量子力学简答

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学基础简答题(经典)【精选】

量子力学基础简答题(经典)【精选】

量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。

22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。

量子力学基础简答题(经典)

量子力学基础简答题(经典)

量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22∙是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。

22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。

量子力学练习答案

量子力学练习答案

《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。

答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。

它是一种量子效应,是微观粒子波粒二象性的体现。

例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。

2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。

()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。

3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。

若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。

将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。

线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。

5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。

答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。

量子力学练习题答案

量子力学练习题答案

Wmk =| am (t) |2
∫ ∫ 其中
am
(t)
=
1 i=
t 0
eiωmkτ
H

mk


H

mk
=
ϕm* Hl ′(t)ϕkdτ ,ωmk = (Em − Ek ) / =
二、 证明题 1. 证明黑体辐射的辐射本领 E(ν ,T ) 与 E(λ,T ) 之间的关系。 证明:黑体的辐射本领是指辐射体单位面积在单位时间辐射出来的、单位 频率间隔内的能量,用 E(ν ,T ) 表示。由于ν = c / λ ,所以黑体的辐射本领也 可以表示成 E(λ,T ) 。由定义得单位面积、单位时间内辐射的能量为
的同时决定,也使得它们的分布同时制约,这种制约就是不确定性原理,
它是任何两个力学量在任何状态下的涨落(用均方差表示)必须满足的相
互制约关系,公式表示为
ΔA⋅ ΔB ≥ 1 ⋅ [lA, Bl] 2
23. 如果算符 Aˆ 的本征值分别为 A1, A2, A3,",在算符 Aˆ 的自身表象中写出
算符 Aˆ 的矩阵形式。
下,所有力学量的概率分布不随时间改变;在一切状态下,守恒量的概率
分布不随时间改变。
25. 在 Sz 表象下,写出算符 Sˆz 及其本征态|↑〉 和|↓〉 的矩阵表达式。
答:在 Sz 表象下,算符 Sˆz 的矩阵表达式为
Sz
=
= ⎛1
2
⎜ ⎝
0
0⎞ − 1⎟⎠
其本征态|↑〉 和|↓〉 的矩阵表达式分别为
v∫ 答: pkdqk = nkh (nk = 1, 2,3,")
其中 (qk , pk ) 代表一对共轭的正则坐标和动量。 7. 利用光波的双缝干涉实验,说明 Born 的概率波解释。 答:Born 认为,微观粒子的运动状态用“波函数”来描述,粒子通过双缝 时,每一个缝都有一个所谓的“波”通过,只不过与经典波的强度对应的, 是粒子在某点附近出现的相对概率。对通过双缝的粒子,其概率“分成” 了两束(波动性),但对某个具体的粒子,它只能通过其中的一个缝(粒子

量子力学练习题答案

量子力学练习题答案
量子力学练习题参考答案
一、 简答题 1. 简述光电效应中经典物理学无法解释的实验现象。 答:光电效应中经典物理学无法解释的实验现象有: (1)对入射光存在截止频率ν0 ,小于该频率的入射光没有光电子逸出;(2) 逸出的光电子的能量只与入射光的频率ν 有关,入射光的强度无关;(3) 截止频率只与材料有关而与光强无关;(4)入射光的强度只影响逸出的光 电子的数量;(5)无论多弱的光,只要其频率大于截止频率,一照射到金 属表面,就有光电子逸出。 2. 简述 Planck 的光量子假设。 答:Planck 的光量子假设为,对于一定的频率为ν 的辐射,物体吸收或发 射的能量只能以 hν 为单位来进行。 3. 写出 Einstein 光电方程,并阐述 Einstein 对光电效应的量子解释。 答:Einstein 光电方程为 hν = 1 mv2 + W 。
⎤ ⎥ ⎦
16. 简述粒子动量与位置的不确定关系。
答:若要想精确地知道粒子的动量值,就无法得知粒子的具体位置;要想
精确地知道粒子的位置,就无法得知粒子的具体动量值,位置分布的均方
差和动量分布的均方差受到下面关系的制约
Δx ⋅ Δp ≥ = 2
17. 简述量子力学的态叠加原理。
答:量子力学的态叠加原理是指如果ψ1 、ψ 2 、ψ 3 ……均是体系的可能状态,
ψ ( x, t) = eip0x / = ⋅ e−iEt / = = e−i(Et− p0x)/ =
14. 写出动量算符、动能算符以及在直角坐标系中角动量各分量的算符的
表达式。 答:动量算符 lpK = −i=∇
动能算符 Tl = 1 (−i=∇)2
2m
角动量各分量的算符
L x
=
−i=
⎛ ⎜

量子力学答案完全版

量子力学答案完全版

⒈热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律: 表示,其中。

求人体热辐射的峰值波长(设体温为)。

解:,由题意,人体辐射峰值波长为:。

⒉宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于黑体辐射。

此辐射的峰值波长是多少?在什么波段?解:T=2.726K ,由维恩位移定律,属于毫米波。

⒊波长为的X 射线光子与静止的电子发生碰撞。

在与入射方向垂直的方向上观察时,散射X射线的波长为多大?碰撞后电子获得的能量是多少eV ?解:设碰撞后,光子、电子运动方向与入射方向夹角分别为θ,α,由能量守恒,,动量守恒:;;整理得:;联立第一式:nm c m h e 01.0;2sin 20201===-λλθλλ ;则X 射线的波长为:01.02sin 221+=θλc m h e ;电子能量:1λλhchc E e -= ⒋在一束电子束中,单电子的动能为,求此电子的德布罗意波长。

解:电子速度远小于光速,故:;则:。

5.设归一化函数: (x )=Aexp(-2x 2)(-)a 为常数,求归一化常数A 。

解:由归一化条件 |2dx=1 得A 2==A=6.设归一化波函数=A(0n为整数,a为常数,求归一化常数A解:由归一化条件|2dx得A2=1解得A=7.自由粒子的波函数为=Aexp()其中和是粒子的动量和能量,和t是空间与时间变量,ℏ是普朗克常数,A是归一化常数,试建立自由粒子波函数所满足的方程。

解:由=Aexp(),将其对时间求偏微商,得到=-E,然后对其空间求偏微商,得到:=-利用自由粒子的能量和动能的关系式:E=就可以得到:i=---------自由粒子波函数所满足的方程8.设一个微观粒子的哈密顿算符的本征方程为Ĥ=该粒子的初始波函数为=+设和是实数,求任意时刻的波函数及粒子的几率密度.解:由=exp()=dx=== exp()+ exp()粒子的几率密度===[ exp()+ exp()][ exp()+ exp()]因为和是实数,利用欧拉公式:原式=9.宽度为a的一维无限深势阱中粒子的本征函数为=求证本征函数的正交性:dx=0(m)证:===[]=0()10.原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的,按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV?核的线度按a=1.0m计算。

量子力学基础简答题(经典)

量子力学基础简答题(经典)

量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么3、力学量Gˆ在自身表象中的矩阵表示有何特点 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化解释各项的几率意义。

6、何为束缚态7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥采用Dirac 符号时,位置表象中的波函数应如何表示9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么 11、一个物理体系存在束缚态的条件是什么 12、两个对易的力学量是否一定同时确定为什么 13、测不准关系是否与表象有关14、在简并定态微扰论中,如 ()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H'+=ˆˆˆ0的零级近似波函数15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解17、两个不对易的算符所表示的力学量是否一定不能同时确定举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger 方程直接导出自旋21、叙述量子力学的态迭加原理。

22、厄米算符是如何定义的23、据[aˆ,+a ˆ]=1,a a N ˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。

量子力学简答题

量子力学简答题

量子力学简答题1.哪些实验表明电子具有自旋现象?举例说明电子具有自旋。

电子的自旋是在实验事实的基础上以假设方式提出的。

实验事实:①原子的精细结构②塞曼效应③斯特恩-盖拉赫实验——3分斯特恩-革拉赫实验:现象:K射出的处于S态的氢原子束通过狭缝BB和不均匀磁场,最后射到照相片PP上,实验结果是照片上出现两条分立线。

——2分解释:对于基态氢原子,l0,没轨道角动量,因此与磁矩无相互作用,应连续变化,照片上应是一连续带,但实验结果只有两条,说明Mz是空间量子化的,只有两个取向co1,所以原子所具有的磁矩是电子固有磁矩,即自旋磁矩。

——2分2.为什么说轨道角动量具有空间量子化现象?画出l=3时角动量空间量子化分布图。

因为轨道角动量及其分量是取分离值,而不能取任意值。

——3分——4分1.解释斯特恩-革拉赫实验。

答:斯特恩-革拉赫实验能够说明电子具有自旋角动量:基态氢原子束通过不均匀磁场时,射到照相片,出现两条分立线。

——3分如磁矩M在空间可取任何方向,照片上应是一连续带,但实验结果只有两条,说明Mz是空间量子化的,只有两个取向co1,对S态,l0,没轨道角动量,所以原子所具有的磁矩是电子固有磁矩,即自旋磁矩。

——4分2.解释隧道贯穿现象(要求画出图形),该现象说明微观粒子具有什么性质?EU0时,电子也有可能穿越势垒的可能,这表明电子具有波粒二象性。

——3分——4分1.态叠加原理:如果1和2是体系可能的状态,那么,它们的线性迭加c11c22(c1,c2是复数)也是这个体系的一个可能状态。

2.波函数的统计解释及波函数的标准条件波函数的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

波函数的标准条件:单值性,有限性,连续性3.全同性原理:在全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。

泡利不相容原理:不能有两个或两个以上的费米子处于同一状态。

4.量子力学五个基本假设是什么?(1)微观体系的状态可以用一个波函数完全描述,从这个波函数可以得出体系的所有性质。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。

波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。

这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。

量子力学的通俗解释

量子力学的通俗解释

量子力学的通俗解释《量子力学的通俗解释》第一章什么是量子力学?1.1 量子力学(Quantum Mechanics)是什么?量子力学是一门研究微观粒子行为(如原子、分子、核等)的物理学理论。

尽管两极分化的经典物理学也可以用来描述这些微观粒子行为,但量子力学更能准确地预测它们的行为。

虽然量子力学是一个非常抽象的理论,但广泛运用于物理学、化学、生物学等科学领域,被认为是现代物理学中最重要的理论之一。

1.2 量子力学的起源量子力学之父是德国物理学家爱因斯坦(Albert Einstein),他在1905年发表论文时首次提出了“量子说”的概念,并在其后的20世纪初期,基于此概念提出了许多物理学理论,包括热力学、无穷大热定律、量子论等。

此外,德国物理学家莫尔斯(Max Planck)也发展了量子论,并在1900年发表了一篇关于量子论的论文。

此后,量子力学又发展出了广义相对论、电磁辐射理论、复变函数、量子场理论等理论,它们都成为现代物理学的基石。

1.3 量子力学的主要内容量子力学的主要内容有以下几个方面:(1)电荷的量子性质:量子力学认为电荷具有量子特性,即电荷可以在不同的能量水平上存在,具有不可预测的概率性行为。

(2)量子热力学:量子力学认为,物质的能量分布是基于量子级数的,并且物质之间存在着不可预测的相互作用,这些作用可能导致物质的能量转移和改变。

(3)量子力学的数学框架:量子力学是一门数学理论,所以要对量子力学有一定的数学基础,包括概率论、线性代数、微分方程等。

(4)量子统计:量子力学建立了一套统计方法,用来解释和预测物质在不同条件下存在的概率变化。

(5)量子无力:量子力学的基石之一是它认为,有一种力(量子无力)使微观世界中的粒子互相作用,从而产生物质的变化。

第二章量子力学在实验中的应用2.1量子力学在物理学中的应用量子力学在物理学领域有着广泛的应用,其中最重要的是准确预测实验结果以及解释复杂现象的背后机理。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

量子力学最简单的解释

量子力学最简单的解释

量子力学最简单的解释
1、量子力学通俗解释:量子力学是指两个力学:矩阵力学和波动力学的结合。

量子力学描述了亚原子粒子(就是很小的,比原子还小的粒子)的运动。

2、它的主要思想就是说所有的物质或能量都是一段一段的,不是连续的(比如光,它不是像一条线,而是一个一个小粒子排在一起的)。

量子力学就描述了这种一段一段的,量子化的粒子。

量子力学说,所有物质在没有观察者观察时,都是不确定的,不能说它存在,或描述它,只有一个观察者观测到了它,才能议论它(就像如果没有人看月亮,月亮就不存在,或者变成波散发掉了)。

这是量子力学的哥本哈根解释,是量子力学多种解释中相信的人最多的一种。

3、量子力学(Quantum Mechanics),为物理学理论,是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。

它与相对论一起构成现代物理学的理论基础。

量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。

4、19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。

量子力学从根本上改变人类对物质结
构及其相互作用的理解。

除了广义相对论描写的引力以外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。

5、量子力学是描述微观物质的理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。

量子力学基础简答题

量子力学基础简答题

量子力学基础简答题一、量子力学中,描述微观粒子状态的数学工具是什么?A. 经典力学方程B. 概率分布函数C. 波函数(答案)D. 矩阵运算二、在量子力学中,哪个原理表明微观粒子的状态无法同时被精确测量?A. 不确定性原理(答案)B. 能量守恒原理C. 动量守恒原理D. 角动量守恒原理三、下列哪个实验是量子力学诞生的重要标志之一?A. 迈克尔逊-莫雷实验B. 双缝干涉实验C. 薛定谔的猫实验D. 康普顿散射实验(答案)四、在量子力学中,粒子在被观测之前的存在状态被称为什么?A. 实在状态B. 叠加状态(答案)C. 虚拟状态D. 混沌状态五、量子力学中的“波粒二象性”是指什么?A. 粒子同时具有波动性和粒子性(答案)B. 粒子在不同状态下可以转化为波或粒子C. 粒子总是以波的形式存在D. 粒子总是以粒子的形式存在六、下列哪位科学家提出了量子力学的波函数理论?A. 牛顿B. 爱因斯坦C. 薛定谔(答案)D. 玻尔七、在量子力学中,描述粒子可能状态的数学表达式称为什么?A. 状态方程B. 概率方程C. 波函数方程(答案)D. 能量方程八、量子力学中的“量子纠缠”现象指的是什么?A. 两个粒子之间的相互作用B. 两个粒子之间的状态相互依赖(答案)C. 两个粒子之间的能量交换D. 两个粒子之间的动量守恒九、下列哪个概念是量子力学中特有的,而经典力学中没有的?A. 力B. 质量C. 自旋(答案)D. 动量十、在量子力学中,描述粒子状态的波函数需要满足什么条件?A. 连续性B. 可导性C. 归一化条件(答案)D. 周期性。

量子力学所有简答题答案

量子力学所有简答题答案

简答题1.什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:光照射到*些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。

这类光致电变的现象被人们统称为光电效应。

或光照射到金属上,引起物质的电性质发生变化。

这类光变致电的现象被人们统称为光电效应。

光电效应规律如下:1.每一种金属在产生光电效应时都存在一极限频率〔或称截止频率〕,即照射光的频率不能低于*一临界值。

当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。

2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。

3.光电效应的瞬时性。

实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。

4.入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。

爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。

(2)所有同频率光子具有一样能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。

(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。

逸出电子的动能、光子能量和逸出功之间的关系可以表示成:221mv A h +=ν这就是爱因斯坦光电效应方程。

其中,h 是普朗克常数;f 是入射光子的频率。

2.写出德布罗意假设和德布罗意公式。

德布罗意假设:实物粒子具有波粒二象性。

德布罗意公式:νωh E == λhk P ==3.简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。

几率波满足的条件。

波函数在空间中*一点的强度和在该点找到粒子的几率成正比。

因为它能根据现在的状态预知未来的状态。

波函数满足归一化条件。

4.以微观粒子的双缝干预实验为例,说明态的叠加原理。

量子力学复习题答案

量子力学复习题答案

5. 一电子局限在 10-14米的区域中运动。 已知电子质量 m = 9.11 × 10-31千克, 试计算该电子的基态能量 (提 。 示:可按长、宽、高均为 10-14米的三维无限深势阱计算) 解: E111 =
π 2= 2
2m

3 = 1.8 × 10 −8 J 。 2 a
6.设粒子处于一维无限深势阱
a 的对易关系式; a 的关系; 20. 给出一维谐振子升、 降算符 a 、 粒子数算符 N 与 a 、 哈密顿量 H 用 N
+
+
3
或a 、 a 表示的式子; N (亦即 H )的归一化本征态。 解:
+
[ a , a + ] = 1, n = 1 n!
N = a+a,
1⎞ ⎛ 1⎞ ⎛ H = ⎜a+a + ⎟ = ⎜ N + ⎟ 2⎠ ⎝ 2⎠ ⎝
K
K
gs = gl =
内禀磁矩 e e ⎞ ⎛ = = 2 ⎜取 为单位 ⎟ 自旋 mc ⎝ 2mc ⎠ 轨道磁矩 e = =1 轨道角动量 2mc
13. 量子力学中,一个力学量 Q 守恒的条件是什么?用式子表示。 解:有两个条件:
2
∂Q = 0 , [Q , H ] = 0 。 ∂t
14.(L , L z) 的共同本征函数是什么?相应的本征值又分别是什么?
⎛1⎞ ⎛0⎞ = = ⎟ , α = χ1 2 (s z ) = ⎜ ; s z = − , β = χ −1 2 ( s z ) = ⎜ ⎜ ⎟ ⎜1⎟ ⎟。 2 2 ⎝ 0⎠ ⎝ ⎠
[x , p ]= 0
y
[ z , p ] = i=
z
[L

量子力学简答题(知识要点)

量子力学简答题(知识要点)

量子力学简答题(知识要点)1.试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为:ων ==h E k n h p ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来。

等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。

2.简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

按这种解释,描写粒子的波是几率波。

3.根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。

答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。

4.设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。

试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。

答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。

或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中。

在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。

5.什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。

在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。

6.什么是全同性原理和泡利不相容原理?两者的关系是什么?答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为:
ων ==h E
k n h
p ==ˆλ
其物理意义是把微观粒子的波动性和粒子性联系起来。

等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。

2波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

按这种解释,描写粒子的波是几率波。

3试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ
中测量体系的能量的可能值及其几率。

答:
2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态
ψ时,粒子是既处于
1ϕ态,又处于2
ϕ态。

或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ
也是体系一个可能的状态;或者说,
当体系处在态
ψ时,体系部分地处于态1ϕ、2ϕ中。

在状态
ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为
2
1
c 和
2
2
c 。

4什么是定态?定态有什么性质?
答:定态是指体系的能量有确定值的态。

在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。

5 什么是全同性原理和泡利不相容原理?两者的关系是什么?
答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。

泡利不相容原理是指不能有两个或两个以上的费米子处于同一状态。

两者的关系是由全同性原理出发,推论出全同粒子体系的波函数有确定的交换对称性,将这一性质应用到费米子组成的全同粒子体系,必然推出费米不相容原理。

6 为什么表示力学量的算符必须是厄米算符?
答:因为所有力学量的数值都是实数。

而表示力学量的算符的本征值是这个力学量的可能值,所以表示力学量的算符的本征值必须是实数。

厄米算符的本征值必定是实数。

所以表示力学量的算符必须是厄米算符。

7 简述费米子的自旋值及其全同粒子体系波函数的特点,这种粒子所遵循的统计规律是什么? 答:由电子、质子、中子这些自旋为
2
的粒子以及自旋为
2
的奇数倍的粒子组成的全同粒子体系的波函
数是反对称的,这类粒子服从费米(Fermi) -狄拉克 (Dirac) 统计,称为费米子。

8 一个量子态分为本征态和非本征态,这种说法确切吗?
答:不确切。

针对某个特定的力学量,对应算符为A ,它的本征态对另一个力学量(对应算符为B )就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。

9
辐射谱线的位置和谱线的强度各决定于什么因素?
答:某一单色光辐射的话可能吸收,也可能受激跃迁。

谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。

1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:
2211ψψψc c +=(1c ,2
c 是复数)也是这个体系的一个可能状态。

2如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗?
答:不一定,如果1ψ,
2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态
经典波和量子力学中的几率波有什么本质区别
经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在
空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变; 3、若)(1x ψ是归一化的波函数,
问: )(1x ψ, 1)()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数 是否描述同一态?分别写出它们的位置几率密度公式。

答:是描述同一状态。

)()()()(1*
12
11x x x x W ψψψ== 2
12*
22*
22)()
()()()()(x x x dx x x x W ψψψψψ==⎰ 2
13*
33)()()()(x x x x W ψψψ==
4、在量子力学中,自由粒子体系,0]ˆ,ˆ[=H p
力学量p ˆ 守恒; 中心力场中运动的粒子0]ˆ,ˆ[=H L 力学量L ˆ 守恒. 在定态条件下,0]ˆ,ˆ[=H H
所以能量守恒 答:判断力学量是守恒量的条件:算符不显含时间,且与哈密顿算符对易。

5、量子力学中如何判断一个力学量是否是守恒量,电子在均匀电场)0,0,(E E =
中运动,
哈密顿量为x eE m p H ˆ2ˆˆ2
-=
,试判断
x p ˆ,y p ˆ,z p ˆ各量中哪些是守恒量,并说明原因。

答:算符不显含时间,且与哈密顿算符对易。

y p 和 z p 是守恒量
因为:[]
0]ˆ,ˆ[0]ˆ,ˆ[0]ˆ,[0ˆ,22====z y z y
p p
p p
p
x P x 0]ˆ,ˆ[=H p y 0]ˆ,ˆ[=H p z 且y p ˆ、z p ˆ不显含时间。

所以,z p 、y p 是守恒量。

相关文档
最新文档