P-糖蛋白介导的药物代谢动力学及其药物间的相互作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P-糖蛋白介导的药物代谢动力学及其药物间的相互作用
摘要
P-糖蛋白是一个能量依赖性转运蛋白,能将许多结构不同的化合物逆向转运出细胞。它除了在肿瘤组织过度表达引起多药耐药外,在人体正常组织肝,肾、小肠、血脑屏障、肌肉组织、肾上腺等部位也有分布,对许多种药物的药代动力学具有调控作用。本文综述了P-糖蛋白对药代动力学的作用,药物间的相互作用及其对底物药效学的影响。
关键词:P-糖蛋白药代动力学药物间相互作用药效学
一前言
P糖蛋白(P-gp)由人类多药耐药基因-1(MDR-1)编码,是一种能量依赖性外排泵,可将其作用底物排出细胞外。P-gp在人体正常组织肝脏、肾脏、肠道、胎盘、血脑屏障、血睾屏障以及淋巴细胞系和心脏内小动脉、毛细血管等部位都有分布。这种组织分布情况提示P-gp在机体将异生化合物及代谢物质排泄到尿液和胆汁以及肠腔,并且阻抑其在脑组织的积聚中发挥着重要的作用。P-gp 在药物代谢中所起的作用包括在肾脏中的尿液排泄机制,在肝脏中的胆汁排泄机制,口服生物有效性的吸收屏障和决定簇以及作用于血脑屏障限制药物在脑组织中的积聚[1]。P-gp所有的这些功能都有赖于其作为一种能量依赖型的外排泵的主动转运机制的发挥。P-gp这种转运功能一旦受到抑制即可带来显著的临床药物相互作用,提高药物对脑组织的渗透力,增加药物在脑组织中的积聚。
本文将主要介绍P-gp的基本特征及其在药物的吸收、分布、代谢和清除方面具有的重要意义及其药物间的相互作用。
二本论
2.1 P-糖蛋白的基本特征
2.1.1 结构特征
P-糖蛋白(由MDRl或ABCBl基因编码),它是第一个被发现的人ABC转运蛋白(ATP binding cassette transporters)。MDRl基因定位于人7号染色体,编码由1280个氨基酸组成的分子量为170kDa的蛋白质,故P-糖蛋白又称P170。
通过序列分析发现,P-糖蛋白的分子结构包括两个核苷酸结合区
(Nucleotide Binding Domains,NBD)和两个跨膜区(Membrane Spanning Domain,MSD),每个跨膜区和核苷酸结合区各自包括六个疏水的跨膜部位和一个亲水的位于胞浆内的ATP结合位点,跨膜区作为膜通道有利于药物转运,而ATP结合点与能量供应有关。每两个相邻的跨膜部位相对而形成一个环状结构,这样整个分子共具有六对跨膜α-螺旋,12次横跨质膜,在N端第一个跨膜环的细胞外侧发生糖基化。P-糖蛋白的基本序列为MSDI、NBDI、MSD2、NBD2。
2.1.2 生物化学特性
研究表明1 mol P—gp可水解1 mol的ATP。已证实人和小鼠提纯的P.gp的两个ATP部位均能水解ATP,但机制并不完全一致[2]。人类P-gp的突变将影响底物的特异性。
2.1.3 P-gp的转运机制
不同的研究模型已被用于解释P-gp的转运机制。Roepe描述的改变分配模型中,P—gp的过度表达可导致膜电位的改变和/或细胞内pH的改变,最终改变药物的分配和细胞内药物浓度。flippase模型中,P-gp扮演类似于膜脂质移位酶的角色,它将底物从脂质双层分子的内面转移至外面。Vaecum cleaner model模型中,P-gp直接与底物在脂质双层分子中相互作用,并通过ATP及ATP酶把它们转运到细胞外。P—gp似乎既从脂质双层分子的外层也从脂质双层分了的内层泵出底物。P-gp在底物到达细胞浆之前即将细胞膜脂质层的底物转运到细胞外,进而消除其作用。但至今没有一个模型被进一步验证核实,P-gP在药物转运方面的机制仍有争议[3]。
2.1.4 P-gp的生理功能
P-gp是由人类MDR1基因编码的一种ATP依赖性膜蛋白,具有药物外排泵功能,可将药物逆浓度梯度转运至细胞外,以降低细胞内药物浓度和减轻细胞毒作用,从而产生类似肿瘤耐药现象及正常组织的解毒功能。除肿瘤细胞外,P-gp还在多种正常组织中高度表达,对P-gp底物的体内过程具有重要作用,P-gp底物药动学的变化又可引起药理效应的变化。由于P-gp对其底物的药动学与药效学具有重要影响,因此可通过调节P-gp来提高药物的安全性与有效性:上调P-gp活性可使P-gp在生理状态下作为一个外排泵,清除进入细胞内的毒性产物或外源性物质,
从而提高药物安全性;反之,下调P-gp活性可以减少药物外排,增加药物在靶器官的蓄积,从而增加药物的有效性。
2.2 P-gp对药代动力学的影响
P-gp在大肠及小肠的黏膜、血脑屏障、睾丸毛细血管上皮细胞、肝细胞、肾上腺及肾近端小管均有分布,P-gp在人体正常组织内的分布以及对药物的逆向转运功能使得它在药物的吸收、分布、代谢及清除方面具有重要意义。
2.2.1 P-gp对药物吸收的影响
P-gp在肠道内主要位于小肠粘膜成熟的上皮细胞刷状缘,且由胃肠道近侧端到远侧端逐渐增加。从细胞内模型及动物模型的研究中指出,调节P—gp可以影响P-gp底物的生物利用度、血浆峰浓度、表观清除率、药一时曲线下面积等药动学参数。P-gp的作用底物范围非常广泛,它所介导的药物的外排是口服药物吸收差和变异度较大的一个重要因素。P-gp的外排作用使生物利用度降低,达不到有效治疗浓度,对于治疗指数窄的药物,引起药物吸收的变异较大,因此在开发药物前,先确认是否对P-gp底物有很大意义。除了转运功能,P—gp等转运体和代谢酶一起形成一道自然的防御屏障,抵御肠腔内有毒物质的入侵。缺乏了P—gp 的小鼠,对毒物的排泻减少,可以损害肠粘膜,引起肠溃疡、克隆病等。
与药物代谢酶一样,P-gp的转运也存在着饱和性。给予高剂量的药物口服,当肠腔内药物浓度超过其Km值时,P-gp的转运就可能达到了饱和,这种饱和性可以解释他林洛尔、环孢霉素剂量依赖性的血药浓度增高[4]。但并非所有P-gp的底物吸收都受到P—gp转运的影响,临床给药剂量通常超过该药的Km值,P—gp的活性很容易达到饱和,只有一部分药物以小剂量给予时,才会受到P—gp主动排泄对生物利用度的影响。但对于一些药物,如环孢霉素、紫杉醇等因其水溶性差、分解慢及分子量大,肠腔中药物浓度低于Km,阻碍药物被动通过细胞膜,即使给予高剂量时,P—gp对它们的转运仍有一定的影响。
体外试验(Caco-2细胞模型)结果表明。CsA 口服给药时,胃肠道部位的P-gp 可导致其吸收不完全。CsA作为P—gp的抑制剂,与其他药物合用时,可引起这些药物的药代动力学改变。Scheulen等证实应用CsA后,阿霉素的AUC增加了40%。CsA与头孢吡肟合用,头孢吡肟的平均滞后时间(MRT)由原来的34.9min延长至48.6 min,因此,P-gp可能成为口服给药吸收的屏障[5]。