度数。

(完整版)初中数学之三角形中线、高线、角平分线知识点

(完整版)初中数学之三角形中线、高线、角平分线知识点

初中数学之三角形中线、高线、角平分线知识点我们在学习三角形的时候,学到好多“线”,比如:中线、角平分线、垂线、高线等等.它们都是三角形里面比较重要的东西,也是比较重要的知识点。

如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为多少?这道题题目比较简单,很容易得出答案是2。

三角形的中线在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

由于三角形有三条边,所以一个三角形有三条中线。

且三条中线交于一点。

这点称为三角形的重心。

每条三角形中线分得的两个三角形面积相等。

三角形中线性质定理:1、三角形的三条中线都在三角形内。

2、三角形的三条中线交于一点,该点叫做三角形的重心。

3、直角三角形斜边上的中线等于斜边的一半。

4。

三角形中线组成的三角形面积等于这个三角形面积的3/4。

三角形的角平分线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

三角形的角平分线不是角的平分线,是线段。

角的平分线是射线.(这是三角形的角平分线与角平分线的区别)角平分线线定理:定理1:在角平分线上的任意一点到这个角的两边距离相等.逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上.定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC注:定理2的逆命题也成立。

三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

三角形的高线从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

线段的垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明垂直平分线的性质:1。

初中数学必背几何知识点总结归纳

初中数学必背几何知识点总结归纳

初中数学必背几何知识点总结归纳初中数学几何的知识点三角形知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.高线、中线、角平分线的意义和做法7.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

8.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余推论2三角形的一个外角等于和它不相邻的两个内角和推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半9.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

10.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1.两组对边平行的四边形是平行四边形。

2.性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3.判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4.对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1.定义:有一个角是直角的平行四边形叫做矩形2.性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4.对称性:矩形是轴对称图形也是中心对称图形。

解三角形中的高、中线、角平分线问题

解三角形中的高、中线、角平分线问题

解三角形中的高、中线、角平分线问题
三角形是一种最基本的几何形状,它由三条线段组成,每条线段都有一个角度。

在三角形中,有三个重要的线:高线、中线和角平分线。

高线是三角形中最长的线段,它连接三角形的两个顶点,并且与三角形的底边
垂直。

高线可以用来测量三角形的高度,它可以帮助我们计算三角形的面积。

中线是三角形中的第二长的线段,它连接三角形的两个顶点,并且与三角形的
底边平行。

中线可以用来测量三角形的宽度,它可以帮助我们计算三角形的周长。

角平分线是三角形中的第三条线段,它从三角形的一个顶点出发,穿过三角形
的底边,到达另一个顶点。

角平分线可以用来测量三角形的角度,它可以帮助我们计算三角形的面积。

总之,三角形中的高线、中线和角平分线是三角形中最重要的线段,它们可以
帮助我们计算三角形的面积、周长和角度。

中考必会的数学三角形中线、高线、角平分线

中考必会的数学三角形中线、高线、角平分线

【导语】我们在学习三⾓形的时候,学到好多“线”,⽐如:中线、⾓平分线、垂线、⾼线等等。

它们都是三⾓形⾥⾯⽐较重要的东西,也是⽐较重要的知识点,弄清楚它们很容易,我们⼀起看看下⾯的知识点吧。

如图所⽰,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为多少?这道题题⽬⽐较简单,很容易得出答案是2,具体计算过程今天我不再分享,如果哪位朋友有兴趣的话可以⾃⼰在评论区⾥给出过程也可以。

这道题⾥⾯出现了中线,今天我们想⼀想三⾓形有多少线,和它们有关的性质、判定以及定理有哪些。

三⾓形的中线在三⾓形中,连接⼀个顶点和它对边的中点的线段叫做三⾓形的中线。

由于三⾓形有三条边,所以⼀个三⾓形有三条中线。

且三条中线交于⼀点。

这点称为三⾓形的重⼼。

每条三⾓形中线分得的两个三⾓形⾯积相等。

三⾓形中线性质定理: 1、三⾓形的三条中线都在三⾓形内。

2、三⾓形的三条中线交于⼀点,该点叫做三⾓形的重⼼。

3、直⾓三⾓形斜边上的中线等于斜边的⼀半。

4.三⾓形中线组成的三⾓形⾯积等于这个三⾓形⾯积的3/4.三⾓形的⾓平分线三⾓形的⼀个⾓的平分线与这个⾓的对边相交,这个⾓的顶点和交点间的线段叫做三⾓形的⾓平分线。

三⾓形的⾓平分线不是⾓的平分线,是线段。

⾓的平分线是射线。

(这是三⾓形的⾓平分线与⾓平分线的区别)⾓平分线线定理:定理1:在⾓平分线上的任意⼀点到这个⾓的两边距离相等。

逆定理:在⼀个⾓的内部(包括顶点),且到这个⾓的两边距离相等的点在这个⾓的⾓平分线上。

定理2:三⾓形⼀个⾓的平分线分对边所成的两条线段与这个⾓的两邻边对应成⽐例,如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 注:定理2的逆命题也成⽴。

三⾓形的三条⾓平分线相交于⼀点,并且这⼀点到三条边的距离相等!(即内⼼)。

三⾓形的⾼线从三⾓形⼀个顶点向它的对边做垂线,顶点和垂⾜之间的线段叫做三⾓形的⾼线(简称三⾓形的⾼)。

线段的垂直平分线:经过某⼀条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

三角形的高、中线、角平分线

三角形的高、中线、角平分线

教学过程(要求:思路清晰,层次分明,环环相扣,反馈及时,突出学生主题地位)通过画图我们可以发现三角形的三条高相交于一点(垂心)。

锐角三角形的垂心在三角形内直角三角形的垂心是三角形的直角顶点钝角三角形的垂心在三角形外部2、三角形的中线在三角形中,连接一个顶点与它对边中点的线段, 叫做这个三角形这边的中线.如图,连结△ABC的顶点A和它的对边BC的中点D,所得线段AD就是△ABC的边BC上的中线。

连接△ABC的顶点B和它的对边AC的中点E,所得线段BE就是△ABC 的边AC上的中线。

连接△ABC的顶点C和它的对边AB的中点F,所得线段CF就是△ABC 的边AB上的中线。

知道了三角形中线的概念,我们看上图:∵AD是△ABC的中线∴BD=CD=1/2BC或BC=2BD=2CD在图中你还能找出那些相等的线段?三角形的三条中线相交于一点。

三角形的三条中线的交点叫做三角形的重心。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

补充:如图,在△ABC中,AE,AD分别是BC边上中线和高,(1)说明△ABE的面积与△AEC的面积有何关系?(2)你有什么发现?同高等底的两个三角形的面积________.三角形的中线把三角形分成两个面积_______的三角形。

3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段就是三角形的一条角平分线。

画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD就是△ABC的一条角平分线。

画∠B的平分线BE,交∠B所对的边AC于点E,所得线段BE就是△ABC的一条角平分线画∠C的平分线CF,交∠C所对的边AB于点F,所得线段CF就是△ABC的一条角平分线∵AD是△ABC的角平分线∴∠1=∠2=1/2∠BAC∴∠BAC=2∠1=2∠2CDF EABAB DE CCDF EAB请你在图中画出另两个角的平分线,看看有什么发现?三角形三条角平分线相交于一点(内心)。

初中数学知识归纳三角形的中线高线角平分线

初中数学知识归纳三角形的中线高线角平分线

初中数学知识归纳三角形的中线高线角平分线三角形是初中数学中的基础知识之一,而了解它的特性和性质对于解题和理解其他几何概念都至关重要。

本文将对三角形的中线、高线和角平分线进行归纳总结,帮助同学们更好地理解和运用这些概念。

一、三角形的中线中线是指连接三角形两个顶点和对边中点的线段。

对于任意三角形ABC,连接顶点A和边BC的中点D所得的线段AD就是三角形ABC的中线。

1.1 中线的性质:(1)中线的长度相等:对于任意三角形ABC,三条中线AD、BE、CF的长度相等,即AD = BE = CF。

(2)中线互相平分:三条中线相交于同一个点G,且点G将每条中线分成两等分,即AG = GD,BG = GE,CG = GF。

(3)中线平行于对边:在三角形ABC中,若DE为BC的中线,则DE∥AC,EF为AC的中线,则EF∥BC,FD为AB的中线,则FD∥BC。

二、三角形的高线高线是指从三角形的顶点向对边的垂线段。

对于任意三角形ABC,连接顶点A和边BC的垂线段AH就是三角形ABC的高线。

2.1 高线的性质:(1)高线相交于同一点:对于任意三角形ABC,三条高线AH、BH、CH交于同一个点O,也称为垂心。

(2)高线与对边垂直:在三角形ABC中,高线AH垂直于边BC,高线BH垂直于边AC,高线CH垂直于边AB。

(3)高线长度关系:对于任意三角形ABC,三条高线AH、BH、CH的长度满足关系:AH=2R(这里的R表示三角形的外接圆半径),BH=2R,CH=2R。

三、三角形的角平分线角平分线是指将一个角平分为两个相等的角的线段。

对于任意三角形ABC,若角A的平分线AD,则称线段AD为三角形ABC的角A的平分线。

3.1 角平分线的性质:(1)角平分线的性质:“角的平分线上的点与角的两边垂直,而且与角的两边所夹的两个小角相等。

”(2)角平分线交于同一点:对于任意三角形ABC,三条角平分线AD、BE、CF交于同一个点I,也被称为内心。

(完整版)三角形的中线、高线及角平分线

(完整版)三角形的中线、高线及角平分线


B
C
直角边BC边上的高是 AB ; 直角边AB边上的高是 CB ; 斜边AC边上的高是 BD ;
议一议
(1) 钝角三角形的
A
三条高交于一点吗?
它们所在的直线交于一点吗?
将你的结果与同伴进行交流. D
钝 角三角形的
三条高不相交于一点
钝角三角形的三条高 所在直线交于一点
O
F
B
C
E
三角形的高的 表示法
叫做三角形这边的高,
简称三角形的高。
B
如图, 线段AD是BC边上的高.
任意画一个
锐角△ABC,
请你画出BC边上的高.
注意 ! 标明
垂直的记号
和垂足的字母.
B
A
01 23 4 5
0 1 2 3 4 5 6 7 8 9
1 23 4 5
D
C
A
D
C
每个人画一个锐角三角形纸片。 (1) 你能画出这个三角形的三条高吗?
线有什么区别?


三角形的角平分线是一 条线段 , 角的平分线是 一条射线
知识归纳
三角形的 重要线段
概念
图形
表示法
从三角形的一个
三角形 的高线
顶点向它的对边 所在的直线作垂 线,顶点和垂足之
B
间的线段
∵AD是△ABC的BC上的高
A 线.
D C ∴AD⊥BC
∠ADB=∠ADC=90°.
三角形 的中线
A
B
D
C
∵AD是△ ABC的高 ∴∠ BDA = ∠ CDA =90°
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高。

三角形有关的线段(边高中线角平分线)

三角形有关的线段(边高中线角平分线)

三角形的边、高、中线、角平分线知识点、易错点、考点:一、三角形有关概念及分类1、图中以BC为边的三角形有几个?用符号表示这些三角形.思路点拨:三角形有三个顶点,在给定一条边BC后,只须再找一个顶点就可以了以BC为边的三角形有4个,分别是△BCD,△BCE,△BCA, △BCO.在图5中,以A为顶点的三角形有几个?用符号表示这些三角形3个,分别是△EAB, △BAC, △CAD.总结:在数三角形的个数时一定要按照一定的顺序进行,做到不重不漏.二、三角形三边间的关系:三角形任意两边的和大于第三边;三角形任意两边之差小于第三边2、下列长度的各组线段中,能组成三角形的是()A.3cm,12cm,8cm B.6cm,8cm,15cm C.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm3、如果三角形的两边长分别为2和6,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.12<L<16三、三角形的高、中线、角平分线三角形有三条高,且相交于一点,这一点叫做三角形的垂心三角形三条中线交于三角形内部一点,这一点叫三角形的重心三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心4、如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是(B )A.150°B.130° C.120°D.100°5、在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE的度数为______10___.6、如图所示,已知AD,AE分别是ΔABC的中线、高,且AB=5cm,AC=3cm,则ΔABD与ΔACD的周长之差为__________,ΔABD与ΔACD的面积关系为________。

第4题第6题第7题7、(1)如图,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将结论与AD是△ABC的角平分线、DE∥AB、DF∥AC中的任一条件交换,•所得命题正确吗?四、三角形的稳定性8、哪些应用了三角形的稳定性,些应用了四边形的不稳定性.钢架桥 起重机 屋顶钢架 活动滑门五、能力提升9、在数学活动中,小明为了求23411112222++++ (1)2n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求23411112222++++ (1)2n +的值.图1解读:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++…12n +112n =-.【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算.10、已知△ABC ,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形.析解:方法1:取BC 的中点E ,然后在BE 上取点D ,使BD 13=BE ,则AD 、AE 把△ABC 分成面积之比为1:2:3的三个三角形(如图1).方法2:在BC 边上截取DC 31=BC ,连结AD ,然后取AB 的中点P ,连结BP 、CP ,则△PAC 、△PAB 、△PBC 的面积之比为1:2: 3(如图2).学习日记课堂小测:1、(2010湖南娄底)在如图所示的图形中,三角形的个数共有(C ) A . 1个 B .2个 C .3个 D .4个2、已知三条线段的比是:①1:3:4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学之三角形中线、高线、角平分线知识点
我们在学习三角形的时候,学到好多“线”,比如:中线、角平分线、垂线、高线等等。

它们都是三角形里面比较重要的东西,也是比较重要的知识点。

如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为多少?
这道题题目比较简单,很容易得出答案是2。

三角形的中线
在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

由于三角形有三条边,所以一个三角形有三条中线。

且三条中线交于一点。

这点称为三角形的重心。

每条三角形中线分得的两个三角形面积相等。

三角形中线性质定理:1、三角形的三条中线都在三角形内。

2、三角形的三条中线交于一点,该点叫做三角形的重心。

3、直角三角形斜边上的中线等于斜边的一半。

4.三角形中线组成的三角形面积等于这个三角形面积的3/4.
三角形的角平分线
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

(这是三角形的角平分线与角平分线的区别)
角平分线线定理:定理1:在角平分线上的任意一点到这个角的两边距离相等。

逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC注:定理2的逆命题也成立。

三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

三角形的高线
从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

线段的垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
垂直平分线的性质:1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

相关文档
最新文档