第22章二次函数基础知识反馈卡
九年级数学人教版第二十二章二次函数整章知识详解(同步课本知识图文结合例题详解)
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
九年级数学第22章二次函数
问题2: 多边形的对角线总数 d 与边数 n 有什么关系? n边形有__n _个顶点,从一个顶点出发,连接与这点不相 邻的各顶点,可作_(_n-_3_)条对角线.因此,n边形的对角 线总数_d_= 12_n2 _ 32_n 此式表示了多边形的对角线总数d与边数n之间的关系, 对于n的每一个值,d都有一个对应值,即d是n的函数.
我们来画最简单的二次函数y=x2的图象.
x … -3 -2 -1 0 1 2 y=x2 … 9 4 1 0 1 4
∴y=30x2+10x
九年级数学第22章二次函数
5.(哈尔滨中考)体育课上,老师用绳子围成一个周长为30 米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB 的长为x(单位:米),矩形ABCD的面积为S(单位:平方 米). (1)求S与x之间的函数关系式(不要求写出自变量x的取值 范围); (2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时 AB的长.
为什么a≠0呢?
九年级数学第22章二次函数
写出下列各函数关系,并判断它们是什么类型的函数 (1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之 间的函数关系; (2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数 关系; (3)菱形的两条对角线的和为26cm,写出菱形的面积S(cm2) 与一对角线长x(cm)之间的函数关系.
1.正方形边长为x(cm),它的面积y(cm2)是多少? 2.矩形的长是4厘米,宽是3厘米,如果将其长增加x厘米, 宽增加2x厘米,则面积增加到y平方厘米,试写出y与x的关 系式. 【解析】 (1)y=x2
九年上第二十二章 二次函数全章知识点总结
二次函数二次函数的定义:一般地,形如()0,,2≠++=a c b a c bx ax y 是常数的函数,叫做二次函数,x 是自变量,c b a ,,分别是函数解析式的二次项系数、一次项系数和常数项。
开口方向:二次函数c bx ax y ++=2图像是一条抛物线,二次项系数()0≠a a 决定二次函数图像的开口方向,当0>a ,二次函数图像开口向上,当0<a ,二次函数图像开口向下。
在直角坐标系中画出二次函数221x y =,2x y =,22x y =的图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。
规律:0>a ,a 越大,抛物线的开口越小。
在直角坐标系中画出二次函数221x y -=,2x y -=,22x y -=的图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。
规律:0<a ,a 越小,抛物线的开口越小。
抛物线的开口大小与a 有关,a 越大,开口越小;a 越小,开口越大。
对称轴:二次函数()0,,2≠++=a c b a c bx ax y 是常数图像是轴对称图形,关于对称轴对称。
它的对称轴是ab x 2-= 二次函数的单调性:二次函数图像在对称轴左、右两边单调性是相反的。
0>a ,当a b x 2-<时,y 随x 的增大而减小,当a bx 2->时,y 随x 的增大而增大。
0<a ,当abx 2-<时,y 随x 的增大而增大,当abx 2->时,y 随x 的增大而减小。
二次函数的顶点:二次函数对称轴与二次函数图像的交点便是二次函数的顶点。
二次函数的顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,当0>a 时,二次函数的顶点是图像的最低点。
0<a 时,二次函数的顶点是图像的最高点。
二次函数的最值:若二次函数的自变量是全体实数,二次函数在图像的顶点处取得最值。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
九年级数学上册第二十二章二次函数全部重要知识点(带答案)
九年级数学上册第二十二章二次函数全部重要知识点单选题1、已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=−1,且经过点(−3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0答案:D=−1,得b=2a,则b<0,图象经过(−3,0),根据对分析:图象开口向下,得a<0,对称轴为直线x=−b2a称性可知,图象经过点(1,0),故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.解:∵图象开口向下,∴a<0,∵对称轴为直线x=−b=−1,2a∴b=2a,∴b<0,故A不符合题意;根据对称性可知,图象经过(−3,0),∴图象经过点(1,0),当x=1时,a+b+c=0,故C不符合题意;∴c=-a-b,∴c>0,故B不符合题意;将b=2a代入,可知3a+c=0,故D符合题意.故选:D.小提示:本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.2、在平面直角坐标系中,将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x+2)2−1D.y=(x−2)2−1答案:B分析:先求出平移后抛物线的顶点坐标,进而即可得到答案.解:∵y=x2的顶点坐标为(0,0)∴将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为y=(x+2)2+1,故选B小提示:本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.3、如图,抛物线y=ax2+bx+c与x轴相交于点A(−2,0),B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2−4ac>0;②4a+b=0;③当y>0时,−2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.1答案:B分析:根据二次函数的图像与性质,逐一判断即可.解:∵抛物线y=ax2+bx+c与x轴交于点A(−2,0)、B(6,0),∴抛物线对应的一元二次方程ax2+bx+c=0有两个不相等的实数根,即△=b2−4ac>0,故①正确;对称轴为x=−b2a =6−22,整理得4a+b=0,故②正确;由图像可知,当y>0时,即图像在x轴上方时,x<-2或x>6,故③错误,由图像可知,当x=1时,y=a+b+c<0,故④正确.∴正确的有①②④,故选:B.小提示:本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN,设运动时间为t s,△MND的面积为S cm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.答案:B分析:分别求出M在AD和在BD上时△MND的面积为S关于t的解析式即可判断.解:∵∠ACB=90°,∠A=30°,AB=4√3,∴∠B=60°,BC=1AB=2√3,AC=√3BC=6,2∵CD⊥AB,∴CD=12AC=3,AD=√3CD=3√3,BD=12BC=√3,∴当M在AD上时,0≤t≤3,MD=AM−AD=3√3−√3t,DN=DC+CN=3+t,∴S=12MD·DN=12(3√3−√3t)(3+t)=−√32t2+9√32,当M在BD上时,3<t≤4,MD=AD−AM=√3t−3√3,∴S=12MD·DN=12(√3t−3√3)(3+t)=√32t2−9√32,故选:B.小提示:本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.5、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4√3米B.5√2米C.2√13米D.7米答案:B分析:根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y =ax 2+32, ∵BC =10,∴点B (﹣5,0),∴0=a ×(﹣5)2+32, ∴a =-350, ∴大孔所在抛物线解析式为y =-350x 2+32,设点A (b ,0),则设顶点为A 的小孔所在抛物线的解析式为y =m (x ﹣b )2,∵EF =14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625), ∴-3625=m (x ﹣b )2, ∴x 1=65√−1m +b ,x 2=-65√−1m +b ,∴MN =4,∴|65√−1m +b -(-65√−1m +b )|=4 ∴m =-925, ∴顶点为A 的小孔所在抛物线的解析式为y =-925(x ﹣b )2, ∵大孔水面宽度为20米,∴当x =-10时,y =-92, ∴-92=-925(x ﹣b )2, ∴x 1=52√2+b ,x 2=-5√22+b , ∴单个小孔的水面宽度=|(52√2+b )-(-52√2+b )|=5√2(米),故选:B .小提示:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、如图,顶点为(−3,−6)的抛物线y =ax 2+bx +c 经过点(−1,−4),则下列结论中正确的是( )A .b 2−4ac ≥0B .若点(−2,m),(−4,n)都在抛物线上,则m >nC .当x <−3时,y 随x 的增大而减小D .关于x 的一元二次方程ax 2+bx +c =−7有两个不等的实数根答案:C分析:由抛物线与x 轴有两个交点则可对A 进行判断;根据抛物线上的点离对称轴的远近,则可对B 进行判断;由抛物线的增减性可直接判断C 选项;根据二次函数的最值可对D 进行判断.解:A 、图像与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2-4ac >0,故A 选项不符合题意;B、抛物线的对称轴为直线x=-3,因为-2离对称轴的距离等于-4离对称轴的距离,所以m=n,故B选项不符合题意;C、顶点为(-3,-6),则对称轴为直线x=-3,抛物线开口向上,则当x<-3时,y随x的增大而减小,故C 选项符合题意;D、由抛物线开口向上及顶点为(-3,-6)可知,此函数的最小值为-6,则ax2+bx+c=-7(a≠0)没有实数根,故D选项不符合题意.故选:C.小提示:本题综合考查了二次函数的性质,属于基础题,且难度适中;考查了根的判别式、最值与顶点坐标的关系,及一元二次方程与二次函数的关系等方面的内容,掌握相关基础知识是解题关键.7、已知实数x,y满足x+y=12,则xy−2的最大值为()A.10B.22C.34D.142答案:C分析:利用二次函数的性质求解即可.解:∵x+y=12,∴y=12-x,∴xy-2=x(12-x)-2=-x2+12x-2=-(x-6)2+34,∵-1<0,∴当x=6时,xy-2有最大值,最大值为34,故选:C.小提示:本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.8、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y =ax 2+2ax +a −1的图象只经过三个象限,∴a -1≥0,∴a ≥1.故选C .小提示:本题考查了二次函数y =ax 2+2ax +a −1的图象只经过三个象限,运用函数图象与x 轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.9、抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表:下列结论不正确的是( )A .抛物线的开口向下B .抛物线的对称轴为直线x =12C .抛物线与x 轴的一个交点坐标为(2,0)D .函数y =ax 2+bx +c 的最大值为254 答案:C 分析:利用待定系数法求出抛物线解析式,由此逐一判断各选项即可解:由题意得{4a −2b +c =0a −b +c =4c =6,解得{a =−1b =1c =6,∴抛物线解析式为y =−x 2+x +6=−(x −12)2+254, ∴抛物线开口向下,抛物线对称轴为直线x =12,该函数的最大值为254,故A 、B 、D 说法正确,不符合题意;令y =0,则−x 2+x +6=0,解得x =3或x =−2,∴抛物线与x 轴的交点坐标为(-2,0),(3,0),故C 说法错误,符合题意;故选C .小提示:本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.10、如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC ,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系答案:D分析:先求出AM =PM ,利用矩形的性质得出y =﹣x +m ,最后利用S =S △ABC -S 矩形PMBN 得出结论. 设AB =m (m 为常数).在△AMP 中,∠A =45°,AM ⊥PM ,∴△AMP 为等腰直角三角形,∴AM =PM ,又∵在矩形PMBN 中,PN =BM ,∴x +y =PM +PN =AM +BM =AB =m ,即y =﹣x +m ,∴y 与x 成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.填空题11、在平面直角坐标系中,已知抛物线y =mx -2mx +m -2(m >0).(1)抛物线的顶点坐标为_________;(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含m的式子表示)答案:(1,-2)m−2<y2≤4m−2分析:(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2<x2≤3时,y1<y2,再将x=2、x=3代入函数关系式进行求解即可.(1)∵y=mx2-2mx+m-2=m(x−1)2−2,∴抛物线顶点坐标为(1,-2),故答案为(1,-2).(2)∵抛物线的对称轴为直线x=1,∴当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,∴当2<x2≤3时,y1<y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,∴m−2<y2≤4m−2.小提示:本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.12、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(−1,0)和点(2,0),以下结论:①abc<0;②4a−2b+c<0;③a+b=0;④当x<1时,y随x的增大而减小.其中正确的结论有2___________.(填写代表正确结论的序号)答案:①②##②①分析:根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x=-2时判定②,由抛物线图像性质判定④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;②x=-2时,函数值小于0,则4a-2b+c<0,故正确;③与x轴交于点(−1,0)和点(2,0),则对称轴x=−b2a =−1+22=−12,故a=b,故③错误;④当x<12时,图像位于对称轴左边,y随x的增大而减大.故④错误;综上所述,正确的为①②.所以答案是:①②.小提示:本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.13、阳光超市里销售的一种水果,每千克的进价为10元,销售过程中发现,每天销量y(kg)与销售单价x (元)之间满足一次函数y=−x+50的关系.若不计其他成本(利润=售价-进价),则该超市销售这种水果每天能够获得的最大利润是_________元.答案:400分析:设超市销售这种水果每天能够获得的利润是w元,由题意得w=-(x-30)2+400,再根据二次函数的性质可得答案.解:设超市销售这种水果每天能够获得的利润是w元,由题意得,w=(x−10)(−x+50)=−x2+60x−500=−(x−30)2+400,∵a=-1<0,∴当x=30时,w最大为400元,所以答案是:400.小提示:本题考查二次函数的实际应用,根据题意得到二次函数的关系式是解题关键.14、某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).答案:121分析:利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.解:当10≤x ≤20时,设y =kx +b ,,把(10,20),(20,10)代入可得:{10k +b =2020k +b =10, 解得{k =−1b =30, ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =−x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x −8)y =(x −8)(−x +30)=−x 2+38x −240=−(x −19)2+121,∵−1<0,∴当x =19时,w 有最大值为121,所以答案是:121.小提示:本题考查二次函数的应用,理解题意,掌握“利润=单价商品利润×销售量”的等量关系及二次函数的性质是解题关键.15、已知点(3,a )在抛物线y =-2x 2+2x 上,则a =______.答案:-12分析:把点(3,a )代入解析式即可求得a 的值.解:∵点(3,a )在抛物线y =-2x 2+2x 上,∴a =-2×32+2×3=-18+6=-12,所以答案是:-12.小提示:本题考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.解答题16、已知y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大.(1)求k的值;(2)直接写出顶点坐标和对称轴.答案:(1)k=-3;(2)顶点坐标是(0,0),对称轴是y轴.分析:(1)根据二次函数的次数是二,可得方程,根据二次函数的性质,可得k+2<0,可得答案;(2)根据二次函数的解析式,可得顶点坐标,对称轴.解:(1)由y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大,得{k 2+k−4=2k+2<0,解得k=-3;(2)由(1)得二次函数的解析式为y=-x2,y=-x2的顶点坐标是(0,0),对称轴是y轴.小提示:本题考查了二次函数的定义以及二次函数的性质,利用二次函数的定义得出方程是解题关键.17、如图,抛物线y=−x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(-1 ,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M ,使得MA +MC 的值最小,求此点M 的坐标;(3)在抛物线的对称轴上是否存在P 点,使△PCD 是等腰三角形,如果存在,求出点P 的坐标,如果不存在,请说明理由.答案:(1)y =−x 2+2x +3(2)点M 坐标(1,2)(3)存在,点P 坐标为(1,6),(1,√10),(1,−√10),(1,53) 分析:(1)把A 、C 两点的坐标代入y =-x 2+bx +c ,利用待定系数法即可求出二次函数的解析式;(2)由抛物线的对称性可知点A 与点B 关于对称轴对称,所以BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值等于线段BC 长,求出直线BC 与抛物线对称轴交点M 坐标即可;(3)分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①PC =CD ;②PD =CD .设出点P 的坐标,利用两点间的距离公式列出方程求解即可; ii )当△PCD 是以CD 为底的等腰三角形时,点P 在CD 的垂直平分线上,PC=PD ,利用两点间的距离公式列出方程求解即可.(1)解:把A (-1,0),C (0,3)代入y =-x 2+bx +c ,得:{−1−b +c =0c =3 ,解得:{b =2c =3, ∴抛物线的解析式为:y =-x 2+2x +3; (2)解:由抛物线的对称性可知点A 与点B 关于抛物线的对称轴对称,所以设BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值=BC ,如图,∵y =-x 2+2x +3=-(x -1)2+4;∴抛物线的对称轴为直线x =1,∵A (-1,0),点A 与点B 关于抛物线的对称轴对称,∴B (3,0),设直线BC 解析式为y =kx +m ,则{−k +m =0m =3 ,解得{k =−1m =3, ∴直线BC 解析式为y =-x +3,当x =1时,y =2,∴M (1,2).(3)解:∵y =-x 2+2x +3=-(x -1)2+4,∴对称轴为直线x =1,∴D (1,0).设点P 的坐标为(1,t ),∵C (0,3),∴CD 2=12+32=10. 分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①若PC =CD ,则12+(t -3)2=10,解得t =0(舍弃)或6,所以点P 的坐标为(1,6);②若PD =CD ,则t 2=10,解得t=±√10,所以点P 的坐标为(1,√10)或(1,-√10); ii )当△PCD 是以CD 为底的等腰三角形时,PC =PD ,则1+(t -3)2=t 2,解得:t =53, 所以点P 的坐标为(1,53);综上所述,点P 的坐标有三个,分别是(1,6)或(1,√10))或(1,-√10)或(1,53).小提示:本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质、利用轴对称求最短距离;难度适中,在考虑构建等腰三角形时,采用了分类讨论的思想.18、园林部门计划在某公园建一个长方形苗圃ABCD .苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD 的一边CD 长为x 米.(1)BC 长为________米(包含门宽,用含x 的代数式表示);(2)若苗圃ABCD 的面积为96m 2,求x 的值;(3)当x 为何值时,苗圃ABCD 的面积最大,最大面积为多少?答案:(1)(36-3x )(2)8(3)当x 为223米时,苗圃ABCD 的最大面积为3083平方米分析:(1)根据木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,即得BC 的长为(36-3x )米;(2)根据题意得,x ·(36−3x )=96,即可解得x 的值;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,由二次函数的性质可得答案.(1)∵木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,BC 的长为32-3x +4=(36-3x )米,所以答案是:(36-3x );(2)根据题意得,x ·(36−3x )=96,解得,x =4或x =8,∵当x =4时,36-3x =24>14,∴x =4舍去,∴x 的值为8;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,∵4<36-3x ≤14,∴223≤x <323,∵-3<0,图象开口向下,∴当x =223时,w 取得最大值,w 最大为3083; 答:当x 为223米时,苗圃ABCD 的最大面积为3083平方米.小提示:本题考查了二次函数的应用,解题的关键是读懂题意,根据已知列方程和函数关系式.。
2024年人教版九年级数学上册教案及教学反思全册第22章22.1.2 二次函数的图象和性质教案
22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质一、教学目标【知识与技能】1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.【过程与方法】通过画出简单的二次函数探索出二次函数y=ax2的性质及图象特征.【情感态度与价值观】使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课1.你们喜欢打篮球吗?(出示课件2)2.你们知道投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?学生自主思考.(二)探索新知探究一:二次函数y=ax2的图象的画法出示课件4:画出二次函数y=x2的图象.学生分组画y=x2的图象,教师巡视,对于不正确的给予指导.⑴列表:在y=x2中自变量x可以是任意实数,列表表示几组对应值:⑵描点:根据表中x,y的数值在坐标平面中描点(x,y)(出示课件5)⑶连线:如图,再用平滑曲线顺次连接各点,就得到y=x2的图象.当取更多个点时,函数y=x 2的图象如下:(出示课件6)教师归纳:二次函数y=x 2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.这条抛物线关于y 轴对称,y 轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.出示课件7:画出二次函数y=-x 2的图象.学生分组画y=-x 2的图象,教师巡视,对于不正确的给予指导.⑴列表:⑵描点:⑶连线:x …-3-2-10123…y =-x 2……探究二:二次函数y=ax2的图象性质出示课件8:教师问:根据你以往学习函数图象性质的经验,说说二次函数y=x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=x2的图象是一条抛物线;2.图象开口向上;3.图象关于y轴对称;4.顶点(0,0);5.图象有最低点.出示课件9:教师问:说说二次函数y=-x2的图象有哪些性质,并与同伴交流.学生交流后,师生共同总结如下:1.y=-x2的图象是一条抛物线;2.图象开口向下;3.图象关于y轴对称;4.顶点(0,0);5.图象有最高点.教师归纳:(出示课件10)二次函数y=ax2的图象性质:1.顶点都在原点(0,0);2.图像关于y轴对称;3.当a>0时,开口向上;当a<0时,开口向下.师生共同探究:观察下列图象,抛物线y=ax2与y=-ax2(a>0)的关系是什么?(出示课件11)教师强调:二次项系数互为相反数,开口相反,大小相同,它们关于x轴对称.探究三:二次函数y=ax2的性质出示课件12:观察图形,y随x的变化如何变化?教师归纳:(出示课件13)对于抛物线y=ax2(a>0),当x>0时,y随x取值的增大而增大;当x<0时,y随x取值的增大而减小.师生共同探究:观察图形,y随x的变化如何变化?(出示课件14)教师归纳:(出示课件15)对于抛物线y =ax 2(a<0)当x>0时,y 随x 取值的增大而减小;当x<0时,y 随x 取值的增大而增大.出示课件16:在同一直角坐标系中,画出函数221,22y x y x ==的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ...-4-3-2-101234 (212)y x =······x ···-2-1.5-1-0.500.51 1.52···22y x =······出示课件17:师生共同探究:二次函数2221,,22y x y x y x ===的图象开口大小与a 的大小有什么关系?教师归纳:当a>0时,a 越大,开口越小.出示课件18:在同一直角坐标系中,画出函数221,22y x y x =-=-的图象.将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.解:分别填表,再画出它们的图象,如图:x ···-4-3-2-101234···212y x =-······x ···-2-1.5-1-0.500.51 1.52···22y x =-······出示课件19:师生共同探究:二次函数2221,,22y x y x y x =-=-=-的图象开口大小与a 的大小有什么关系?教师归纳:当a<0时,a 越小(即a 的绝对值越大),开口越小.对于抛物线y=ax 2,|a|越大,抛物线的开口越小.师生共同完善认知:(出示课件20)出示课件21:填一填:(1)函数y=4x2的图象的开口,对称轴是,顶点是;(2)函数y=-3x2的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑶函数32的图象的开口,对称轴是,顶点是,顶点是抛物线的最点;⑷函数y=-0.2x2的图象的开口,对称轴是,顶点是.学生独立思考后,口答如下:⑴向上;y轴;(0,0)⑵向下;y轴;(0,0);高⑶向上;y轴;(0,0);低⑷向下;y轴;(0,0)出示课件22:例已知y=(m+1)x m2+m是二次函数,且其图象开口向上,求m的值和函数解析式.学生自主思考后,师生共同解答如下:解:依题意有:解②,得m 1=-2,m 2=1.由①,得m>-1.因此m=1.此时,二次函数为y=2x 2.出示课件23:已知24(2)kk y k x +-=+是二次函数,且当x>0时,y 随x 增大而增大,则k=.学生独立思考后,自主解答如下:解:24(2)k k y k x+-=+是二次函数,即二次项的系数不为0,x 的指数等于2.又因当x>0时,y 随x 增大而增大,即说明二次项的系数大于0.因此,24220k k k ⎧+-=⎨+⎩>,解得k=2.探究四:二次函数y =ax 2的实际应用出示课件24:师生共同认知:二次函数y=ax 2是刻画客观世界许多现象的一种重要模型.出示课件25:例已知正方形的周长为Ccm,面积为Scm 2,(1)求S 与C 之间的二次函数关系式;(2)画出它的图象;(3)根据图象,求出当S=1cm 2时,正方形的周长;(4)根据图象,求出C 取何值时,S≥4cm 2.学生独立思考后,师生共同解答.(出示课件26)解:(1)∵正方形的周长为Ccm,∴正方形的边长为4Ccm,∴S 与C 之间的关系式为S=216C ;(2)作图如图:(3)当S=1cm 2时,C 2=16,即C=4cm;(4)若S≥4cm 2,即216C ≥4,解得C≥8,或c≤-8(舍去),因此C ≥8cm.出示课件27:已知二次函数y=2x 2.(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_____y 2;(填“>”“=”或“<”);(2)如图,此二次函数的图象经过点(0,0),长方形ABCD 的顶点A、B 在x 轴上,C、D 恰好在二次函数的图象上,B 点的横坐标为2,求图中阴影部分的面积之和.学生独立思考后,自主解答:(出示课件28)(2)解:∵二次函数y=2x2的图象经过点C,∴当x=2时,y=2×22=8.∵抛物线和长方形都是轴对称图形,且y轴为它们的对称轴,∴OA=OB,∴在长方形ABCD内,左边阴影部分面积等于右边空白部分面积,∴S阴影部分面积之和=2×8=16.教师总结如下:(出示课件29)二次函数y=ax2的图象关于y轴对称,因此左右两部分折叠可以重合,在二次函数比较大小中,我们根据图象中点具有的对称性转变到同一变化区域中(全部为升或全部为降),根据图象中函数值高低去比较;对于求不规则的图形面积,采用等面积割补法,将不规则图形转化为规则图形以方便求解.(三)课堂练习(出示课件30-34)1.已知抛物线y=ax2(a>0)过点A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>02.函数y=2x2的图象的开口,对称轴,顶点是;在对称轴的左侧,y随x的增大而,在对称轴的右侧,y 随x 的增大而.3.函数y=-3x 2的图象的开口,对称轴,顶点是;在对称轴的左侧,y 随x 的增大而,在对称轴的右侧,y 随x 的增大而.4.如图,观察函数y=(k-1)x 2的图象,则k 的取值范围是.5.说出下列抛物线的开口方向、对称轴和顶点:6.已知二次函数y=x 2,若x≥m 时,y 最小值为0,求实数m 的取值范围.开口方向对称轴顶点坐标23x y =23x y -=231x y =231x y -=7.已知:如图,直线y=3x+4与抛物线y=x 2交于A、B 两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积.参考答案:1.C2.向上;y 轴;(0,0);减小;增大3.向下;y 轴;(0,0);增大;减小4.k>15.6.解:在二次函数y=x 2中,a=1>0因此当x=0时,y 有最小值.∵当x≥m 时,y 最小值=0,∴m≤0.7.解:由题意得234,,y x y x =+⎧⎨=⎩开口方向对称轴顶点坐标23x y =向上y 轴(0,0)23x y -=向下y 轴(0,0)231x y =向上y 轴(0,0)231x y -=向下y 轴(0,0)解得4,1,16,1,x x y y ==-⎧⎧⎨⎨==⎩⎩或因此两函数的交点坐标为A(4,16)和B(-1,1).∵直线y=3x+4与y 轴相交于点C(0,4),即CO=4.两交点与原点所围成的三角形面积S △ABO =S △ACO +S △BOC .在△BOC 中,OC 边上的高就是B 点的横坐标值的绝对值1;在△ACO 中,OC 边上的高就是A 点的横坐标值的绝对值4.因此S △ABO =S △ACO +S △BOC =12×4×1+12×4×4=10.(四)课堂小结1.画二次函数y=ax 2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax 2的性质的?3.本节课你还存在哪些疑问?.(五)课前预习预习下节课(22.1.3第1课时)的相关内容.七、课后作业1.教材41页习题22.1第3,4题2.配套练习册内容八、板书设计:九、教学反思:本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.。
第22章《二次函数》基础练习(5套)
础知识反馈卡·22.1.1时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y=2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.基础知识反馈卡·22.1.2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________.4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________.三、解答题(共11分)5.已知二次函数y =-12x 2+x +4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?基础知识反馈卡·*22.1.3时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x +2B .y =x 2+3x +2C .y =x 2-2x +3D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1 B .y =-12(x -2)2-1C .y =(x -2)2-1 D .y =12(x -2)2-1二、填空题(每小题4分,共8分) 3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-3 4.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.基础知识反馈卡·22.2时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是(C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3 B.32和-3 C .-32和2 D .-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m +2 011的值为__________.4.如图J22-2-1是抛物线y=ax2+bx+c的图象,则由图象可知,不等式ax2+bx+c<0的解集是________.图J22-2-1三、解答题(共11分)5.如图J22-2-2,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的关系式;(2)求不等式x2+bx+c>x+m的解集(直接写出答案).图J22-2-2基础知识反馈卡·22.3时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π 2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 二、填空题(每小题4分,共8分)3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.图J22-3-1三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2。
第二十二章二次函数 初中九年级数学教案教学设计课后反思 人教版
,顶点
做几道练习题写出下列各题的开口方向,对称轴
(1)
(2)
(3)
(4)
课堂练习 (难点巩
固)
(1) 开口方向向上,对称轴是 y 轴,顶点是(0,0)
(2) 开口方向向下,对称轴是 y 轴,顶点是(0,0)
(3) 开口方向向上,对称轴是 y 轴,顶点是(0,0)
(4) 开口方向向下,对称轴是 y 轴,顶点是(0,0)
大。此时函数有最小值。
(4)当 a 小于零时开口向下,在对称轴左侧,y 随 x 的增大而增大,即 x<0 时,y 随 x 的增大而增大。在对称轴右侧,y 随 x 的增大而减小,即 x>0 时,y 随 x 的增大而减小。 此时函数有最大值。 探究二 二次函数 y ax2 的图象及性质
4.画出 (1)列表:
x
.
.
.. -4 -1 0 -1 -4 -9 ..
.
.
(2)描点 (3)连线(注:利用平滑的曲线顺次连接各
点)
3.观察探究:观察
和
这两个函数的图象它有什么特点?
(1)你能描述图象的形状吗? (2)图象是轴对称图形吗?如果是,它的对称轴是什么? (3)图象有最低点或最高点吗?如果有,坐标是什么? (4)当 x<0 时,随着 x 值的增大,y 的值如何变化?当 x>0 呢? (5)当 x 取什么值时,y 的值最小或最大?最小值或最大值是什么?你是如何知道的?
.归纳慨括: 小组讨论,列表归纳:
小结
图像
开口 对称性
开口向上 关于 y 轴对称(或直线
)对称
顶点 增减性 最值
顶点坐标是原点
在对称轴左侧,y 随 x 的增大而减小 在对称轴右侧,y 随 x 的增大而增大
初三数学上册(人教版)第二十二章二次函数22.1知识点总结含同步练习及答案
描述:2.二次函数的图象与性质()的图象与性质()的图象与性质(、、 是常数,)的图象与性质所以 .m =2y =a x 2a ≠0y =a (x −h +k )2a ≠0y =a +bx +c x 2a b c a ≠函数 ()在上的最值问题:y =a +bx +c a ≠0y =a +bx +c x 2a >0m <x <n描述:例题:3.二次函数图象的变换平移“上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.对称旋转函数图象旋转可以看成先把原图象上的点(通常我们选择顶点)绕着旋转中心旋转,得到旋转后的点的坐标,即可得到新的函数.x (1) 将二次函数 的图象向右平移 个单位,再向上平移 个单位后,所得图象的函数表达式是______.(2) 如果保持抛物线 的图象不动,把 轴、 轴分别向上、向右平移 个单位,那么在新坐标系下该抛物线的解析式是_____.解:(1) ;(2) .(1) “上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.(2) 把 轴、 轴分别向上、向右平移 个单位,就相当于把函数分别向下、向左平移 个单位.y =x 212y =2x 2x y 2y =(x −1+2)2y =2(x +2−2)2x x y 22将二次函数 的图象绕坐标原点 旋转 ,则旋转后的图象对应的解析式为______.y =−2x −1x 2O 180∘y =−−2x +12描述:例题:4.二次函数的解析式设一般式 ()若已知条件或根据已知可推出图象上三个点,可以设成一般式,将已知条件代入解析式,得出关于 、、 的三元一次方程组,解方程即可.设顶点式 ()若已知条件或根据已知可推出函数的顶点或对称轴与最值时,可以设成顶点式,将已知条件代入解析式,求出待定系数.设交点式 ()若已知条件或根据已知可推出图象上纵坐标相同的两个点的坐标为 和 时,可以设交点式,将已知条件代入解析式,求出待定系数.解:.可以看成先把原图象上的点绕着坐标原点 旋转 ,得到旋转后的点的坐标,即可得到新的函数.y =−−2x +1x 2O 180∘(1) 抛物线 关于 轴对称的图象为______.(2) 在平面直角坐标系中,先将抛物线 关于 轴作轴对称变换,再将所得的抛物线关于 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为____.(3) 将抛物线 的图象绕它的顶点 旋转 ,则旋转后的抛物线的函数关系式为______.解:(1) ;(2) ;(3) .y =−2x −3x 2x y =+x −2x 2x y y =−2x +1x 2A 180∘y =−+2x +3x 2y =−+x +2x 2y =−+2x −1x 2y =a +bx +c x 2a ≠0a b c y =a (x −h +k )2a ≠0y =a (x −)(x −)+m x 1x 2a ≠0(,m )x 1(,m )x 2二次函数的图象经过 ,, 三点,求该二次函数的解析式.分析:已知条件中给出三个点,所以可以设一般式.解:设二次函数的解析式为 ().将 ,, 三点代入,得解得即二次函数的解析式为 .A (1,2)B (0,−1)C (−2,5)y =a +bx +c x 2a ≠0A (1,2)B (0,−1)C (−2,5)⎧⎩⎨a +b +c =2,c =−1,4a −2b +c =5.⎧⎩⎨a =2,b =1,c =−1.y =2+x −1x 2已知二次函数的图象的顶点为 ,且过点 ,求该二次函数的解析式.分析:已知一个顶点和另一个点,所以可以设顶点式.解:设二次函数的解析式为 .将点 的坐标代入,解得 .所以二次函数的解析式为 .A (−1,4)B (2,−5)y =a (x +1+4)2B (2,−5)a =−1y =−(x +1+4=−−2x +3)2x 2已知抛物线与 轴的交点坐标是 ,,且抛物线经过 ,求抛物线的解析x A (−2,0)B (1,0)C (2,8)四、课后作业 (查看更多本章节同步练习题,请到快乐学)高考不提分,赔付1万元,关注快乐学了解详情。
人教版数学九年级上册第二十二章 二次函数教案与反思
知己知彼,百战不殆。
《孙子兵法·谋攻》樱落学校曾泽平第二十二章二次函数本章总共分三个模块的内容.模块一:二次函数的概念、图象和性质;模块二:二次函数与一元二次方程的联系;模块三:利用二次函数的图象和性质解决实际问题.本章我们可以类比求正比例函数、一次函数的解析式的方法,即待定系数法来求二次函数的解析式.并根据描点法画出几个特殊函数的图象来分析、观察、研究二次函数的性质.构建二次函数模型来解决实际问题也是本章的一个重点.在中考中,二次函数是热点考查内容之一,主要考查二次函数的图象与性质及结合其他知识进行综合性考查.【本章重点】1. 二次函数的图象和性质.2.利用二次函数的图象和性质解决实际问题.【本章难点】1.利用二次函数的图象和性质解决实际问题.2.二次函数与其他知识的综合应用.【本章思想方法】1.体会和掌握类比的学习方法:类比一次函数来学习二次函数,注意与一次函数、一元二次方程、不等式的联系与相互转化.2.体会数形结合的思想方法:由于二次函数(数)的图象是抛物线(形),故二次函数与抛物线有内在联系,二次函数的性质由函数反映出来.反之,抛物线体现二次函数的性质,能直观、形象地反映问题.3.体会数学模型思想:本章函数建模就是通过探索实际应用问题中的数量关系和变化规律,从中抽象二次函数模型,并运用二次函数的知识解决实际问题.22.1 二次函数的图象和性质7课时22.2 二次函数与一元二次方程1课时22.3 实际问题与二次函数1课时22.1 二次函数的图象和性质22.1.1 二次函数(第1课时)一、基本目标【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数.2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想.【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标【教学重点】二次函数的概念.【教学难点】能根据已知件写出二次函数的解析式.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P28~P29的内容,完成下面练习.【3 min 反馈】1.正比例的函数的表达式为y =kx (k 为常数,且k ≠0);一次函数的表达式为y =ax +b (a 、b 为常数,且a ≠0).2.二次函数的概念:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,且a ≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a 、b 、c .3.下列函数中,是二次函数的有①②③.①y =(x -3)21;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2. 4.二次函数y =-x 2+2x 中,二次项系数是-1,一次项系数是_2__,常数项是_0__.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数解析式为y =πx 2+2πRx (x ≥0).环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】已知于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.【互动探索】(引发学生思考)已知含参函数的解析式为二次数,那么二次函数的自变量及各项系数应该满足哪些条件?【解答】 由题意,得⎩⎨⎧ m 2-m =2,m +1≠0,解得m =2.【互动总结】(学生总结,老师点评)y =ax 2+bx +c 为二次函数的前提条件是≠0,且自变量x 的最次数为2,注意不要忽略二次项系数不为0这一隐含条件.【例2】某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.如果超市将篮球售价定为x 元(x >50),每月销售这种篮球获利y 元,求y 与x 之间的函数解析式.【互动探索】(引发学生思考)解决实际应用问题的一般步骤是什么?本题中隐含的等量关系是什么?【解答】根据题意,得每个篮球的利润为50+x -40=10+x ;篮球的销售量为500-10x .则y =(10+x )(500-10x )=-10x 2+400x +5000.【互动总结】(学生总结,老师点评)根据实际问题写出二次函数的解析式的一般步骤:(1)阅读并理解题意;(2)找出问题的变量与常量,并分析它们之间的关系,若有图形,则要注意结合图形进行分析;(3)设适当的未知数,用二次函数表示出变量之间的关系,建立二次函数模型,写出二次函数解析式.【活动2】 巩固练习(学生独学)1.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是S =-2x 2+10x .(不写定义域)2.如果函数y =(k +1)xk 2+1+1是y 关于x 的二次函数,则k 的值为多少?解:根据题意,得⎩⎨⎧ k +1≠0,k 2+1=2.解得k =1.【活动3】 拓展延伸(学生对学)【例3】已知关于x 的二次函数,当x =-1时,函数值为10,当x =1时,函数值为4,当x =2时,函数值为7,求这个二次函数的解析式.【互动探索】(引发学生思考)我们学过了一次函数以及一次函数解析式的求法——待定系数法,求二次函数的解析式用这种方法同样适用吗?【解答】设所求的二次函数的解析式为y =ax 2+bx +c . 根据题意,得⎩⎨⎧ a -b +c =10,a +b +c =4,4a +2b +c =7.解得a =2,b =-3,c =5. 故所求二次函数为y =2x 2-3x +5.【互动总结】(学生总结,老师点评)求二次函数的解析式与求一次函数的解析式的方法相同,都是待定系数法,二次函数有三个未知数,所以求二次函数的解析式需要三个方程.环节3 课堂小结,当堂达标(学生总结,老师点评)二次函数⎩⎨⎧ 定义:形如y =ax 2+bx +c a 、b 、c 为常数,a ≠0的函数二次函数y =ax 2+bx +c 中隐含的条件:a ≠0请完成本课时对应练习! 22.1.2 二次函数y =ax 2的图象和性质(第2课时)一、基本目标【知识与技能】1.能够用描点法作出函数y =ax2的图象.2.认识和理解y =ax2的性质.【过程与方法】经历探索二次函数y =ax2的图象和性质的过程,体会数形结合的思想和方法.【情感态度与价值观】在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感.二、重难点目标【教学重点】1.掌握函数y =ax2的图象的画法.2.理解函数y =ax2的图象与性质.【教学难点】用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征.环节1 自学提纲,生成问题【5 min阅读】阅读教材P29~P32的内容,完成下面练习.【3 min反馈】1.用描点法画函数图象的一般步骤:列表、描点、连线.2.抛物线y=x2中的开口方向是向上,顶点坐标是(0,0),对称轴是y轴.抛物线y=-x2的开口方向是向下,顶点坐标是(0,0),对称轴是y轴.3.一般地,当a>0,时,抛物线y=ax2的开口向上,对称轴是y轴,顶点是原点,顶点是抛物线的最低点,a越大,抛物线的开口越小;当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶点是原点,顶点是抛物线的最高点,a 越小,抛物线的开口越小.4.对于二次函数y=ax2的图象:如果a>0,当x<0,时,y随x的增大而减小,当x>0,时,y随x的增大而增大;如果a<0,当x<0,时,y随x的增大而增大,当x>0,时,y随x的增大而减小.环节2 合作探究,解决问题【活动1】小组讨论(师生对学)【例1】下图是甲、乙、丙三人画的二次函数y=2x2的图象.请你帮助修改.【互动探索】(引发学生思考)画二次函数y=ax2的图象应注意些什么问题?【解答】图甲:有两个错误的地方:①连线不能用直尺作线段,图象中相邻两点时用光滑曲线连结;②抛物线开口应向上无限延伸,不能到两端点为止.图乙:有一个错误,有一个点(1,-2)的位置画错(或表格中对应值算错).图丙:错误是x的值都是非负数,没有负数,导致出现其图象只是抛物线的一半,没有对称性.二次函数y =2x 2的图象如下所示:【互动总结】(学生总结,老师点评)画二次函数的图象时应注意的问题:(1)在画函数图象时,图象必须平滑,顶端不能画成尖形;(2)抛物线是向两个方向无限延伸的,左右两边必须保持关于对称轴对称;(3)用描点法画出的图象只是二次函数的图象的一部分,且是近似的.【例2】已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;此时当x 为何值时,y 随x 的增大而增大?【互动探索】(引发学生思考)二次函数必须满足什么条件?二次函数 y =ax 2的性质有哪些?这些性质与a 有什么关系?【解答】(1)由题意,得⎩⎨⎧ m 2+m -4=2,m +2≠0.解得⎩⎨⎧ m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数.(2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m >-2,∴只能取m =2.∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x >0时,y 随x 的增大而增大.【互动总结】(学生总结,老师点评)(1)y =ax 2+bx +c 为二次函数的前提条件是a ≠0,且自变量x 的最高次数为2.(2)二次函数y =ax 2的性质:当a >0时,开口向上,x >0时,y 随x 的增大而增大;x <0时,y 随x 的增大而减小;函数的最小值为0;顶点坐标为(0,0).当a <0时,开口向下;当x >0时,y 随x 的增大而减小;x<0时,y随x的增大而增大;函数的最大值为0;顶点坐标为(0,0).【活动2】巩固练习(学生独学)1.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是( B )2.函数y=(-2x)2的图象是抛物线,顶点坐标是(0,0),对称轴是y轴,开口方向是向上.3.已知函数y=ax2经过点(-1,3).(1)求a的值;(2)当x<0时,y的值随x值的增大而变化的情况是什么?解:(1)把点(-1,3)代入y=ax2,得a=3.(2)因为3>0,所以当x<0时,y的值随x值的增大而减少.【活动3】拓展延伸(学生对学)【例3】已知函数y=ax2(a≠0)与直线y=x-3交于点(1,b).(1)求a、b的值;(2)x取何值时,二次函数中的y随x的增大而增大?【互动探索】(引发学生思考)抛物线与直线的交点有什么性质?二次函数的增减性与什么有关?【解答】(1)把(1,b)代入y=x-3可得,b=1-3=-2,∴点的坐标为(1,-2).把(1,-2)代入y=ax2,得-2=a,即a=-2.∴a=-2,b=-2.(2)由(1)可得,y=-2x2,∴抛物线开口向下,且对称轴为y轴,∴当x<0时,y随x的增大而增大.【互动总结】(学生总结,老师点评)抛物线与直线的交点即为同时满足抛物线方程、直线方程的点,将这个点的坐标代入抛物线方程、直线方程均成立.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!22.1.3 二次函数y=a(x-h)2+k的图象和性质第3课时二次函数y=ax2+k的图象和性质一、基本目标【知识与技能】1.会用描点法画二次函数y=ax2+k的图象,并通过图象认识其性质.2.理解a、k对二次函数图象的影响,能正确说出两次函数y=ax2+k图象的开口方向、对称轴和顶点坐标.【过程与方法】经历类比y=ax2的图象与性质学习y=ax2+k的图象与性质的过程,理解类比的学习方法的重要性.【情感态度与价值观】经历类比学习的过程,获得成功的体验,进一步体会二次函数的数学模型.二、重难点目标【教学重点】1.会用描点法画出二次函数y=ax2+k的图象.2.理解二次函数y=ax2+k的性质.3.理解函数y=ax2+k与函数y=ax2的关系.【教学难点】1.正确理解二次函数y=ax2+k的性质.2.理解抛物线y=ax2+k与抛物线y=ax2的关系.环节1 自学提纲,生成问题【5 min阅读】阅读教材P32~P33的内容,完成下面练习.【3 min反馈】1.(1)把抛物线y=2x2向上平移1个单位,就得到抛物线y=2x2+1.(2)把抛物线y=2x2向下平移1个单位,就得到抛物线y=2x2-1.同理,把抛物线y=-2x2向上平移1个单位,就得到抛物线y=-2x2+1.(3)函数y=-x2+1,当x_>0时,y随x的增大而减小;当x=0时,函数y有最大值,最大值y是1 ,其图象与y轴的交点坐标是(0,1),与x轴的交点坐标是(1,0),(-1,0).2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?解:二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴相同;顶点坐标不相同,二次函数y=2x2+1的图象的顶点坐标为(0,1),二次函数y=2x2的图象的顶点坐标为(0,0).环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),求a的值.【互动探索】(引发学生思考)二次函数的最高点为(0,2),那么它的二次项系数、常数分别应该满足什么条件?【解答】∵二次函数y =(a -2)x 2+a 2-2的最高点为(0,2), ∴⎩⎨⎧a -2<0,a 2-2=2.解得a =-2.【互动总结】(学生总结,老师点评)若二次函数y =ax 2+k 的图象有最高点,则a <0;最高点的纵坐标为k ,即最高的坐标为(0,k ).【例2】已知抛物线y =ax 2+k 向下平移2个单位后,所得抛物线为y =-3x 2+2,试求a 、k 的值.【互动探索】(引发学生思考)两个抛物线通过平移能够互相得到,那么这两个抛物线的解析式有怎么的关系?抛物线的平移规律是怎样的?【解答】根据题意,得⎩⎨⎧a =-3,k -2=2.解得⎩⎨⎧a =-3,k =4.【互动总结】(学生总结,老师点评)两个抛物线通过平移能够互相得到,那么这两个抛物线的解析式中的二次项系数相等.抛物线y =ax 2+k 向下平移n 个单位(n >0)得到的抛物线为y =ax 2+k -n .【活动2】 巩固练习(学生独学)1.若二次函数y 1=a 1x 2-1与二次函数y 2=a 2x 2+3图象的形状完全相同,则a 1与a 2的关系为( A )A .a 1=a 2B .a 1=-a 2C .a 1=±a 2D .无法判断2.将二次函数y =-2x 2-1的图象向下平移5个单位得到的抛物线的顶点坐标为( A )A .(0,-6)B .(0,4)C .(5,-1)D .(-2,-6)3.求符合下列条件的抛物线y =ax 2-1的函数解析式: (1)通过点(-3,2);(2)与y =12x 2的开口大小相同,方向相反.解:(1)∵抛物线y =ax 2-1通过点(-3,2),∴2=9a -1,解得a =13.故解析式为y=13x2-1.(2)由题意易得解析式为y=-12x2-1.【活动3】拓展延伸(学生对学)【例3】已知二次函数y=ax2+c,当x取x1、x2(x1≠x2,x1、x2分别是A、B两点的横坐标)时,函数值相等,则当x取x1+x2时,函数值为( ) A.a+c B.a-cC.-c D.c【互动探索】(引发学生思考)分析二次函数y=a x2+c的图象与性质.【分析】二次函数y=ax2+c的图象关于y轴对称.∵当x取x1、x2(x1≠x2,x1、x2分别是A、B两点的横坐标)时,函数值相等,∴x1+x2=0.由于当x =0时,函数值为c,故选项D正确.【答案】D【互动总结】(学生总结,老师点评)二次函数y=ax2+c的图象关于y轴对称,当x取x1、x2(x1≠x2)时,函数值相等,那么x1与x2互为相反数.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!第4课时二次函数y=a(x-h)2的图象和性质一、基本目标【知识与技能】1.能利用描点法画出二次函数y=a(x-h)2的图象,并能理解它与y=ax2的图象的关系.理解a、h对二次函数图象的影响.2.能够正确说出y=a(x-h)2图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.【过程与方法】1.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.【情感态度与价值观】经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.学会与人合作,并能与他人交流思维的过程和结果.二、重难点目标【教学重点】1.理解y=a(x-h)2与y=ax2的图象的关系,掌握a、h对二次函数y=a(x -h)2图象的影响.2.能够正确说出y=a(x-h)2图象的开口方向、对称轴和顶点坐标.【教学难点】能够作出y=a(x-h)2图象,并能够理解它与y=ax2的图象的关系,掌握a、h对二次函数图象的影响.环节1 自学提纲,生成问题【5 min阅读】阅读教材P33~P35的内容,完成下面练习.【3 min反馈】1.对于函数y=2(x-1)2 ,当x<1时,函数值y随x的增大而减小;当x >1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,此时y=0.2.抛物线y =-(x -2)2的开口方向向下,对称轴是x =2,顶点坐标是(2,0),可以看成是由抛物线y =-x 2向右平移2个单位而得到的.3.抛物线y =3(x +2)2的开口方向向上,对称轴是x =-2,顶点坐标是(-2,0),可以看成是由抛物线y =3x 2向左平移2个单位而得到的.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学)【例1】顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x +2)2D .y =-12(x -2)2【互动探索】(引发学生思考)抛物线的开口方向、形状是由什么决定的? 【分析】因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x +h )2(a ≠0),而二次函数y =a (x +h )2(a ≠0)与y =-12x 2的图象相同,所以a=-12.因为抛物线的顶点为(-2,0),所以h =2.所以y =-12(x +2)2.故选C.【答案】C【互动总结】(学生总结,老师点评)决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.【例2】向左或向右平移函数y =-12x 2的图象,能使得到的新图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.【互动探索】(引发学生思考)二次函数y =-12x 2的图象向左向右平移后得到的抛物线的解析式是什么?【解答】能.理由如下:设平移后的函数为y =-12(x +h )2.将x=-9,y=-8代入,得-8=-12(-9+h)2,所以h=5或h=13,所以平移后的函数为y=-12(x+5)2或y=-12(x+13)2.即抛物线的顶点为(-5,0)或(-13,0),所以应向左平移5或13个单位.【互动总结】(学生总结,老师点评)二次函数y=ax2(a≠0)的图象向左(或右)平移h(h>0)个单位长度得到的图象的解析式为y=a(x+h)2或y=a(x-h)2.【活动2】巩固练习(学生独学)1.对于二次函数y=9(x-1)2,下列结论正确的是( D )A.y随x的增大而增大B.当x>0时,y随x的增大而增大C.当x=-1时,y有最小值0D.当x>1时,y随x的增大而增大2.已知抛物线y=a(x+h)2(a≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a、h的值.解:∵抛物线y=a(x+h)2(a≠0)的顶点坐标为(-2,0),∴h=2.又∵抛物线y=a(x+2)2经过点(-4,2),∴a(-4+2)2=2.∴a=1 2 .3.抛物线y=ax2向右平移3个单位后经过点(-1,4),求a的值和平移后的函数解析式.解:二次函数y=ax2的图象向右平移3个单位后的二次函数解析式可表示为y=a(x-3)2.把x=-1,y=4代入,得4=a(-1-3)2,解得a=14,∴平移后的二次函数解析式为y=14(x-3)2.【活动3】拓展延伸(学生对学)【例3】把函数y=12x2的图象向右平移4个单位后,其顶点为C,并与直线y =x 分别相交于A 、B 两点(点A 在点B 的左边),求△ABC 的面积.【互动探索】(引发学生思考)怎样求A 、B 、C 三个点的坐标呢?【解答】由题意,得平移后的函数为y =12(x -4)2,顶点C 的坐标为(4,0).解方程组⎩⎨⎧y =12x -42,y =x ,得⎩⎨⎧x =2,y =2或⎩⎨⎧x =8,y =8.∵点A 在点B 的左边,∴A (2,2)、B (8,8)(如图), ∴S △ABC =S △OBC -S △OAC =12OC ×8-12OC ×2=12.【互动总结】(学生总结,老师点评)两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的.这个解就是两个函数图象的交点坐标.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第5课时 二次函数y =a (x -h )2+k 的图象和性质一、基本目标【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象,并通过图象认识函数的性质.2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律.3.能运用二次函数的知识解决简单的实际问题.【过程与方法】通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.【情感态度与价值观】进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.二、重难点目标【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)2+k与y=ax2(a≠0)的图象之间的平移关系.2.通过对图象的观察,分析规律,归纳性质.环节1 自学提纲,生成问题【5 min阅读】阅读教材P35~P37的内容,完成下面练习.【3 min反馈】1.抛物线y=-3(x+2)2-4的顶点坐标是(-2,-4),当x<-2时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是(-3,0).3.抛物线y=a(x-h)2+k的特点:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x=h;顶点坐标是(h,k).4.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k>0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).环节2 合作探究,解决问题【活动1】小组讨论(师生对学)【例1】关于二次函数y=-(x+1)2+2的图象,下列判断正确的是( ) A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(-1,2)【互动探索】(引发学生思考)二次函数y=a(x-h)2+k图象的开口方向、对称轴、最高(低)点、顶点坐标分别由什么决定?【分析】∵-1<0,∴函数的开口向下,图象有最高点,故A、C错误.∵二次函数y=-(x+1)2+2的图象的顶点是(-1,2),∴对称轴是直线x=-1,故B 错误,D正确.【答案】D【互动总结】(学生总结,老师点评)二次函数y=a(x-h)2+k图象的开口方向、最高(低)点由a决定;对称轴由h决定;顶点坐标由h、k共同决定.【例2】已知关于x的二次函数的图象的顶点坐标为(-1,2),且图象过点(1,-3).(1)求这个二次函数的解析式;(2)写出它的开口方向、对称轴.【互动探索】(引发学生思考)已知二次函数的顶点坐标,怎样求二次函数的解析式呢?【解答】(1)∵二次函数的图象的顶点坐标为(-1,2),∴可设此函数解析式为y=a(x+1)2+2.把点(1,-3)代入解析式,得a=-54 .故抛物线的解析式为y=-54(x+1)2+2.(2)由(1)的函数解析式可得此抛物线的开口向下,对称轴为直线x=-1.【互动总结】(学生总结,老师点评)已知二次函数的顶点,可以将二次函数的解析式设为y=a(x-h)2+k(a≠0)的形式,再根据题目中的条件,利用待定系数法求出二次函数的解析式.【活动2】巩固练习(学生独学)1.对于抛物线y=-(x+2)2+3,下列结论中正确的个数为( A )①抛物线的开口向下;②对称轴是直线x=-2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A.4 B.3C.2 D.12.已知某二次函数y=a(x-1)2-c的图象的如图所示,则一次函数y=ax +c的大致图象可能是( A ),A) ,B),C) ,D)3.已某知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的解析式是y=-316(x+4)2+3.4.已知将二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a、h、k的值;(2)指出二次函数y =a (x -h )2+k 图象的开口方向,对称轴和顶点坐标. 解:(1)将二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到抛物线的解析式为y =a (x -h +2)2+k +4,则⎩⎪⎨⎪⎧a =-12,-h +2=1,k +4=3.解得⎩⎪⎨⎪⎧a =-12,h =1,k =-1.(2)由(1),得y =a (x -h )2+k =-12(x -1)2-1.故它的图象的开口方向向下;对称轴为直线x =1;顶点坐标为(1,-1).【活动3】 拓展延伸(学生对学)【例3】一座隧道的截面由抛物线和长方形构成,长方形的长为8 m ,宽为 2 m ,隧道最高点P 位于AB 的中央且距地面6 m ,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4 m ,宽4 m ,能否从该隧道内通过,为什么?【互动探索】(引发学生思考)我们以前学会了构建一次函数模型解决实际问题,那么该怎样构建二次函数模型解决实际问题呢?【解答】(1)设此抛物线的解析式为y =a (x -h )2+k . ∵顶点为(4,6), ∴y =a (x -4)2+6. ∵它过点(0,2),∴a (0-4)2+6=2,解得a =-14,∴此抛物线的解析式为y =-14(x -4)2+6.(2)当x =2时,y =5>4, ∴该货车能通过隧道.【互动总结】(学生总结,老师点评)用函数知识解决实际问题的关键是把实际问题转化为数学问题,建立适当的平面直角坐标系.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!22.1.4 二次函数y=ax2+bx+c的图象和性质第6课时二次函数y=ax2+bx+c的图象和性质一、基本目标【知识与技能】1.能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式.2.能正确求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标.3.掌握利用二次函数y=ax2+bx+c(a≠0)解决函数增减性问题的方法;会利用对称性画出二次函数的图象.【过程与方法】经历由y=a(x-h)2+k的图象与性质求二次函数y=ax2+bx+c(a≠0)的图象与性质的探究过程,渗透类比法、配方法和数形结合的思想方法.【情感态度与价值观】通过解决实际问题,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.二、重难点目标【教学重点】掌握二次函数y =ax2+bx +c(a ≠0)的图象与性质. 【教学难点】用配方法确定抛物线y =ax2+bx +c(a ≠0)的顶点坐标和对称轴.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P37~P39的内容,完成下面练习. 【3 min 反馈】1.二次函数y =a (x -h )2+k 的顶点坐标是(h ,k ),对称轴是x =h ,当a >0时,开口向上,此时二次函数有最 小 值,当x >h 时,y 随x 的增大而增大,当x <h 时,y 随x 的增大而减小;当a <0时,开口向下,此时二次函数有最 大 值,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.2.一般地,二次函数y =ax 2+bx +c (a ≠0)可以通过配方法化成y =a (x -h )2+k 的形式,即y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a .因此,抛物线y =ax 2+bx +c 的对称轴是直线x =-b 2a ,顶点坐标是⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a . 3.从二次函数y =ax 2+bx +c (a ≠0)的图象可以看出:如果a >0,当x <-b2a,y 随x 的增大而减小,当x >-b 2a ,y 随x 的增大而增大;如果a <0,当x <-b 2a ,y随x 的增大而增大,当x >-b2a,y 随x 的增大而减小. 4.已知二次函数y =-x 2+4x +5化为y =a (x -h )2+k 的形式为y =-(x -2)2+9,对称轴是直线x =2,顶点是(2,9).环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】求二次函数y =2x 2-x -1的开口方向、对称轴及顶点坐标. 【互动探索】(引发学生思考)二次函数y =ax 2+bx +c (a ≠0)图象与性质是。
九年级数学上册 第二十二章 二次函数知识点总结 新人教版
第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向对称轴顶点坐标2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=2 0=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2abx 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m 2+2m+3-(-m+3)=-m 2+3m=-, PM 最大值为(3)如图,过点Q 作QG ∥y 轴交BD 于点G ,作QH ⊥BD 于点H ,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上, ∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
第22章《二次函数》小结与复习课件
(2)∵∠F =∠A = 45°,∠CBF =∠ABC = 90°,
∴∠BGF =∠F = 45°,1BG = BF1 = 2x -130. 1
所= 以 32Sx△2D+EF60-xS-△4G5BF0.= 2DE2 - 2BF2 = 2 x2 - 2 (2x - 30)2
若点 A(x1,y1),B(x2,y2)在此函数图象上,且
x1<x2<1,则 y1 与 y2 的大小关系是 ( B )
A.y1≤y2 B.y1<y2 C.y1≤y2 D.y1>y2
x
【解析】由图象看出,抛物线开口向下,对称轴是 x=1, 当 x<1时,y 随 x 的增大而增大.∵x1<x2<1,∴ y1<y2.
解:W = (x-60)•(-x+120) = -x2+180x-7200 = -(x-90)2 +900,
∵抛物线的开口向下, ∴当 x<90 时,W 随 x 的增大而增大. 而 60≤x≤60×(1 + 45%),即 60≤x≤87. ∴当 x = 87 时,W 有最大值,
此时 W = -(87- 90)2 + 900 = 891.
售量 y (件)与销售单价 x (元)符合一次函数 y=kx+b,且 x=65
时,y=55;x=75 时,y=45.
(1) 求一次函数的解析式;
解:根据题意,得
65k 75k
b b
55,解得
45.
k
=
-1,b
=
120.
故所求一次函数的解析式为 y = -x + 120.
初三数学上册(人教版)第二十二章二次函数22.2知识点总结含同步练习及答案
A.3 < x < 3.23
答案: C
C.3.24 < x < 3.25
B.3.23 < x < 3.24
D.3.25 < x < 3.26
3. 二次函数 y = ax 2 + bx + c 图象如图,下列正确的个数为 ( ① bc > 0 ; ② 2a − 3c < 0 ;
)
③ 2a + b > 0 ; ④ ax2 + bx + c = 0 有两个解 x 1 ,x 2 ,x 1 > 0,x2 < 0; ⑤ a + b + c > 0; ⑥ 当 x > 1 时,y 随 x 增大而减小.
y = mx + n,
③ ax 2 + bx + c > mx + n(ma ≠ 0)的解集可以通过函数 y = ax2 + bx + c 与函数 y = mx + n 的图象得到解集,则根据这个方法 ax2 + bx + c < mx + n(ma ≠ 0)的解集也可 以得到.
例题: 二次函数 y = kx 2 − kx + 3x + 1 的图象与 x 轴有且只有一个交点,那么 k 的值和交点坐标分 别为_______.
1 , 0) . 3 当 b 2 − 4ac = 0 时,抛物线与 x 轴有一个交点.
解:k = 1,(−1, 0) ;k = 9,( 二次函数 y = x 2 − 4x + 3 图象如图:
y=
− 4x + 3
(1) x 取什么值时 y = 0?(2) x 取什么值时 y > 0?(3) x 取什么值时 y < 0? 解:(1) 当 x = 1 或 x = 3 时,y = 0;(2) 当 x < 1 或 x > 3 时,y > 0;(3) 当 1 < x < 3 时,y < 0. 如图,直线 y = kx + b 与抛物线 y = ax2 + bx + c 交于 A(−1, 1) 和 B(4, 2) 两点,则关于 x 的不等式 kx + b > ax2 + bx + c 的解集是_________.
第二十二章 二次函数(单元总结)(解析版)
第二十二章二次函数单元总结【思维导图】【知识要点】知识点1:二次函数的概念概念:一般地,形如(,,是常数,)的函数,叫做二次函数。
注意:二次项系数,而,可以为零.二次函数的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.(2),,是常数,是二次项系数,是一次项系数,是常数项.【典例分析】1.下列函数是二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2-2(x-1)2D.y=x—0.5【答案】A【分析】利用二次函数的一般形式为:y=ax2+bx+c(a、b、c是常数,a≠0),进而判断得出即可.【详解】A、该函数符合二次函数的定义,故本选项正确;B、整理后:y=,不符合二次函数形式,故本选项错误;C、整理后,该函数的自变量的最高次数是1,属于一次函数,故本选项错误;D、该函数属于一次函数,故本选项错误.故选A.【点睛】本题考查了二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.二次函数y=3x﹣5x2+1的二次项系数、一次项系数、常数项分别为________.【答案】﹣5、3、1【分析】根据二次函数的定义,判断出二次函数y=3x-5x2+1的二次项系数、一次项系数、常数项分别为多少即可.【详解】解:二次函数y=3x-5x2+1的二次项系数、一次项系数、常数项分别为-5、3、1.故答案为:-5、3、1.【点睛】此题主要考查了二次函数的定义,要熟练掌握,一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.3.已知函数 21(1)3m y m x x +=-+为二次函数,求m 的值.【答案】m=﹣1【分析】根据二次函数的定义,列出一个式子即可解决问题. 【详解】解:由题意: ,解得 ,时,函数21(1)3my m x x +=-+为二次函数.【点睛】本题考查二次函数的定义,记住二次函数的定义是解题的关键,形如 、 、 是常数, 的函数,叫做二次函数.知识点2:二次函数的图象和性质(重点) 二次函数的基本表现形式:① ;② ;③ ;④ ;⑤ . 第一种:二次函数 的性质(最基础)第二种:二次函数的性质第三种:二次函数的性质第四种:二次函数的性质的形式,其中,.二次函数图象的平移平移步骤:将抛物线解析式转化成顶点式,确定其顶点坐标,;保持抛物线的形状不变,将其顶点平移到,处,具体平移方法如下:平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.【概括】左加右减,上加下减抛物线的三要素:开口方向、对称轴、顶点.求抛物线的顶点、对称轴的方法(难点)⏹公式法:,∴顶点是(,),对称轴是直线.⏹配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.【抛物线的性质】由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.抛物线中,与函数图像的关系(灵活掌握)⏹二次项系数二次函数中,作为二次项系数,显然.(1)当时,抛物线开口向上,越大,开口越小,反之的值越小,开口越大;(2)当时,抛物线开口向下,越小,开口越小,反之的值越大,开口越大.【总结起来】决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.⏹一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.(1)在的前提下,当时,,即抛物线的对称轴在轴左侧(a、b同号);当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧(a、b异号).(2)在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧(a、b异号);当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧(a、b同号).【总结起来】在确定的前提下,决定了抛物线对称轴的位置.⏹常数项当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.【总结起来】决定了抛物线与轴交点的位置.总之,只要,,都确定,那么这条抛物线就是唯一确定的.【典例分析】4.(2019·沙雅县第二中学初三期中)函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【答案】B【分析】根据函数图像的平移口诀“左加右减,上加下减”即可得出答案.【详解】解:函数y=﹣2x2先向右平移1个单位可得到:y=﹣2(x-1)2,再向下平移2个单位可得到:y=﹣2(x-1)2-2,故答案选择B.【点睛】本题主要考查图形的平移和二次函数的图像与性质,属于基础知识点,比较简单.5.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.B.C.D.【答案】D【解析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:。
人教版九年级数学上册第二十二章二次函数 知识点总结
第二十二章二次函数一、二次函数得有关概念:1、二次函数得定义:一般地,形如(就是常数,)得函数,叫做二次函数。
2、二次函数解析式得表示方法(1) 一般式:(,,为常数,);(2) 顶点式:(,,为常数,);(3)两根式:(,,就是抛物线与轴两交点得横坐标)、二、二次函数图象得画法1、基本方法:描点法注:五点绘图法。
利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取得五点为:顶点、与轴得交点、以及关于对称轴对称得点、与轴得交点,(若与轴没有交点,则取两组关于对称轴对称得点)、2、画草图抓住以下几点:开口方向,对称轴,顶点,与轴得交点,与轴得交点、三、二次函数得图像与性质1、二次函数得性质(1)、当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随得增大而减小;当时,随得增大而增大;当时,有最小值.(2)、当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随得增大而增大;当时,随得增大而减小;当时,有最大值.2、二次函数得性质:概括成八个字“左加右减,上加下减”.五、二次函数与一元二次方程:一元二次方程就是二次函数当函数值时得特殊情况、图象与轴得交点个数:① 当时,图象与轴交于两点,其中得就是一元二次方程得两根.这两点间得距离、② 当时,图象与轴只有一个交点;③ 当时,图象与轴没有交点、当时,图象落在轴得上方,无论为任何实数,都有;当时,图象落在轴得下方,无论为任何实数,都有.六、二次函数中得符号问题1、二次项系数决定了抛物线开口大小与方向,得正负决定开口方向,得大小决定开口得大小.2、一次项系数在二次项系数确定得前提下,决定了抛物线得对称轴.⑴在得前提下,当时,,即抛物线得对称轴在轴左侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得右侧.⑵在得前提下,结论刚好与上述相反,即当时,,即抛物线得对称轴在轴右侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得左侧.总结起来,在确定得前提下,决定了抛物线对称轴得位置.总结:“左同右异”3、常数项⑴当时,抛物线与轴得交点在轴上方,即抛物线与轴交点得纵坐标为正;⑵当时,抛物线与轴得交点为坐标原点,即抛物线与轴交点得纵坐标为;⑶当时,抛物线与轴得交点在轴下方,即抛物线与轴交点得纵坐标为负.总结起来,决定了抛物线与轴交点得位置.七、二次函数解析式得确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数得解析式必须根据题目得特点,选择适当得形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点得坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴得两个交点得横坐标,一般选用两根式;4、已知抛物线上纵坐标相同得两点,常选用顶点式.。
人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结
人教版数学九年级上学期《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。
(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k);(2) 当h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y轴,则设y=ax2;如果对称轴是y轴,但不过原点,则设y=ax2+k4.抛物线的性质(1).抛物线是轴对称图形。
对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。
第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册
第二十二章二次函数22.1二次函数的图像和性质22.1.1 二次函数知识点一 二次函数的定义1.二次函数的定义:一般地,形如)0a ,,(2≠++=是常数,c b a c bx ax y 的函数,叫做二次函数.2.任何一个二次函数的解析式都可化成)0a ,,(2≠++=是常数,c b a c bx ax y 的形式,因此,把)0a ,,(2≠++=是常数,c b a c bx ax y 叫做二次函数的一般式3.二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 中y x ,是变量,c b a ,,是常量.自变量x 的取值范围是全体实数,b 和c 可以是任意实数,a 必须是不等于 0的实数.知识点二 实际问题中的二次函数22.1.2二次函数2ax y =的图像和性质理解 题意 分析问题中的变量和常量及它们之间的关系列函数 关系式22.1.3二次函数()k h x a y +-=2的图像和性质第一课时 二次函数k ax y +=2的图像和性质第二课时 二次函数()2h x a y -=的图像和性质第三课时 二次函数()k h x a y +-=2的图像和性质22.1.4 二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 的图象和性质第一课时 二次函数c bx ax y ++=2的图象和性质知识点一 二次函数c bx ax y ++=2与()k h x a y +-=2之间的关系 利用二次函数图象平移的规律求平移后的函数的解析式,首先要把函数解析式化为顶点式:()k h x a y +-=2知识点二 二次函数c bx ax y ++=2的图象和性质 1. 二次函数c bx ax y ++=2的图象是一条抛物线,与抛物线2ax y =的形状相同,位置不同,利用配方法可以将c bx ax y ++=2转化成顶点式,即a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++= 2. 二次函数c bx ax y ++=2的性质(1)当0>a 时,抛物线开口向上,对称轴为直线a bx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22c bx ax y ++=20>a0<a开口方向 向上 向下对称轴 直线ab x 2-= 直线ab x 2-= 顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ⎪⎪⎭⎫⎝⎛--a b ac a b 44,22 增减性当a b x 2->时,y 随x 的增大而增大;当a b x 2-<时,y 随x 的增大而减小当abx 2->时,y 随x 的增大而减小;当abx 2-<时,y 随x 的增大而增大最值当ab x 2-=时,ab ac y 442-=最小值当ab x 2-=时,ab ac y 442-=最大值知识点三 二次函数c bx ax y ++=2的图象与系数c b a ,,之间的关系 系数 图像的特征 系数的符号a开口向上 0>a 开口向下0<a b对称轴为y 轴 0=b对称轴在y 轴左侧同号b a ,对称轴在y 轴右侧 异号b a ,c经过原点0=c 与y 轴正半轴相交 0>c 与y 轴负半轴相交0<c第二课时 用待定系数法求二次函数的解析式知识点一 用待定系数法求二次函数的解析式根据已知条件确定二次函数解析式,通常利用待定系数法,用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题便捷。
人教版初中数学第二十二章二次函数知识点学习资料
c第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.二次函数的概念:一般地,形如 y = ax 2 + bx + c ( a ,b ,c 是常数, a ≠0)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数a ≠0,而 b , 可以为零.二次函数的定义域是全体实数.2. 二次函数 y = ax 2 + bx + c 的结构特征:⑴ 等号左边是函数,右边是关于自变量 x 的二次式, x 的最高次数是 2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.22.1.2 二次函数 y = ax 2的图象和性质1. 二次函数基本形式: y = ax 2 的性质:a 的绝对值越大,抛物线的开口越小.a 的符号 开口方向 顶点坐标 对称轴 性质a >0向上(0 ,0 )y 轴a <0向下(0 ,0 )y 轴x >0 时, y 随 x 的增大而增大; x <0时, y 随 x的增大而减小; x =0 时, y 有最小值 0.x >0 时, y 随 x 的增大而减小; x <0时, y 随 x的增大而增大; x =0 时, y 有最大值 0. 例 1 .若抛物线y=ax 2 经过 P (1,﹣2),则它也经过 ()A .(2,1)B .(﹣1,2)C .(1,2)D .(﹣1,﹣2)【答案】【解析】试题解析:∵抛物线 y=ax 2 经过点 P (1,-2),∴x=-1 时的函数值也是-2,即它也经过点(-1,-2).故选 D .考点:二次函数图象上点的坐标特征.例 2.若点(2,-1)在抛物线 y = ax 2 上,那么,当 x=2 时,y=_________【答案】-1y = ax 2 由题意得 4a = -1 , a = - ,则 y = - .c【解析】试题分析:先把(2,-1)直接代入 即可得到解析式,再把 x=2 代入即可.1 4 14x 2,当 x = 2 时, y = - 1 4⨯ 4 = -1.考点:本题考查的是二次函数点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式 2. y = ax 2 + c 的性质:上加下减.a 的符号 开口方向 顶点坐标 对称轴 性质a >0向上(0 ,c )y 轴x >0 时, y 随 x 的增大而增大; x < 0 时, y 随x 的增大而减小; x = 0 时, y 有最小值 c .a < 0向下(0 , ) y 轴x > 0 时, y 随 x 的增大而减小; x < 0 时, y 随 x 的增大而增大; x = 0 时, y 有最大值 c .例 1.若抛物线 y=ax 2+c 经过点 P (l ,-2),则它也经过 ( )A .P 1(-1,-2 )B .P 2(-l , 2 )C .P 3( l , 2)D .P 4(2, 1)【答案】A【解析】试题分析:因为抛物线 y=ax 2+c 经过点 P (l ,-2),且对称轴是 y 轴,所以点 P (l ,-2)的对称点是(-1,-2),所以 P 1(-1,-2)在抛物线上,故选:A. 考点:抛物线的性质.例 2.已知函数 y=ax+b 经过(1,3),(0,﹣2),则 a ﹣b=()A .﹣1B .﹣3C .3D .7【答案】D .【解析】试题分析:∵函数 y=ax+b 经过(1,3),(0,﹣2),⎧a + b = 3 ⎧a = 5∴ ⎨ ,解得 ⎨ .⎩b = -2 ⎩b = -2∴a ﹣b=5+2=7.故选 D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.例 3.两条直线 y 1=ax +b 与 y 2=bx +a 在同一坐标系中的图象可能是下图中的 ()(h ,0) 向上【答案】无正确答案【解析】分析:首先根据两个一次函数的图象,分别考虑 a ,b 的值,看看是否矛盾即可.解:A 、由 y 1 的图象可知,a <0,b <0;由 y 2 的图象可知,a>0,b<0,两结论矛盾,故错误;B 、由 y 1 的图象可知,a >0,b >0;由 y 2 的图象可知,a >0,b<0,两结论相矛盾,故错误;C 、由 y 1 的图象可知,a>0,b<0;由 y 2 的图象可知,a <0,b <0,两结论相矛盾,故错误;D 、由 y 1 的图象可知,a >0,b >0;由 y 2 的图象可知,a<0,b<0,两结论相矛盾,故错误. 故无正确答案.点评:此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数 y=kx+b 的图象有四种情况:①当 k >0,b >0,函数 y=kx+b 的图象经过第一、二、三象限;②当 k >0,b <0,函数 y=kx+b 的图象经过第一、三、四象限;③当 k <0,b >0 时,函数 y=kx+b 的图象经过第一、二、四象限;④当 k <0,b <0 时,函数 y=kx+b 的图象经过第二、三、四象限.22.1.3二次函数 y = a (x - h )2 + k 的图象和性质左加右减.a 的符号 开口方向 顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y随 x 的增大而减小; x = h 时, y 有最小值 0 .a < 0y = a (x - h )2 + k 的性质:向下X=h x > h 时, y 随 x 的增大而减小; x < h 时, y随 x 的增大而增大; x = h 时, y 有最大值 0 .a 的符号开口方向 顶点坐标 对称轴a > 0(h ,k )X=ha < 0向下(h ,k )X=h性质x > h 时, y 随 x 的增大而增大; x < h 时, y随 x 的增大而减小; x = h 时, y 有最小值 k .x > h 时, y 随 x 的增大而减小; x < h 时, y随 x 的增大而增大; x = h 时, y 有最大值 k .例 1.将二次函数 y=x 2﹣2x ﹣3 化成 y=(x ﹣h )2+k 形式,则 h+k 结果为()A .﹣5B .5C .3D .﹣3【答案】D .【解析】2x-3x+4配方成y=a(x-k)2+h的形式,并写出它的图象的顶点坐标、对称轴.试题分析:y=x2-2x-3=(x2-2x+1)-1-3=(x-1)2-4.则h=1,k=-4,∴h+k=-3.故选D.考点:二次函数的三种形式.例2.把二次函数y=x2+6x+4配方成y=a(x-h)2+k的形式,得y=___,它的顶点坐标是___.【答案】(x+3)2-5,(-3,-5)【解析】试题分析:y=x2+6x+4=(x+3)2-5,则顶点坐标为(-3,-5).考点:二次函数的顶点式.例3.把二次函数y=12【答案】y=顶点坐标(3,-),对称轴方程x=3【解析】试题分析:y=x2﹣3x+4=(x﹣3)2﹣,则顶点坐标(3,﹣),对称轴方程x=3,考点:二次函数的图像及性质1、二次函数图象的平移(1)平移步骤:方法一:(1)将抛物线解析式转化成顶点式y=a(x-h)2+k,确定其顶点坐标(h,k);(2)保持抛物线y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k(2)平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:(1)y=ax2+bx+c沿y轴平移:向上(下)平移m个单位,y=ax2+bx+c变成y=ax2+bx+c+m(或y=ax2+bx+c-m)(2)y=ax2+bx+c沿轴平移:向左(右)平移m个单位,y=ax2+bx+c变成y=a(x+m)2+b(x+m)+c(或y=a(x-m)2+b(x-m)+c)例1.将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)2【答案】A【解析】直接根据上加下减的原则进行解答即可,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2-1.故选A.例2.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A.y=(x–1)2+2B.y=(x+1)2+2C.y=(x–1)2–2D.y=(x+1)2–2【答案】A.2. y = a x + ,其中 h = - ,k = ⎪ + 【解析】试题分析:原抛物线的顶点为(0,0),向右平移 1 个单位,再向上平移 2 个单位,那么新抛物线的顶点为(1, ).可 设新抛物线的解析式为 y=(x ﹣h )2+k ,代入得 y=(x ﹣1)2+2.故选 A .考点:二次函数图象与几何变换.例 3.将二次函数 y = x 2 的图象如何平移可得到 y = x 2 + 4 x + 3 的图象()A .向右平移 2 个单位,向上平移一个单位B .向右平移 2 个单位,向下平移一个单位C .向左平移 2 个单位,向下平移一个单位D .向左平移 2 个单位,向上平移一个单位【答案】C【解析】 y = x 2 + 4 x + 3 = ( x + 2)2 - 1 ,根据二次函数的平移性质得:向左平移 2 个单位,向下平移一个单位 故选C.例 4.已知点 P (﹣1,m )在二次函数 y=x 2﹣1 的图象上,则 m 的值为;平移此二次函数的图象,使点 P 与坐标原点重合,则平移后的函数图象所对应的解析式为.【答案】0,y=x 2﹣2x .【解析】∵点 P (﹣1,m )在二次函数 y=x 2﹣1 的图象上,∴(﹣1)2﹣1=m ,解得 m=0,平移方法为向右平移 1 个单位,平移后的抛物线的二次函数的顶点坐标为(1,﹣1),平移后的函数图象所对应的解析式为 y=(x ﹣1)2﹣1=x 2﹣2x ,即 y=x 2﹣2x .故答案为:0,y=x 2﹣2x .2、二次函数 y = a (x - h )2 + k 与 y = ax 2 + b x + c 的比较从解析式上看, y = a (x - h )2 + k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即⎛ ⎝b ⎫2 4ac - b 2 b 4ac - b 2 2a ⎭ 4a 2a 4a .3、二次函数 y = ax 2 + b x + c 图象的画法1.当a>0时,抛物线开口向上,对称轴为x=-,顶点坐标为 -,⎪.2a⎝2a4a当x<-b时,y随x的增大而减小;当x>-时,y随x的增大而增大;当x=-时,y有最小值.c c2.当a<0时,抛物线开口向下,对称轴为x=-,顶点坐标为 -,⎪.当x<-⎝2a2a4a2a大而增大;当x>-时,y随x的增大而减小;当x=-时,y有最大值.⎛b4ac-b2⎫五点绘图法:利用配方法将二次函数y=ax2+bx+c化为顶点式y=a(x-h)2+k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图一般我们选取的五点为:顶点、与y轴的交点(0,)、以及(0,)关于对称轴对称的点(2h,c)、与x轴的交点(x,0),(x,0)(若与x轴没有交点,则取两组关于对12称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.4、二次函数y=ax2+b x+c的性质b⎛b4ac-b2⎫⎭b b2a2a2a4ac-b24a.b b⎭b b4ac-b22a2a4a例1.当a<0时,方程ax2+bx+c=0无实数根,则二次函数y=ax2+bx+c的图像一定在()A、x轴上方B、x轴下方C、y轴右侧D、y轴左侧【答案】B【解析】试题分析:∵方程ax2+bx+c=0无实数根,∴b2+4ac<0,即函数图形与x轴没有交点又∵a<0,∴二次函数y=ax2+bx+c的图像一定在x轴下方故选B.考点:二次函数的性质例2.已知二次函数y=ax2+bx+c的图象如图,则a、b、c满足()时,y随x的增A、a<0,b<0,c>0B、a<0,b<0,c<0C、a<0,b>0,c>0D、a>0,b<0,c>0【答案】A【解析】试题分析:由于开口向下可以判断a<0,由与y轴交于正半轴得到c>0,又由于对称轴x=-b2a<0,可以得到b<0,所以可以找到结果.试题解析:根据二次函数图象的性质,∵开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,又∵对称轴x=-b2a<0,∴b<0,所以A正确.考点:二次函数图象与系数的关系.例3.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤【答案】D【解析】试题分析:根据抛物线与x轴有两个交点,可得△=b2﹣4ac>0,即b2>4ac,故①正确;根据抛物线对称轴为x=﹣b2a<0,与y轴交于负半轴,因此可知ab>0,c<0,abc<0,故②错误;b根据抛物线对称轴为x=﹣=﹣1,∴2a﹣b=0,故③错误;2a当x=1时,y>0,即a+b+c>0,故④正确;当x=﹣1时,y<0,即a﹣b+c<0,故⑤正确;正确的是①④⑤.故选D.考点:二次函数图象与系数的关系例4.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()0 ( 0A .a <0,b >0,c >0B .a >0,b <0,c >0C .a >0,b >0,c <0D .a >0,b <0,c <0【答案】D【解析】试题分析:因为抛物线开口向上,所以 a >0,又对称轴在 y 轴右侧,所以 -b2a>0,所以 b <0,又因为抛物线与 y轴的交点在 x 轴下方,所以 c <0,所以 a >0,b <0,c <0,故选:D .考点:抛物线的性质.例 5.已知抛物线 y=ax 2+bx+c 与 x 轴的公共点是(﹣4, ), 2, ),则这条抛物线的对称轴是直线.【答案】x=-1.【解析】试题分析:因为点(-4,0)和(2,0)的纵坐标都为 0,所以可判定是一对对称点,把两点的横坐标代入公式 x=x + x1 22 求解即可.试题解析:∵抛物线与 x 轴的交点为(-4,0),(2,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线 x=-4 + 2 2= -1 ,即 x=-1.考点:抛物线与 x 轴的交点.5、二次函数解析式的表示方法1. 一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2. 顶点式: y = a(x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3. 两根式: y = a( x - x )( x - x ) ( a ≠ 0 , x , x 是抛物线与 x 轴两交点的横坐标).1212注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即 b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.6、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 y = ax 2 + b x + c 中, a 作为二次项系数,显然 a ≠ 0 .c ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.2. 一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.⑴ 在 a > 0 的前提下,当 b > 0 时, -当 b = 0 时, -当 b < 0 时, - b 2ab 2ab 2a< 0 ,即抛物线的对称轴在 y 轴左侧;= 0 ,即抛物线的对称轴就是 y 轴;> 0 ,即抛物线对称轴在 y 轴的右侧.⑵ 在 a < 0 的前提下,结论刚好与上述相反,即当 b > 0 时, -当 b = 0 时, -当 b < 0 时, - b 2ab 2ab 2a> 0 ,即抛物线的对称轴在 y 轴右侧;= 0 ,即抛物线的对称轴就是 y 轴;< 0 ,即抛物线对称轴在 y 轴的左侧.总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴 x = - b2a在 y 轴左边则 ab > 0 ,在 y 轴的右侧则 ab < 0 ,概括的说就是“左同右异”总结:3. 常数项 c⑴ 当 c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当 c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为 0 ;⑶ 当 c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与 y 轴交点的位置.总之,只要 a ,b , 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.a y = ax + bx + c 关于顶点对称后,得到的解析式是 y = -ax - bx + c - ;2 2 ax + bx + c = 0 (a ≠ 0) 的两根.这两点间的距离 AB = x - x = .2 7、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于 x 轴对称y = ax 2 + bx + c 关于 x 轴对称后,得到的解析式是 y = -ax 2 - bx - c ;y = a (x - h )2 + k 关于 x 轴对称后,得到的解析式是 y = -a (x - h )2 - k ;2. 关于 y 轴对称y = ax 2 + bx + c 关于 y 轴对称后,得到的解析式是 y = ax 2 - bx + c ;y = a (x - h )2 + k 关于 y 轴对称后,得到的解析式是 y = a (x + h )2 + k ;3. 关于原点对称y = ax 2 + bx + c 关于原点对称后,得到的解析式是 y = -ax 2 + bx - c ;y = a (x - h )2 + k 关于原点对称后,得到的解析式是 y = -a (x + h )2 - k ;4. 关于顶点对称(即:抛物线绕顶点旋转 180°)b 2 2ay = a (x - h )2 + k 关于顶点对称后,得到的解析式是 y = -a (x - h )2 + k .5. 关于点 (m ,n ) 对称y = a (x - h )2 + k 关于点 (m ,n ) 对称后,得到的解析式是 y = -a (x + h - 2m )2 + 2n - k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.22.2 二次函数与一元二次方程1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + b x + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况.图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x ,0),B (x ,0) ( x ≠ x ) ,其中的 x ,x 是一元二次方程12 1 2 1 2b 2 - 4ac 2 1② 当 ∆ = 0 时,图象与 x 轴只有一个交点;③当∆<0时,图象与x轴没有交点.1'当a>0时,图象落在x轴的上方,无论x为任何实数,都有y>0;2'当a<0时,图象落在x轴的下方,无论x为任何实数,都有y<0.2.抛物线y=ax2+b x+c的图象与y轴一定相交,交点坐标为(0,c);3.二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y=ax2+b x+c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2+b x+c(a≠0)本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:∆>0抛物线与x轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负∆=0抛物线与x轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点∆<0抛物线与x轴无二次三项式的值恒为正一元二次方程无实数根.交点例1.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y),B(1.1,y),12C(2,y),则有()3A.y<y<y123B.y>y>y123C.y>y>y312D.y>y>y132【答案】C 【解析】试题分析:因为函数y=3x2-6x+k的对称轴是x=-象的草图,b-6=-=1,且抛物线开口向上,所以可以画出函数图2a6观察图象可得:y>y>y,故选:C.312考点:二次函数的性质、二次函数图象上点的坐标特点.例2.已知二次函数y=x2+2mx+2,当x>2时,y的值随x的增大而增大,则实数m的取值范围是.【答案】m≥-2.【解析】试题分析:根据二次函数的性质,利用二次函数的对称轴不大于2列式计算即可得解.试题解析:抛物线的对称轴为直线x=-2m2⨯1=-m,∵当x>2时,y的值随x值的增大而增大,∴-m≤2,解得m≥-2.考点:二次函数的性质.例3.函数y=x2+bx-c的图象经过点(1,2),则b-c的值为.【答案】1【解析】试题分析:把点(1,2)代入y=x2+bx-c,得:1+b-c=2,所以b-c=1.考点:函数图象上的点.例4.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.【答案】(1)见解析;(2)x=-2【解析】试题分析:直接利用对称轴公式代入求出即可;根据(1)中所求,再将x=4代入方程求出a,b的值,进而解方程得出即可.试题解析:(1)证明:∵对称轴是直线x=1=﹣b2a,∴b=-2a∴2a+b=0;(2)∵ax2+bx﹣8=0的一个根为4,∴16a+4b﹣8=0,∵b=﹣2a,∴16a﹣8a﹣8=0,解得:a=1,则b=﹣2,∴a x2+bx﹣8=0为:x2﹣2x﹣8=0,则(x﹣4)(x+2)=0,解得:x=4,x=﹣2,12故方程的另一个根为:﹣2.考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点例5.已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;(2)当x>0时,求使y≥2的x的取值范围.【答案】(1)y=x2-2x-1;(2)x≥3.【解析】试题分析:(1)把(3,2)代入函数解析式求出b的值,即可确定出解析式;(2)利用二次函数的性质求出满足题意x的范围即可.试题解析:(1)∵函数y=x2+bx-1的图象经过点(3,2),∴9+3b-1=2,解得:b=-2,则函数解析式为:y=x2-2x-1;(2)当x=3时,y=2,根据二次函数性质当x≥3时,y≥2,则当x>0时,使y≥2的x的取值范围是x≥3.考点:待定系数法求二次函数解析式.22.3实际问题与二次函数例1.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()【答案】C【解析】试题分析:A、对于一次函数a<0,对于二次函数a>0,则不正确;B、对于一次函数b<0,对于二次函数b>0,则不正确;C、正确;D、对于一次函数b<0,对于二次函数b>0,则不正确.考点:函数图象例2.学生校服原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9%B.8.5%C.9.5%D.10%【答案】D.【解析】试题分析:设平均每次降价的百分数是x,根据等量关系“校服原来每套的售价是100元×(1-下降率)2=每套校服现在的售价是81元”,列出方程100(1-x)2=81元,解得x即可,故答案选D.考点:一元二次方程的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识反馈卡·22.1.1
(时间:10分钟满分:25分)
一、选择题(每小题3分,共6分)
1.若y=mx2+nx-p(其中m,n,p是常数)为二次函数,则() A.m,n,p均不为0 B.m≠0,且n≠0
C.m≠0 D.m≠0,或p≠0
2.当ab>0时,y=ax2与y=ax+b的图象大致是()
二、填空题(每小题4分,共8分)
3.若y=x m-1+2x是二次函数,则m=________.
4.二次函数y=(k+1)x2的图象如图J22-1-1,则k的取值范围为________.
图J22-1-1
三、解答题(共11分)
5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-1
2x 2的
图象,并根据图象回答下列问题(设小方格的边长为1):
图J22-1-2
(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;
(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;
(3)函数y =-1
2x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______
值是______.
基础知识反馈卡·22.1.2
时间:10分钟 满分:25分
一、选择题(每小题3分,共6分)
1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)2
2.二次函数y =-x 2+2x 的图象可能是( )
二、填空题(每小题4分,共8分)
3.抛物线y =x 2+1
4
的开口向________,对称轴是________.
4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分)
5.已知二次函数y =-1
2
x 2+x +4.
(1)确定抛物线的开口方向、顶点坐标和对称轴;
(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?
基础知识反馈卡·*
22.1.3
时间:10分钟 满分:25分
一、选择题(每小题3分,共6分)
1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A .y =2x 2+x +2 B .y =x 2+3x +2 C .y =x 2-2x +3 D .y =x 2-3x +2
2.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )
A .y =-(x -2)2-1
B .y =-1
2(x -2)2-1
C .y =(x -2)2-1
D .y =1
2(x -2)2-1
二、填空题(每小题4分,共8分)
3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.
图J22-1-3
4.已知抛物线y =x 2+(m -1)x -1
4的顶点的横坐标是2,则m 的值是________.
三、解答题(共11分)
5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.
基础知识反馈卡·22.2
时间:10分钟 满分:25分
一、选择题(每小题3分,共6分)
1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是( )
A.6<x <6.17 2.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3
B.32和-3 C .-32和2 D .-3
2和-2 二、填空题(每小题4分,共8分)
3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2 011的值为__________.
4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.
图J22-2-1
三、解答题(共11分)
5.如图J22-2-2,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的关系式;
(2)求不等式x 2+bx +c >x +m 的解集(直接写出答案).
图J22-2-2
基础知识反馈卡·22.3
时间:10分钟 满分:25分
一、选择题(每小题3分,共6分)
1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )
A .y =πx 2-4
B .y =π(2-x )2
C .y =-(x 2+4)
D .y =-πx 2+16π
2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-5
2t 2+20t +1.若此礼
炮在升空到最高处时引爆,则引爆需要的时间为( )
A .3 s
B .4 s
C .5 s
D .6 s 二、填空题(每小题4分,共8分)
3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.
4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.
图J22-3-1
三、解答题(共11分)
5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-3
5
x 2+3x +1的一部分,如图J22-3-2.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.
图J22-3-2
参考答案
基础知识反馈卡·22.1.1
1.C 2.D 3.3 4.k >-1 5.解:图略.
(1)函数y =2x 2的图象开口向上,对称轴为y 轴,顶点坐标为(0,0). 函数y =-1
2x 2的图象开口向下,对称轴为y 轴,顶点坐标为(0,0).
(2)≠0 低 (3)≤ =0 大 0 基础知识反馈卡·22.1.2 1.A 2.B
3.上 y 轴 4.y =2⎝⎛⎭⎫x +322-3
2
5.解:(1)将二次函数y =-12x 2+x +4配方,得y =-12(x -1)2+9
2.
所以抛物线的开口向下,顶点坐标为⎝⎛⎭⎫1,9
2,对称轴为x =1. (2)当x >1时,y 随x 的增大而减小;当x <1时,y 随x 的增大而增大.
基础知识反馈卡·
*22.1.3 1.D 2.C 3.y =-(x +1)2+5 4.-3
5.解:由题意可设函数关系式为y =a (x -1)2+5,∵图象过点(0,-3),∴a (0-1)2+5=-3,解得a =-8.∴y =-8(x -1)2+5,即y =-8x 2+16x -3.
基础知识反馈卡·22.2
1.C 2.B 3.2 012 4.-2<x <3
5.解:(1)∵直线y =x +m 经过点A (1,0),∴0=1+m .∴m =-1. 即m 的值为-1.
∵抛物线y =x 2+bx +c 经过点A (1,0),B (3,2),
∴⎩⎪⎨⎪⎧ 0=1+b +c ,2=9+3b +c ,解得⎩
⎪⎨⎪⎧
b =-3,
c =2. ∴二次函数的关系式为y =x 2-3x +2. (2){x |x <1或x >3}. 基础知识反馈卡·22.3 1.D 2.B 3.4 4.9.1 m 5.解:(1)y =-3
5x 2+3x +1
=-35⎝⎛⎭⎫x -522+194. 故函数的最大值是194
,
∴演员弹跳离地面的最大高度是19
4米.
(2)当x =4时,y =-3
5×42+3×4+1=3.4=BC .
∴这次表演成功. 基础知识反馈卡·23.1 1.D 2.A
3.∠D ∠E DE DC 4.C 顺时针 90 5.解:(1)旋转中心是点B . (2)旋转了90度. (3)AC 与EF 垂直且相等.。