高二下数学练习题
2021-2022学年北京市第二中学高二下学期数学期末练习试题(解析版)
2021-2022学年北京市第二中学高二下学期数学期末练习试题一、单选题1.已知离心率为2的双曲线()222210,0x y a b a b -=>>与椭圆22184x y +=有公共焦点,则双曲线的方程为( ) A .221412x y -=B .221124x y -=C .2213y x -=D .2213x y -=【答案】C【分析】由双曲线与椭圆共焦点可得双曲线的2c =,双曲线离心率2ce a==,得1a =,3b =,即可求出双曲线的方程.【详解】双曲线()222210,0x y a b a b -=>>与椭圆22184x y +=有公共焦点由椭圆22184x y +=可得284=4c =-2c ∴=双曲线离心率2ce a==, 2221413a b c a ∴==-=-=,∴双曲线的方程为:2213y x -=故选:C【点睛】本题主要考查椭圆与双曲线焦点以及双曲线离心率的表示方法,属于基础题. 2.函数 ()y f x =的导函数()y f x ='的图象如图所示,给出下列命题:①3-是函数()y f x =的极值点; ②1-是函数()y f x =的最小值点; ③()y f x =在区间()3,1-上单调递增; ④()y f x =在0x =处切线的斜率小于零.以上正确命题的序号是( ) A .①② B .③④ C .①③ D .②④【答案】C【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率.【详解】根据导函数图象可知:当(),3x ∈-∞-时,()0f x '<,在()3,1x ∈-时,()0f x '≥, ∴函数()y f x =在(),3-∞-上单调递减,在()3,1-上单调递增,故③正确;则3-是函数()y f x =的极小值点,故①正确; 在()3,1-上单调递增,∴1-不是函数()y f x =的最小值点,故②不正确;函数()y f x =在0x =处的导数大于0, ∴切线的斜率大于零,故④不正确.故选:C .3.已知x y ≠,数列x ,1a ,2a ,y 与x ,1b ,2b ,3b ,y 都是等差数列,则2121a ab b --的值是( ) A .43B .34C .54D .45【答案】A【分析】根据等差数列的通项公式,分别表示出()213y x a a =+-,()214y x b b =+-,整理即可得答案.【详解】数列x ,1a ,2a ,y 和x ,1b ,2b ,3b ,y 各自都成等差数列,()213y x a a ∴=+-,()214y x b b =+-,()()212134a a b b ∴-=-,212143a ab b -∴=-. 故选:A .4.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是A .2B .3C .115D .3716【答案】A【详解】直线l 2:x =-1为抛物线y 2=4x 的准线.由抛物线的定义知,P 到l 2的距离等于P 到抛物线的焦点F(1,0)的距离,故本题转化为在抛物线y 2=4x 上找一个点P ,使得P 到点F(1,0)和直线l 2的距离之和最小,最小值为F(1,0)到直线l 1:4x -3y +6=0的距离,即d min =4065-+=2.5.若直线2y x b =+是曲线2lnx y a =的切线,且0a >,则实数b 的最小值是 A .1 B .1- C .2 D .2-【答案】D【分析】求出函数y =2alnx 的导数,设切点为(m ,n ),由条件得到22am=,2m+b =2alnm ,即有b =2alna ﹣2a (a >0),再对b 求导,求出单调区间,极值即为最值,即可得到实数b 的最小值.【详解】y =2alnx 的导数为2ay x'=,由于直线y =2x+b 是曲线y =2alnx 的切线,设切点为(m ,n ),则22am=, ∴m =a ,又2m+b =2alnm ,∴b =2alna ﹣2a (a >0),b '=2(lna+1)﹣2=2lna , 当a >1时,b '>0,函数b 递增,当0<a <1时,b '<0,函数b 递减, ∴a =1为极小值点,也为最小值点,∴b 的最小值为2ln1﹣2=﹣2. 故选D .【点睛】本题考查利用导数求曲线上某点处的切线方程,考查利用导数求最值,属于基础题.6.已知抛物线2:4C y x =的焦点为F ,准线为l ,点P 在C 上,直线PF 交y 轴于点Q ,若3PF FQ =,则点P 到准线l 的距离为( ) A .3 B .4C .5D .6【答案】C【分析】求出焦点F 的坐标,过点P 作y 轴的垂线,垂足为N ,由OF PN ∥可得||||1||||4OF FQ PN QP ==,求出||PN ,结合抛物线的定义,即可得解. 【详解】解:由抛物线2:4C y x =,可知(1,0)F ,准线l 的方程为1x =-, 过点P 作y 轴的垂线,垂足为N , 因为OF PN ∥,所以||||1||||4OF FQ PN QP ==, 所以||4||4PN FO ==,所以点P 到准线l 的距离为415+=. 故选:C .7.某班制定了数学学习方案:星期一和星期日分别解决4个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有 A .141种 B .140种 C .51种 D .50种【答案】A【详解】分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.详解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有01122336656463C C C C C C C +++=141种.故选A .点睛:本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.8.若曲线()e x mf x x=+在(,0)-∞上存在垂直y 轴的切线,则实数m 取值范围为 A .24,e ⎛⎤-∞ ⎥⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .(,4]-∞D .(0,4]【答案】B【详解】试题分析:()2'e 0xmf x x=-= 在(,0)-∞上有解2e x m x ⇒=在(,0)-∞上有解,设()()()22e '2e (0)x xg x x g x x x x =⇒=+< ,令'()02g x x =⇒=- ,当2x <- 时,'()0g x > ,当20x -<< 时,()()()24'002e g x g x g m <⇒<≤-=⇒∈240,e ⎛⎤ ⎥⎝⎦,故选B.【解析】函数的导数及其应用.【方法点晴】本题考查函数的导数及其应用,考查了转化化归思想、分类讨论思想和函数与方程思想,计算量比较大,属于较难题型.解题时首先将命题转化为2e x m x =在(,0)-∞上有解,再设()2e x g x x =,然后利用导数工具求得()()2402e g x g m <≤-=⇒∈240,e ⎛⎤⎥⎝⎦,解此类题型时,应注意积累命题转化技巧,即培养转化化归思想.9.已知1F 、2F 分别是双曲线2222:1x y C a b-=(0,0)a b >>的左、右焦点,双曲线C 的右支上一点Q 满足1||OQ OF =,直线1F Q 与该双曲线的左支交于P 点,且P 恰好为线段1F Q 的中点,则双曲线C 的渐近线方程为( )A .12y x =±B .2y x =±C .y =±D .y =±【答案】C【分析】根据给定条件导出12QF QF ⊥,再利用双曲线定义结合勾股定理计算作答. 【详解】依题意,令12||||||OQ OF OF c ===,则有12QF QF ⊥,令2||2QF t =,由双曲线定义得1||22QF a t =+,而点P 是QF 1中点且在双曲线左支上,则12||||,||3PQ PF a t PF a t ==+=+,在2Rt PQF 中,22222||||||PQ QF PF +=,即222()(2)(3)a t t a t ++=+,解得2t a =,则2||4QF a =,1||6QF a =,在12Rt FQF 中,2221212||||||QF QF F F +=,即22236164a a c +=,2213c a =,于是得2212b a =,ba=所以双曲线C 的渐近线方程为y =±. 故选:C10.设{}2n a n +为等比数列,且11a =,20a =,现有如下四个命题:①123,,a a a 成等差数列; ②5a 不是质数;③{}2n a n +的前n 项和为122n +-;④数列{}n a 存在相同的项. 其中所有真命题的序号是 A .①④ B .①②③ C .①③ D .①③④【答案】D【分析】首先根据{}2n a n +为等比数列,且11a =,20a =,得到22n n a n =-,再依次判断即可得到答案.【详解】设等比数列{}2n a n +的公比为q ,则2202211q +==+,所以22nn a n +=, 对①,因为22n n a n =-,所以31a =-,则1322a a a +=,所以123,,a a a 成等差数列,故①为真命题.对②,525257a =-=,而7为质数,所以5a 是质数,故②为假命题.对③,{}2n a n +的前n 项和为()212121222222nn n +--==+++-,故③为真命题.对④,因为20a =,424240a =-=,故④为真命题.故选:D 二、填空题11.数列{}n a 中,13.n n a a +=前99项的和9952S =,则36999a a a a ++++=___________.【答案】36【分析】易得数列{}n a 是等比数列,数列36999,,,,a a a a 是等比数列,根据等比数列的前n 项和公式求得1a ,再根据等比数列前n 项和公式即可得解. 【详解】解:因为13n n a a +=,9952S =,所以数列{}n a 是以3为公比的等比数列, 所以数列36999,,,,a a a a 是以3a 为首项,33为公比的等比数列又()99199135213a S -==-,所以()99113104a -=-,是以()()()333993136999313913910436132626a a a a a a ⎡⎤--⨯-⎢⎥⎣⎦++++====---. 故答案为:36. 三、双空题12.已知()727012712x a a x a x a x -=++++,则0a =_________,127a a a +++=______________.【答案】 1 2-【分析】令0x =即可求0a 的值,令1x =结合0a 的值,即可求127a a a +++的值.【详解】令0x =可得:()70120a -⨯=,所以01a =, 令1x =可得:()07712121a a a a -⨯=++++,即27111a a a ++++=-,所以1272a a a +++=-,故答案为:1;2-.13.设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】 4 42【分析】根据等差数列的前n 项和公式,可求得38a =,从而可求得数列的公差,得到数列的通项公式和前n 项和公式,可求得所需求的值. 【详解】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-, 514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42.故答案为:(1)4;(2)42.【点睛】本题考查等差数列的通项公式和前n 项和公式,和根据二次函数的求得前n 项和的最大值,运用是需注意数列的项数应是自然数,属于基础题.14.如图,椭圆E 的左右焦点为1F ,2F ,以2F 为圆心的圆过原点,且与椭圆E 在第一象限交于点P ,若过P 、1F 的直线l 与圆2F 相切,则直线l 的斜率k =______;椭圆E 的离心率e =______.【答案】3331-【解析】根据直角三角形的性质求得12PF F ∠,由此求得k ,结合椭圆的定义求得离心率.【详解】连接2PF ,由于l 是圆2F 的切线,所以12PF PF ⊥. 在12Rt PF F 中,212PF OF OF c ===, 所以21212PF F F =,所以126PF F π∠=,所以直线l 的斜率63tan 3πk ==.2211223PF F P F F c =-=,根据椭圆的定义可知1212222312331F F c c c e a a PF PF c c ======-+++. 故答案为:33;31-【点睛】本小题主要考查椭圆的定义、椭圆的离心率,属于中档题.15.已知函数()()1ln 0f x ax x a x=+>.(1)当1a =时,()f x 的极小值为______;(2)若()f x ax ≥,在()0,∞+上恒成立,则实数a 的取值范围为______. 【答案】 1 20,e ⎛⎤⎥⎝⎦【分析】(1)代入a 的值,求出函数的导数,判断导函数的正负,求出函数的单调区间,求出函数的极小值即可; (2)问题转化为21(1ln )a x x -≤在(0,)+∞恒成立,e x ≥时显然成立,0e x <<时,问题转化为min 21[](1ln )a x x ≤-,只需求出2()(1ln )g x x x =-的最大值即可,求出函数()g x 的最大值,从而求出a 的范围即可.【详解】(1)1a =时,1()ln f x x x x=+,(0)x >,21()ln 1f x x x '=+-,令23112()ln 1,()0g x x g x x x x'=+-=+>, 故()'f x 在(0,)+∞递增,而()01f '=,故(0,1)x ∈时,()0f x '<,()f x 递减,(1,)x ∈+∞时,()0f x '>,()f x 递增, 故()f x 极小值(1)1f ==;(2)若()f x ax ≥在(0,)+∞上恒成立, 即21(1ln )a x x -≤在(0,)+∞恒成立, ①1ln 0x -≤即e x ≥时,0a >,(1ln )0x -≤,210x >, 故21(1ln )a x x -≤在(0,)+∞恒成立, ②1ln 0x ->即0e x <<时,问题转化为21(1ln )a x x ≤-在(0,)+∞恒成立, 即min 21[](1ln )a x x ≤-,只需求出2()(1ln )g x x x =-的最大值即可,(0e)x <<,()(12ln )g x x x '=-,令()0g x '>,解得:0x <<()0g x '<e x <<,故()g x 在递增,在e)递减,故max e ()2g x g ==,故12e e 2a ≤=, 综上,(0a ∈,2]e, 故答案为:1, 2(0,]e.四、解答题16.在①212log log 1n n a a +=+,②12n n n a a +=+,③22112n n n n a a a a ++-=(0na >)这三个条件中任选一个,补充在下面问题中,并作答,已知{}n n b a -为等差数列,{}n b 的前n 项和为n S ,且12a =,12b =,314b =,__________,是否存在正整数k ,使得2021k S >?若存在,求k 的最小值:若不存在,说明理由. 注:如果选择多个条件分别作答,按第一个解答计分. 【答案】选择见解析;存在;k 的最小值为10.【分析】选①:得212log log 1n n a a +-=,所以2{log }n a 等差数列,即可求得n a 通项公式,再求得{}n b ,然后求和n S ,最后由不等式估算k 的最小值;选②:用累加法求得n a 通项公式,下同选①;选③:由22112n n n n a a a a ++-=整理得()()1120n n n n a a a a ++-+=,即可求得n a 通项公式,下同选①.【详解】选①:由21log log 1n n a a +=+得212log log 1n n a a +-=,所以2{log }n a 是首项为21log 1a =,公差为1的等差数列, 所以()2log 111n a n n =+-⨯=,故2n n a =. 又12b =,314b =,12a =,38a =, 所以110b a -=,336b a -=, 所以等差数列{}n n b a -的公差3311()()331b a b a d ---==-所以()()11131n n b a b a n d n -=-+-=-,所以()231nn b n =+-,2123133(2222)3(123)3222nn n n n S n n +-=+++++++++-=-+.由2021n S >得10n ≥,即存在正整数k ,使得2021k S >.且k 的最小值为10. 选②:由12nn n a a +=+得1212a a -=,3222a a -=, 3432a a ,…,()1122n n n a a n ---=≥,相加得1123112(12)22222212n n n n a a ----=++++==--,又12a =,所以()22nn a n =≥,显然12a =也满足()22nn a n =≥,故2n n a =.下同选①. 选③:由22112n n n n a a a a ++-=整理得()()1120n n n n a a a a ++-+=,又0n a >,所以12n n a a +=,即12n na a +=, 所以{}n a 是首项为2,公比为2的等比数列,所以2n n a =. 下同选①.【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.17.某省从2021年开始将全面推行新高考制度,新高考“312++”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为,,,,A B C D E 五个等级,确定各等级人数所占比例分别为15%,35%,35%,13%,2%,等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法分别转换到[]86,100、[]71,85、[]56,70、[]41,55、[]30,40五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:而等比例转换法是通过公式计算:2211Y Y T TY Y T T --=-- 其中1Y ,2Y 分别表示原始分区间的最低分和最高分,1T 、2T 分别表示等级分区间的最低分和最高分,Y 表示原始分,T 表示转换分,当原始分为1Y ,2Y 时,等级分分别为1T 、2T假设小南的化学考试成绩信息如下表:设小南转换后的等级成绩为T ,根据公式得:847585756971TT --=--,所以76.677T =≈(四舍五入取整),小南最终化学成绩为77分.已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得A 等级的学生原始成绩统计如下表:(1)从化学成绩获得A 等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;(2)从化学成绩获得A 等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为ξ,求ξ的分布列和期望. 【答案】(1)1235P =(2)见解析 【分析】(1)根据成绩换算公式,计算出等级成绩不低于96分时的原始成绩,进而得到等级成绩不低于96分的人数,根据古典概型的概率即可得到所求;(2)列出随机变量ξ的所有可能的取值,分别求出对应的概率,列出分布列,计算期望即可.【详解】(1)设化学成绩获得A 等级的学生原始成绩为x ,等级成绩为y ,由转换公式得:951008586x y x y --=--,即:()148514330861010x x y --=+=, 所以143309610x -≥,得:92.1x ≥, 显然原始成绩满足92.1x ≥的同学有3人,获得A 等级的考生有15人.恰好有1名同学的等级成绩不小于96分的概率为113122151235C C P C ==. (2)由题意可得:等级成绩不小于96分人数为3人,获得A 等级的考生有15人,0531251524(0)91C C P C ξ===,1431251545(1)91C C P C ξ=== 2331251520(2)91C C P C ξ===,323125152(3)91C C P C ξ=== 则分布列为ξ 01 2 3 P2491 4591 2091291则期望为:45202231919191E ξ=+⋅+⋅= 【点睛】本题考查古典概型、计数原理、统计表的应用、超几何分布,考查数据处理能力和运算求解能力,属于中档题.18.如图,抛物线关于y 轴对称,它的顶点在坐标原点,点()2,1P 、()11,A x y 、()22,B x y 均在抛物线上.(1)求抛物线的方程;(2)若APB ∠的平分线垂直于y 轴,证明直线AB 的斜率为定值. 【答案】(1)24x y = (2)证明见解析【分析】(1)根据题意设抛物线的方程为2x ay =,将点P 的坐标代入抛物线的方程,求出a 的值,即可得出抛物线的方程;(2)分析可知直线AP 的斜率存在且不为零,利用斜率公式求出AP k 、BP k 的值,由已知可得0AP BP k k +=,求出12x x +的值,再利用斜率公式可求得AB k 的值.【详解】(1)解:根据题意设抛物线的方程为2x ay =,将点P 的坐标代入抛物线方程可得4a =,所以,抛物线的方程为24x y =.(2)证明:由题意可知直线AP 、BP 的倾斜角互补,若AP x ⊥轴,此时直线AP 与抛物线24x y =只有一个交点,不合乎题意. 所以,直线AP 的斜率存在,若直线AP y ⊥轴,则A 、B 重合,不合乎题意, 所以,直线AP 的斜率不为零,2111111124224APx y x k x x --+===--,同理224BP x k +=, 由已知12404AP BP x x k k +++==,可得124x x +=-, 因此,221212121212414ABx x y y x x kx x x x --+====---. 故直线AB 的斜率为定值1-.19.已知函数()(1)ln 1.f x x x x =---(1)求函数()f x 的图象在点(1,(1))f 处的切线方程; (2)证明:函数()f x 有且仅有两个零点12,x x ,且12 1.x x = 【答案】(1)10x y ++= (2)见解析【分析】(1)求导,再根据导数的几何意义即可得解;(2)求导,再根据导数得符号求出函数的单调区间,再根据零点的存在性定理即可得证,注意可先假设α是函数的一个零点,再证明10f α⎛⎫= ⎪⎝⎭.【详解】(1)解:由函数()(1)ln 1f x x x x =---, 得()0,x ∈+∞,12f ,()11ln 1ln x f x x x x x-'=+-=-, 则()11f '=-,所以函数()f x 的图象在点(1,(1))f 处的切线方程为()21y x +=--, 即10x y ++=;(2)解:()1ln f x x x '=-,()0,x ∈+∞,因为函数1ln ,y x y x ==-在()0,x ∈+∞上递增,所以函数1ln y x x=-在()0,x ∈+∞上递增,又()()1ln 41110,2ln 2022f f -''=-<=-=>, 所以存在唯一的实数()01,2x ∈,使得()00f x '=, 当00x x <<时,()0f x '<,当0x x >时,()0f x '>, 所以函数()f x 在()00,x 上递减,在()0,x +∞上递增, 故()()0120f x f <=-<,又()22e e 30f =->,所以函数()f x 在()0,x +∞上存在唯一的零点α, 则()(1)ln 10f αααα=---=, 由01x α<<,得011x α<<,又()1ln 11111()(1)ln 10f αααααααα---=---==, 所以函数()f x 在()00,x 上存在唯一的零点1α,即函数()f x 有且仅有两个零点12,x x ,且12 1.x x = 20.已知函数()(1)e 1xf x x =-+,2()(R).2ax g x a =∈(1)若1a =,求函数()g x 在点(3,(3))g 处的切线方程; (2)当(,1]x ∈-∞时,()()f x g x ≤恒成立,求a 的取值范围. 【答案】(1)6290x y --= (2)[)2,+∞【分析】(1)求导,再根据导数的几何意义即可得出答案;(2)令()()()()(]21e 1,,12x ax h x g x f x x x =-=---∈-∞,要使当(,1]x ∈-∞时,()()f x g x ≤恒成立,只要当(,1]x ∈-∞时,()0f x '≥恒成立即可,从a 的角度分类讨论求出函数的单调区间及最值,从而可得出答案.【详解】(1)解:若1a =,2()2x g x =,则()932g =,则()g x x '=,故(3)3g '=,所以函数()g x 在点(3,(3))g 处的切线方程为()9332y x -=-, 即6290x y --=;(2)解:令()()()()(]21e 1,,12x ax h x g x f x x x =-=---∈-∞,则()()()e e 1e x x xh x ax x x a '⎡⎤=-+-=-⎣⎦, 当0a ≤时,有e 0x a -<,当0x <时,()0h x '>,当01x <≤时,()0h x '<, 所以函数()h x 在(),0∞-上递增,在(]0,1上递减, 所以()()max 00h x h ==, 所以当0a ≤时,()0h x ≤恒成立, 所以0a ≤不符合题意;当0a >时,令()0h x '=,则0x =或ln a , ①若e a ≥,则ln 1a ≥,当0x <时,()0h x '<,当01x <<时,()0h x '>, 所以函数()h x 在(),0∞-上递减,在()0,1上递增, 所以()()00h x h ≥=,所以当(,1]x ∈-∞时,()()f x g x ≤恒成立, 所以e a ≥符合题意;②若1e a <<时,则0ln 1a <<,当0x <或ln 1a x <<时,()0h x '<,当0ln x a <<时,()0h x '>, 所以函数()h x 在(),0∞-和()ln ,1a 上递减,在()0,ln a 上递增, 因为()0h x ≥恒成立,所以()()00011021eh a h a ⎧=≥⎪⎪=-≥⎨⎪<<⎪⎩,解得2e a ≤<;③若1a =,则ln 0a =, 则()0h x '≤,所以函数()h x 在(],1-∞上递减, 又()00h =,所以当10x ≥>时,()0h x <, 所以1a =不符合题意; ④若01a <<时,则ln 0a <,当ln x a <或01x <<时,()0h x '<,当ln 0a x <<时,()0h x '>, 所以函数()h x 在(),ln a -∞和()0,1上递减,在()ln ,0a 上递增, 又()00h =,所以当10x ≥>时,()0h x <, 所以01a <<不符题意,综上所述,a 的取值范围是[)2,+∞.【点睛】本题考查了导数的几何意义和利用导数求含参函数的单调区间及最值,考查了利用导数研究函数不等式恒成立问题,考查了分类讨论思想及数据分析能力.21.已知椭圆C :()222210x y a b a b +=>>1F ,2F ,A为C 的上顶点,且12AF F △的周长为4+ (1)求椭圆C 的方程;(2)直线l :()0y kx m m =+≠与椭圆C 交于M ,N 两点,O 为坐标原点,当k 为何值,22OM ON +恒为定值,并求此时MON △面积的最大值.【答案】(1)2214x y +=(2)12k =±,MON △面积的最大值为1【分析】(1)由椭圆的定义可知12AF F △的周长为224a c +=+求解;(2)联立直线方程与椭圆方程,结合韦达定理可得()()()2222222641641241m k k OM ON k -+++=++,若22OM ON +恒为定值,则与2m 无关,即可求得k 值;将k代回可得MN ,设点O 到直线l 的距离d ,则12MON S d MN =⨯⨯△,利用均值不等式即可求解.【详解】(1)设椭圆C 的半焦距为c .因为12AF F △的周长为4+所以224a c +=+① 因为椭圆Cc a =②由①②解得2a =,c =则1b .所以椭圆C 的方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立2244y kx m x y =+⎧⎨+=⎩,消元得()222418440k x kmx m +++-=, 当()()2222Δ64164110k m k m =-+->,即22410k m -+>时,则122841km x x k -+=+,21224441m x x k -⋅=+, 则22222212121144x x OM ON x x +=+-++-()()2222221222324624622441k m m k x x k -++=++=++()()()22222641641241m k k k -++=++, 当22OM ON +为定值时,即与2m 无关,故2410k -=,得12k =±, 此时MN ==又点O 到直线l的距离d =所以2212122MONm m S d MN m +-=⨯⨯==△,当且仅当m =1m =±时,等号成立, 经检验,此时Δ0>成立, 所以MON △面积的最大值为1.。
高二数学下册充要条件单元训练题及答案
高二数学下册充要条件单元训练题及答案很多同学总是抱怨数学学不好,其实是因为试题没有做到位,数学需要大量的练习来帮助同学们理解知识点。
以下是店铺为您整理的关于高二数学下册充要条件单元训练题及答案的相关资料,供您阅读。
高二数学下册充要条件单元训练题及答案一、选择题(每小题6分,共42分)1.已知A和B是两个命题,如果A是B的充分但不必要条件,那么 A是 B的( )A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:“A B” “ B A”,“B A”等价于“ A B”.2.(2010浙江杭州二中模拟,4)“a>2且b>2”是“a+b>4且ab>4”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:A解析:充分性显然,当a=5,b=1时,有a+b>4,ab>4,但“a>2且b>2”不成立.3.(2010北京西城区一模,5)设a、b∈R,则“a>b”是“a>|b|”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不是充分条件也不是必要条件答案:B解析:a>b并不能得到a>|b|.如2>-5,但2<|-5|,且a>|b| a>b.故选B.4.已知条件p:|x|=x,条件q:x2≥-x,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.?既不充分也不必要条件答案:A解析:p:A={0,1},q:B={x|x≤-1或x≥0}.∵A B,∴p是q的充分不必要条件.5.已知真命题:“a≥b是c>d的充分不必要条件”,和“aA.充分非必要条件B.必要非充分条件C.充分必要条件D.?既不充分也不必要条件答案:A解析:“a≥b是c>d的充分不必要条件”等价于“c≤d a6.(2010全国大联考,2)不等式10成立的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.?即不充分也不必要条件答案:A解析:当10,tanx>0,?即tan(x-1)tanx>0,但当x= 时,(x-1)tanx=( -1)×1>0,而 (1, ),故选A.7.已知抛物线y=ax2+bx+c(a>0,b,c∈R)则“关于x的不等式ax2+bx+cA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:B解析:ax2+bx+c0,顶点(- )在直线y=x下方- (b-1)2>4ac+1,故选B.二、填空题(每小题5分,共15分)8.方程3x2-10x+k=0有两个同号且不相等的实根的充要条件是______________.答案:0解析:其充要条件为 09.已知p:|x+1|>2和q: >0,则 p是 q的__________________.(填“充分不必要”“必要不充分”“充要条件”“既不充分又不必要?条件”)答案:充分不必要解析:∵p:x<-3或x>1,q:x<-4或x>1,∴ p:-3≤x≤1, q:-4≤x≤1.∴ p是 q的充分不必要条件.10.给出下列各组p与q:(1)p:x2+x-2=0,q:x=-2;(2)p:x=5,q:x>-3;(3)p:内错角相等,q:两条直线互相平行;(4)p:两个角相等,q:两个角是对顶角;(5)p:x∈M,且x∈P,q:x∈M∪P(P,M≠ ).其中p是q的充分不必要条件的组的序号是_____________________.答案:(2)(5)解析:(1)(4)中p是q的必要不充分条件;?(3)中p是q的充要条件;(2)(5)满足题意.三、解答题(11—13题每小题10分,14题13分,共43分)11.设x、y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.证明:充分性:如果xy=0,那么①x=0,y≠0;②y=0,x≠0;③x=0,y=0.于是|x+y|=|x|+|y|.如果xy>0,即x>0,y>0或x<0,y<0.当x>0,y>0时,|x+y|=x+y=?|x|+|y|?;当x<0,y<0时,|x+y|=-(x+y)=-x+(-y)=|x|+|y|.总之,当xy≥0时,有|x+y|=|x|+|y|.必要性:解法一:由|x+y|=|x|+|y|及x,y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,|xy|=xy,∴xy≥0.解法二:|x+y|=|x|+|y| (x+y)2=(|x|+|y|)2 x2+y2+2xy=x2+y2+2|xy| xy=|xy| xy≥0.12.已知a,b是实数,求证:a4-b4=1+2b2成立的充分条件是a2-b2=1,该条件是否是必要条件?证明你的结论.证明:该条件是必要条件.当a2-b2=1即a2=b2+1时,a4-b4=(b2+1)2-b4=2b2+1.∴a4-b4=1+2b2成立的充分条件是a2-b2=1又a4-b4=1+2b2,故a4=(b2+1)2.∴a2=b2+1,即a2-b2=1故该条件是必要条件.13.已知关于x的方程:(a-6)x2-(a+2)x-1=0.(a∈R),求方程至少有一负根的充要条件.解析:∵当a=6时,原方程为8x=-1,有负根x=- .当a≠6时,方程有一正根,一负根的充要条件是:x1x2=- <0,即a>6.方程有两负根的充要条件是:即2≤a<6.∴方程至少有一负根的充要条件是:2≤a<6或a=6或a>6,即a≥2.14.(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.解析:(1)当x>2或x<-1时,x2-x-2>0,由4x+p<0得x<- ,故- ≤-1时,“x<- ” “x<-1” “x2-x-2>0”.∴p≥4时,“4x+p<0”是“x2-x-2>0”的充分条件.(2)不存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件.。
高二下学期期末数学试题及答案
第1页(共4页) 第2页(共4页)密 封 线 内 不 要 答 题XXX 学年下学期期末考试高二数学试卷一、选择题(每题2分,共30分)1、sin450cos150-cos450sin150的值是 ( ) A.-23 B.21 C.-21 D.23 2、若cos α=-21,sin β=23,且α和β在第二象限,则sin(α+β)的值( )A.213-B.23C.-23D.213、x y 212-=的准线方程( )A. 21=yB. 81=xC. 41=xD. 161=x 4、由1,2,3可以组成多少个没有重复数字的三位数 ( )A. 6个 B . 3个 C. 2个 D. 1个5、(nx )6-的展开式中第三项的系数等于6,那么n 的值( )A . 2B .3C . 4D .56、从放有7个黑球,5个白球的袋中,同时取出3个,那么3个球是同色的概率( ) A. 221 B. 447 C. 449 D. 221或447 7、x y 2=与抛物线2x y =的交点有( )A .1个B .2个C .3个D .4个8、化简x y x x y x cos )cos(sin )sin(+++的结果是( )A .)2cos(y x + B .y cos C .)2sin(y x + D .y sin 9、已知△ABC 的三边分别为a=7, b=10, c=6,则△ABC 为( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.无法确定 10、函数y x y 的图象可由函数)6sin(2π+==的图象x sin 2 而得到( ) A. 向右平移6π个单位 B. 向左平移6π个单位 C. 向右平移3π个单位 D. 向左平移3π个单位11、椭圆155322=+y x 的焦点坐标为 ( ) A.)0,8(),0,8(- B.)8,0(),8,0(- C.)0,2(),0,2(- D.)2,0(),2,0(- 12、 61⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是 ( ) A.C 36 B.C 46 C.C 06 D.C 56专业 班级 考场 座号第3页(共4页) 第4页(共4页)13、100件产品中,有10件一等品,20件二等品,任取一件是二等品的概率( ) A. 51 B. 101 C. 301 D. 50114、下列点在1234+-=x x y 的曲线上的是( )A .(1,0)B .(—1,—6)C .(—5,1)D .(2,1)15、从8名男生和1名女生中选4人组成一个小组,必须要有女生参加的选法种数为( ) A. 70 B. 56 C. 336 D. 126 二、填空题(每题2分,共30分) 1、长轴和短轴之和为18,焦距为6,且焦点在x 轴上的椭圆标准方程 2、双曲线1361622=-y x 的渐近线方程 3、过点M(-1,-2)的抛物线标准方程4、用1克,2克,4克的砝码在天平上能称出 种不同的物体的质量.5、长轴在y 轴,离心率为36,且过点(3,0)的椭圆的标准方程是 。
2021-2022学年高二下学期期末考试数学试题含答案
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.78915⨯⨯⨯⋅⋅⋅⨯可表示为( ) A .915AB .815AC .915CD .815C2.从1~7这七个数字中选3个数字,组成无重复数字的三位数,其中偶数的个数为( ) A .210B .120C .90D .453.()91x -的展开式的第6项的系数为( ) A .69CB .69C -C .59CD .59C -4.日常生活中的饮用水是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t 水净化到纯净度为x %时所需费用(单位:元)为()()528480100100c x x x=<<-,则净化到纯净度为98%左右时净化费用的变化率,大约是净化到纯净度为90%左右时净化费用变化率的( ) A .30倍B .25倍C .20倍D .15倍5.根据分类变量X 与Y 的成对样本数据,计算得到26.147χ=.根据小概率值0.01α=的独立性检验(0.016.635x =),结论为( )A .变量X 与Y 不独立B .变量X 与Y 不独立,这个结论犯错误的概率不超过0.01 C .变量X 与Y 独立 D .变量X 与Y 独立,这个结论犯错误的概率不超过0.016.已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X ,则()E X =( )A .2B .1C .43D .237.某人在11次射击中击中目标的次数为X ,若()~11,0.8X B ,若()P X k =最大,则k=( ) A .7 B .8C .9D .108.已知函数()()1e x f x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( ) A .24,0e ⎛⎫-⎪⎝⎭B .242,e e ⎛⎫-⎪⎝⎭ C .36,2e e ⎛⎫-⎪⎝⎭D .36,0e ⎛⎫-⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.对经验回归方程,下列正确的有( ) A .决定系数2R 越小,模型的拟合效果越好 B .经验回归方程只适用于所研究的样本的总体C .不能期望经验回归方程得到的预报值就是响应变量的精确值D .残差平方和越小,模型的拟合效果越好10.甲、乙两地举行数学联考,统计发现:甲地学生的成绩()()2111~,0X N μσσ>,乙地学生的成绩()()2222~,0Y N μσσ>.下图分别是其正态分布的密度曲线,则( )A .甲地数学的平均成绩比乙地的低B .甲地数学成绩的离散程度比乙地的小C .()()90948290PX P X ≤<>≤< D .若28σ=,则()921240.84P Y ≤<≈(附:若随机变量()()2~,0X N μσσ>,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈)11.下列命题正确的有( )A .现有1、3、7、13四个数,从中任取两个相加得到m 个不相等的和;从中任取两个相减得到n 个不相等的差,则m +n =18B .在()()()567111x x x +++++的展开式中,含3x 的项的系数为65 C .若(5122a b =-(a ,b 为有理数),则b =-29D .02420202022202020222022202220222022C C C C C 2+++⋅⋅⋅++= 12.已知函数()()()ln 2f x x x ax a a =-+∈R 有两个极值点1x ,()212x x x <,则( )A .104a <<B .122x x +>C .()112f x >D .()20f x >三、填空题:本题共4小题,每小题5分,共20分. 13.已知函数()3f x x =,则曲线()y f x =在点(1,1)处的切线的方程为______.14.将4名博士分配到3个不同的实验室,每名博士只分配到一个实验室,每个实验室至少分配一名博士,则不同的分配方案有______种.15.某小微企业制造并出售球形瓶装的某种饮料,瓶子的制造成本是21.6r π分,其中r (单位:cm )是瓶子的半径,已知每出售1mL 的饮料,可获利0.4分,且能制作的瓶子的最大半径为6cm ,当每瓶饮料的利润最大时,瓶子的半径为______cm . 16.已知离散型随机变量X 的取值为有限个,()72E X =,()3512D X =,则()2E X =______. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取一件. (Ⅰ)求这件产品是次品的概率;(Ⅱ)已知取到的是次品,求它取自第一批产品的概率. 18.(本小题满分12分)若()*,0,na x a a n x ⎛⎫-∈≠∈ ⎪⎝⎭R N 的展开式中只有第4项的二项式系数最大,且展开式中的常数项为-20. (Ⅰ)求n ,a 的值; (Ⅱ)若()()()()220212022202220212020012202120221111a x a x x a x x a x x a x a +-+-+⋅⋅⋅+-+-=,求1232022a a a a +++⋅⋅⋅+.19.(本小题满分12分)某校组织数学知识竞赛活动,比赛共4道必答题,答对一题得4分,答错一题扣2分.学生甲参加了这次活动,假设每道题甲能答对的概率都是34,且各题答对与否互不影响.设甲答对的题数为Y ,甲做完4道题后的总得分为X . (Ⅰ)试建立X 关于Y 的函数关系式,并求()0P X <;(Ⅱ)求X 的分布列及()E X .20.(本小题满分12分) 已知函数()e ln x m f x x +=-.(Ⅰ)若()f x 在[)1,+∞上单调递增,求实数m 的取值范围;(Ⅱ)求证:2m ≥-时,()0f x >.21.(本小题满分12分)某公司对其产品研发的年投资额x (单位:百万元)与其年销售量y (单位:千件)的数据进行统计,整理后得到如下统计表:(Ⅰ)求变量x 和y 的样本相关系数r (精确到0.01),并推断变量x 和y 的线性相关程度(参考:若0.75r ≥,则线性相关程度很强;若0.300.75r ≤<,则线性相关程度一般;如果0.25r ≤,则线性相关程度较弱);(Ⅱ)求年销售量y 关于年投资额x 的线性回归方程;(Ⅲ)当公司对其产品研发的年投资额为600万元时,估计产品的年销售量. 参考公式:对于变量x 和变量y ,设经过随机抽样获得的成对样本数据为()11,x y ,()22,x y ,…,(),n n x y ,其中1x ,2x ,…,n x 和1y ,2y ,…,n y 的均值分别为x 和y .称()()niix x y y r --=∑x 和y 的样本相关系数.线性回归方程ˆˆˆybxa =+中,()()()121ˆniii n i i x x yy b x x ==--=-∑∑,ˆˆay bx=-. 7.14≈.22.(本小题满分12分) 已知函数()()()sin ln 1f x a x x a =-+∈R 在区间(-1,0)内存在极值点.(Ⅰ)求a 的取值范围; (Ⅱ)判断关于x 的方程()0f x =在()1,π-内实数解的个数,并说明理由.参考答案一、单项选择题(每小题5分,共40分)1.A 2.C 3.D 4.B 5.C 6.A 7.C 8.D 二、多项选择题(每小题5分,共20分) 9.BCD10.AD11.BC12.BD三、填空题(每小题5分,共20分)13.y =3x -2 14.36 15.6 16.916四、解答题(共70分) 17.(本小题满分10分)解:设事件B 为“取到的产品是次品”,()1,2A i =为“取到的产品来自第i 批”.(Ⅰ)由全概率公式,所求概率为()()()()()1122||P B P A P B A P A P B A =+40%5%60%4%0.044=⨯+⨯=.(Ⅱ)所求概率为()()()()()()1111||P BA P A P B A P A B P B P B ==40%5%50.04411⨯==.18.(本小题满分12分) (Ⅰ)解:由题意,n =6. 展开式的通项()662166C C kk kkkk k a T x a x x --+⎛⎫=-=- ⎪⎝⎭,k =0,1,…,6. 令6-2k =0,得k =3.由题意,得()336C 20a -=-,即32020a -=-.解得a =1.(Ⅱ)解法1:()202211x x ⎡⎤=+-⎣⎦()()()()2202120220202212021220202021202220222022202220222022C C 1C 1C 1C 1x x x x x x x x =+-+-+⋅⋅⋅+-+-又()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,所以202201220212022202220222022202220222022C C C C C 2ii a==+++++=∑. 解法2:由(Ⅰ),知()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=.令12x =,得2022202120202202201220221111111111222222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-+⨯-+⋅⋅⋅+-= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即20222022202220220122022111112222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.上式两边同乘以20222,得202220222i i a ==∑.由()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,令1x =,得01a =.所以2022202220220121i ii i a a a===-=-∑∑.19.(本小题满分12分)(Ⅰ)由题意,X =4Y -2(4-Y )=6Y -8. 由X =6Y -8<0,得43Y <.所以Y =0,1. 所以()()()431413113001C 444256P X P Y P Y ⎛⎫⎛⎫<==+==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)由题意,知3~4,4Y B ⎛⎫ ⎪⎝⎭. X 与Y 的对应值表为:于是,()()4318014256P X P Y ⎛⎫=-===-= ⎪⎝⎭;()()31433321C 14464P X P Y ⎛⎫=-===⨯-⨯=⎪⎝⎭; ()()2224332742C 144128P X P Y ⎛⎫⎛⎫====⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; ()()3343327103C 14464P X P Y ⎛⎫⎛⎫====⨯-⨯=⎪ ⎪⎝⎭⎝⎭; ()()43811644256P X P Y ⎛⎫===== ⎪⎝⎭. 法1:()()()132727818241016102566412864256E X =-⨯+-⨯+⨯+⨯+⨯=.法2:()()()36868648104E X E Y E Y ⎛⎫=-=-=⨯⨯-= ⎪⎝⎭.20.(本小题满分12分) (Ⅰ)因为()f x 在[)1,+∞单调递增,所以()1e 0x m f x x +'=-≥在[)1,+∞恒成立,即1ln x m x+≥. 所以1ln ln m x x x x≥-=--. 令()ln gx x x =--,显然()g x 在[)1,+∞上单调递减,所以()g x 在[)1,+∞上的最大值为()()max 11g x g ==-.因此,1m ≥-. (Ⅱ)当2m ≥-时,()2e ln e ln x m x f x x x +-=-≥-.只需证明2e ln 0x x -->.证法1:令()2e ln x gx x -=-,则函数()g x 的定义域为()0,+∞.()21e x g x x -'=-.因为2e x y -=是增函数,1y x=-在()0,+∞上单调递增, 所以()21e x g x x -'=-在()0,+∞上单调递增.又因为()101e e 0g -'=-<,()e 211e e 10e eg -'=->->,由零点存在性定理,存在唯一的()01,e x ∈,使得()02001e 0x g x x-'=-=.当()00,x x ∈时,()()00g x g x ''<=,()g x 单调递减;当()0,x x ∈+∞时,()()00g x g x ''>=,()g x 单调递增. 所以,()()0200min e ln x gx g x x -==-.由()02001e 0x g x x -'=-=,得0201e x x -=,002ln x x -=-. 于是()()00min01220g x g x x x ==+->=. 所以,()2e ln 0x gx x -=->.证法2:要证2e ln 0x x -->,即证2e ln x x x x -->-.设()21e x h x x -=-,则()21e1x h x -='-.()210e 12x h x x ->⇔>⇔>';()102h x x '<⇔<,所以()1h x 在(0,2)上单调递减,在()2,+∞上单调递增. 所以()()11min 21h x h ==-.设()2ln h x x x =-,则()2111x h x xx-'=-=.()2001h x x '>⇔<<;()201h x x '<⇔>,所以()2h x 在(0,1)上单调递增,在()1,+∞上单调递减. 所以()()22max 11h x h ==-.可见,()()12h x h x >.所以原结论成立.证法3:要证明2e ln 0x x -->,而()2e121x x x -≥+-=-,当且仅当2x =时取等号;1ln x x -≥,当且仅当1x =时取等号.所以2e ln x x ->,即2e ln 0x x -->.注:证明2e 1x x -≥-,1ln x x -≥各得3分,给出取等的条件各得1分. 21.(本小题满分12分)解:(Ⅰ)由题意,3x =,6y =,52155ii x==∑,51123i i i x y ==∑,521307.5i i y ==∑.()()nniii i x x y y x y nxyr ---==∑∑=0.92=≈.因为0.75r ≥,所以变量x 和y 的线性相关程度很强.(Ⅱ)()()()1122211ˆnniii ii i nniii i x x yy x ynxybx x xnx ====---==--∑∑∑∑21235363.35553-⨯⨯==-⨯. ˆ6 3.33 3.9a=-⨯=-. 所以年销售量y 关于年投资额x 的线性回归方程为ˆ 3.3 3.9y x =-. (Ⅲ)当x =6时,由(Ⅱ),ˆ 3.36 3.915.9y =⨯-=.所以研发的年投资额为600万元时,产品的年销售量约为15.9千件. 22.(本小题满分12分) (Ⅰ)解:()()1cos 101f x a x x x'=--<<+. ①当1a ≤时,因为0cos 1x <<,所以()11011x f x x x'<-=<++. 所以()f x 在(-1,0)上单调递减,所以()f x 在(-1,0)上无极值点.故1a ≤不符合题意.②当a >1时,因为cos y a x =在(-1,0)上单调递增,11y x=-+在(-1,0)上单调递增, 所以()f x '在(-1,0)上单调递增.又()111,0a -∈-,111cos 10f a a a a ⎛⎫⎛⎫'-=--< ⎪ ⎪⎝⎭⎝⎭,()010f a '=->, 所以存在唯一的111,0x a ⎛⎫∈- ⎪⎝⎭,使得()10f x '=.当()11,x x ∈-时,()0f x '<,()f x 单调递减;当()1,0x x ∈时,()0f x '>,()f x 单调递增.所以()f x 在(-1,0)内存在极小值点1x .满足题意.综上,a 的取值范围是()1,+∞.(Ⅱ)当02x π<<时,()()2sin 11x f x a x ''=-++单调递减.又()010f ''=>,()24022f a ππ⎛⎫''=--< ⎪⎝⎭+,所以存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()00f x ''=.当00x x <<时,()0f x ''>,()f x '单调递增;当02x x π<<时,()0f x ''<,()f x '单调递减,又()()0010f x f a ''>=->,2022f ππ⎛⎫'=-< ⎪+⎝⎭,所以存在唯一的0,2x πα⎛⎫∈ ⎪⎝⎭,使得()0f α'=.当()0,x α∈时,()0f x '>;当,2x πα⎛⎫∈ ⎪⎝⎭时,()0f x '<.又当2x ππ≤<时,()0f x '<恒成立,。
高二数学练习题及答案
高二数学练习题及答案
以下是一些高二数学练习题:
一、填空题
1.已知函数,若,则__。
(答案:)
2.已知复数,若,则__。
(答案:)
3.已知命题,若,则__。
(答案:)
二、选择题
1.已知函数,若函数的最小正周期为,且当时,取最大值,下列说法正确
的是()。
2.A.在区间上是减函数
3. B. 在区间上是增函数
4. C. 在区间上是减函数
5. D. 在区间上是增函数
6.答案:D
7.已知复数满足,则其共轭复数为()
8.A. B. C. D.
9.答案:A
10.函数的定义域为,值域为,则满足条件的实数组成的集合是()
11.答案:
三、解答题
1.求函数的定义域。
(字数限制,无法提供具体解题过程)
2.答案:(略)
3.求函数的值域。
(字数限制,无法提供具体解题过程)
4.答案:(略)。
数学练习题及答案高二
数学练习题及答案高二第一节:选择题1. 若函数 f(x) = ax^2 + bx + c 的图象开口向上,且在点 P(-1, 3) 有极值,那么 a, b, c 的关系是()(A) a ≠ 0, b = 0, c ≠ 0;(B) a ≠ 0, b ≠ 0, c ≠ 0;(C) a ≠ 0, b ≠ 0, c = 0;(D) a ≠ 0, b = 0, c = 0;答案:(A)解析:由题可知,函数图象开口向上,所以a ≠ 0。
又因为在点 P(-1, 3) 有极值,极值对应的 x 坐标为 -1,代入函数可得 f(-1) = -a + b - c。
由于函数开口向上,所以该极值为极小值,即 f(-1) = -a + b - c > 0。
再结合a ≠ 0,可以得出 b = 0,因为如果b ≠ 0,则在 x = -1 附近 f(-1)不可能为正值。
所以,a ≠ 0,b = 0,c ≠ 0。
2. 已知函数 y = 2x^2 + 3x - 2 的图象与 x 轴交于点 A、B两个地方,那么点 A、B 的纵坐标分别是()(A) 0,-3;(B) -2,0;(C) 0,-2;(D) -3,0;答案:(C)解析:当函数与 x 轴交于点 A、B 时,函数值 y = 2x^2 + 3x - 2 = 0。
可以通过因式分解或二次方程求根公式来解。
将方程 2x^2 + 3x - 2 = 0 因式分解为 (2x + 1)(x - 2) = 0,得到两个解:x = -1/2,x = 2。
所以,点 A 的纵坐标为 y(A) = 2(-1/2)^2 + 3(-1/2) - 2 = -2,点 B 的纵坐标为 y(B) = 2(2)^2 + 3(2) - 2 = -2。
因此,点 A、B 的纵坐标分别是 0、-2。
第二节:填空题1. 给定矩阵 A = [1 2 3; -1 0 1],则 A 的转置矩阵为 ______。
答案:[1 -1; 2 0; 3 1]解析:矩阵的转置就是将原矩阵的行变为列,列变为行。
高二下数学练习册答案
高二下数学练习册答案【练习一】题目:求函数\( f(x) = 2x^3 - 3x^2 + 5x - 7 \)在\( x = 2 \)处的导数。
答案:首先求导数\( f'(x) = 6x^2 - 6x + 5 \),然后代入\( x = 2 \),得到\( f'(2) = 6(2)^2 - 6(2) + 5 = 24 - 12 + 5 = 17 \)。
【练习二】题目:解不等式\( |x - 3| < 2 \)。
答案:将不等式分为两部分,\( x - 3 < 2 \)和\( -(x - 3) < 2 \),解得\( 1 < x < 5 \)。
【练习三】题目:证明等差数列\( a_1, a_2, a_3, \ldots \)的前\( n \)项和公式\( S_n = \frac{n}{2}(a_1 + a_n) \)。
答案:设等差数列的公差为\( d \),则\( a_n = a_1 + (n - 1)d \)。
前\( n \)项和为\( S_n = a_1 + a_2 + \ldots + a_n \)。
通过分组求和,可以证明\( S_n = \frac{n}{2}(a_1 + a_n) \)。
【练习四】题目:已知\( \sin A + \sin B = 2\sin\left(\frac{A +B}{2}\right)\cos\left(\frac{A - B}{2}\right) \),求\( \sin A- \sin B \)。
答案:根据已知公式,将\( \sin A + \sin B \)中的\( B \)替换为\( -B \),得到\( \sin A - \sin B = 2\sin\left(\frac{A -B}{2}\right)\cos\left(\frac{A + B}{2}\right) \)。
【练习五】题目:求椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)(其中\( a > b > 0 \))的焦点坐标。
2022-2023学年吉林省长春市高中高二下学期第二学程考试数学试题【含答案】
2022-2023学年吉林省长春市高中高二下学期第二学程考试数学试题一、单选题1.如图所示的Venn 图中,、是非空集合,定义集合为阴影部分表示的集合.若A B A B ⊗,,则( ){}21,,4A x x n n n ==+∈≤N {}2,3,4,5,6,7B =A B ⊗=A .B .C .D .{}2,4,6,1{}2,4,6,9{}2,3,4,5,6,7{}1,2,4,6,9【答案】D 【分析】分析可知,求出集合、、,即可得集合()(){},A B x x A B x A B ⊗=∈⋃∉⋂A A B ⋃A B ⋂.A B ⊗【详解】由韦恩图可知,,()(){},A B x x A B x A B ⊗=∈⋃∉⋂因为,,{}{}21,,41,3,5,7,9A x x n n n ==+∈≤=N {}2,3,4,5,6,7B =则,,因此,.{}1,2,3,4,5,6,7,9A B = {}3,5,7A B = {}1,2,4,6,9A B ⊗=故选:D.2.过原点且与函数图像相切的直线方程是( )()()ln f x x =-A .B .C .D .y x =-2e y x=-1e y x=-e y x=-【答案】C【分析】先设出切点,再利用导数的几何意义建立方程求出切线的斜率即可得到结果.【详解】因为,所以,()ln()f x x =-()1f x x '=设所求切线的切点为,则,00(,())x f x ()001f x x '=由题知,,解得,所以切线斜率为,()00000ln ()1x f x x x x -==0e x =-()1e e k f '=-=-故所求切线方程为.1e y x=-故选:C.3.已知变量y 与x 之间具有线性相关关系,根据变量x 与y 的相关数据,计算得则y 关于x 的线性回归方程为( )77772111128,1078,140,4508ii ii i i i i i xy x x y ========∑∑∑∑附:回归方程中的斜率和截距的最小二乘法估计公式分别为ˆˆˆybx a =+1221ˆˆˆ,.ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑A .B .ˆ7126y x =-ˆ7126yx =+C .D .ˆ5121yx =+ˆ5121yx =-【答案】B【分析】根据已知数据求,代入回归直线方程即可求解.ˆˆ,b a 【详解】由题中的数据可知,4,154x y ==所以.7172217450874154196714071628ˆ7i ii ii x y xyb xx ==--⨯⨯====-⨯-∑∑所以.15474126ˆˆa y bx =-=-⨯=所以y 关于x 的线性回归方程为.ˆˆˆ7126ybx a x =+=+故选:B.4.据统计,某工厂所生产的一类新型微电子芯片的厚度X (单位:)服从正态分布,μm (),4N μ且. 如果芯片的厚度高于,那么就带要对该芯片进行复检. 若该工()()25311P X P X ≥+≥=32μm 厂此芯片日产量平均为10000片,那么每天需要进行复检的产品大约有( )(附:若X (单位:)服从正态分布,则,μm ()2,N μσ()0.6827P X μσμσ-<≤+=,.)()220.9545P X μσμσ-<≤+=()330.9973P X μσμσ-<≤+=A .228件B .455件C .1587件D .3173件【答案】A【分析】根据正态分布的对称性,即可求得的值和,从而求出10000片中每天需要进μ()32P X ≥行复检的产品.【详解】因为,所以,()()25311P X P X ≥+≥=()()()3112525P X P X P X ≥=-≥=<即与关于对称,则,25X =31X =X μ=2531282μ+==因为,所以,又因为,24σ=2σ=232μσ+=()()()1223222P X P X P X μσμσμσ--<<+≥=≥+=10.95452-=,所以件,10.95452-=0.02275=100000.02275227.5228⨯=≈所以每天需要进行复检的产品大约有件,228故选:A.5.已知是定义在R 上的奇函数,的导函数为,若恒成立,则()f x ()f x ()'f x ()'cos f x x≥的解集为( )()sin f x x≥A .B .C .D .[)π,-+∞[)π,+∞π,2⎡⎫+∞⎪⎢⎣⎭[)0,∞+【答案】D【分析】根据函数的单调性求解.【详解】令函数,则,()()sin g x f x x=-()()''cos g x f x x=-因为 所以. 是增函数,()'cos f x x ≥,()()0g x g x '≥,因为是奇函数,所以,,()f x ()00f =()()00sin 00g f =-=所以的解集为,即≥的解集为;()0g x ≥[)0,∞+()f x sin x [)0,∞+故选:D.6.,当时,都有,则实数的最大值为( )[]12,1,e x x ∀∈12x x <()1122lnx a x x x <-aA .B .CD .121e 1e【答案】B 【分析】依题意对,当时恒成立,,1122ln ln x ax x ax -<-[]12,1,e x x ∀∈12x x <()ln h x x ax=-,则问题转化为在上单调递增,求出函数的导函数,则在上恒成立,[]1,e x ∈()h x []1,e ()0h x '≥[]1,e 参变分离可得的取值范围,即可得解.a 【详解】因为,当时,都有,[]12,1,e x x ∀∈12x x <()1122lnx a x x x <-即,即,1212ln ln x x ax ax -<-1122ln ln x ax x ax -<-令,,则恒成立,()ln h x x ax =-[]1,e x ∈()()12h x h x <即在上单调递增,()ln h x x ax=-[]1,e 又,所以在上恒成立,()1h x ax '=-()10a x h x =-≥'[]1,e 所以在上恒成立,因为在上单调递减,1a x ≤[]1,e ()1g x x =[]1,e 所以,所以,即实数的最大值为.()()min 1e e g x g ==1e a ≤a 1e 故选:B7.某市环保局举办“六·五”世界环境日宣传活动,进行现场抽奖.抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上别印有“环保会徽”或“绿色环保标志”图案.参加者每次从盒中抽取卡片两张,若抽到两张都是“绿色环保标志”卡即可获奖.已知从盒中抽两张都不是“绿色环保标志”卡的概率是.现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一人再抽,用表示获奖的人数,那13ξ么( )()()E D ξξ+=A .B .C .D .224225104225815112225【答案】A【分析】根据二项分布的期望和方差公式即可求解.【详解】设印有“环保会徽”图案的卡片有张,则“绿色环保标志”图案的卡片有张,n 10n -由题意可知,所以从盒中抽取卡片两张获奖的概率为,2210C 16C 3n n ⇒==22104221010C C 2C C 15n -==由于服从二项分布,即,所以,ξ24,15B ξ⎛⎫~⎪⎝⎭()()221322444151515225E D ξξ+=⨯+⨯⨯=故选:A 8.已知函数有两个不同的极值点,且不等式恒()22ln f x ax x x=-+12,x x ()()1212f x f x x x t+<++成立,则实数t 的范围是( )A .B .C .D .[)1,-+∞[)5,-+∞[)22ln 2,-+∞[)1ln 2,-+∞【答案】B 【分析】恒成立,等价于恒成立.由()()1212f x f x x x t+<++()()()1212t f x f x x x >+-+有两个不同的极值点结合韦达定理可得,其中()f x ()()()1212f x f x x x +-+21ln 2a a =---,后构造函数,利用导数求出其最值即可得答案.102a <<()211ln 202h a a a a ⎛⎫=---<< ⎪⎝⎭【详解】因为不等式恒成立,所以恒成立.()()1212f x f x x x t+<++()()()1212f x f x x x t+-+<.()()22210-+'=>ax x f x x x 因为函数有两个不同的极值点,()22ln f x ax x x=-+12,x x 所以方程有两个不相等的正实数根,于是有,解得.22210ax x -+=1212Δ48010102a x x a x x a ⎧⎪=->⎪⎪+=>⎨⎪⎪=>⎪⎩102a <<则()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()()21212121223ln a x x x x x x x x ⎡⎤=+--++⎣⎦.21ln 2a a =---设,,故在上单调递增,()211ln 202h a a a a ⎛⎫=---<< ⎪⎝⎭()220-'=>a h a a ()h a 102a <<故,所以.又注意到满足题意,因此实数t 的范围是. ()152⎛⎫<=- ⎪⎝⎭h a h 5t >-5t =-[)5,-+∞故选:B【点睛】关键点睛:本题涉及恒成立问题与由函数极值点求参数范围,难度较大.本题所涉字母较多,关键为找到间的关系,得到关于a 的表达式.12,,ax x ()()()1212f x f x x x +-+二、多选题9.下列各结论正确的是()A .“”是“”的充要条件0xy >0xy >B .2C .命题“”的否定是“”21,0x x x ∀>->21,0x x x ∃≤-≤D .“一元二次函数的图象过点”是“”的充要条件2y ax bx c =++()1,00a b c ++=【答案】AD【详解】根据符号规律可判断A ;根据基本不等式成立条件以及利用单调性求最值可判断B ;根据全称命题否定形式可判断C ;结合二次函数图象与性质可判断D.【分析】解:⇔,故A 正确;0xy >0x y >,令,则,y 3t =≥1y t t =+且在区间上,函数值y 随自变量x 的增大而增大,最小值为,故B 错误;)[3,∞+110333+=命题“”的否定是“”,故C 错误;21,0x x x ∀>->21,0x x x ∃>-≤一元二次函数的图象过点显然有,反之亦可,故D 正确.2y ax bx c =++()1,00a b c ++=故选:AD10.有3台车床加工同一型号的零件,第1台加工的次品率为,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,第1,2,3台车床加工的零件数分别占总数的,,3%15%25%.随机取一个零件,记“零件为次品”, “零件为第台车床加工” ,,,下列60%A =i B =i (1i =23)结论正确的有( )A .B .()0.03P A =31()1ii P B ==∑C .D .12()()P B A P B A =123()()(|)P B A P B A P B A +=【答案】BC【分析】由全概率公式和条件概率依次判断4个选项即可.【详解】对于A :因为,故A 错误;()0.050.150.030.250.030.600.033P A =⨯+⨯+⨯=对于B :因为,故B 正确;13Σ()0.150.250.601i i P B ==++=对于C :因为,111()(|)0.050.155(|)()0.03322P B P A B P B A P A ⋅⨯===,222()(|)0.030.255()()0.03322|P B P A B P B A P A ⋅⨯===所以,故C 正确;12()()P B A P B A =对于D :由上可得,125()()11P B A P B A +=又因为,故D 错误,333()(|)0.030.606(|)()0.03311P B P A B P B A P A ⋅⨯===故选:BC .11.乒乓球,被称为中国的“国球”.某次比赛采用五局三胜制,当参赛甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为,实际比赛局数的期望值记为,则下列说法()01p p ≤≤()f p 中正确的是( )A .三局就结束比赛的概率为B .的常数项为3()331p p +-()f p C .函数在上单调递减D .()f p 10,2⎛⎫⎪⎝⎭13328f ⎛⎫= ⎪⎝⎭【答案】ABD【分析】设实际比赛局数为,先计算出可能取值的概率,即可判断A 选项;进而求出期望值X X ,即可判断BCD 选项.()f p 【详解】设实际比赛局数为,则的可能取值为,X X 3,4,5所以,()()3331P X p p ==+-,()()()3131334C 1C 1P X p p p p ==-+-,()()22245C 1P X p p ==-因此三局就结束比赛的概率为,则A 正确;()331p p +-故()()()()()332313122334314C 1C 15C 1f p p p p p p p p p ⎡⎤⎡⎤=+-+-+-+⨯-⎣⎦⎣⎦,432612333p p p p =-+++由知常数项为3,故B 正确;()03f =由,故D 正确;111133361232168428f ⎛⎫=⨯-⨯+⨯+=⎪⎝⎭由,()()()322243663321441f p p p p p p p =-++=---',所以,01p ≤≤ 22441(21)20p p p --=--<令,则;令,则,∴()0f p '>102p ≤<()0f p '<112p <≤则函数在上单调递增,则C 不正确.()f p 10,2⎛⎫⎪⎝⎭故选:ABD.12.已知函数,,则下列说法正确的是( )e ()xx f x =-()ln g x x x =-A .在上是增函数(ln )f x (1,)+∞B .,不等式恒成立,则正实数a 的最小值为1x ∀>()2()f ax f lnx ≥2eC .若有两个零点,,则()g x t=1x 2x 122x x +<D .若,且,则的最大值为()()12(2)f x g x t t ==>210x x >>21ln t x x -1e【答案】ABD 【分析】A 选项,由题,,判断在上的单调性即可;()()ln ln f x x x g x =-=()1,x ∈+∞()g x ()1,+∞B 选项,由单调性,;()f x ()()22max 2ln ln ln x f ax f x ax x a x ⎛⎫≥⇔≥⇒≥ ⎪⎝⎭C 选项,由有两个零点,,构造函数应用极值点偏移可解;()g x t=1x 1x D 选项,因,及在上单调递增,结合B 选项分析可判断选项.()()1232,f g <<()()f xg x ,()1,+∞【详解】对于A 选项,,.()()ln ln f x x x g x =-=()1,x ∈+∞又当时,,则在上是增函数,故A 正确;()1,x ∈+∞()1110x g x x x -'=-=>()ln f x ()1,+∞对于B 选项,时,,又为正实数,所以,又时,,1x >2ln 0x >a 0ax >0x >()e 10x f x '=->所以在单调递增,故,即.()f x ()1,+∞()()22ln ln f ax f x ax x ≥⇔≥max 2ln x a x ⎛⎫≥ ⎪⎝⎭令,知,所以在上递增,在上递减,所以()2ln xx x ϕ=()222ln x x x ϕ-'=()x ϕ()1,e ()e,+∞,()()max 2e e x ϕϕ==得正实数的最小值为,故B 正确;a 2e 对于C 选项,有两个根,,等价于函数有两个零点,.()g x t=1x 2x ()g x t -1x 2x 注意到,则在上单调递减,在上单调递增,()111x g x t x x -'⎡⎤-=-=⎣⎦()g x t -()0,1()1,+∞因函数有零点,则.()()1101g x t g t t t ⎡⎤-=-=-<⇒>⎣⎦m i n 设,1201x x <<<令,,()()()2h x g x g x =--()0,1x ∈因为,()()()2h x g x g x '''=+-所以,()()()()()22111222x x x h x g x g x x x x x ----'''=+-=+=--当时,,单调递减;01x <<()0h x '<()h x 所以在上单调递减,所以,即当时,,()h x ()0,1()()10h x h >=01x <<()()2g x g x >-由题意,,,且在上单调递增,()()()2112g x g x g x =>-21x >121x ->()g x ()1,+∞所以,即.故C 错误;212x x >-122x x +>对于D 选项,由AB 选项分析可知,在上单调递增,()()f xg x ,()1,+∞又,,()()()122f x g x t t ==>()()11233ln 32e ,fg =-<=-<则.由,即,即有,2131x x >>>()()12f x g x =12ln 1222e ln e ln x x x x x x -=-=-()()12ln f x f x =又,在上单调递增,所以,即,所以121ln 1x x >>,()f x ()1,+∞12ln x x =12e x x =,1211ln ln ln e x t t tx x x t ==--其中.由B 选项分析可知,,其中时取等号,则,2t >2ln 2e x x ≤e x =1211ln ln ln 1e e x t t t x x x t ==≤--其中时取等号,所以,故D 正确.e x =21max ln 1et x x ⎛⎫= ⎪-⎝⎭故选:ABD【点睛】关键点点睛:对于复杂函数,常利用导数求单调区间.对于恒成立问题,常利用分离参数法将问题转化为求最值.对于双变量问题,常结合题目条件寻找变量间关系,将双变量转化为单变量.三、填空题13.花店还剩七束花,其中三束郁金香,两束白玫瑰,两束康乃馨,李明随机选了两束,已知李明选到的两束花是同一种花,则这两束花都是郁金香的概率为________.【答案】/350.6【分析】使用条件概率进行计算即可.【详解】设事件“两束花是同一种花”,事件“两束花都是郁金香”,A =B =则积事件“两束花都是郁金香”,AB B ==事件中样本点的个数为,A ()222322C C C 5n A =++=积事件中样本点的个数为,AB ()23C 3n AB ==∴已知李明选到的两束花是同一种花,则这两束花都是郁金香的概率为.()()()35n AB P B A n A ==故答案为:.3514.若两个正实数x ,y恒成立,则实数m的取值1+=26m m >-范围是____________.【答案】28m -<<的最小值,进而求解即可.2616m m-<【详解】由于,所以,0,0x y >>88=≥+取等号,故,解得,64,4x y ⇒==2616m m -<28m -<<故答案为:28m -<<15.若函数在上有最小值,则实数的取值范围是_____.3()3f x x x =-2(,8)a a -a 【答案】[)2,1-【分析】求出函数的单调性,结合最小值的定义即可求解.3()3f x x x =-【详解】,令得,2()33f x x '=-()0f x '=1x =±时,时,,(,1)(1,)x ∈-∞-⋃+∞()0f x '>(1,1)x ∈-()0f x '<所以在和上单调递增,在上单调递减,()f x (,1)-∞-(1,)+∞(1,1)-若函数在上有最小值,则其最小值必为,3()3f x x x =-2(,8)a a -(1)f 则必有且,解得,21(,8)a a ∈-3()3(1)2f a a a f =-≥=-21a -≤<故答案为:.[)2,1-16.已知是函数在其定义域上的导函数,且,,若函数()f x '()f x ()()1e xf x f x +'-=()21e f =在区间内存在零点,则实数m 的取值范围是______.()()()()2ln 20e x mf x g x mx x m =-+->()0,∞+【答案】[)1,+∞【分析】先根据及得到,利用同构得到()()1e xf x f x +'-=()21e f =()1e xf x x +=有解,构造,得到,故()1ln e 1ln 10x mx x mx -+--+-=⎡⎤⎣⎦()e 1=--t g t t ()0min e 10g t =-=,参变分离得到在有解,令,求导得到其单调性,()1ln 0x mx -+=1e x m x -=()0,x ∈+∞()1e x h x x -=极值和最值情况,得到答案.【详解】,所以,()()1ex f x f x +'-=()()e e xf x f x '-=故,所以,为常数,()e e x f x '⎛⎫= ⎪⎝⎭()e e x f x x c =+c 因为,又,故,()21e f =()e 1ef c =+0c =所以,()1e xf x x +=若在区间内存在零点,()()()()2ln 20e x mf x g x mx x m =-+->()0,∞+则在区间内存在零点,()12e ln 20e x x m mx x x +-+-=()0,∞+整理得,()1ln e 1ln 10x mx x mx -+--+-=⎡⎤⎣⎦设,则,()e 1=--t g t t ()e 1t g t '=-令得,当时,,单调递增,()0g t '=0=t 0t >()0g t '>()e 1=--t g t t 当时,,单调递减,0t <()0g t '<()e 1=--t g t t 所以在处取得极小值,也是最小值,,()e 1=--t g t t 0=t ()0min e 10g t =-=故时,成立,()1ln 0x mx -+=()1ln e 1ln 10x mx x mx -+--+-=⎡⎤⎣⎦即存在,使得有解,即有解,()0,x ∈+∞()1ln 0x mx -+=1e x m x -=令,则,()1e x h x x -=()()12e 1x x h x x --'=当时,,当时,,1x >()0h x '>01x <<()0h x '<故在上单调递减,在上单调递增,()1e x h x x -=()0,1()1,+∞故在处取得极小值,也是最小值,()1e x h x x -=1x =又,故,()11h =()1h x ≥所以,故实数m 的取值范围.m 1≥[)1,+∞故答案为:[)1,+∞【点睛】方法点睛:利用函数与导函数的相关不等式构造函数,然后利用所构造的函数()f x ()f x '的单调性解不等式,是高考常考题目,以下是构造函数的常见思路:比如:若,则构造,()()0f x f x +'>()()e x g xf x =⋅若,则构造,()()0f x f x '->()()x f x g x =e 若,则构造,()()0f x xf x '+>()()g x xf x =若,则构造.()()0f x xf x '->()()f xg x x =四、解答题17.设等比数列的前项和为,公比,.{}n a n n S 1q >2316,84a S ==(1)求数列的通项公式;{}n a (2)求数列的前项和为.{}n n a +n n T 【答案】(1);4nn a =(2).214423n n n n T ++-=+【分析】(1)利用基本量法,即可求解.(2)利用分组求和即可求解.【详解】(1)解:,解得,121111684a q a a q a q =⎧⎨++=⎩11644()144a a q q =⎧=⎧⎪⎨⎨==⎩⎪⎩或舍;4n n a ∴=(2)1231424344nn T n =++++++++ 1231234444nn =+++++++++(1)4(14)214n n n +-=+-.214423n n n n T ++-∴=+18.民族要复兴,乡村要振兴,合作社助力乡村产业振兴,农民专业合作社已成为新型农业经营主体和现代农业建设的中坚力量,为实施乡村振兴战略作出了巨大的贡献.已知某主要从事手工编织品的农民专业合作社共有100名编织工人,该农民专业合作社为了鼓励工人,决定对“编织巧手”进行奖励,为研究“编织巧手”是否与年龄有关,现从所有编织工人中抽取40周岁以上(含40周岁)的工人24名,40周岁以下的工人16名,得到的数据如表所示.“编织巧手”非“编织巧手”总计年龄40岁≥19年龄<40岁10总计40(1)请完成答题卡上的列联表,并根据小概率值的独立性检验,分析“编织巧手”与“年22⨯0.010α=龄”是否有关;(2)为进一步提高编织效率,培养更多的“编织巧手”,该农民专业合作社决定从上表中的非“编织巧手”的工人中采用分层抽样的方法抽取6人参加技能培训,再从这6人中随机抽取2人分享心得,求这2人中恰有1人的年龄在40周岁以下的概率.参考公式:,其中.()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.841 6.6357.879【答案】(1)填表见解析;认为“编织巧手”与“年龄”有关,此推断犯错的概率不大于0.010(2)815【分析】(1)根据题意补全列联表,计算,并与临界值对比分析;2χ(2)先根据分层抽样求各层的人数,结合古典概型分析运算.【详解】(1)年龄在40周岁以上(含40周岁)的非“编织巧手”有5人,年龄在40周岁以下的“编织巧手”有6人.列联表如下:“编织巧手”非“编织巧手”总计年龄40岁≥19524年龄<40岁61016总计251540零假设为:“编织巧手”与“年龄”无关联.0H 根据列联表中的数据,经计算得到,()220.010401910657.111 6.63524162515x χ⨯⨯-⨯=≈>=⨯⨯⨯根据小概率值的独立性检验,我们推断不成立,即认为“编织巧手”与“年龄”有关,此0.010α=0H 推断犯错的概率不大于0.010.(2)由题意可得这6人中年龄在40周岁以上(含40周岁)的人数是2;年龄在40周岁以下的人数是4.从这6人中随机抽取2人的情况有种,2615C =其中符合条件的情况有种,1142C C 8=故所求概率.815P =19.已知函数()322f x x ax b=-+(1)当时,求的极值;3a =()f x (2)讨论的单调性;()f x(3)若,求在区间的最小值.0a >()f x []0,1【答案】(1),()f x b=极大值()1f x b=-+极小值(2)当时的单调增区间为,,单调减区间为;0a >()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭当时在R 上单调递增;0a =()f x 当时的单调递增区间为,,单调递减区间为;a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0,∞+,03a ⎛⎫ ⎪⎝⎭(3)()3min 2,3,0327a b a f x a b a -+≥⎧⎪=⎨-+<<⎪⎩【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可得到函数的单调区间与极值;(2)求导函数,分,,讨论可得结果;()2(3)f x x x a '=-0a >0a =a<0(3)结合(2)的结论,分、两种情况讨论,分别求出函数的最小值.3a ≥0<<3a 【详解】(1)当时定义域为R ,3a =()3223f x x x b=-+且,()()26661f x x x x x '=-=-所以当或时,当时,0x <1x >()0f x ¢>01x <<()0f x '<所以在处取得极大值,在处取得极小值,()f x 0x =1x =即,;()()0f x f b ==极大值()()11f x f b==-+极小值(2)函数定义域为R ,则,()322f x x ax b=-+()()26223f x x ax x x a '=-=-令,解得或,()0f x '=0x =3ax =①当时,则当或时,,0a >0x <3ax >()0f x ¢>当时,,03ax <<()0f x '<所以的单调增区间为,,单调减区间为;()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭②当时,恒成立,所以在R 上单调递增;0a =()0f x '≥()f x③当时,当或时,,当时,,a<03a x <0x >()0f x ¢>03ax <<()0f x '<所以的单调递增区间为,,单调递减区间为,()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0,∞+,03a ⎛⎫ ⎪⎝⎭综上可得当时的单调增区间为,,单调减区间为;0a >()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭当时在R 上单调递增;0a =()f x 当时的单调递增区间为,,单调递减区间为;a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0,∞+,03a ⎛⎫ ⎪⎝⎭(3)因为,由(2)可得的单调增区间为,,单调减区间为,0a >()f x (),0∞-,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭若,即时在上单调递减,13a≥3a ≥()f x []0,1所以在上的最小值为,()f x []0,1()()min 12f x f a b ==-+若,即时,在单调递减,在单调递增,013a <<0<<3a ()f x 0,3a ⎛⎫ ⎪⎝⎭,13a ⎛⎫ ⎪⎝⎭所以在的最小值为,()f x []0,1()3min327a a f x b⎛⎫==-+ ⎪⎝⎭所以.()3min2,3,0327a b a f x a b a -+≥⎧⎪=⎨-+<<⎪⎩20.某学习平台的答题竞赛包括三项活动,分别为“四人赛”、“双人对战”和“挑战答题”.参赛者先参与“四人赛”活动,每局第一名得3分,第二名得2分,第三名得1分,第四名得0分,每局比赛相互独立,三局后累计得分不低于6分的参赛者参加“双人对战”活动,否则被淘汰.“双人对战”只赛一局,获胜者可以选择参加“挑战答题”活动,也可以选择终止比赛,失败者则被淘汰.已知甲在参加“四人赛”活动中,每局比赛获得第一名、第二名的概率均为,获得第三名、第四名的概率均为;1316甲在参加“双人对战”活动中,比赛获胜的概率为.23(1)求甲获得参加“挑战答题”活动资格的概率.(2)“挑战答题”活动规则如下:参赛者从10道题中随机选取5道回答,每道题答对得1分,答错得0分.若甲参与“挑战答题”,且“挑战答题”的10道题中只有3道题甲不能正确回答,记甲在“挑战答题”中累计得分为X ,求随机变量X 的分布列与数学期望.【答案】(1)2881(2)分布列见解析;72【分析】(1)设甲在“四人赛”中获得的分数为,由题意确定的可能取值,求出每个值对应的概ξξ率,即可得答案.(2)确定随机变量X 的所有可能取值,求得每个值对应概率,可得分布列,即可求得数学期望.【详解】(1)设甲在“四人赛”中获得的分数为,则甲在“四人赛”中累计得分不低于6分包含了ξ或或或.9ξ=8ξ=7ξ=6ξ=;311(9)327P ξ⎛⎫===⎪⎝⎭;223111(8)C 339P ξ⎛⎫==⨯=⎪⎝⎭;3211331111(7)C C 3636P ξ⎛⎫⎛⎫==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,32313311111111(6)A C 33636354P ξ⎛⎫⎛⎫==⨯⨯⨯++⨯⨯= ⎪ ⎪⎝⎭⎝⎭所以甲在“四人赛”中累计得分不低于6分的概率,1111111427965427P =+++=故甲能进入“挑战答题”活动的概率.1214228327381P P =⨯=⨯=(2)随机变量X 的所有可能取值为,2345,,,;;3237510C C 1(2)C 12P X ===2337510C C 5(3)C 12P X ===;.1437510C C 5(4)C 12P X ===57510C 1(5)C 12P X ===所以X 的分布列如下表所示:X2345P112512512112所以.15517()2345121212122E X =⨯+⨯+⨯+⨯=21.已知椭圆与坐标轴的交点所围成的四边形的面积为上任意一点2222:1(0)x y E a b a b +=>>E 到其中一个焦点的距离的最小值为1.(1)求椭圆的方程;E (2)设直线交于两点,为坐标原点,以,为邻边作平行四(:0l y kx m k =+≤≤E ,M N O OM ON 边形在椭圆上,求的取值范围.,OMPN P E OP【答案】(1)22143x y +=(2)【分析】(1)根据题意列出关于a 、b 、c 的方程,结合可解;222a b c =+(2)设,利用韦达定理结合四边形为平行四边形可的点P 坐()()()112200,,,,,M x y N x y P x y OMPN 标,然后结合点P 在椭圆上可解.【详解】(1)由题可知12221a b a c ⎧⨯⨯⨯=⎪⎨⎪-=⎩,1ab a c ⎧=⎪⇒⎨-=⎪⎩所以,即,()22212a a c -=()212a a c +=所以,2(2a a 1)12-=所以,因为,()()222360a a a -++=0a >所以2,所以=a 1,c b ==所以椭圆的方程为:.E 22143x y +=(2)联立,消去,化简整理得:,22143y kx mx y =+⎧⎪⎨+=⎪⎩y ()2223484120k x kmx m +++-=需满足,()())222222Δ6443441248(340k m k mk m =-+-=+->设,由韦达定理可()()()112200,,,,,M x y N x y P x y 知:.122834km x x k +=-+则以为邻边作平行四边形,,OM ON OMPN 则,()()1122,,OP OM ON x y x y =+=+()0120121228,34km x x x y y y k x x k ∴=+=-=+=++26234mm k +=+由于点在椭圆上,所以,P C 2200143x y +=即()()2222222161213434k m m k k +=++化简得:,经检验满足22434m k =+(2Δ4834k =+-)20m >又OP =====由于,2034315k k ≤≤∴≤+≤所以,213543k ≤+1≤所以231934435k ≤-≤+OP ≤≤所以的取值范围为.OP 22.已知函数.()()ln 1f x x x x λ=--(1)当时,,求的取值范围;1x ≥()0f x ≥λ(2)函数有两个不同的极值点(其中),证明:()()()21g x f x x xλλ=-+-12,x x 12x x <;12ln 3ln 4x x +>(3)求证:.()*1111ln21232n n n n n +++⋯+<∈+++N 【答案】(1)(],1-∞(2)证明见解析(3)证明见解析【分析】(1)由,利用导数研究函数单调性,转化为当,恒成立问题;()10f =1x ≥()0f x '≥(2)函数极值点,是的两个零点,要证,等价于证,()g x 12,x x ()g x '12ln 3ln 4x x +>12112241ln 3x x xx x x ⎛⎫- ⎪⎝⎭<+通过换元,构造函数,利用导数研究单调性可证.(3)由(1)可知,则有,类似于数列求和的裂项相消法可1ln x x x ->11x n =+()1ln 1ln 1n n n <+-+证.【详解】(1)函数,,且,()()ln 1f x x x x λ=--()ln 1f x x λ'=+-()10f =①当时,因为,故恒成立,此时单调递增,所以成立;1λ≤1x ≥()0f x '≥()f x ()0f x ≥②当时,令,得,1λ>()ln 10f x x λ+'=-=1ex λ-=当时,此时单调递减,故,不满足题意;)11,ex λ-⎡∈⎣()0f x '≤()f x ()()10f x f ≤=综上可知:.1λ≤即的取值范围为.λ(],1-∞(2)由,故,()()()221ln g x f x x x x x x xλλλλ=-+-=-+-()ln 121ln 2g x x x x xλλ-='=+--因为函数有两个不同的极值点(其中),故.12,x x 12x x <1122ln 2,ln 2x x x x λλ==要证:,只要证:.12ln 3ln 4x x +>()1212124ln 3ln 2623x x x x x x λλλ<+=+=+因为,于是只要证明即可.120x x <<12423x x λ>+因为,故,1122ln 2,ln 2x x x x λλ==1212ln ln 2x x x x λ-=-因此只要证,等价于证,121212ln ln 43x x x x x x ->-+()1212124ln 3x x x x x x -<+即证,令,等价于证明,12112241ln 3x x xx x x ⎛⎫- ⎪⎝⎭<+12(01)x t t x =<<()41ln 3t t t -<+令,()()()()()22224119116109ln (01),3(3)(3)(3)t t t t t t t t t t t t t t t t ϕϕ----+'=-<<=-==++++因为,所以,01t <<()0t ϕ'>故在上单调递增,所以,得证.()t ϕ()0,1()()10t ϕϕ<=(3)由(1)可知当时,,故,1x >()()ln 10f x x x x =-->1ln x x x ->令,所以,所以,11x n =+111ln 111n n n n n ⎛⎫+>= ⎪++⎝⎭()1ln 1ln 1n n n <+-+,ln2ln ln2n n =-=所以.1111ln21232n n n n +++⋯+<+++【点睛】方法点睛:1. 导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.3.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.。
等差数列课时练习高二下学期数学人教A版(2019)选择性必修第二册
高中数学 高二 人教A 版(2019) 选择性必修 第二册第四章 数列 4.2 等差数列 课时练习一、单选题1.设等差数列{}n a 的前n 项和为n S ,若2k S =,28k S =,则4k S =( ) A .28B .32C .16D .242.已知{}n a 为等差数列,公差2d =,24618a a a ++=,则57a a +=( ) A .8B .12C .16D .203.已知数列{}n a 的前n 项和n S 满足(3),2n n n a S +=且315,S =则8S =( ) A .60B .70C .80D .904.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++的值为( ) A .1n n- B .1n n+ C .11n n -+ D .1n n + 5.记数列{}n a 的前n 项和为n S ,598S =,数列{}2n n S 是公差为7的等差数列,则{}n a 的最小项为( ) A .2-B .1516-C .1-D .146.在等差数列{}n a 中,234+=a a ,568a a +=,则4a =( )A .4B .72C .3D .27.在等差数列{an }中,a 1+a 9=10,则a 5=( ) A .5 B .6 C .8D .98.已知等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S 和n T ,且1n n S nT n =+,那么87a b的值为( ) A .1312B .1413C .1514D .16159.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( )A .351B .353C .531D .53310.两个数1与5的等差中项是( )A .1B .3C .2D .11.设等差数列{}n a 的前n 项和为n S ,若3241,8a a a =+=,则9S =( ) A .60B .62C .63D .8112.设等差数列{}n a 的前n 项和为n S ,若12345a a a a a ++=+,560S =,则5a =( ) A .16 B .20 C .24D .26二、填空题13.已知等差数列{}n a 中,34a =,710a =,则数列{}n a 的前9项和9S =____________. 14.已知数列{}n a 中,213a a =,记{}n a 的前n 项和为n S ,且满足()2*11322,N n n n S S S n n n +-++=+≥∈.若对任意*N n ∈,都有1n n a a +<,则首项1a 的取值范围是______.15.已知数列{}n a 满足12a =,()11nn n a a ++=-,则数列{}n a 的通项公式为______.16.数列{}n a 满足12n n a a +=+,且11a =,则它的通项公式n a =______.17.已知数列{}n a 的首项121a =,且满足()()21252341615n n n a n a n n +-=-+-+,则{}n a 中最小的一项是第___________项.三、解答题18.已知数列{}12,n n n a T a a a =,且13111,,310(2)n T T n T ⎧⎫==⎨⎬+⎩⎭为等差数列.(1)求n a 的通项公式;(2)若对任意正整数n ,都有12n T T T m +++<,求m 的取值范围.19.设{}n a 是等差数列,2d =,且312,,4a a a +成等比数列. (1)求{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,求n S 的最小值.20.在数列{}n a 中,11a =,对*n N ∀∈,1(1)(1)n n na n a n n +-+=+.(1)求数列{}n a 的通项公式;(2)若n b =,求数列{}n b 的前n 项和n S . 21.已知在等差数列{}n a 中,4820a a +=,712a =.求4a .22.设等差数列{}n a 的首项为1,数列{}n b 满足:11b =,22b =,且111n n n n n n a b b a b b +++-=-(n *∈N ).(1)求等差数列{}n a 的通项公式;(2)求数列()111n n a b +⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和n S .23.对于数列{}n a ,定义{}n a 为数列{}n a 的差分数列,其中1,*n n n a a a n +=-∈N .如果对任意的*n ∈N ,都有1n n a a +>,则称数列{}n a 为差分增数列. (1)已知数列1,2,4,,16,24x 为差分增数列,求实数x 的取值范围;(2)已知数列{}n a 为差分增数列,且121a a ==,*n a ∈N .若2021k a =,求非零自然数k的最大值;(3)已知项数为2k 的数列{}3log n a (1,2,3,,2n k =)是差分增数列,且所有项的和等于k ,证明:13k k a a +<.答案:1.B【分析】由等差数列{}n a 前n 项和的性质,可得k S ,2k k S S -,32k k S S -,43k k S S -成等差数列,结合题干数据,可得解【解析】由等差数列{}n a 前n 项和的性质, 可得k S ,2k k S S -,32k k S S -,43k k S S -成等差数列, ∴()2322k k k k k S S S S S -=+-,解得318k S =. ∴ 2,6,10,418k S -成等差数列, 可得4210618k S ⨯=+-,解得432k S =. 故选:B 2.D【解析】利用等差数列的性质求解. 【解析】24618a a a ++=,4318a ∴=, 解得46a =, 64210a a d ∴=+=, 576220a a a ∴+==.故选:D 3.C【分析】根据递推公式,结合前n 项和与通项的关系可得21n a n =+,再求解8S 即可 【解析】由题意23n n S na n =+,故当1n =时,1123a a =+,即13a =.当2n =时,()222326a a +=+恒成立,当3n =时,3323930S a =+=,解得37a =.当3n ≥时,()()112131n n S n a n --=-+-,故()1213n n n a na n a -=--+,即()()1213n n n a n a --=--,()()1131131212221n n n a a a n n n n n n n --⎛⎫=-=-- ⎪-------⎝⎭,故1331122n n a a n n n n --=-----,故当3n ≥时,311na n n ⎧⎫-⎨⎬--⎩⎭为常数列,故33321122n a a n n -=-=--,故3211n a n n =+--,即()()321213n a n n n =+-=+≥,又12315a a a ++=,故215375a =--=,故当1,2n =时21n a n =+也成立,故()*21N n a n n =+∈.故()()32122n n n S n n ++==+,故881080S =⨯=故选:C 4.A【分析】利用累加法求得通项公式n a ,【解析】由已知212a a -=,324a a -=,436a a -=,12(1)n n a a n --=-,2n ≥, ∴2n ≥时,()()()()()()()12132112120242112n n n n n a a a a a a a a n n n -⎡⎤--+⎣⎦=+-+-+-=++++-==-, ∴231111111223(1)n a a a n n+++=+++⨯⨯-1111111112231n n n n n -⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.故选:A .【注意】本题考查累加法求数列通项公式,考查裂项相消法求数列的和.已知1()n n a a f n +-=,可用累加法求通项公式,已知1()n na f n a +=可用累乘法求通项公式. 5.C【分析】根据给定条件,求出数列{}2nn S 的通项公式,进而求出数列{}n a 的通项公式,再探讨其最小项作答.【解析】依题意,559232368S =⨯=,因数列{}2n n S 是公差为7的等差数列,则55227(5)71n n S S n n =+-=+,因此712n n n S +=,当2n ≥时,117176137222n n n n n nn n na S S --+--=-=-=,而114a S ==不满足上式,当2n ≥时,11167137720222n n n n n n n n a a +++----=-=,即当3n ≥时,1n n a a +>, 于是当3n ≥时,数列{}n a 是递增的,而214a =-,31a =-,则min 3()1n a a ==-,所以{}n a 的最小项为1-. 故选:C 6.C【分析】已知两式相加,利用等差数列的性质求解.【解析】因为()()()()235626354412a a a a a a a a a +++=+++==,所以43a =. 故选:C . 7.A【分析】直接利用等差数列的性质求解即可【解析】因为a 5是a 1和a 9的等差中项,所以2a 5=a 1+a 9,即2a 5=10,a 5=5. 故选: A 8.C【分析】设等差数列{}n a 、{}n b 的公差分别为1d 、2d ,由题意利用等差数列的性质求出它们的首项、公差之间的关系,可得结论.【解析】设等差数列{}{},n n a b 的公差分别为1d 和2.d11111,12n n S S a n T n T b =∴==+,即1112a b =2112122223S a d T b d +∴==+,即11232b d d =- ∴ 311312333334S a d T b d +∴==+,即21143d d b =- ∴ 由∴∴解得1211,.d d b d == 11811712111771526614d d a a d b b d d d ++∴===++ 故选:C 9.B【分析】根据题意讨论n 的奇偶,当n 为奇数时,可得23n n a a +-=,按等差数列理解处理,当n 为偶数时,可得23n n a a ++=,按并项求和理解出来,则30S 按奇偶分组求和分别理解处理.【解析】依题意,()213nn n a a ++-=, 显然,当n 为奇数时有23n n a a +-=,即有313a a -=,533a a -=,…,21213n n a a +--=, 令21n n b a -=,故13n n b b +-=,所以数列{}n b 是首项为1,公差为3的等差数列, 故32n b n =-;当n 为偶数时有23n n a a ++=,即423a a +=,643a a +=,…,2223n n a a ++=, 于是,()()3013292430S a a a a a a =+++++++()()()12152462830b b b a a a a a =+++++++++⎡⎤⎣⎦14315273330233532+=⨯++⨯=+=,故选:B . 10.B【解析】由等差中项的定义可得结果.【解析】设两个数1与5的等差中项是a ,则2156a =+=,解得3a =, 故选:B【注意】本题主要考查了等差中项的定义,属于基础题. 11.C【分析】利用等差数列的通项公式和前n 项和公式直接求解. 【解析】设等差数列的公差为d ,由题可得1111238a d a d a d +=⎧⎨+++=⎩,即111258a d a d +=⎧⎨+=⎩,解得112a d =-⎧⎨=⎩, 所以数列{}n a 的通项公式12(1)23n a n n =-+-=-, 所以1999()632a a S +==. 故选:C. 12.A【分析】利用等差数列通项和求和公式化简已知等式可求得1,a d ,由514a a d =+可得结果. 【解析】设等差数列{}n a 的公差为d ,12345a a a a a ++=+,113327a d a d ∴+=+,解得:14a d =,5154530602S a d d ⨯∴=+==,解得:2d =,18a ∴=, 51416a a d ∴=+=. 故选:A. 13.63【分析】根据给定条件,利用等差数列前n 项和公式及等差数列性质计算作答. 【解析】等差数列{}n a 中,34a =,710a =, 所以193799()9()6322a a a a S ++===. 故答案为:63 14.137,156⎛⎫⎪⎝⎭【分析】根据给定的递推公式,分段求出数列{}n a 的表达式,再利用给定不等关系列出不等式组求解作答.【解析】*2,N n n ≥∈,21132n n n S S S n +-++=+,有2213(1)2n n n S S S n ++++=++,于是得2163n n n a a a n ++++=+,有3216(1)3n n n a a a n +++++=++,因此36n n a a +-=, 数列31331{},{},{}n n n a a a -+分别是以234,,a a a 为首项,6为公差的等差数列,而32114S S S ++=,213a a =,即有32121114a a a a a a +++++=,解得31149a a =-, 又43215a a a ++=,则有411115(149)361a a a a =---=+,于是得*N n ∈,3113131136(1),1496(1),616(1)n n n a a n a a n a a n -+=+-=-+-=++-, 因对任意*N n ∈,都有1n n a a +<,则12a a <,3133132n n n n a a a a -++<<<,从而得1111111133149149616136a a a aa a a a <⎧⎪<-⎪⎨-<+⎪⎪+<+⎩,解得1137156a <<,所以首项1a 的取值范围是137(,)156.故答案为:137(,)156【注意】思路注意:给出n S 与n a 的递推关系,求n a ,常用思路是:一是利用1n n n S S a +-=转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 15.()()111n n a n +=-+.【分析】先由1(1)nn n a a ++=-,得()1121n n n a a ++++=-,进一步得到()221nn n a a +-=-⋅-,再分奇偶项来求通项公式即可. 【解析】因为()11nn n a a ++=-, 所以()1121n n n a a ++++=-,得()221nn n a a +-=-⋅-.所以当n 为奇数时,22n n a a +-=, 当n 为偶数时,22n n a a +-=-.又12a =,()11nn n a a ++=-,所以23a =-,所以1a ,3a ,5a ,…,21k a -,…构成以2为首项,2为公差的等差数列, 2a ,4a ,6a ,…,2k a ,…构成以3-为首项,2-为公差的等差数列.所以当n 是奇数时,121212n a n n +⎛⎫-=+ ⎪⎭=⎝+; 当n 是偶数时,()32112n n a n ⎛⎫=---=-+ ⎪⎝⎭.故数列{}n a 的通项公式为()()111n n a n +=-+.故答案为:()()111n n a n +=-+.16.23n -+##32n -【分析】根据给定条件,结合等差数列定义求出公差,再求出通项作答. 【解析】因数列{}n a 满足12n n a a +=+,即12n n a a +-=-, 因此数列{}n a 是首项为1,公差为2-的等差数列, 所以数列{}n a 的通项公式为1(1)(2)23n a n n =+-⨯-=-+.故答案为:23n -+ 17.5【分析】利用配凑法将题目所给递推公式转化为112325n n a a n n +=+--,即证得25n a n ⎧⎫⎨⎬-⎩⎭为首项为7-,公差为1的等差数列,由此求得25na n -的表达式,进而求得n a 的表达式,并根据二次函数的对称轴求得当5n =时n a 有最小值.【解析】由已知得112325n n a a n n +=+--,1725a =--,所以数列25n a n ⎧⎫⎨⎬-⎩⎭为首项为7-,公差为1的等差数列,7(1)825na n n n =-+-=--,则(25)(8)n a n n =--, 其对称轴10.55.252n ==,所以{}n a 的最小的一项是第5项. 故答案为:5.【注意】关键点注意:利用配凑法将题目所给递推公式转化成等差数列是解题的关键. 18.(1),N 2n na n n +=∈+; (2)[1,)+∞.【分析】(1)利用等差数列的基本量的运算可得11(2)2n n n T +=+,再利用n a 与n T 的关系即得;(2)利用裂项相消法可得1211222n T T T n ⎛⎫+++=- ⎪+⎝⎭,进而即得.(1)由题可知13111,235T T ==,∴等差数列1(2)n n T ⎧⎫⎨⎬+⎩⎭的公差211312d -==-, ∴()11111(2)22n n n n T +=+-=+,∴2(1)(2)n T n n =++,当2n ≥时,12n n n T n a T n -==+, 又∴1113a T ==,∴,N 2n na n n +=∈+; (2)由(1)可知2112(1)(2)12n T n n n n ⎛⎫==- ⎪++++⎝⎭,∴12111111112222123341222n T T T n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭.由题可知m 1≥, ∴m 的取值范围是[1,)+∞. 19.(1)210n a n =-;(2)20-.【分析】(1)由312,,4a a a +成等比数列,可得2312(+4)a a a =,而公差2d =,从而可求出1a ,进而可求出等差数据列{}n a 的通项公式; (2)由(1)可得2821092n n S n n n -+-=⨯=-,从而可求出其最小值 【解析】(1)因为132+4a a a ,,成等比数列,所以2312(+4)a a a =,即1112()4(6)a a a ++=,解得18a =-,所以82(1)210n a n n =-+-=-(2)由(1)知210n a n =-,所以2282109819()224n n S n n n n -+-=⨯=-=--; 因为N n +∈所以当4n =或者5n =时,n S 取到最小值20-【注意】此题考查等差数列通项公式的基本量计算,考查等差数列的前n 项和公式的应用,考查等比数列,考查计算能力,属于基础题20.(1)2n a n =;(2)1nn + . 【解析】(1)先由11(1)(1)11n n n n a a na n a n n n n ++-+=+⇒-=+,进而说明数列n a n ⎧⎫⎨⎬⎩⎭是首项、公差均为1的等差数列,求出na n,即可求得n a ; (2)先由(1)中求得的n a 求出n b ,再利用裂项相消法即可求得其前n 项和n S . 【解析】(1)1(1)(1)n n na n a n n +-+=+, ∴111n n a a n n +-=+,又111a=, ∴数列{)na n是首项、公差均为1的等差数列. ∴()111na n n n=+-⨯=,所以2n a n =; (2)由(1)得2n a n =,111(1)1n b n n n n ∴===-++, 111111(1)()()1223111n nS n n n n ∴=-+-+⋯+-=-=+++.【点评】本题主要考查等差数列的定义、通项公式及裂项相消法在数列求和中的应用,属于中档题. 21.46a =【分析】设等差数列的公差为d ,由等差数列通项公式性质知4862+=a a a ,求得610a =,进而求得公差d ,即可得解.【解析】设等差数列的公差为d ,则在等差数列{}n a 中, 486220a a a +==,610a ∴= 7612102d a a ∴==-=- 4723166a a d ∴=--==22.(1)21n a n =- (2)()21n nS n =+【分析】(1)根据题意将1n =代入递推公式中,求出2a ,进而得出等差数列的公差,利用定义法求出等差数列的通项公式;(2)由(1)可知n a 的通项公式,代入递推公式,变形可得11n n b b n n +=+,即n b n ⎧⎫⎨⎬⎩⎭为常数列,求出n b ,利用裂项相消求和法即可求出n S . (1)因为()*111n n n n n n a b b a b b n N +++-=-∈所以当1n =时,12121223a b b a b b a -=-⇒=,则212a a -= 所以等差数列{}n a 的公差为2, 由等差数列的通项公式可得:21n a n =- (2)由(1)可知121n a n +=+,代入111n n n n n n a b b a b b +++-=-中可得:()()11121211n n n n n n b b n b b n b b n n +++--=+-⇒=+,故数列n b n ⎧⎫⎨⎬⎩⎭为常数列,又111b =,故1n n b b n n=⇒=, 则:()()11111112121n n a b n n n n +⎛⎫==- ⎪+++⎝⎭所以()1111111112122232121n nS n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 23.(1)810x <<;(2)65;(3)证明见解析.【分析】(1)利用差分增数列的定义可得关于x 的不等式组,即可求解;(2)根据∴1n a +>∴n a ,121a a ==,*n a N ∈,可得∴2a >∴10a =,∴21a ,∴32a ,⋯,∴1k a k -,*k N ∈,从而可得(2)(1)202112k k --+,即可求解;(3)利用反证法推出矛盾,即可得证.【解析】(1)数列1,2,4,x ,16,24的差分数列为1,2,4x -,16x -,8, 由题意可得4162282432xx x +>⎧⎪+>⎨⎪+>⎩,解得810x <<,故实数x 的取值范围是(8,10). (2)由题意,△10a =,△n a N ∈,因为数列{}n a 为差分增数列,所以对任意的N*n ∈,都有△1n a +>△n a , 所以△2a >△10a =,△21a ,同理,△32a ,⋯,△1k a k -,*k N ∈, 所以当2k 时,1k a a =+△1a +△2a +⋯+△1(2)(1)112(2)12k k k a k ---+++⋯+-=+, 所以(2)(1)202112k k --+,解得65k ,所以非零自然数k 的最大值为65. (3)证明:假设13k k a a +,由题意知0(1n a n >=,2,3,⋯,2)k ,因为项数为2k 的数列3{log }n a 所有项的和等于k , 所以31323332log log log log k a a a a k +++⋯+=, 即31232log k a a a a k ⋯=,所以12323kk a a a a ⋯=,因为数列{}3log (1n a n =,2,3,⋯,2)k 是差分增数列, 所以3133231log log log log n n n n a a a a +++-<-,所以121n n n n a a a a +++<,因此322412321k k a a a a a a a a -<<<⋯<, 所以对任意的1m k -,*m ∈N ,都有1212m k mm k ma a a a ++--<,即1221m k m m k m a a a a +-+-<, 所以1222132213k k k k k a a a a a a a a --+>>>⋯>,所以12323k k a a a a ⋯>与12323kk a a a a ⋯=矛盾,故假设不成立,所以13k k a a +<.【注意】关键注意:对于数列的新定义的题,解题的关键是理解清楚题意,熟练掌握数列中常见的解题方法.。
沈阳数学高二下期末测试题(答案解析)
一、选择题1.直线l :210mx y m +--=与圆C :22(2)4x y +-=交于A ,B 两点,则当弦AB 最短时直线l 的方程为 A .2430x y -+= B .430x y -+= C .2430x y ++=D .2410x y ++=2.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60°D .45° 3.已知,αβ为锐角,且,5sin 13α=,则cos β的值为( ) A .5665B .3365C .1665 D .63654.已知函数()()π2cos 332f x x ϕϕ⎛⎫=++≤ ⎪⎝⎭,若ππ,612x ⎛⎫∀∈- ⎪⎝⎭,()f x 的图象恒在直线3y =的上方,则ϕ的取值范围是( ) A .ππ,122⎛⎫⎪⎝⎭ B .ππ,63⎡⎤⎢⎥⎣⎦C .π0,4⎡⎤⎢⎥⎣⎦D .ππ,63⎛⎫-⎪⎝⎭ 5.已知a R ∈,则“cos 02πα⎛⎫+> ⎪⎝⎭”是“α是第三象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知2tan θ= ,则222sin sin cos cos θθθθ+- 等于( ) A .-43B .-65 C .45D .957.在中,,,A B C ∠∠∠所对的边长分别是,,a b c ,若sin sin()sin 2C B A A +-=,则的形状为A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.若平面四边形ABCD 满足0,()0AB CD AB AD AC +=-⋅=,则该四边形一定是( ) A .正方形 B .矩形C .菱形D .直角梯形9.若02πα<<,02πβ-<<,1cos 43πα⎛⎫+= ⎪⎝⎭,3cos 42πβ⎛⎫-= ⎪⎝⎭cos 2βα⎛⎫+ ⎪⎝⎭等于( )A.3B.CD.-10.已知函数()sin f x x x =,将函数()f x 的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6π B .4π C .3π D .2π 11.已知()()f x sin x ωθ=+(其中()()12120,0,,''0,2f x f x x x πωθ⎛⎫>∈==- ⎪⎝⎭,的最小值为(),23f x f x ππ⎛⎫=- ⎪⎝⎭,将()f x 的图象向左平移6π个单位得()g x ,则()g x 的单调递减区间是( ) A .(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦B .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z C .()5,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦12.已知角6πα-的顶点在原点,始边与x 轴正半轴重合,终边过点()5,12P -, 则7cos 12πα⎛⎫+= ⎪⎝⎭( ) A. B. CD13.已知单位向量,OA OB 的夹角为60,若2OC OA OB =+,则ABC ∆为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形14.在ABC ∆中,a b c 、、分别是内角A B C 、、所对的边,若2224ABCa b c S ∆+-=(其中)ABC S ABC ∆∆表示的面积,且0,AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭则ABC ∆的形状是( ) A .有一个角为30的等腰三角形B .正三角形C .直角三角形D .等腰直角三角形15.设0002012tan15cos 22,,21tan 15a b c ===+,则有( ) A .c a b <<B .a b c <<C .b c a <<D .a c b <<二、填空题16.已知θ为钝角,1sin()43πθ+=,则cos2θ=______. 17.点P 是边长为2的正方形ABCD 的内部一点,1AP =,若(,)AP AB AD R λμλμ=+∈,则λμ+的取值范围为___.18.将函数()2sin(2)6f x x π=-的图象向左平移(0)φφ>个单位,若所得到图象关于原点对称,则φ的最小值为__________.19.已知向量a ,b 满足1a =,且()2a a b b -==,则向量a 与b 的夹角是__________. 20.函数1ππ()sin ()cos ()536f x x x =++-的最大值为___________. 21.已知ABC ∆,4AB AC ==,2BC =,点D 为AB 延长线上一点,2BD =,连结CD ,则cos BDC ∠=__________.22.计算:2tan81tan8ππ=- __________.23.已知平面向量a 、b 满足||3a =,||2b =,a 与b 的夹角为60,若(a mb -)a ⊥,则实数m 的值是___________ . 24.若()1sin 3πα-=,且2παπ≤≤,则cos α的值为__________.25.已知向量()()121a b m =-=,,,,若向量a b +与a 垂直,则m =______. 三、解答题26.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 27.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 28.已知平面向量a ,b ,()1,2a =.(1)若()0,1b =,求2a b +的值; (2)若()2,b m =,a 与a b -共线,求实数m 的值. 29.已知(1,2),(2,2),(1,5)a b c ==-=-.若a b λ-与b c +平行,求实数λ的值. 30.已知集合()()()(){}21,A x x x x x R φφφφ=+=+-∈. (1)求证:函数()cos3xf x A π=∈;(2)某同学由(1)又发现()cos3xf x π=是周期函数且是偶函数,于是他得出两个命题:①集合A 中的元素都是周期函数;②集合A 中的元素都是偶函数,请对这两个命题给出判断,如果正确,请证明;如果不正确,请举出反例;(3)设p 为非零常数,求()cos g x px A =∈的充要条件,并给出证明.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.A 3.A 4.C 5.B 6.D 7.D 8.C 9.C 10.A 11.A13.C14.D15.A二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;17.(【解析】【分析】根据题意可知λμ>0根据条件对λμ两边平方进行数量积的运算化简利用三角代换以及两角和与差的三角函数从而便可得出λμ的最大值【详解】解:依题意知λ>0μ>0;根据条件12=λ22+218.【解析】分析:先根据图像平移得解析式再根据图像性质求关系式解得最小值详解:因为函数的图象向左平移个单位得所以因为所以点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟19.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小20.【解析】分析:利用诱导公式化简函数的解析式通过正弦函数的最值求解即可详解:函数故答案为点睛:本题考查诱导公式的应用三角函数的最值正弦函数的有界性考查计算能力21.【解析】取中点中点由题意中又所以故答案为22.【解析】根据正切公式的二倍角公式得到故答案为:23.3【解析】∵∴∴∴∴故答案为324.【解析】由题意得25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得:三、解答题26.27.28.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】先求出直线经过的定点,再求出弦AB 最短时直线l 的方程. 【详解】由题得1210(21)(1)0,,2101x x m x y y y ⎧-==⎧⎪-+-=∴∴⎨⎨-=⎩⎪=⎩,所以直线l 过定点P112(,). 当CP ⊥l 时,弦AB 最短. 由题得2112,1202CP l k k -==-∴=-, 所以112,24m m -=∴=-. 所以直线l 的方程为2430x y -+=.故选:A 【点睛】本题主要考查直线过定点问题,考查直线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.A解析:A 【解析】 解:根据题意,α,β为锐角,若sinα=513,则cosα=1213, 若cos (α+β)=35,则(α+β)也为锐角, 则sin (α+β)=45, 则cosβ=cos[(α+β)﹣α]=cos (α+β)cosα+sin (α+β)sinα=35×1213+45×513=5665, 点睛:由cos (α+β)与sinα的值,结合同角三角函数基本关系式计算可得sin (α+β)与cosα的值,进而利用β=[(α+β)﹣α]可得cosβ=cos[(α+β)﹣α]=cos (α+β)cosα+sin (α+β)sinα.4.C解析:C 【解析】分析:根据函数()f x 的解析式,利用x 的取值范围,结合题意求出ϕ的取值范围. 详解:函数函数()()π2cos 332f x x ϕϕ⎛⎫=++≤⎪⎝⎭,ππ,612x ⎛⎫∈- ⎪⎝⎭时,324x ππϕϕϕ+∈-++(,),又()f x 的图象恒在直线3y =的上方,2223333042cos x cos x ππϕϕϕππϕ⎧-+≥-⎪⎪∴++∴+∴⎨⎪+≤⎪⎩()>,()>,,解得04πϕ≤≤;∴ϕ的取值范围是π0,4⎡⎤⎢⎥⎣⎦.故选C .点睛:本题考查了三角函数的图象与性质的应用问题,是基础题.5.B解析:B 【解析】 【分析】先化简“cos 02πα⎛⎫+> ⎪⎝⎭”,再利用充要条件的定义判断. 【详解】 因为cos 02πα⎛⎫+> ⎪⎝⎭,所以-sin 0,sin 0,ααα>∴<∴是第三、四象限和y 轴负半轴上的角.α是第三、四象限和y 轴负半轴上的角不能推出α是第三象限角,α是第三象限角一定能推出α是第三、四象限和y 轴负半轴上的角,所以“cos 02πα⎛⎫+>⎪⎝⎭”是“α是第三象限角”的必要非充分条件. 故答案为:B. 【点睛】(1)本题主要考查充要条件的判断和诱导公式,考查三角函数的值的符号,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 判定充要条件常用的方法有定义法、集合法、转化法.6.D解析:D【解析】 ∵tanθ=2,∴原式=22222sin sin cos cos sin cos θθθθθθ+-+=22211tan tan tan θθθ+-+=82141+-+=95. 本题选择D 选项.点睛:关于sin α,cos α的齐次式,往往化为关于tan α的式子.7.D解析:D 【解析】试题分析:由sinC +sin(B -A)=sin2A再注意到:,所以有,故知△ABC 是等腰三角形或直角三角形,故选D. 考点:三角恒等变形公式.8.C解析:C 【解析】试题分析:因为0,AB CD AB DC +=∴=,所以四边形ABCD 为平行四边形,又因为()0,0AB AD AC DB AC -⋅=∴⋅=,所以BD 垂直AC ,所以四边形ABCD 为菱形.考点:向量在证明菱形当中的应用.点评:在利用向量进行证明时,要注意向量平行与直线平行的区别,向量平行两条直线可能共线也可能平行.9.C解析:C 【解析】 【分析】利用同角三角函数的基本关系求出sin 4πα⎛⎫+ ⎪⎝⎭与sin 42πβ⎛⎫- ⎪⎝⎭,然后利用两角差的余弦公式求出cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦值. 【详解】02πα<<,3444πππα∴<+<,则222sin 1cos 443ππαα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭, 02πβ-<<,则4422ππβπ<-<,所以,26sin 1cos 42423πβπβ⎛⎫⎛⎫-=--=⎪ ⎪⎝⎭⎝⎭,因此,cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1cos cos sin sin 4424423ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=+-++-==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故选C . 【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点: ①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负; ②利用已知角来配凑未知角,然后利用合适的公式求解.10.A解析:A 【解析】 【分析】利用函数的平移变换得π2sin 3y x m ⎛⎫=++ ⎪⎝⎭,再根所图象关于y 轴对称,得到角的终边落在y 轴上,即π2π3πm k +=+,k Z ∈,即可得答案. 【详解】()sin 2s πin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭,将函数()f x 的图象向左平移m 个单位长度后,得到函数π2sin 3y x m ⎛⎫=++⎪⎝⎭的图象, 又所得到的图象关于y 轴对称,所以π2π3πm k +=+,k Z ∈, 即ππ6m k =+,k Z ∈, 又0m >,所以当0k =时,m 的最小值为π6. 故选:A. 【点睛】本题考查三角函图象的变换、偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.11.A解析:A 【解析】 【分析】利用正弦函数的周期性以及图象的对称性求得f (x )的解析式,利用函数y =A sin(ωx +φ)的图象变换规律求得G (x )的解析式,利用余弦函数的单调性求得则G (x ) 的单调递减区间. 【详解】∵f (x )=sin (ωx +θ),其中ω>0,θ∈(0,2π),f '(x 1)=f '(x 2)=0,|x 2﹣x 1|min 2π=,∴12•T 2ππω==, ∴ω=2,∴f (x )=sin (2x +θ). 又f (x )=f (3π-x ), ∴f (x )的图象的对称轴为x 6π=,∴2•6π+θ=k π2π+,k ∈Z ,又02πθ⎛⎫∈ ⎪⎝⎭,, ∴θ6π=,f (x )=sin (2x 6π+). 将f (x )的图象向左平移6π个单位得G (x )=sin (2x 36ππ++)=cos2x 的图象, 令2k π≤2x ≤2k π+π,求得k π≤x ≤k π2π+,则G (x )=cos2x 的单调递减区间是[k π,k π2π+],故选A . 【点睛】本题主要考查正弦函数的周期性以及图象的对称性,函数y =A sin (ωx +φ)的图象变换规律,余弦函数的单调性,属于中档题.12.B解析:B 【解析】分析:利用三角函数的定义求得66cos sin ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 结果,进而利用两角和的余弦函数公式即可计算得解.详解:由三角函数的定义可得512,613613cos sin ππαα⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, 则773cos cos cos 12661264ππππππααα⎛⎫⎛⎫⎛⎫+=-++=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭33=cos cos sin sin 6464ππππαα⎛⎫⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭512=13213226⎛⎛⎫---⋅=- ⎪ ⎝⎭⎝⎭ 点睛:本题考查任意角的三角函数的定义,两角和与差的余弦函数公式,考查了计算能力和转化思想,属于基础题.13.C解析:C 【解析】2,2,OC OA OB BC OC OB OA AC OC OA OA OB =+∴=-==-=+,22222,23BC OA AC OA OB OA OB ∴===++⋅=,3,AC OA ∴=与OB 夹角为60,且1,1OA OB AB ==∴=,222,AB AC BC ABC +=∴∆为直角三角形,故选C.14.D解析:D 【解析】试题分析:在边AB ,AC 上分别取点D ,E ,使,AB AC AD AE ABAC==,以AD ,AE 为邻边作平行四边形ADFE ,则:四边形ADFE 为菱形,连接AF ,DE ,AF ⊥DE ,且ABACAF AB AC=+;∵0,AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭; ∴·0AF BC =;∴AF ⊥BC ;又DE ⊥AF;∴DE ∥BC ,且AD=AE;∴AB=AC ,即b=c ;∴延长AF 交BC 的中点于O ,则:S △ABC =222124a b c +-=,b=c ; ∴22a a =∴=;∴2224c a a -=;∴22222a c b c ==+;∴∠BAC=90°,且b=c ;∴△ABC 的形状为等腰直角三角形. 考点:平面向量数量积的运算15.A解析:A 【解析】 【分析】利用两角差的正弦公式化简a ,分子分母同乘以2cos 15结合二倍角的正弦公式化简b ,利用降幂公式化简c ,从而可得结果.【详解】()sin 302sin28a =︒-︒=︒ ,222sin15cos15sin 30cos 15cos 15b ==+sin28a >=sin25sin28,c a b a c ==︒<︒=∴>>,故选A.【点睛】本题主要考查二倍角的正弦公式、二倍角的余弦公式,两角差的正弦公式,意在考查综合运用所学知识解答问题的能力,属于中档题.二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;解析:9-【解析】 【分析】将2θ改写成2()42ππθ+-的形式,利用二倍角公式计算cos2θ的值,代入相关数值.【详解】因为cos2cos[2()]sin[2()]424πππθθθ=+-=+,所以cos 22sin()cos()44ππθθθ=++;因为1sin()043πθ+=>且θ为钝角,所以()4πθ+是第二象限角,则cos()43πθ+==-,故cos 22sin()cos()44ππθθθ=++= 【点睛】(1)常见的二倍角公式:sin 22sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=- ;(2)常用的角的配凑:()ααββ=-+,()ααββ=+-;2()()ααβαβ=++- ,2()()βαβαβ=+--.17.(【解析】【分析】根据题意可知λμ>0根据条件对λμ两边平方进行数量积的运算化简利用三角代换以及两角和与差的三角函数从而便可得出λμ的最大值【详解】解:依题意知λ>0μ>0;根据条件12=λ22+2解析:(12 【解析】 【分析】根据题意可知λ,μ>0,根据条件对AP =λAB +μAD 两边平方,进行数量积的运算化简,利用三角代换以及两角和与差的三角函数,从而便可得出λ+μ的最大值. 【详解】解:依题意知,λ>0,μ>0;根据条件,1AP =2=λ2AB 2+2λμAB •AD +μ2AD 2=4λ2+4μ2.令λ12cos θ=,μ=12sin θ,θ0,2π⎛⎫∈ ⎪⎝⎭.∴λ+μ=12cos θ12+sin θ=2sin (θ4π+);θ3,444πππ⎛⎫+∈ ⎪⎝⎭, sin (θ4π+)∈(,12]∴λμ+的取值范围为(1,22]故答案为(12. 【点睛】本题考查向量数量积的运算及计算公式,以及辅助角公式,三角代换的应用,考查转化思想以及计算能力.18.【解析】分析:先根据图像平移得解析式再根据图像性质求关系式解得最小值详解:因为函数的图象向左平移个单位得所以因为所以点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟 解析:12π【解析】分析:先根据图像平移得解析式,再根据图像性质求φ关系式,解得最小值.详解:因为函数()2sin 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移(0)φφ>个单位得()2sin(2())6g x x πφ=+-,所以2()()6122k k k Z k Z πππφπφ-=∈∴=+∈因为0φ>,所以min .12πφ=点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言.19.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小解析:120︒【解析】 【分析】先根据条件得a b ⋅,再根据向量夹角公式求结果. 【详解】因为1a =,且()2a a b ⋅-=,所以2-2,121,a a b a b ⋅=∴⋅=-=- 因此112πcos ,,1223a b a b a b a b⋅-===-∴=⨯⋅. 【点睛】求平面向量夹角方法:一是夹角公式cos a b a bθ⋅=⋅;二是坐标公式cos θ=;三是几何方法,从图形判断角的大小.20.【解析】分析:利用诱导公式化简函数的解析式通过正弦函数的最值求解即可详解:函数故答案为点睛:本题考查诱导公式的应用三角函数的最值正弦函数的有界性考查计算能力 解析:65【解析】分析:利用诱导公式化简函数的解析式,通过正弦函数的最值求解即可.详解:函数()1ππ1πsin cos 353656f x x x sin x cos x π⎛⎫⎛⎫=++-=++-+ ⎪ ⎪⎝⎭⎝⎭()() 1ππ6π6533535sin x sin x sin x =+++=+≤()()(). 故答案为65. 点睛:本题考查诱导公式的应用,三角函数的最值,正弦函数的有界性,考查计算能力.21.【解析】取中点中点由题意中又所以故答案为解析:4【解析】取BC 中点,E DC 中点F ,由题意,AE BC BF CD ⊥⊥,cos BDC sin DBF ∠=∠,ABE ∆中,1cos 4BE ABC AB ∠==,1cos 4DBC ∴∠=-,又21cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,所以cos BDC ∠=4,故答案为4. 22.【解析】根据正切公式的二倍角公式得到故答案为:解析:12【解析】 根据正切公式的二倍角公式得到22tan 8tantan 21481tan 8ππππ=⨯==-,2tan1821tan 8ππ=-. 故答案为:12. 23.3【解析】∵∴∴∴∴故答案为3解析:3 【解析】∵()a mb a -⊥∴()0a mb a -⋅=∴2cos ,0a m a b a b -⋅⋅〈〉= ∴932cos600m -⨯⨯⨯︒= ∴3m = 故答案为324.【解析】由题意得解析:3-【解析】由题意得()1sin sin ,[,],cos 323ππαααπα-==∈∴==- 25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得: 解析:7【解析】利用平面向量的加法公式可得:()1,3a b m +=-+,由平面向量垂直的充要条件可得:()()()()1,31,2160a b a m m +⋅=-+⋅-=--++=, 解方程可得:7m =.三、解答题26.(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[2- 【解析】 【分析】(Ⅰ)利用两角和与差的正弦、余弦公式以及辅助角公式化简函数()f x ,由周期公式以及正弦函数的对称轴求解即可;(Ⅱ)由正弦函数的单调性求得函数函数()f x 在区间[,]122ππ-的单调性,比较(),()122f f ππ-的大小,即可得出值域. 【详解】(Ⅰ)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 2x x x x =++-1cos 22cos 222x x x =+- πsin(2)6x =-22T ππ∴== 26232k x k x πππππ-=+⇒=+则对称轴方程为,32k x k Z ππ=+∈ (Ⅱ)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,∴当12x π=-时,()f x 取最小值所以 函数()f x 在区间[,]122ππ-上的值域为[本题主要考查了两角和与差的正弦、余弦公式以及辅助角公式,正弦函数的性质,求正弦型函数的值域,属于中档题.27.(Ⅰ)(Ⅱ)2,1-.【解析】 【分析】 【详解】(Ⅰ)因为()4cos sin f x x = 16x π⎛⎫+- ⎪⎝⎭314cos cos 12x x x ⎫=⋅+-⎪⎪⎝⎭23sin22cos 13sin2cos22sin 26x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭,故()f x 最小正周期为π (Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤. 于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当ππ266x,即6x π=-时,()f x 取得最小值1-.点睛:本题主要考查了两角和的正弦公式,辅助角公式,正弦函数的性质,熟练掌握公式是解答本题的关键.28.(117;(2)4. 【解析】 【分析】(1)结合已知求得:2(1,4)+=a b ,利用平面向量的模的坐标表示公式计算得解. (2)求得:(1,2)m -=--a b ,利用a 与a b -共线可列方程1212m --=,解方程即可. 【详解】解:(1)2(1,2)(0,2)(1,4)+=+=a b ,所以2221417+=+=a b(2)(1,2)m -=--a b , 因为a 与a b -共线,所以1212m--=,解得4m =.本题主要考查了平面向量的模的坐标公式及平面向量平行的坐标关系,考查方程思想及计算能力,属于基础题.29.18【解析】 【分析】a b λ-与b c +用坐标表示,根据向量的平行坐标关系,即可求解.【详解】解:由题意得(12,22)a b λλλ-=-+,(1,3)b c +=, 因为a b λ-与b c +平行,所以(12)3(22)1λλ-⋅=+⋅, 解得18λ=. 因此所求实数λ的值等于18. 【点睛】本题考查平行向量的坐标关系,属于基础题.30.(1)见解析(2)命题①正确.见解析(3)充要条件是23p k ππ=+或()23p k k Z ππ=-+∈,见解析【解析】 【分析】(1)通过计算证明()()()21f x f x f x +=+-,即可得证;(2)根据函数关系代换()()()63f x f x f x +=-+=,即可证明周期性,举出反例()cos 34x h x ππ⎛⎫=+ ⎪⎝⎭不是偶函数;(3)根据充分性和必要性分别证明23p k ππ=+或()23p k k Z ππ=-+∈.【详解】 (1)()()()()()2112coscoscos cos 333333x x x xf x f x ππππππ⎡⎤⎡⎤+++++=+=++-⎢⎥⎢⎥⎣⎦⎣⎦ ()()()112coscoscos1333x x f x πππ++===+∴()()()21f x f x f x +=+- ∴()cos3xf x A π=∈(2)命题①正确.集合A 中的元素都是周期函数. 证明:若()f x A ∈则()()()21f x f x f x +=+-可得()()()321f x f x f x +=+-+. 所以()()3f x f x +=-,从而()()()63f x f x f x +=-+=, 所以()f x 为周期函数,命题①正确;命题②不正确.如()cos 34x h x ππ⎛⎫=+⎪⎝⎭不是偶函数,但满足()h x A ∈,这是因为 ()()11112cos cos 343343x x h x h x ππππππ⎡⎤⎡⎤++⎛⎫⎛⎫++=++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()112cos 134x h x ππ+⎛⎫=+=+ ⎪⎝⎭∴()()()21h x h x h x +=+- ∴()h x A ∈(3)若()cos g x px A =∈则()()()21g x g x g x +=+-,()()()21g x g x g x ++=+ ∴()()cos 2cos cos 1p x px p x ++=+∴()()()cos 2cos 1cos 1p x p p x p p x ⎡⎤⎡⎤++++-=+⎣⎦⎣⎦ ∴()()2cos 1cos cos 1p x p p x +=+,可得∴2cos 1p = ∴23p k ππ=+或()23p k k Z ππ=-+∈ 当23p k ππ=+或()23p k k Z ππ=-+∈时()()()2cos 22cos 233g x g x k x k x ππππ⎡⎤⎛⎫⎛⎫++=++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()cos 212cos 2123333k x k k x k ππππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()()2cos 21cos 2cos 211333k x k k x g x ππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++=++=+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦∴()cos g x px A =∈所以()cos g x px A =∈的充要条件是23p k ππ=+或()23p k k Z ππ=-+∈【点睛】 此题考函数新定义问题,考查函数性质的综合应用,关键在于读懂题意,准确识别集合中函数的特征.。
【解析版】数学高二下期末阶段练习(课后培优)(1)
一、选择题1.已知函数()()sin f x A x ωϕ=+(A 、ω、ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )A .()()()220f f f -<<B .()()()220f f f <-<C .()()()202f f f -<<D .()()()022f f f <-<2.已知向量a 、b 、c 满足a b c +=,且::1:1:2a b c =a 、b 夹角为( ) A .4π B .34π C .2π D .23π 3.将函数sin()cos()22y x x ϕϕ=++的图象沿x 轴向右平移8π个单位后,得到一个偶函数的图象,则ϕ的取值不可能是( )A .54π-B .4π-C .4π D .34π 4.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60° D .45°5.已知P (14,1),Q (54,-1)分别是函数()()cos f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图象上相邻的最高点和最低点,则ωϕ-=( ) A .54π-B .54πC .-34π D .34π 6.已知a R ∈,则“cos 02πα⎛⎫+> ⎪⎝⎭”是“α是第三象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .38.已知函数()(0,0)y sin x ωθθπω=+<为偶函数,其图象与直线1y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A .2,2πωθ==B .1,22==πωθ C .1,24==πωθ D .2,4==πωθ9.将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,所得图象关于y 轴对称,则ω的最小值为 A .2 B .1 C .12 D .1410.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c 的最大值是( ) A .1B .2C .D .11.已知角6πα-的顶点在原点,始边与x 轴正半轴重合,终边过点()5,12P -, 则7cos 12πα⎛⎫+= ⎪⎝⎭( ) A .17226-B .7226-C .226D .22612.已知4sin 5α,并且α是第二象限的角,那么tan()απ+的值等于 A .43-B .34-C .34D .4313.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈()2A x f x ⎧⎫=⎨⎬⎩⎭,且|x 1-x 2|min =π,则f (x )的最小正周期是( ) A .3πB .2πC .πD .π214.已知tan 3a =,则21cos sin 22a a +=() A .25-B .3C .3-D .2515.设0002012tan15cos 22,,21tan 15a b c ===+,则有( ) A .c a b <<B .a b c <<C .b c a <<D .a c b <<二、填空题16.已知24sin 225θ=,02πθ⎛⎫<< ⎪⎝⎭4πθ⎛⎫- ⎪⎝⎭的值为_______________.17.已知向量a ,b 满足1a =,且()2a a b b -==,则向量a 与b 的夹角是__________.18.已知角θ的终边上的一点P 的坐标为()3,4,则cos 21sin 2θθ=+________________.19.函数()211sinsin (0)222x f x x ωωω=+->,若函数()f x 在区间x ∈(),2ππ内没有零点,则实数ω的取值范围是_____20.三棱锥V-ABC 的底面ABC 与侧面VAB 都是边长为a 的正三角形,则棱VC 的长度的取值范围是_________.21.在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是__________.22.设(1,3,2)a =-,(2,+1,1)b m n =-,且a //b ,则实数m n -=_____.23.为得到函数2y sin x =的图象,要将函数24y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移至少__________个单位. 24.已知已知sin π3()25α+=,α∈π(0,)2,则sin(π+α)等于__________25.已知向量()()121a b m =-=,,,,若向量a b +与a 垂直,则m =______. 三、解答题26.已知点(2,0)A -,(1,9)B ,(,)C m n ,O 是原点. (1)若点,,A B C 三点共线,求m 与n 满足的关系式; (2)若AOC ∆的面积等于3,且AC BC ⊥,求向量OC . 27.已知4a =,3b =,()()23261a b a b -⋅+=. (1)求向量a 与b 的夹角θ;(2)若()1c ta t b =+-,且0b c ⋅=,求实数t 的值及c . 28.已知函数()2sin 22cos 6f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的单调增区间; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 29.已知圆.(1)求过点(3,0)Q 的圆C 的切线l 的方程;(2)如图,(1,0),A M 定点为圆C 上一动点,点P 在AM 上,点N 在CM 上,且满足2,0,AM AP NP AM =⋅=求N 点的轨迹.30.如图所示,函数()2cos (,0.0)2y x x R πωθωθ=+∈>≤≤的图象与y 轴交于点()0,3,且该函数的最小正周期为π.(1)求θ和ω的值; (2)已知点πA ,02⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当003,,22y x ππ⎡⎤=∈⎢⎥⎣⎦时,求0x 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.C3.C4.A5.B6.B7.A8.A9.B10.C11.B12.A13.A14.D15.A二、填空题16.【解析】【分析】由三角函数的基本关系式和正弦的倍角公式求得再由两角差的余弦函数的公式即可求解【详解】由即则又由所以又由【点睛】本题主要考查了三角函数的基本关系式以及正弦的倍角公式和两角差的余弦公式的17.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小18.【解析】分析:由角的终边上的一点的坐标为求出的值利用将的值代入即可得结果详解:角的终边上的一点的坐标为那么故答案为点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式属于中档题给值求值问题求19.【解析】分析:先化简函数f(x)再求得再根据函数在区间内没有零点得到不等式组最后解不等式组即得w的范围详解:由题得f(x)=因为所以当或时f(x)在内无零点由前一式得即由k=0得K取其它整数时无解同20.【解析】分析:设的中点为连接由余弦定理可得利用三角函数的有界性可得结果详解:设的中点为连接则是二面角的平面角可得在三角形中由余弦定理可得即的取值范围是为故答案为点睛:本题主要考查空间两点的距离余弦定21.19【解析】设则也即是化简得到其中故填点睛:向量数量积的计算有3个基本的思路:(1)基底法:如果题设中有一组不共线的向量它们的模长和夹角已知则其余的向量可以用基底向量去表示数量积也就可以通过基底向量22.8【解析】由题意得23.【解析】函数的解析式:则要将函数的图象向右平移至少个单位点睛:由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0ω>0)(x∈R)的图象要特别注意:当周期变换和相位变换的先后顺序24.【解析】由题意得25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】依题意得,函数f (x )的周期为π, ∵ω>0,∴ω=2ππ=2.又∵当x=23π 时,函数f (x )取得最小值, ∴2×23π +φ=2kπ+32π ,k ∈Z ,可解得:φ=2kπ+6π,k ∈Z , ∴f (x )=Asin (2x+2kπ+6π)=Asin (2x+6π). ∴f (﹣2)=Asin (﹣4+6π)=Asin (6π﹣4+2π)>0. f (2)=Asin (4+6π)<0, f (0)=Asin 6π=Asin 56π>0, 又∵32π>6π﹣4+2π>56π>2π,而f (x )=Asinx 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选:B .2.C解析:C 【解析】 【分析】对等式a b c +=两边平方,利用平面向量数量积的运算律和定义得出0a b ⋅=,由此可求出a 、b 的夹角. 【详解】等式a b c +=两边平方得2222a a b b c +⋅+=,即2222cos a b b c a θ+⋅+=,又::1:1:a b c =0a b ⋅=,a b ∴⊥,因此,a 、b 夹角为2π,故选:C. 【点睛】本题考查平面向量夹角的计算,同时也考查平面向量数量积的运算律以及平面向量数量积的定义,考查计算能力,属于中等题.3.C解析:C 【解析】试题分析:()1sin()cos()sin 2222y x x x ϕϕϕ=++=+将其向右平移8π个单位后得到:11sin 2sin 22824y x x ππϕϕ⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若为偶函数必有:()42k k Z ππϕπ-=+∈,解得:()34k k Z πϕπ=+∈,当0k =时,D 正确,1k =-时,B 正确,当2k =-时,A 正确,综上,C 错误. 考点:1.函数的图像变换;2.函数的奇偶性.4.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.B解析:B 【解析】【分析】由点P,Q 两点可以求出函数的周期,进而求出ω,再将点P 或点Q 的坐标代入,求得ϕ,即求出ωϕ-. 【详解】 因为512244πω⎛⎫-=⎪⎝⎭,所以ωπ=,把1,14P ⎛⎫ ⎪⎝⎭的坐标代入方程()cos y x πϕ=+,得 ()24k k Z ϕππ=-+∈,因为2πϕ<,所以5,44ππϕωϕ=--=,故选B . 【点睛】本题主要考查利用三角函数的性质求其解析式.6.B解析:B 【解析】 【分析】 先化简“cos 02πα⎛⎫+> ⎪⎝⎭”,再利用充要条件的定义判断. 【详解】 因为cos 02πα⎛⎫+> ⎪⎝⎭,所以-sin 0,sin 0,ααα>∴<∴是第三、四象限和y 轴负半轴上的角.α是第三、四象限和y 轴负半轴上的角不能推出α是第三象限角,α是第三象限角一定能推出α是第三、四象限和y 轴负半轴上的角,所以“cos 02πα⎛⎫+>⎪⎝⎭”是“α是第三象限角”的必要非充分条件. 故答案为:B. 【点睛】(1)本题主要考查充要条件的判断和诱导公式,考查三角函数的值的符号,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 判定充要条件常用的方法有定义法、集合法、转化法.7.A解析:A 【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.8.A解析:A 【解析】分析:首先根据12x x -的最小值是函数的最小正周期,求得ω的值,根据函数是偶函数,求得θ的值,从而求得正确的选项.详解:由已知函数sin()(0)y x ωθθπ=+<<为偶函数,可得2πθ=,因为函数sin()(0)y x ωθθπ=+<<的最大值为1,所以21x x -的最小值为函数的一个周期,所以其周期为T π=,即2=ππω,所以=2ω,故选A.点睛:该题考查的是有关三角函数的有关问题,涉及到的知识点有函数的最小正周期的求法,偶函数的定义,诱导公式的应用,正确使用公式是解题的关键,属于简单题目.9.B解析:B 【解析】 将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,可得y =2sin (ωx –2π3ω+π6)的图象,再根据所得图象关于y 轴对称,∴–2π3ω+π6=kπ+π2,k ∈Z ,即ω=–31–22k ,∴当k =–1时,ω取得最小值为1,故选B . 10.C解析:C 【解析】 【分析】 【详解】 试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C .考点:平面向量数量积的运算.11.B解析:B【解析】分析:利用三角函数的定义求得66cos sin ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 结果,进而利用两角和的余弦函数公式即可计算得解.详解:由三角函数的定义可得512,613613cos sin ππαα⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, 则773cos cos cos 12661264ππππππααα⎛⎫⎛⎫⎛⎫+=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭33=cos cos sin sin 6464ππππαα⎛⎫⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭512=1313⎛⎛⎫--= ⎪ ⎝⎭⎝⎭ 点睛:本题考查任意角的三角函数的定义,两角和与差的余弦函数公式,考查了计算能力和转化思想,属于基础题.12.A解析:A 【解析】 【分析】由诱导公式可得()tan tan παα+=,由角的正弦值和角所在的象限,求出角的余弦值,然后,正弦值除以余弦值得正切值.即可得到答案 【详解】 ∵4sin 5α=,并且α是第二象限的角,,35cos α∴-= , ∴tanα=43-,则么()4tan tan 3παα+==-. 故选A . 【点睛】本题考查给值求值问题.掌握同角三角函数的基本关系式和诱导公式,并会运用它们进行简单的三角函数式的化简、求值及恒等式证明.13.A解析:A 【解析】 【分析】 由题意可得123ππω⨯=,求得ω的值,可得()f x 的最小正周期是2πω的值 【详解】由题意可得()1sin 2x ωθ+=的解为两个不等的实数1x ,2x且123ππω⨯=,求得23ω= 故()f x 的最小正周期是23ππω=故选A 【点睛】本题主要考查了的是三角函数的周期性及其图象,解题的关键根据正弦函数的图象求出ω的值,属于基础题14.D解析:D 【解析】 【分析】根据正弦的倍角公式和三角函数的基本关系式,化为齐次式,即可求解,得到答案. 【详解】由题意,可得222221cos sin cos cos sin 2cos sin cos 2cos sin a a a a a a a a a a++=+=+221tan 1321tan 135a a ++===++,故选D .【点睛】 本题主要考查了正弦的倍角公式,以及三角函数的基本关系式的化简、求值,着重考查了推理与运算能力,属于基础题.15.A解析:A 【解析】 【分析】利用两角差的正弦公式化简a ,分子分母同乘以2cos 15结合二倍角的正弦公式化简b ,利用降幂公式化简c ,从而可得结果. 【详解】()sin 302sin28a =︒-︒=︒ ,222sin15cos15sin 30cos 15cos 15b ==+sin28a >=sin25sin28,c a b a c ==︒<︒=∴>>,故选A.【点睛】本题主要考查二倍角的正弦公式、二倍角的余弦公式,两角差的正弦公式,意在考查综合运用所学知识解答问题的能力,属于中档题.二、填空题16.【解析】【分析】由三角函数的基本关系式和正弦的倍角公式求得再由两角差的余弦函数的公式即可求解【详解】由即则又由所以又由【点睛】本题主要考查了三角函数的基本关系式以及正弦的倍角公式和两角差的余弦公式的解析:75【解析】 【分析】由三角函数的基本关系式和正弦的倍角公式,求得249(cos sin )25θθ+=,再由两角差的余弦函数的公式,即可求解. 【详解】 由24sin 225θ=,即242sin cos 25θθ=, 则2222449(cos sin )cos 2sin cos sin 12525θθθθθθ+=++=+=, 又由02πθ<<,所以cos 0,sin 0θθ>>,7cos()cos sin 45πθθθ-=+=.【点睛】本题主要考查了三角函数的基本关系式,以及正弦的倍角公式和两角差的余弦公式的化简、求值,着重考查了推理与运算能力,属于基础题.17.【解析】【分析】先根据条件得再根据向量夹角公式求结果【详解】因为且所以因此【点睛】求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法从图形判断角的大小 解析:120︒【解析】 【分析】先根据条件得a b ⋅,再根据向量夹角公式求结果. 【详解】因为1a =,且()2a a b ⋅-=,所以2-2,121,a a b a b ⋅=∴⋅=-=- 因此112πcos ,,1223a b a b a b a b⋅-===-∴=⨯⋅. 【点睛】求平面向量夹角方法:一是夹角公式cos a b a bθ⋅=⋅;二是坐标公式cos θ=;三是几何方法,从图形判断角的大小.18.【解析】分析:由角的终边上的一点的坐标为求出的值利用将的值代入即可得结果详解:角的终边上的一点的坐标为那么故答案为点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式属于中档题给值求值问题求解析:17-【解析】分析:由角θ的终边上的一点P 的坐标为()3,4,求出,cos sin θθ的值,利用2cos 212sin 1212cos sin sin θθθθθ-=++,将,cos sin θθ的值代入即可得结果. 详解:角θ的终边上的一点P 的坐标为()3,4,43,cos 55y x sin r r θθ∴====, 那么216712cos 212sin 1252543491212cos 7125525sin sin θθθθθ-⨯--====-+++⨯⨯,故答案为17-. 点睛:本题主要考查三角函数的定义及二倍角的正弦公式与余弦公式,属于中档题.给值求值问题,求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.19.【解析】分析:先化简函数f(x)再求得再根据函数在区间内没有零点得到不等式组最后解不等式组即得w 的范围详解:由题得f(x)=因为所以当或时f(x)在内无零点由前一式得即由k=0得K 取其它整数时无解同解析:][1150,,848⎛⎤⋃ ⎥⎝⎦【解析】分析:先化简函数f(x) )24wx π=-,再求得(,2),444wx w w πππππ-∈--再根据函数()f x 在区间x ∈ (),2ππ内没有零点得到不等式组,最后解不等式组即得w 的范围. 详解:由题得f(x)=1cos 1111sin sin cos )222224wx wx wx wx wx π-+-=-=-, 因为x ∈ (),2ππ,所以(,2),444wx w w πππππ-∈--当(,2)(2,2),44w w k k k z πππππππ--⊆+∈或(,2)(2,2),44w w k k k z πππππππ--⊆-∈时,f(x)在(),2ππ内无零点,由前一式得24,224k w w k πππππππ⎧≤-⎪⎪⎨⎪-≤+⎪⎩即152,48k w k +≤≤+由k=0得1548w ≤≤, K 取其它整数时无解,同理,由后一式,解得1(0,]8w ∈, 综上,w 的取值范围是][1150,,848⎛⎤⋃ ⎥⎝⎦. 点睛:(1)本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键有两点,其一是分析得到当(,2)(2,2),44w w k k k z πππππππ--⊆+∈或(,2)(2,2),44w w k k k z πππππππ--⊆-∈时,f(x)在(),2ππ内无零点,其二是进一步转化得到不等式组解不等式组. 20.【解析】分析:设的中点为连接由余弦定理可得利用三角函数的有界性可得结果详解:设的中点为连接则是二面角的平面角可得在三角形中由余弦定理可得即的取值范围是为故答案为点睛:本题主要考查空间两点的距离余弦定解析:)【解析】分析:设AB 的中点为D ,连接,,VD CD VC ,由余弦定理可得22233cos 22VC a a VDC =-∠,利用三角函数的有界性可得结果. 详解:设AB 的中点为D , 连接,,VD CD VC,则VD VC ==VDC ∠是二面角V AB C --的平面角, 可得0,1cos 1VDC VDC π<∠<-<∠<,在三角形VDC 中由余弦定理可得,2222cos VC VDC ⎫⎫=+-∠⎪⎪⎪⎪⎝⎭⎝⎭ 2233cos 22a a VDC =-∠22030VC a VC <<⇒<<,即VC的取值范围是(),为故答案为().点睛:本题主要考查空间两点的距离、余弦定理的应用,意在考查空间想象能力、数形结合思想的应用,属于中档题.21.19【解析】设则也即是化简得到其中故填点睛:向量数量积的计算有3个基本的思路:(1)基底法:如果题设中有一组不共线的向量它们的模长和夹角已知则其余的向量可以用基底向量去表示数量积也就可以通过基底向量解析:[1,9] 【解析】设,BM BC CN CD λλ==,则()()··AM AN AB BM AD DN =++,也即是()()··1AM AN AB BC AD DC λλ⎡⎤=++-⎣⎦,化简得到·98AM AN λ=-,其中[]0,1λ∈,故[]·1,9AM AN ∈,填[]1,9.点睛:向量数量积的计算有3个基本的思路:(1)基底法:如果题设中有一组不共线的向量,它们的模长和夹角已知,则其余的向量可以用基底向量去表示,数量积也就可以通过基底向量间的运算去考虑;(2)坐标法:建立合适的坐标系,把数量积的计算归结为坐标的运算;(2)靠边靠角转化:如果已知某些边和角,那么我们在计算数量积时尽量往这些已知的边和角去转化.22.8【解析】由题意得解析:8 【解析】 由题意得2115,3,8132m n m n m n +-==∴==--=- 23.【解析】函数的解析式:则要将函数的图象向右平移至少个单位点睛:由y =sinx 的图象利用图象变换作函数y =Asin(ωx +φ)(A >0ω>0)(x ∈R)的图象要特别注意:当周期变换和相位变换的先后顺序解析:8π 【解析】 函数的解析式:sin 2sin 248y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭. 则要将函数24y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移至少8π个单位. 点睛:由y =sin x 的图象,利用图象变换作函数y =A sin(ωx +φ)(A >0,ω>0)(x ∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再平移变换,平移的量是ϕω个单位.24.【解析】由题意得解析:4-5【解析】 由题意得3π44cos ,(0,)sin ,sin(π)sin 5255ααααα=∈∴=+=-=- 25.【解析】利用平面向量的加法公式可得:由平面向量垂直的充要条件可得:解方程可得: 解析:7【解析】利用平面向量的加法公式可得:()1,3a b m +=-+,由平面向量垂直的充要条件可得:()()()()1,31,2160a b a m m +⋅=-+⋅-=--++=, 解方程可得:7m =.三、解答题 26.(1)360n m --=(2)()4,3OC =或()5,3OC =- 【解析】 【分析】(1)由题意结合三点共线的充分必要条件确定m ,n 满足的关系式即可; (2)由题意首先求得n 的值,然后求解m 的值即可确定向量的坐标. 【详解】(1)()3,9AB =,()2,AC m n =+, 由点A ,B ,C 三点共线,知AB ∥AC , 所以()3920n m -+=,即360n m --=; (2)由△AOC 的面积是3,得1232n ⨯⨯=,3n =±, 由AC BC ⊥,得0AC BC ⋅=,所以()()2,1,90m n m n +⋅--=,即22920m n m n ++--=, 当3n =时,2200m m +-=, 解得4m =或5m =-, 当3n =-时,2340m m ++=,方程没有实数根, 所以()4,3OC =或()5,3OC =-. 【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.27.(1)23πθ=;(2)35t =,c =63. 【解析】 【分析】(1)由向量的数量积,代值计算即可; (2)由数量积为0,代入计算即可. 【详解】(1)因为()()23261a b a b -⋅+= 故2244361a a b cos b θ-⋅-=解得:12cos θ=-因为[]0,θπ∈,所以23πθ=. (2)0b c ⋅= 则()()10b ta t b ⋅+-=()210ta b t b ⋅+-=化简得:159t = 解得:35t = 此时3255c a b =+ 23255a b ⎫+⎪⎭ 224122525a b a b ++⋅【点睛】本题考查向量数量积的运算,属基础题.28.(1)()π5ππ,π1212k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(2)512⎡⎤-⎢⎥⎣⎦.【解析】 【分析】 化简()f x 解析式.(1)根据三角函数单调区间的求法,求得函数()f x 的单调增区间;(2)根据三角函数值域的求法,求得函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【详解】 依题意()()ππsin 2cos cos 2sin 1cos 266f x x x x =--+33sin 2cos 2122x x =--π3sin 213x ⎛⎫=-- ⎪⎝⎭.(1)由πππ2π22π232k x k -+≤-≤+,解得π5πππ1212k x k -≤≤+,所以()f x 的单调增区间为()π5ππ,π1212k k k Z ⎡⎤-+∈⎢⎥⎣⎦. (2)由于π02x ≤≤,所以ππ2π2333x -≤-≤,所以π53sin 21,3132x ⎛⎫⎡⎤--∈-- ⎪⎢⎥⎝⎭⎣⎦.所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为5,312⎡⎤--⎢⎥⎣⎦. 【点睛】本小题主要考查三角恒等变换,考查三角函数单调区间的求法,考查三角函数值域的求法,考查运算求解能力,属于基础题.29.(1),(2)【解析】 【分析】 【详解】(1)由题意知所求的切线斜率存在,设其方程为,即; 由得,解得, 从而所求的切线方程为,.(2)∴NP 为AM 的垂直平分线,∴|NA|=|NM|. 又∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 且椭圆长轴长为焦距2c=2.∴点N 的轨迹是方程为30.(1)πθ6=.ω2=.(2)023x π=,或034x π=. 【解析】试题分析:(1)由三角函数图象与y 轴交于点(3可得3cos 2θ=,则6πθ=.由最小正周期公式可得2ω=.(2)由题意结合中点坐标公式可得点P 的坐标为0232x π⎛-⎝.代入三角函数式可得053cos 46x π⎛⎫-= ⎪⎝⎭,结合角的范围求解三角方程可得023x π=,或034x π=. 试题解析:(1)将0,3x y ==()2cos y x ωθ=+中,得3cos θ=, 因为02πθ≤≤,所以6πθ=.由已知T π=,且0ω>,得222T ππωπ===. (2)因为点()00,0,,2A Q x y π⎛⎫⎪⎝⎭是PA 的中点, 03y =P 的坐标为0232x π⎛- ⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x ππ≤≤,所以053cos 462x π⎛⎫-= ⎪⎝⎭,且075194666x πππ≤-≤, 从而得0511466x ππ-=,或0513466x ππ-=,即023x π=,或034x π=.。
高二下学期数学练习题整理
导数及其应用1. 已知直线y =kx 是y =ln x 的切线,则k =________.2. 设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2(其中x ∈R ,a ,b 为常数).已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l ,则a ,b 的值分别为________.3. 已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中所有不正确的序号是________.①当x =32时,函数f (x )取得极小值; ②f (x )有两个极值点;③当x =2时,函数f (x )取得极小值; ④当x =1时,函数f (x )取得极大值. 4. 设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为_______. 5.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =_______. 6.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是______. 7.函数y =12x 2-ln x 的单调递减区间为________.8.已知函数f (x )=x 2e,g (x )=2a ln x .(1)求F (x )=f (x )-g (x )的单调区间,若F (x )有最值,请求出最值;(2)是否存在正常数a ,使f (x )与g (x )的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出a 的值,以及公共点坐标和公切线方程;9.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2 0<x ≤10,108x -1 0003x 2x >10.(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?计数原理1、若n N且n<20,则(27—n)(28—n) (34—n)= ( )A 、827n A -B 、n n A --2734C 、734n A -D 、834n A -2、已知=++++2252423n C C C C 363,则n=______3、化简=+++-2132n n n n C C C _________4、三个女生和五个男生排成一排,(1)如果女生必须全排在一起,有多少种不同的排法? (2)如果女生必须全分开,有多少种不同的排法? (3)如果两端都不能排女生,有多少种不同的排法? (4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?5、A 、B 、C 、D 、E 五人并排站在一排,其中A 、B 、C 顺序一定,那么不同的排法种数是________。
高二数学练习题及答案
高二数学练习题及答案在高二数学的学习过程中,练习题是巩固知识点和提高解题能力的重要手段。
以下是一些高二数学的练习题及答案,供同学们练习使用。
练习题1:函数与方程已知函数\( f(x) = 3x^2 - 5x + 2 \),求:1. 函数的顶点坐标;2. 函数的值域。
答案1:1. 函数\( f(x) = 3x^2 - 5x + 2 \)的顶点坐标可以通过顶点公式\( x = -\frac{b}{2a} \)求得,其中\( a = 3 \),\( b = -5 \)。
代入得\( x = \frac{5}{6} \)。
将\( x \)值代入原函数求得\( y \)值,\( y = 3\left(\frac{5}{6}\right)^2 -5\left(\frac{5}{6}\right) + 2 = -\frac{1}{12} \)。
所以顶点坐标为\( \left(\frac{5}{6}, -\frac{1}{12}\right) \)。
2. 由于\( a = 3 > 0 \),函数开口向上,最小值即为顶点的\( y \)坐标,即值域为\[ [-\frac{1}{12}, +\infty) \]。
练习题2:三角函数已知\( \sin\theta + \cos\theta = \frac{1}{5} \),求\( \sin\theta \cdot \cos\theta \)的值。
答案2:将已知等式两边平方,得到\( (\sin\theta + \cos\theta)^2 =\left(\frac{1}{5}\right)^2 \),即\( \sin^2\theta +2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{25} \)。
由于\( \sin^2\theta + \cos^2\theta = 1 \),可得\( 2\sin\theta\cos\theta = \frac{1}{25} - 1 = -\frac{24}{25} \)。
专题07 随机变量及其分布【专项训练】高二数学下学期期末专项复习(新人教A版2019)
专题07 随机变量及其分布【专项训练】一、单选题1.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .45【答案】A 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A2.学校从高一、高二、高三中各选派10名同学参加“建党100周年党史宣讲”系列报告会,其中三个年级参会同学中女生人数分别为5、6、7,学习后学校随机选取一名同学汇报学习心得,结果选出一名女同学,则该名女同学来自高三年级的概率为( ) A .718B .730C .915D .13【答案】A 【详解】设事件A 为“30人中抽出一名女同学”,事件B 为“30人中抽出一名高三同学”, 则56718()3030P A ++==,7()30P AB =, 所以()()7()18P AB P B A P A ==,故选:A.3.已知离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .1 B .1.5 C .2.5D .1.7【详解】()10.420.530.1 1.7E X=⨯+⨯+⨯=.故选:D.4.某次市教学质量检测,甲、乙、丙三科考试成绩服从正态分布,相应的正态曲线如图所示,则下列说法中正确的是()A.三科总体的标准差相同B.甲、乙、丙三科的总体的平均数不相同C.丙科总体的平均数最小D.甲科总体的标准差最小【答案】D【详解】解:由图象知甲、乙、丙三科的平均分一样,但标准差不同,σ甲<σ乙<σ丙.故选:D.5.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56B.910C.215D.115【答案】C 【详解】由题意,知()()(122315 )5P AB P B A P A==⨯=故选:C6.随机变量X所有可能取值是-2,0,3,5,且P(X=-2)=14,P(X=3)=12,P(X=5)=112,则P(X=0)的值为()A.0 B.14C.16D.18【详解】由各个变量概率和为1可得:P (X =-2)+P (X =0)+P (X =3)+P (X =5)=1, 所以111(0)14212P X +=++=,解得1(0)6P X == 故选:C7.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球且不放回,直到取出的球是白球为止,所需要的取球次数为随机变量X ,则X 的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 【答案】B 【详解】由于取到白球时停止,所以最少取球次数为1,即第一次就取到了白球; 最多次数是7次,即把所有的黑球取完之后再取到白球. 所以取球次数可以是1,2,3,…,7. 故选:B8.若离散型随机变量2~4,3X B ⎛⎫ ⎪⎝⎭,则()E X 和()D X 分别为( ) A .83,169 B .83,89C .89,83D .169,83【答案】B 【详解】因为离散型随机变量2~4,3X B ⎛⎫ ⎪⎝⎭, 所以()28433E X =⨯=, ()22841339D X ⎛⎫=⨯⨯-= ⎪⎝⎭.9.设随机变量()24,N ζδ,若()10.4P a ζ>+=,则()7P a ζ>-=( )A .0.4B .0.5C .0.6D .0.7【答案】C随机变量2~(4,8)N ζ,对称轴为:4μ= 因为(1)0.40.5P a ζ>+=<,所以14a +>, 根据对称性可得(1)(7)0.4P a P a ζζ>+=<-=, 则(7)0.6P a ζ>-=. 故选:C.10.设()()221122,,,X N Y N μσμσ~~,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .()()21P Y P Y μμ≥≥≥B .()()21P X P X σσ≤≤≤C .函数()()F t P X t =>在R 上单调递增D .()()111122222222P X P Y μσμσμσμσ-<<+=-<<+ 【答案】D 【详解】由正态分布密度曲线的性质得:X ,Y 的正态分布密度曲线分别关于直线12,x x μμ==对称, 对于A :由图象得12μμ<,所以()()21P Y P Y μμ≥<≥,故A 不正确;对于B :由图象得X 的正态分布密度曲线较Y 的正态分布密度曲线“廋高”,所以12σσ<,所以()()21>P X P X σσ≤≤,故B 不正确;对于C :由图象得:当1>t μ时,函数()()F t P X t =>在()t +∞,上单调递减,故C 不正确; 对于D :根据3σ原则:()111168.3%P X μσμσ-<<+=,()11112295.4%P X μσμσ-<<+=,()11113399.7%P X μσμσ-<<+=,无论σ 取何值时,有()()111122222222P X P Y μσμσμσμσ-<<+=-<<+,故D 正确,故选:D.二、多选题11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布()2,30N μ和()2280,40N ,则下列选项正确的是( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在(30,280)μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在()280,320的概率约为0.3413 【答案】ABD 【详解】对于A ,因为红玫瑰日销售量范围在(30,280)μ-的概率是0.6826, 故30280μ+≈即250μ≈,故A 正确.对于B ,因为3040<,故红玫瑰日销售量比白玫瑰日销售量更集中,故B 对,C 错. 白玫瑰日销售量范围在()280,320的概率约为0.68260.34132=,故D 正确. 故选:ABD.12.已知三个正态分布密度函数()()()222,1,2,3i i x i f x x R i μσ--=∈=的图象如图所示,则下列结论正确的是( )A .123σσσ==B .123σσσ=<C .123μμμ=>D .123μμμ<=【答案】BD 【详解】正态密度曲线关于直线x μ=对称,且μ越大图象越靠近右边,σ越小图象越瘦长. 因此,123μμμ<=,123σσσ=<.13.甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的是( )A .目标恰好被命中一次的概率为1123+ B .目标恰好被命中两次的概率为1123⨯C .目标被命中的概率为12112323⨯+⨯D .目标被命中的概率为12123-⨯【答案】BD 【详解】甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次, 在A 中,目标恰好被命中一次的概率为1112123232⨯+⨯=,故A 错误; 在B 中,由相互独立事件概率乘法公式得:目标恰好被命中两次的概率为111236⨯=,故B 正确; 在CD 中,目标被命中的概率为112111233⎛⎫⎛⎫--⨯-= ⎪ ⎪⎝⎭⎝⎭,故C 错误,D 正确. 故选:BD .14.袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则( ) A .2~4,3XB ⎛⎫ ⎪⎝⎭B .8(2)81P X ==C .X 的期望8()3E X =D .X 的方差8()9D X =【答案】ACD 【详解】从袋子中有放回地随机取球4次,则每次取球互不影响, 并且每次取到的黑球概率相等,又取到黑球记1分, 取4次球的总分数,即为取到黑球的个数,所以随机变量X 服从二项分布2~4,3X B ⎛⎫ ⎪⎝⎭,故A 正确;2X =,记其概率为22242124(2)3381P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,故B 错误;因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的期望28()433E X =⨯=,故C 正确; 因为2~4,3X B ⎛⎫ ⎪⎝⎭,所以X 的方差218()4339D X =⨯⨯=,故D 正确. 故选:ACD . 15.已知()2~,X N μσ,22()2()x f x μσ--=,x ∈R ,则( )A .曲线()y f x =与x 轴围成的几何图形的面积小于1B .函数()f x 图象关于直线=x μ对称C .()2()()P X P X P X μσμμσμσ>-=<<++≥+D .函数()()F x P X x =>在R 上单调递增 【答案】BC 【详解】选项A. 曲线()y f x =与x 轴围成的几何图形的面积等于1, 所以A 不正确.选项B. 222()x f x σμ-+=,222()x f x σμ--=所以()()f x f x μμ+=-,所以函数()f x 图象关于直线x μ=对称,所以选项B 正确.选项C. 因为()()P X P X μμσμμσ>>-=<>+所以()()()P X P X P X μσμσμσμσ>-=-<<++≥+2()()P X P X μμσμσ=<<++≥+ 所以选项C 正确.选项D. 由正态分布曲线可知,当x 越大时,其概率越小.即函数()()F x P X x =>随x 的增大而减小,是减函数,所以选项D 不正确. 故选:BC三、解答题16.设离散型随机变量X 的分布列为求:(1)21X +的分布列; (2)求(14)P X <≤的值. 【详解】由分布列的性质知:0.20.10.10.31m ++++=,解得0.3m = (1)由题意可知(211)(0)0.2P X P X +====,(213)(1)0.1P X P X +====,(215)(2)0.1P X P X +==== (217)(3)0.3P X P X +====,(219)(4)0.3P X P X +====所以21X +的分布列为:(2)(14)(2)(3)(4)0.10.30.30.7P X P X P X P X <≤==+=+==++=17.为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为16,第二种检测不合格的概率为110,两种检测是否合格相互独立.(1)求每台新型防雾霾产品不能销售的概率;(2)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利80-元).现有该新型防雾霾产品3台,随机变量X 表示这3台产品的获利,求X 的分布列及数学期望. 【详解】(1)设事件A 表示“每台新型防雾霾产品不能销售” 事件A 表示“每台新型防雾霾产品能销售” 所以()113116104P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭ 所以()()114P A P A =-= (2)根据(1)可知,“每台新型防雾霾产品能销售”的概率为34 “每台新型防雾霾产品不能销售”的概率为14X 所有的可能取值为:240-,120-,0,120则()30311240464P X C ⎛⎫=-== ⎪⎝⎭ ()2131391204464P X C ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭()1223132704464P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()333327120464P X C ⎛⎫=== ⎪⎝⎭所以X 的分布列为所以()()1927240120120646464EX =-⨯+-⨯+⨯ 则30EX =18.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的精神,某高中学校鼓励学生自发组织各项体育比赛活动,甲、乙两名同学利用课余时间进行乒乓球比赛,规定:每一局比赛中获胜方记1分,失败方记0分,没有平局,首先获得5分者获胜,比赛结束.假设每局比赛甲获胜的概率都是35. (1)求比赛结束时恰好打了6局的概率;(2)若甲以3:1的比分领先时,记X 表示到结束比赛时还需要比赛的局数,求X 的分布列及期望. 【详解】解:(1)比赛结束时恰好打了6局,甲获胜的概率为44153234865553125P C ⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭,恰好打了6局,乙获胜的概率为14125322965553125P C ⎛⎫⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 所以比赛结束时恰好打了6局的概率为1248696582312531253125P P P =+=+=. (2)X 的可能取值为2,3,4,5,()2392525P X ⎛⎫===⎪⎝⎭, ()12233363555125P X C ==⨯⨯⨯=,()2413323212445555625P X C ⎛⎫⎛⎫==⨯⨯⨯+=⎪ ⎪⎝⎭⎝⎭, ()331344323232965555555625P X C C ⎛⎫⎛⎫==⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 所以X 的分布列如下:故()936124961966234525125625625625E X =⨯+⨯+⨯+⨯=.。
高二数学练习题大题带答案
高二数学练习题大题带答案一、选择题1. 已知函数f(x)=3x^2+2x-1,则f(-2)的值为A. -17B. -11C. 1D. 7答案:B. -112. 若三角形ABC中,∠B=60°,且AB=AC,则下列结论中错误的是A. ∠A=60°B. ∠C=60°C. AB=BCD. ∠BAC=180°答案:D. ∠BAC=180°3. 已知等差数列的首项为-2,公差为4,则该数列的前n项和为Sn=2n^2+7n,则n的值为A. 0B. 1/2C. 2D. 4答案:C. 2二、填空题1. 二次函数y=ax^2+bx+c(a≠0),若图象与x轴交于点(3,0),且顶点坐标为(2,3),则a的值为______,b的值为______。
答案:a=1,b=-62. 若a、b、c为互不相等的实数,且满足等式a^2+b^2+c^2=1,则a+b+c=______。
答案:0三、解答题1. 解下列方程组:x+y=4x-y=2解答:将两个方程相加得:2x=6,解得x=3将x=3代入第一个方程得:3+y=4,解得y=1所以方程组的解为x=3,y=1。
2. 某工程队需要10天完成一项工程,现在工程队决定增加人手,如果增加4人则可提前2天完成工程。
求原来工程队的人数。
解答:设原来工程队的人数为x人。
根据题意可得以下方程:10x = 8(x + 4)解方程可得:10x = 8x + 32化简后得:2x = 32解得x = 16所以原来工程队的人数为16人。
四、简答题1. 什么是函数?答:函数是一个集合的输入和输出之间的对应关系。
对于函数而言,每个输入都有唯一的输出。
2. 什么是等差数列?请给出一个等差数列的例子。
答:等差数列是指一个数列中,从第二个数起,每个数与前一个数的差等于同一个常数。
例如:1, 4, 7, 10, 13就是一个等差数列,其中公差为3。
五、证明题证明:两个互余的角相加等于90°。
高中数学练习题 2020-2021学年湖北省荆门市高二(下)期末数学复习练习试卷(8)
2020-2021学年湖北省荆门市钟祥实验中学高二(下)期末数学复习练习试卷(8)一、选择题:本大题10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的.A .12B .1C .32D .21.(5分)设m ∈R ,且2m 1−i+1-i 是实数,则m =( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}2.(5分)已知全集为R ,集合A ={x |(12)x ≤1},B ={x |x 2-6x +8≤0},则A ∩(∁R B )=( )A .①②B .①③C .②③D .③④3.(5分)给出下列结论:①“a >b ”是“a 2>b 2”的充分条件;②若p :∀x ∈R ,x 2+2x +2>0,则¬p :∃x 0∈R ,x 02+2x 0+2≤0;③“若m >0,则方程x 2+x -m =0有实数根”的否命题是“若m ≤0,则方程x 2+x -m =0没有实数根”;④若p∧q 是假命题,则p 、q 均为假命题.则其中正确结论的序号是( )A .[-13,5]B .[-13,7]C .[0,7]D .[5,7]4.(5分)已知变量x ,y 满足约束条件V Y Y W Y Y X x −y +2≥0x +y −4≤0x −2y −1≤0,则目标函数z =2x +y 的取值范围是( )A .-10B .10C .-6D .65.(5分)执行如图所示的程序框图,输出的S 值为( )二、填空题:本大题共5小题,每小题5分,共25分.答错位置,书写不清,模棱两可均不得分.A .2B .2C .22D .306.(5分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若cosB =34,sinC =2sinA ,且S △ABC =74,则b =( )√√√√A .1B .2C .3D .47.(5分)对于非零向量a 、b ,给出以下结论:①若a ∥b ,则a 在b 方向上的投影为|a |;②若a ⊥b ,则a •b =(a •b )2;③若a •c =b •c ,则a =b ;④若|a |=|b |,且a ,b 同向,则a >b .其中所有正确结论的个数是( )→→→→→→→→→→→→→→→→→→→→→→→→→A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <28.(5分)已知x >0,y >0,若2y x +8x y>m 2+2m 恒成立,则实数m 的取值范围是( )A .相交B .内切C .外切D .相离9.(5分)(文科做)双曲线x 2a 2−y 2b 2=1的左焦点为F 1,顶点为A 1,A 2,P 是该双曲线右支上任意一点,则分别以线段PF 1,A 1A 2为直径的两圆一定是( )A .(0,6]B .(0,7]C .(6,7]D .(6,7)10.(5分)已知函数f (x )=V W X |lgx |,x >0x +7,x ≤0,若关于x 的方程f (x 2+2x )=a 有6个不相等的实根,则实数a 的取值范围是( )11.(5分)计算:sin 256π+cos 263π+tan (-274π)= .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.12.(5分)若一个几何体的三视图如图,则此几何体的体积为 .13.(5分)若a =21(x -1x 2)dx ,则(x -a x )10的展开式中常数项为 .∫14.(5分)在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R = .√15.(5分)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量Pmg /L 与时间th 间的关系为P =P 0e -kt .如果在前5个小时消除了10%的污染物,则10小时后还剩 %的污染物.16.(12分)已知函数f (x )=3sinωxcosωx +cos 2ωx +m (ω>0,x ∈R )的最小正周期为π,最大值为2.(Ⅰ)求ω和m 值;(Ⅱ)求函数f (x )在区间[0,π2]上的取值范围.√17.(12分)已知数列{a n }是公差不为0的等差数列,满足S 3=9,且a 1,a 2,a 5成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b 1=a 1,b n +1-b n =2a n (n ∈N *),求数列{b n }的通项公式.18.(12分)某班有12名男生和18名女生参加综合素质测试,所得分数的茎叶图如图,若成绩在75分以上(包括75分)定义为“优秀”,成绩在75分以下(不包括75分)定义为“非优秀”.(Ⅰ)如果用分层抽样的方法从“优秀”和“非优秀”中共抽取5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?(Ⅱ)若从所有“优秀”中选3人参加综合素质展示活动,用ξ表示所选学生中女生的人数,写出ξ的分布列,并求ξ的数学期望.19.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB⊥平面EFD;(3)求二面角C-PB-D的大小.(m≠-20.(13分)设点A、B的坐标分别为(0,1),(0,-1),直线AM、BM相交于点M,且它们的斜率之积是常数-1m+11).(Ⅰ)求点M的轨迹C的方程;交曲线C于点P,Q,是否存在m,使得以PQ为直径的圆恒过点A?若存在,求m的值;若不存在,请说明(Ⅱ)设直线l:y=kx-13理由.x2+ax-lnx(a∈R)21.(14分)设函数f(x)=1−a2(Ⅰ)当a=1时,求函数f(x)的极值;(Ⅱ)当a≥2时,讨论函数f(x)的单调性;(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.。
高二下学期期末考试数学试题(图片版)
,则 .………………………………………10分
故函数在 和 上单调递增…………………………………………11分
在 上单调递减.………………………………………………………………12分
17.(本小题满分12分)
解:(Ⅰ)由A∩B={3,7}得 2+4 +2=7,解得 =1或 =-5.………………4分
所以 , 在 上单调递减,……………………………………10分
.………………………………………………………………………11分
所以 最小值为 .…………………………………………………………………12分
所以至少一种产品研发成功的概率为 .………………………………………5分
(2)依题意, ,……………………6分
由独立试验同时发生的பைடு நூலகம்率计算公式可得:
;………………………………………………7分
;…………………………………………………8分
;……………………………………………………9分
;…………………………………………………………10分
所以 的分布列如下:
………………………………………………………………………………………11分
则数学期望 .
…………………………………………………………………………………………12分
20.(本小题满分12分)
解:(Ⅰ)函数 …………………………………………………1分
所以 ………………………………………………………………3分
当 =1时,集合B={0,7,3,1};……………………………………………………5分
当 =-5时,因为2- =7,集合B中元素重复.…………………………………6分
(必考题)数学高二下期末经典测试题(含答案解析)(1)
一、选择题1.函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图象如图所示,若将()f x 图象向左平移4π个单位后得到()g x 图象,则()g x 的解析式为( )A .2()2sin(2)3g x x π=+ B .5()2sin(2)6g x x π=- C .()2sin(2)6g x x π=+D .()2sin(2)3g x x π=-2.已知A (1,0,0),B (0,﹣1,1),OA OB λ+与OB (O 为坐标原点)的夹角为30°,则λ的值为( ) A .66B .66±C .62D .62±3.已知sin cos 1sin cos 2αααα-=+,则cos2α的值为( )A .45-B .35C .35D .45 4.在边长为3的等边ABC ∆中,点M 满足BM 2MA =,则CM CA ⋅=( ) A 3B .3C .6 D .1525.非零向量a b ,满足:a b a -=,()0a a b ⋅-=,则a b -与b 夹角的大小为 A .135° B .120° C .60° D .45°6.函数()sin()A f x x ωϕ=+(0,)2πωϕ><的部分图象如图所示,则()f π=( )A .4B .23C .2D .37.设奇函数()()()()sin 3cos 0f x x x ωφωφω=+-+>在[]1,1x ∈-内有9个零点,则ω的取值范围为( )A .[)4,5ππB .[]4,5ππC .11,54ππ⎡⎤⎢⎥⎣⎦D .11,54ππ⎛⎤ ⎥⎝⎦8.已知函数()()sin 0,0,2f x A x A πωϕωϕ=+>>≤⎛⎫⎪⎝⎭的部分图象如图所示,则函数()y f x =的表达式是( )A .()2sin 12f x x π⎛⎫=+⎪⎝⎭B .()2sin 23f x x π⎛⎫=+⎪⎝⎭C .()22sin 23f x x π⎛⎫=- ⎪⎝⎭D .()2sin 23f x x π⎛⎫=- ⎪⎝⎭9.已知函数()sin 3cos f x x x =+,将函数()f x 的图象向左平移()0m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .6πB .4π C .3π D .2π 10.若()2sin sinsin777n n S n N πππ︒=+++∈,则在中,正数的个数是( ) A .16B .72C .86D .10011.已知函数2()3cos cos f x x x x =+,则( ) A .()f x 的图象关于直线6x π=对称B .()f x 的最大值为2C .()f x 的最小值为1-D .()f x 的图象关于点(,0)12π-对称12.已知向量(2,0)OB =,向量(2,2)OC =,向量(2cos ,2sin )CA αα=,则向量OA 与向量OB 的夹角的取值范围是( ).A .π0,4⎡⎤⎢⎥⎣⎦B .π5π,412⎡⎤⎢⎥⎣⎦C .5ππ,122⎡⎤⎢⎥⎣⎦ D .π5π,1212⎡⎤⎢⎥⎣⎦ 13.已知f (x )=A sin(ωx+θ)(ω>0),若两个不等的实数x 1,x 2∈()2A x f x ⎧⎫=⎨⎬⎩⎭,且|x 1-x 2|min =π,则f (x )的最小正周期是( ) A .3πB .2πC .πD .π214.若向量a ,b 满足2a b ==,a 与b 的夹角为60,则a b +等于( ) A .223+B .23C .4D .1215.已知tan 24πα⎛⎫+=- ⎪⎝⎭,则sin 2α=( )A .310B .35 C .65-D .125-二、填空题16.已知θ为钝角,1sin()43πθ+=,则cos2θ=______. 17.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则2sin sin()cos()απαπα--+的值为__________. 18.实数x ,y 满足223412x y +=,则23x y +的最大值______. 19.如图在ABC 中,AC BC =,2C π∠=,点O 是ABC 外一点,4OA =,2OB =则平面四边形OACB 面积的最大值是___________.20.已知角α的终边上一点)3,1A-,则()sin tan 2παπα⎛⎫-++= ⎪⎝⎭__________.21.已知ABC ∆中角,,A B C 满足2sin sin sin B A C =且2sin cos cos 1242C Cπ+=,则sin A =__________.22.仔细阅读下面三个函数性质:(1)对任意实数x ∈R ,存在常数(0)p p ≠,使得1()2f x p f x p ⎛⎫-=+ ⎪⎝⎭. (2)对任意实数x ∈R ,存在常数(0)M M >,使得|()|f x M ≤. (3)对任意实数x ∈R ,存在常数,使得()()0f a x f a x -++=.请写出能同时满足以上三个性质的函数(不能为常函数)的解析式__________.(写出一个即可)23.将函数e x y =的图像上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为__________. 24.已知1tan 43πα⎛⎫-= ⎪⎝⎭,则()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭的值为__________. 25.若()1sin 3πα-=,且2παπ≤≤,则cos α的值为__________. 三、解答题26.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且22222230a c b ac +-+=. (1)求cos B 的值; (2)求sin 24B π⎛⎫+⎪⎝⎭的值. 27.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )C a B b A c +=.(1)求C ;(2)若c =,ABC 的面积为ABC 的周长.28.在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫-⎪⎝⎭. (1)求()f x 的解析式; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 29.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭在一个周期内的图像经过点,412π⎛⎫ ⎪⎝⎭和点5,412π⎛⎫- ⎪⎝⎭,且()f x 的图像有一条对称轴为12x π=. (1)求()f x 的解析式及最小正周期; (2)求()f x 的单调递增区间.30.已知定义在R 上的函数()()()sin 0,0f x A x x A ωϕ=+>>的图象如图所示(1)求函数()f x 的解析式; (2)写出函数()f x 的单调递增区间(3)设不相等的实数,()12,0,x x π∈,且()()122f x f x ==-,求12x x +的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C 3.A 4.D 5.A 6.A 7.A 8.D 9.A 10.C11.A12.D13.A14.B15.B二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy19.【解析】分析:利用余弦定理设设AC=BC=m则由余弦定理把m表示出来利用四边形OACB面积为S=转化为三角形函数问题求解最值详解:△ABC为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m则由余20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题25.【解析】由题意得三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】 【分析】根据函数的图象求出函数()f x 的解析式,再根据图象的平移变换得到()g x 的解析式即可. 【详解】 由图象可知,A =2,541264T πππ=-=, 2T ππω∴==,2ω∴=,又当512x π=时,52sin(2)212πφ⨯+=, 即5sin()16πφ+=, 2πφ<, 3πφ∴=-,故()sin()f x x π=-223,将()f x 图象向左平移4π个单位后得到()g x , ∴ ()2sin[2()]2sin(2)436g x x x πππ=+-=+,故选:C 【点睛】本题主要考查了正弦型函数的图象与性质,图象的变换,属于中档题.2.C解析:C 【解析】 【分析】运用向量的坐标运算及夹角公式直接求解即可. 【详解】解:(1,0,0)(0,,)(1,,)OA OB λλλλλ+=+-=-,∴2||12,||2OA OB OB λλ+=+=,()2OA OB OB λλ+=,∴cos302λ︒=, ∴4λ=,则0λ>,∴2λ=. 故选:C . 【点睛】本题考查空间向量的坐标运算,考查运算求解能力,属于基础题.3.A解析:A 【解析】 ∵sin cos 1sin cos 2αααα-=+,∴tan α11tan α3tan α12-==+,.∴cos2α=222222cos sin 1tan 4cos sin 1tan 5αααααα--==-++ 故选A4.D解析:D 【解析】 【分析】结合题意线性表示向量CM ,然后计算出结果 【详解】 依题意得:121211215)333333333232CM CA CB CA CA CB CA CA CA ⋅=+⋅=⋅+⋅=⨯⨯⨯+⨯⨯=(,故选D .【点睛】本题考查了向量之间的线性表示,然后求向量点乘的结果,较为简单5.A解析:A 【解析】 【分析】先化简()0a a b ⋅-=得2=a a b ⋅,再化简a b a -=得2b a =,最后求a b -与b 的夹角. 【详解】因为()0a a b ⋅-=,所以220=a a b a a b -⋅=∴⋅,,因为a b a -=,所以2222a a a b b =-⋅+, 整理可得22b a b =⋅, 所以有2b a =,设a b -与b 的夹角为θ,则()2cos a b b a b b a b ba bθ-⋅⋅-===-222222||a a =-, 又0180θ︒≤≤︒,所以135θ=︒, 故选A . 【点睛】本题主要考查数量积的运算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.A解析:A【解析】试题分析:根据题意,由于函数()sin()A f x x ωϕ=+(0,)2πωϕ><,那么根据图像可知周期为2π,w=4,然后当x=6π,y=2,代入解析式中得到22sin(4)6πϕ=⨯+,6πϕ=-,则可知()f π=4,故答案为A.考点:三角函数图像点评:主要是考查了根据图像求解析式,然后得到函数值的求解,属于基础题.7.A解析:A 【解析】f (x )=sin (ωx+φ(ωx+φ)=2[12sin (ωx+φ(ωx+φ)] =2[cos3πsin (ωx+φ)﹣sin 3πcos (ωx+φ)]=2sin (ωx+φ﹣3π) ∵函数f (x )为奇函数,∴f (0)=2sin (φ﹣3π)=0,∴φ=3π+kπ,k ∈Z ∴f (x )=2sin (ωx+kπ),f (x )=0即sin (ωx+kπ)=0,ωx+kπ=mπ,m ∈Z ,解得,x=()m k πω-,设n=m ﹣k ,则n ∈Z ,∵A ∈[﹣1,1],∴﹣1≤x≤1,[]1,1n πω∈-,∴n ωωππ-≤≤, ∵A ∈[﹣1,1]中有9个元素,4545.ωπωππ∴≤<⇒≤< 故答案为A.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e 为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.8.D解析:D 【解析】 【分析】根据函数的最值求得A ,根据函数的周期求得ω,根据函数图像上一点的坐标求得ϕ,由此求得函数的解析式.由题图可知2A =,且11522122T πππ=-=即T π=,所以222T ππωπ===, 将点5,212π⎛⎫⎪⎝⎭的坐标代入函数()()2sin 2x x f ϕ=+, 得()5262k k ππϕπ+=+∈Z ,即()23k k πϕπ=-∈Z , 因为2πϕ≤,所以3πϕ=-,所以函数()f x 的表达式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.9.A解析:A 【解析】 【分析】利用函数的平移变换得π2sin 3y x m ⎛⎫=++ ⎪⎝⎭,再根所图象关于y 轴对称,得到角的终边落在y 轴上,即π2π3πm k +=+,k Z ∈,即可得答案. 【详解】()sin 2s πin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭,将函数()f x 的图象向左平移m 个单位长度后,得到函数π2sin 3y x m ⎛⎫=++⎪⎝⎭的图象, 又所得到的图象关于y 轴对称,所以π2π3πm k +=+,k Z ∈, 即ππ6m k =+,k Z ∈, 又0m >,所以当0k =时,m 的最小值为π6. 故选:A. 【点睛】本题考查三角函图象的变换、偶函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.10.C【解析】 【分析】 【详解】 令7πα=,则7n n πα=,当1≤n≤14时,画出角序列n α终边如图,其终边两两关于x 轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k 时,Sn>0, 而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,故选C.11.A解析:A 【解析】 【分析】利用三角函数恒等变换的公式,化简求得函数的解析式,再根据三角函数的图象与性质,逐项判定,即可求解. 【详解】 由题意,函数23111()3cos cos 2cos 2sin(2)2262f x x x x x x x π=+=++=++, 当6x π=时,113()sin(2)sin 6662222f ππππ=⨯++=+=,所以6x π=函数()f x 的对称轴,故A 正确;由sin(2)[1,1]6x π+∈-,所以函数()f x 的最大值为32,最小值为12-,所以B 、C 不正确; 又由12x π=时,131()sin(2)612622f πππ=⨯++=+,所以(,0)12π-不是函数()f x 的对称中心,故D 不正确, 故选A . 【点睛】本题主要考查了三角恒等变换的公式的应用,以及函数sin()y A wx b ϕ=++的图象与性质的应用,着重考查了推理与运算能力,属于基础题.12.D解析:D 【解析】 不妨设(0,0)O∵(2,2)OC =,(2cos ,2sin )CA αα=. ∴(2,2)C 、(22,22sin )A cos αα++. ∴点A 在以(2,2)为圆心半径为2的圆上. ∴OA 与OB 的夹角为直线OA 的倾斜角. 设:OA l y kx = ∴22121k d r k -=≤=+.即2410k k -+≤,则[23,23]k ∈-+. 又∵π23tan12-=,523tanπ12+=. ∴OA 、OB 夹角[23,23]θ∈-+.故选D .13.A解析:A 【解析】 【分析】 由题意可得123ππω⨯=,求得ω的值,可得()f x 的最小正周期是2πω的值 【详解】由题意可得()1sin 2x ωθ+=的解为两个不等的实数1x ,2x 且123ππω⨯=,求得23ω= 故()f x 的最小正周期是23ππω=故选A 【点睛】本题主要考查了的是三角函数的周期性及其图象,解题的关键根据正弦函数的图象求出ω的值,属于基础题14.B解析:B 【解析】 【分析】将a b +平方后再开方去计算模长,注意使用数量积公式. 【详解】因为2222cos 6044412a b a a b b +=+︒+=++=,所以23a b +=, 故选:B. 【点睛】本题考查向量的模长计算,难度一般.对于计算xa yb +这种形式的模长,可通过先平方再开方的方法去计算模长.15.B解析:B 【解析】 【分析】 根据tan 24πα⎛⎫+=- ⎪⎝⎭求得tan 3α=,2222sin cos 2tan sin 2sin cos tan 1ααααααα==++即可求解. 【详解】 由题:tan 24πα⎛⎫+=- ⎪⎝⎭, tan 121tan αα+=--,解得tan 3α=,2222sin cos 2tan 63sin 2sin cos tan 1105ααααααα====++. 故选:B 【点睛】此题考查三角恒等变换,涉及二倍角公式与同角三角函数的关系,合理构造齐次式可以降低解题难度.二、填空题16.【解析】【分析】将改写成的形式利用二倍角公式计算的值代入相关数值【详解】因为所以;因为且为钝角所以是第二象限角则故【点睛】(1)常见的二倍角公式:;(2)常用的角的配凑:;解析:9-【解析】 【分析】将2θ改写成2()42ππθ+-的形式,利用二倍角公式计算cos2θ的值,代入相关数值.【详解】因为cos2cos[2()]sin[2()]424πππθθθ=+-=+,所以cos 22sin()cos()44ππθθθ=++; 因为1sin()043πθ+=>且θ为钝角,所以()4πθ+是第二象限角,则cos()43πθ+==-,故cos 22sin()cos()449ππθθθ=++=-. 【点睛】(1)常见的二倍角公式:sin 22sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=- ;(2)常用的角的配凑:()ααββ=-+,()ααββ=+-;2()()ααβαβ=++- ,2()()βαβαβ=+--.17.【解析】【分析】先根据已知求出最后化简代入的值得解【详解】由题得由题得=故答案为【点睛】本题主要考查差角的正切和同角的商数关系平方关系意在考查学生对这些知识的理解掌握水平和分析推理能力解析:35【解析】 【分析】先根据已知求出tan α,最后化简2sin sin()cos()απαπα--+,代入tan α的值得解. 【详解】 由题得tan 111,tan 1+tan 32ααα-=-∴=.由题得22222sin +sin cos sin sin()cos()=sin +sin cos =sin +cos ααααπαπαααααα--+ =2211tan tan 3421tan 1514ααα++==++. 故答案为35【点睛】本题主要考查差角的正切和同角的商数关系平方关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.【解析】分析:根据题意设则有进而分析可得由三角函数的性质分析可得答案详解:根据题意实数xy 满足即设则又由则即的最大值5;故答案为:5点睛:本题考查三角函数的化简求值关键是用三角函数表示xy解析:【解析】分析:根据题意,设2cos x θ=,y θ=,则有24cos 3sin x θθ+=+,进而分析可得()25sin x θα+=+,由三角函数的性质分析可得答案.详解:根据题意,实数x ,y 满足223412x y +=,即22143x y +=,设2cos x θ=,y θ=,则()24cos 3sin 5sin x θθθα=+=+,3tan 4α⎛⎫= ⎪⎝⎭, 又由()15sin 1θα-≤+≤,则525x -≤≤,即2x +的最大值5; 故答案为:5.点睛:本题考查三角函数的化简求值,关键是用三角函数表示x 、y .19.【解析】分析:利用余弦定理设设AC=BC=m 则由余弦定理把m 表示出来利用四边形OACB 面积为S=转化为三角形函数问题求解最值详解:△ABC 为等腰直角三角形∵OA=2OB=4不妨设AC=BC=m 则由余解析:5+ 【解析】分析:利用余弦定理,设AOB α∠=,设AC=BC=m ,则AB =.由余弦定理把m 表示出来,利用四边形OACB 面积为S=24sin 4sin 2OACB ABC m S S αα∆∆=+=+.转化为三角形函数问题求解最值.详解:△ABC 为等腰直角三角形.∵OA=2OB=4,不妨设AC=BC=m ,则AB =.由余弦定理,42+22﹣2m 2=16cos α,∴2108cos m α∴=-.108cos 4sin 4sin 4sin 4cos 52OACB ABC S S ααααα∆∆-∴=+=+=-+)554πα=-+≤.当34απ=时取到最大值5+.故答案为5+点睛:(1)本题主要考查余弦定理和三角形的面积的求法,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设AOB α∠=,再建立三角函数的模型.20.【解析】分析:先根据三角函数定义得再根据诱导公式化简求值详解:因为角的终边上一点所以因此点睛:本题考查三角函数定义以及诱导公式考查基本求解能力【解析】分析:先根据三角函数定义得cos ,tan αα,再根据诱导公式化简求值.详解:因为角α的终边上一点)1A -,,所以cos tanαα===, 因此()sin tan 2παπα⎛⎫-++⎪⎝⎭cos tanαα=+== 点睛:本题考查三角函数定义以及诱导公式,考查基本求解能力.21.【解析】分析:先化简得到再化简得到详解:因为所以1-所以因为所以所以A+B=所以因为sinA>0所以故答案为点睛:本题主要考查三角化简和诱导公式意在考查学生对这些知识的掌握水平和基本的计算能力解析:12【解析】 分析:先化简2sincos cos 1242C C π+=得到2C π=,再化简2sin sin sin B A C =得到sin A =详解:因为2sincos cos 1242C C π+=,所以1-2cos 1222C C +=,所以cos(cos 0,cos 0(cos =222222C C C C -=∴=舍)或, 因为0C π<<,所以2C π=,所以A+B=2π.2sin sin sin B A C =因为,所以22cos sin ,sin sin 10,sin A A A A A =∴+-=∴=因为sinA>0,所以1sin 2A =.. 点睛:本题主要考查三角化简和诱导公式,意在考查学生对这些知识的掌握水平和基本的计算能力.22.【解析】分析:由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数详解:由题目约束条件可得到的不同解析式由(1)得周期由(2)得最值(有界)由(3)得对称中心因此可选三角函数点睛:解析:4()sin π3f x ⎛⎫= ⎪⎝⎭【解析】分析:由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数. 详解:由题目约束条件可得到()f x 的不同解析式.由(1)得周期,由(2)得最值(有界),由(3)得对称中心,因此可选三角函数()4sin π3f x ⎛⎫=⎪⎝⎭. 点睛:正余弦函数是周期有界函数,既有对称轴也有对称中心,是一类有特色得函数.23.【解析】分析:根据图像平移规律确定函数解析式详解:点睛:三角函数的图象变换提倡先平移后伸缩但先伸缩后平移也常出现在题目中所以也必须熟练掌握无论是哪种变形切记每一个变换总是对字母而言 解析:24e x y -=【解析】分析:根据图像平移规律确定函数解析式. 详解:222(2)24e ee e xxx x y y y --=→=→==横坐标变为一半右移个单位点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言.24.【解析】分析:由可得化简即可求得其值详解:由即答案为点睛:本题考查三角函数的化简求值考查了诱导公式及同角三角函数基本关系式的应用是基础题 解析:65【解析】 分析:由1tan 43πα⎛⎫-= ⎪⎝⎭可得tan 2α=,化简()()2cos sin cos 2παπαπα⎛⎫+--+ ⎪⎝⎭,即可求得其值.详解:tan tantan 114tan ,tan 2,4tan 13tan tan 4παπαααπαα--⎛⎫-===∴= ⎪+⎝⎭+ 由()()22cos sin cos sin sin cos 2παπαπαααα⎛⎫+--+=+⎪⎝⎭22222sin sin cos tan tan 6.sin cos tan 15αααααααα++===++ 即答案为65. 点睛:本题考查三角函数的化简求值,考查了诱导公式及同角三角函数基本关系式的应用,是基础题.25.【解析】由题意得解析:3-【解析】由题意得()1sin sin ,[,],cos 32ππαααπα-==∈∴==三、解答题 26. (1)34-(2)16【解析】试题分析:(1)利用余弦定理表示出cosB ,将已知等式代入即可求出cosB 的值;(2)由cosB 可求出sin 2,cos 2B B 的值,然后利用两角和的余弦公式可得结果. 试题解析:(1)由22222230a c b ac +-+=,得22232a cb ac +-=-, 根据余弦定理得222332cos 224aca cb Bac ac -+-===-; (2)由3cos 4B =-,得sin B = ∴sin22sin cos BB B ==21cos22cos 18B B =-=,∴1sin 2sin2cos cos2sin 44428816B B B πππ⎫⎛⎫+=+=-+=⎪ ⎪⎪⎝⎭⎝⎭. 27.(1)3C π=(2)7+【解析】 【分析】(1)利用正弦定理,将2cos (cos cos )C a B b A c +=,转化为2cos (sin cos sin cos )sin C A B B A C +=,再利用两角和与差的三角的三角函数得到sin (2cos 1)0C C -=求解.(2)根据ABC 的面积为1sin 2ab C =12ab =,再利用余弦定理得()23a b ab =+-,求得+a b 即可. 【详解】(1)因为2cos (cos cos )C a B b A c +=, 所以2cos (sin cos sin cos )sin C A B B A C +=, 所以()2cos sin sin C A B C +=, 所以sin (2cos 1)0C C -=, 所以1cos 2C =, 又因为()0,C π∈, 所以3C π=.(2)因为ABC 的面积为所以1sin 2ab C = 所以12ab =.由余弦定理得:若2222cos c a b ab C =+-,()23a b ab =+- 所以7a b +=所以ABC 的周长7【点睛】本题主要考查正弦定理、余弦定理和两角和与差的三角函数的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.28.(1)()2sin(2)6f x x π=+ (2)[-1,2] 【解析】试题分析:根据正弦型函数图象特点,先分析出函数的振幅和周期,最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,周期T π=,则2==2T πω,又函数图象过2,23M π⎛⎫- ⎪⎝⎭,代入得42sin 23πϕ⎛⎫+=- ⎪⎝⎭,故1126k k Z πϕπ=-+∈,,又0,2πϕ⎛⎫∈ ⎪⎝⎭,从而确定6πϕ=,得到()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,再求其单调增区间. (2)分析72,636x πππ⎡⎤+∈⎢⎥⎣⎦,结合正弦函数图象,可知当262x ππ+=,即6x π=时,()f x 取得最大值2;当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 试题解析:(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-. 点睛:本题考查了三角函数的图象和性质,重点对求函数解析式,单调性,最值进行考查,属于中档题.解决正弦型函数解析式的问题,一定要熟练掌握求函数周期,半周期的方法及特殊值的应用,特别是求函数的初相时,要注意特殊点的应用及初相的条件,求函数值域要结合正弦函数图象,不要只求两个端点的函数值.29.(1)()4sin 34f x x π⎛⎫=+ ⎪⎝⎭,23π;(2)22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .【解析】【分析】(1)由函数的图象经过点412,π⎛⎫ ⎪⎝⎭且f (x )的图象有一条对称轴为直线12x π=, 可得最大值A ,且能得周期并求得ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)利用正弦函数的单调性求得f (x )的单调递增区间.【详解】(1)函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,2πϕ<)在一个周期内的图象经过点412,π⎛⎫ ⎪⎝⎭,5412π⎛⎫- ⎪⎝⎭,,且f (x )的图象有一条对称轴为直线12x π=, 故最大值A =4,且5212123T πππ=-=, ∴2T 3π=, ∴ω2Tπ==3. 所以()4sin(3)f x x ϕ=+.因为()f x 的图象经过点,412π⎛⎫⎪⎝⎭,所以44sin 312πϕ⎛⎫=⨯+ ⎪⎝⎭, 所以24k ϕπ=+π,k Z ∈. 因为||2ϕπ<,所以4πϕ=, 所以()4sin 34f x x π⎛⎫=+ ⎪⎝⎭. (2)因为()4sin 34f x x π⎛⎫=+⎪⎝⎭,所以232242k x k πππππ-+≤+≤+,k Z ∈, 所以2243123k k x ππππ-+≤≤+,k Z ∈, 即()f x 的单调递增区间为22,()43123k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 【点睛】本题主要考查由函数y =A sin (ωx +ϕ)的性质求解析式,通常由函数的最大值求出A ,由周期求出ω,由五点法作图求出ϕ的值,考查了正弦型函数的单调性问题,属于基础题.30.(1)()=4sin 23f x x π⎛⎫+ ⎪⎝⎭;(2)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(3)76π; 【解析】【分析】(1)根据函数的最值可得A ,周期可得ω,代入最高点的坐标可得ϕ,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用()2f x =-在(0,)x π∈内的解就是1x 和2x ,即可得到结果.【详解】(1)由函数()f x 的图象可得4A =, 又因为函数的周期72()1212T πππ=-=,所以22πωπ==, 因为函数的图象经过点(,4)12P π,即4sin(2)412πϕ⨯+=, 所以2,62k k Z ππϕπ+=+∈,即2,3k k Z πϕπ=+∈, 所以()4sin(22)4sin(2)33f x x k x πππ=++=+. (2)由222,232k x k k Z πππππ-≤+≤+∈, 可得5,1212k x k k Z ππππ-≤≤+∈, 可得函数()f x 的单调递增区间为:5[,],1212k k k Z ππππ-+∈, (3)因为(0,)x π∈,所以72(,)333x πππ+∈, 又因为()2f x =-可得1sin(2)32x π+=-, 所以7236x ππ+=或11236x ππ+=, 解得512x π=或34x π=,、 因为12x x ≠且()12,0,x x π∈,12()()2f x f x ==-, 所以1253147124126x x ππππ+=+==. 【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.。
河南省郑州市2022-2023学年高二下学期期末数学试题及答案
郑州市2022-2023学年下期期末考试高二数学试题卷注意事项:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第I 卷(选择题,共60分)一、单选题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知数列{}n a ,满足12n n a a --=,10a =,则10a =()A .18B .36C .72D .1442.2023年5月10日,第七届全球跨境电子商务大会在郑州举行,小郑同学购买了几件商品,这些商品的价格如果按美元计,则平均数为30,方差为60,如果按人民币计(汇率按1美元=7元人民币),则平均数和方差分别为()A .30,60B .30,420C .210,420D .210,29403.如图,洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取4个数,则选取的4个数之和为奇数的方法数为()A .60B .61C .65D .664.下列四个命题中,正确命题的个数为()①甲乙两组数据分别为:甲:28,31,39,42,45,55,57,58,66;;乙:,29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.89r =-,表明两个变量的相关性较弱.③若由一个22⨯列联表中的数据计算得2K 的观测值7.103k ≈,那么有99%的把握认为两个变量有关.④用最小二乘法求出一组数据(),i i x y ,()1,,i n = 的回归直线方程ˆy =ˆbxa + 后要进行残差分析,相应于数据(),i i x y ,()1,,i n = 的残差是指ˆi i e y =ˆi bx a ⎛⎫-+ ⎪⎝⎭.()20P K k 0.100.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828A .1B .2C .3D .45.已知(1)nx -的二项展开式中二项式系数和为64,若2012(1)(1)(1)(1)nnn x a a x a x a x -=+++++++ ,则1a 等于()A .192B .448C .-192D .-4486.已知函数()2ln f x ax x =-的图象在点()()1,1f 处的切线与直线3y x =平行,则该切线的方程为()A .350x y -+=B .310x y --=C .310x y -+=D .310x y -+=7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图所示的是由“杨辉三角”拓展而成的三角形数阵,图中虚线上的数1,3,6,10…构成数列{}n a ,记n a 为该数列的第n 项,则64a =()A .2016B .2080C .4032D .41608.下列说法中不正确...的是()A .若随机变量()2~1,X N σ,(4)0.79P X <=,则(2)0.21P X <-=B .若随机变量1~10,3X B ⎛⎫ ⎪⎝⎭,则期望10()3E X =C .已知随机变量X 的分布列为()(1,2,3)(1)a P X i i i i ===+,则2(2)3P X ==D .从3名男生,2名女生中选取2人,则其中至少有一名女生的概率为7109.若需要刻画预报变量Y 和解释变量x 的相关关系,且从已知数据中知道预报变量Y 随着解释变量x 的增大而减小,并且随着解释变量x 的增大,预报变量Y 大致趋于一个确定的值,为拟合Y 和x 之间的关系,应使用以下回归方程中的(0,b e >为自然对数的底数)()A .Y bx a =+B .ln Y b x a =-+C.Y a=D .x Y be a-=+10.对于三次函数()()320f x ax bx cx d a =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()f x ''有实数解0x ,则称点()()00,x f x 为函数()()320f x ax bx cx d a =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()32533x g x x =-+,则123179999g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .173B .172C .17D .3411.已知数列{}n a 满足()*612,7N 2,7,n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪⎩,若对于任意*N n ∈都有1n n a a +>,则实数a 的取值范围是()A .1,12⎛⎫⎪⎝⎭B .12,23⎛⎫⎪⎝⎭C .2,13⎛⎫⎪⎝⎭D .21,3⎛⎫⎪⎝⎭12.若2ln ln b b a a a +=+,则下列式子可能成立的是()A .1a b >>B .1a b>>C .1b a>>D .1b a>>第II 卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知等比数列{}n a 满足:18a =,9132a =,230a a <则公比q =______.14.在甲,乙,丙三个地区爆发了流感,这三个地区分别有7%,6%,5%的人患了流感.若这三个地区的人口数的比为5:3:2,现从这三个地区中任意选取一个人,这个人患流感的概率是______.15.为积极践行劳动教育理念,扎实开展劳动教育活动,某学校开设三门劳动实践选修课,现有五位同学参加劳动实践选修课的学习,每位同学仅报一门,每门至少有一位同学参㕲,则不同的报名方法有______.16.2023年第57届世界乒乓球锦标赛在南非德班拉开帷幕,参赛选手甲、乙进入了半决赛,半决赛采用五局三胜制,当选手甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为()01p p ,比剉局数的期望值记为()f p ,则()f p 的最大值是______.三、解答题:共70分.解答题应写出文字说明、证明过程或验算步骤.17.(10分)一只口袋中装有形状、大小都相同的10个小球,其中有红球1个,白球4个,黑球5个.(I )若每次从袋子中随机摸出1个球,摸出的球不再放回.在第1次摸到白球的条件下,第2饮摸到白球的概率;(II )若从袋子中一次性随机摸出3个球,记黑球的个数为X ,求随机变量X 的概率分布.18.(12分)设数列{}n a 的前n 项和为n S ,已知12a =,142n n S a +=+.(I )设12n n n b a a +=-,证明:数列{}n b 是等比数列;(II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(12分)黄河是中华民族的母亲河、生命河,也是一条桀骜难驯的忧患之河.小浪底水利枢纽工程位于河南省济源市、洛阳市孟津区边界,是黄河治理开发的关键控制性工程.它控制着黄河92%的流域面积、91%的径流量和近100%的泥沙,以防洪、防淩、减淤为主,兼顾供水、灌溉、发电,不仅是中华民族治黄史上的丰碑,也是世界水利工程史上最具标志性的杰作之一,其大坝为预测渗压值和控制库水位,工程师在水库选取一支编号为并计算得102157457.98ii x==∑,102153190.77ii y ==∑,10155283.20i i i x y ==∑,272.9325319.076624=,275.8015745.791601=15.51≈.(I )求该水库HN1号渗压计管内水位与水库水位的样本相关系数(精确到0.01);(II )某天雨后工程师测量了水库水位,并得到水库的水位为76m .利用以上数据给出此时HN1号渗压计管内水位的估计值.附:相关系数()()niix x y y r --=∑()()()ˆ121nni iii ix x y y b x x ==--=-∑∑,ˆˆy b a x =+.20.(12分)已知函数()()22xx f x aea e x =+--.(I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围.21.(12分)根据长期生产经验,某种零件的一条生产线在设备正常状态下,生产的产品正品率为0.985.为了监控该生产线生产过程,检验员每天从该生产线上随机抽取10个零件,并测量其质量,规定:抽检的10件产品中,若至少出现2件次品,则认为设备出现了异常情况,需对设备进行检测及修理.(I )假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求()2P X ,并说明上述监控生产过程规定的合理性;(II )该设备由甲、乙两个部件构成,若两个部件同时出现故䧐,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用2000元,修理费用6000元,乙部件的检测费用3000元,修理费用4000元.当设备出现异常时,仅考虑检测和修理总费用,应先检测甲部件还是乙部件,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4题 高二下数学练习题1 一 选填题
1.把二进制数(2)110011化为十进制数为 ( )
A .51
B .52
C .53
D .54
2.设a ,b 表示两条不同的直线,α表示平面,以下命题正确的是( )
①//a b b a αα⎫⇒⊥⎬⊥⎭; ②//a a b b αα⊥⎫⇒⎬⊥⎭;③//a b a b αα⊥⎫⇒⎬⊥⎭;④//a b a b αα⎫⇒⊥⎬⊥⎭
. A 、①② B 、①②③ C 、②③④ D 、①②④
3、将边长为a 的正方形ABCD 沿对角线AC 成直二面角(平面⊥ABC 平面ADC ),则BCD ∠的度数是( )
A 、 ︒30
B 、 ︒45
C 、︒60
D 、 ︒90
4.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的
中点,下面四个结论中不成立的是( )
A .BC ∥平面PDF
B .DF ⊥平面PAE
C .平面PDF ⊥平面ABC
D .平面PA
E ⊥平面ABC
5.如上图所示,该程序框图的输出值x =( )
A .7
B . 8
C .9
D .10
6. 执行如图所示的程序框图,若输出结果为26,则M 处的条件为
A. 31≥k
B. 15≥k
C. k>3l
D. k>l5
7.如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于 。
7题 开始 1x =x 是奇数? 结束 否 2x x =+是 1x x =+
6x >? 输出x
是
否
二 解答题
8. 已知函数()21sin cos cos 2
f x x x x =+-. (Ⅰ)求()f x 的最小正周期;
(Ⅱ)求函数()f x 在ππ,82⎡⎤-⎢⎥⎣⎦
的最大值和最小值.
9. 一个口袋中装有大小相同,质量相等的4个小球,其中黑色小球1个,白色
小球1个,红色小球2个.
(1)若从口袋里不放回...
地任取2个小球,求取出2个红色小球的概率; (2)若从口袋里有放回...
地任取2个小球,并规定取出1个黑色小球计3分,取出1个白色小球计2分,取出1个红色小球计1分,则取出的2个球得分之和不
小于4分的概率.
10如图,ABCD是边长为2的正方形,ED丄平面ABCD,ED=1,
EF//BD 且EF=BD.
(I)求证:BF//平面ACE
(II)求证:平面EAC丄平面BDEF;
(III)求几何体ABCDEF的体积.
11,如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值
12.在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为 60.
(1)求正四棱锥ABCD P -的表面积S 和体积V .
(2)求二面角P-BC-A 的余弦值。
13已知等差数列{}n a 的前n 项和为n S ,11a =,且515S =.
(1)求数列{}n a 的公差d ;
(2)求数列{}n a 的前n 项和n S ;
(3)设数列{}n b 中,1()(2)n n
n b n n S *+=
∈+N , {}n b 的前n 项和为n T ,数列{}n c 满足1()n n n c n T T +=-,
求证:对任意n *∈N ,都有415n c ≤
成立.。