高三上学期期中考试数学(理)Word版含答案
2021年高三上学期期中数学(理)试题 含答案
2021年高三上学期期中数学(理)试题含答案一、选择题(每小题5分,共40分)1、设集合,,,则()A、B、C、D、2、已知,则“”是“”的()A、充分非必要条件B、必要不充分条件C、充要条件D、既非充分也非必要条件3、已知,,,则等于()A、B、C、D、4、要得到函数的图像,只需要将函数的图像()A、向左平移个单位B、向右平移个单位C、向左平移个单位D、向右平移个单位5、若的三个内角,,满足,则()A、一定是锐角三角形B、一定是直角三角形C、一定是钝角三角形D、可能是锐角或者钝角三角形6、设,满足约束条件,则目标函数的取值范围为()A、B、C、D、7、如图,为等腰直角三角形,,为斜边的高,为线段的中点,则()A、B、C、D、8、已知点,曲线:恒过定点,为曲线上的动点且的最小值为,则()A、B、C、D、二、填空题(没小题5分,共30分)9、写出命题:,的否定。
10、函数的单调减区间为。
11、已知正数,满足,则的最小值为。
12、已知向量,,若函数在区间上是增函数,则实数的取值范围是。
13、已知,,且,,则的大小为。
14、如图,正方形的边长为,为的中点,射线从出发,绕着点顺时针方向旋转至,在旋转的过程中,记为(),所经过的在正方形内的区域(阴影部分)的面积,那么对于函数有以下三个结论:①;②任意,都有;③任意,,且,都有;其中所有正确结论的序号是。
三、解答题(共80分)15、在中,角,,的对边分别为,,,且满足,(1)求角的大小;(2)若,求面积的最大值。
16、已知向量,,函数,.(1)求函数的单调增区间;(2)将函数图像向下平移个单位,再向左平移个单位得到函数的图像,试写出的解析式并做出它在上的图像。
17、某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖金中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球,顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止。
2021年高三上学期期中质量检测数学(理)试题(含附加题) Word版含答案
2021年高三上学期期中质量检测数学(理)试题(含附加题) Word 版含答案一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.已知全集,,,那么 ▲ .2.设函数,则的值为 ▲ .3.已知直线与直线平行,则它们之间的距离是 ▲ .4.设满足约束条件则目标函数的最大值为 ▲ .5.不等式的解集为 ▲ .6.下列四个命题中 (1)若,则;(2)命题:“”的否定是“”; (3)直线与垂直的充要条件为;(4)“若,则或”的逆否命题为“若或,则” 其中正确的一个命题序号是 ▲7.如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的周期是▲________. 8.在锐角中,,,的面积为,则的长为 ▲ .9.已知两曲线f (x )=cos x ,g (x )=3sin x ,x ∈(0,π2)相交于点A .若两曲线在点A 处的切线与x 轴分别相交于B ,C 两点,则线段BC 的长为 ▲B10.在平面直角坐标系中,为直线上的两动点,以为直径的圆恒过坐标原点,当圆的半径最小时,其标准方程为▲11.动直线过定点且,则的最小值为▲.12.已知关于的不等式的解集为,若,则实数的取值范围是▲13.已知的导函数为.若,且当时,,则不等式的解集是▲ .14.已知函数若方程有且仅有两个不相等的实数解,则实数的取值范围是▲二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.(本小题满分14分)已知且(1)若,求的值;(2)若,求的值。
16.(本小题满分14分)设是边长为的正三角形,点四等分线段(如图所示)(1)为边上一动点,求的取值范围?(2)为线段上一点,若,求实数的值;17.(本小题满分14分)如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE 和PF ,设(1)为减少对周边区域的影响,试确定E,F 的位置,使与面积之和最小; (2)为节省建设成本,试确定E,F 的位置,使之和最小。
陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析
A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.
2021年高三上学期期中测试数学(理)试题 含答案
2021年高三上学期期中测试数学(理)试题 含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷从第 1页至第2页;第Ⅱ卷从第3页至第4页;答题纸从第1页至第6页.共150分,考试时间120分钟.请在答题纸第1,3,5页左侧密封线内书写班级、姓名、准考证号.考试结束后,将本试卷的答题纸和答题卡一并交回.第Ⅰ卷(共40分)一、选择题(本大题共8小题,每小题5分,共40分)1. 已知锐角终边上一点的坐标是,则的弧度数是 ( A )A .B .C .D . 2.若,为实数,则“”是“或”的 ( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.已知直线是的切线,则的值为 ( C )A .B .C .D . 4.若函数,若,则实数的取值范围是 ( A )解析:特值法:取及成立,选A ;图象法:画图,看图;代数法:当时,12()0()log 001f a f a a a ->⇒-=>⇒<<; 当时2()0()log ()001f a f a a a -<⇒-=-<⇒<-<;A .B .C .D . 5. 函数的图象是( A )解析:奇函数;求导,极值点为.6.设函数,的零点分别为,则( A )20 2 6解析:A.B.C.D.7.对于函数,若存在区间(其中),使得则称区间M为函数的一个“稳定区间”.给出下列4个函数:①;②;③;④.其中存在“稳定区间”的函数有( B )A.①③B.①②③C.②④D.①②③④8.函数为定义在上的减函数,函数的图象关于点(1,0)对称,满足不等式,,为坐标原点,则当时,的取值范围为( D ) A.B.C.D.第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分)9.若复数()为纯虚数,则等于. 110.若,则与的夹角为.11.已知{不超过5的正整数},,,且,则.12.函数的图象如图所示,则ω= ,.,13.已知向量满足,,,则.14.如图,在直角梯形中,,,,,,P为线段(含端点)上一个动点,设,,对于函数,给出以下三个结论:①当时,函数的值域为;②,都有成立;③,函数的最大值都等于4.其中所有正确结论的序号是_________.②③解析:以B为原点建立直角坐标系,则,,,设,∵,∴,,,,①当时,,,则,所以①错;②,所以②成立;③∵,∴开口向上,又∵对称轴,三、解答题:(本大题共6小题,共80分)15.(本小题共13分)在锐角中,且.(Ⅰ)求的大小;(Ⅱ)若,求的值.15.解:(Ⅰ)由正弦定理可得 ----------2分因为所以 ------------------------5分在锐角中, ---------------------------7分(Ⅱ)由余弦定理可得 -------------------------9分又因为,所以,即 -------------------------11分解得, ---------------------------12分经检验,由可得,不符合题意,所以舍去. --------------------13分16.(本小题满分13分)已知向量,,,其中.(Ⅰ)当时,求值的集合;(Ⅱ)当时,求的最大值.16.解:(Ⅰ)由,得,即……4分则,∵,得或,.……………………………5分∴或为所求.………………………………6分(Ⅱ),………10分∵,∴,由图象性质,当即时,有最大值为12,有最大值为.……………………13分17.(本小题满分13分)某工厂生产某种产品,每日的成本(单位:万元)与日产量x(单位:吨)满足函数关系式,每日的销售额S(单位:万元)与日产量x的函数关系式已知每日的利润,且当时,.(Ⅰ)求的值;(Ⅱ)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.17.解:(Ⅰ)由题意可得:…………2分因为时,,所以. ……………………………………4分所以. ……………………………………5分(Ⅱ)当时,.1818182818=[2(8)]182********L x x x x x x ()()≤.……………………………………9分 当且仅当,即时取得等号.……………………………………10分当时,. ……………………………………12分所以当时,取得最大值.所以当日产量为5吨时,每日的利润可以达到最大值6万元. …………………13分18.(本小题满分13分)如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合,终边交单位圆于点,且.将角的终边按逆时针方向旋转,交单位圆于点.记.(Ⅰ)若,求;(Ⅱ)分别过作轴的垂线,垂足依次为.记△ 的面积为,△的面积为.若,求角的值.解:(Ⅰ)由三角函数定义,得 ,…………2分因为 ,,所以 . ………………3分所以 21cos()cos 322x π=+==αα-α(Ⅱ)解:依题意得 ,. 所以 , ………………7分222111||[cos()]sin()sin(2)223343S x y ππ==-+⋅+=-+ααα ……9分 依题意得 ,整理得 . ………………11分因为 , 所以 ,所以 , 即 . ………………13分19.(本小题满分14分)已知函数,.(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在区间()上存在一点,使得成立,求的取值范围.19. 解:(Ⅰ)∵,∴,定义域 ,令得,减 增∴无极大值, ……3分(Ⅱ), 定义域 ,∴ ………4分①当时,在上恒成立,∴在上递增; ………6分②当时,令得, 减 增∴在上递减,在上递增; …………8分(Ⅲ)∵区间上存在一点,使得成立,即: 在上有解,即:当时, …………9分由(Ⅱ)知①当时,在上增,∴;……10分②当时,在上递减,在上递增(ⅰ)当即时, 在上增, ∴, ∴无解 ……11分(ⅱ)当即时, 在上递减∴2min 11()01a e h h e e a a e e ++==-+<⇒>- ∴ …………12分 (ⅲ)当即时, 在上递减,在上递增∴,令2ln(1)2()1ln(1)a a a F a a a a+-+==+-+,则 ∴在递减 ∴ ∴无解即无解 ………14分综上:或20.(本小题满分14分)已知是定义在R 上的函数,其图象交x 轴于A 、B 、C 三点.若点B 的坐标为(2,0),且上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.(Ⅰ)求c 的值;(Ⅱ)在函数的图象上是否存在一点在点M 处的切线斜率为3b ?若存在,求出点M 的坐标;若不存在,请说明理由;(Ⅲ)求的取值范围.20.解:(Ⅰ) ……………………………………2分依题意上有相反的单调性.所以的一个极值点.故 ………………4分(Ⅱ)令,由(Ⅰ)得………………………2分因为上有相反的单调性,所以上有相反的符号.故………………………………………………7分假设存在点使得在点M 处的切线斜率为3b ,则即因为),9(4364)3(34)2(22+=+=-⨯-=∆ab ab ab b b a b 且、b 异号.所以故不存在点使得在点M 处的切线斜率为3b .………………10分(Ⅲ)设),)(2)(()(),0,(),0,(βαβα---=x x x a x f C A 依题意可令 即]2)22()2([)(23αβαββαβα-+++++-=x x x a x f .2)22()2(23αβαββαβαa x a x a ax -+++++-= 所以即…………………………12分所以因为max 63,6,b b AC a a-≤≤-=-=所以当时 当………………………14分34534 86E6 蛦35150 894E 襎R23541 5BF5 寵2}22201 56B9 嚹%24349 5F1D 弝h27559 6BA7 殧[37382 9206 鈆 7。
高三上学期期中考试数学(理)试题 Word版含答案
大庆实验中学2020-2021学年度上学期期中考试高三数学(理科)试题注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每道小题答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设命题p :x R ∀∈,2320x x -+≤,则p ⌝为( )A .0x R ∃∈,200320x x -+≤ B .x R ∀∈,320x x -+> C .0x R ∃∈,200320x x -+>D .x R ∀∈,320x x -+≥2.若{}0,1,2A =,{}2,a B x x a A ==∈,则A B ⋃=( ) A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,4D .{}1,2,43.已知复数z 在复平面内对应的点的坐标为()1,2-,则下列结论正确的是( ) A .2z i i ⋅=-B .复数z 的共轭复数是12i -C .5z =D .13122z i i =++ 4.已知3a i j =+,2b i =,其中i ,j 是互相垂直的单位向量,则3a b -=( )A .B .C .28D .245.已知随机变量X 服从二项分布(),B n p ,若()2E X =,()43D X =,则p =( ) A .34B .23C .13D .146.在等差数列{}n a 中,首项10a =,公差0d ≠,n S 是其前n 项和,若6k a S =,则k =( )A .15B .16C .17D .187.若()cos cos2f x x =,则()sin15f ︒=( ) A .3-B .12-C .12D .3 8.已知函数()()31,0,0x x f x g x x ⎧+>⎪=⎨<⎪⎩是奇函数,则()()1g f -的值为( )A .10-B .9-C .7-D .19.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=-⎪⎝⎭的图象( ) A .向右平移3π个单位 B .向左平移6π个单位 C .向左平移3π个单位D .向右平移23π个单位 10.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多11.如图,棱长为2的正方体1111ABCD A B C D -中,P 在线段1BC (含端点)上运动,则下列判断不正确的是( )A .11A PB D ⊥B .三棱锥1D APC -的体积不变,为83C .1//A P 平面1ACDD .1A P 与1D C 所成角的范围是0,3π⎡⎤⎢⎥⎣⎦12.已知函数()ln 1f x x =+,若存在互不相等的实数1x ,2x ,3x ,4x ,满足()()()()1234f x f x f x f x ===,则411i if x =⎛⎫= ⎪⎝⎭∑( ) A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答二、填空题(本大题共4小题,每小题5分,共20分) 13.已知点A 的极坐标为22,3π⎛⎫⎪⎝⎭,则它的直角坐标为______. 14.若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则z x y =+的最小值为______.15.已知三棱锥S ABC -中,SA ⊥面ABC ,且6SA =,4AB =,23BC =,30ABC ∠=︒,则该三棱锥的外接球的表面积为______.16.已知正项数列{}n a 的前n 项和为n S ,且对任意的*n N ∈满足()()2411n n S a +=+,则361111kk kk k kaa a a =++-=-______.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.在ABC △中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足2tan tan tan B bA B c=+(Ⅰ)求角A ;(Ⅱ)若13a =,3b =,求ABC △的面积18.如图,在三棱锥P ABC -中,2PA PB AB ===,3BC =,90ABC ∠=︒,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点.(1)求证:AB PE ⊥;(2)求二面角A PB E --的大小.19.在某市高中某学科竞赛中,某一个区4000名考生的参考成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表); (2)由直方图可认为考生竞赛成绩z 服正态分布()2,N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名学生,记成绩不超过84.81分的考生人数为ξ,求()3P ξ≤(精确到0.001)附:①2204.75s =204.7514.31=;②()2~,z N μσ,则()0.6826P z μσμσ-<<+=,()220.9544P z μσμσ-<<+=;③40.84130.501=20.已知数列{}n a 的前n 项和为n S ,且n 、n a 、n S 成等差数列,()22log 11n n b a =+-. (1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)若数列{}n b 中去掉数列{}n a 的项后余下的项按与按原顺序组成数列{}n c ,求12100c c c +++的值.21.已知函数()ln x xf x xe x=+. (Ⅰ)求证:函数()f x 有唯一零点;(Ⅱ)若对任意的()0,x ∈+∞,ln 1x xe x kx -≥+恒成立,求实数k 的取值范围 请考生在第22、23两题中任意选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 经过点()23,0P -,其倾斜角为α,设曲线S 的参数方程为141x k k y ⎧=⎪⎪⎨-⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=(1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围 23.选修4-5:不等式选讲 已知x ,y R ∈,且1x y +=. (1)求证:22334x y +≥; (2)当0xy >时,不等式1121a a x y+≥-++恒成立,求a 的取值范围.大庆实验中学2020-2021学年度上学期期中考试高三理科数学答案1.C 2.C 3.D4.A 5.C 6.B 7.A8.B 9.A 10.D11.B12.A13.(-14.315.52π1617.(Ⅰ)3A π=(Ⅱ)解:(Ⅰ)由2tan tan tan B bA B c =+及正弦定理可知,∴sin 2sin cos sin sin cos cos cos B B B A B C A B =+∴()2sin cos cos sin cos sin sin B A B B B A B C⋅⋅=+, 所以2cos 1A =,又()0,A π∈,所以3A π=(Ⅱ)由余弦定理2222cos a b c bc A =+-, 得21393c c =+-,所以2340c c --=,即()()410c c -+=, 所以4c =,从而11sin 3422ABC S ab A ==⨯⨯=△18.(1)证明见解析;(2)60°解析:(1)连结PD ,∵PA PB =,∴PD AB ⊥,∵//DE BC ,BC AB ⊥,DE AB ⊥ 又∵PD DE D ⋂=,∴AB ⊥平面PDE ,∵PE ⊂平面PDE ,∴AB PE ⊥ (2)法一:∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PD AB ⊥,PD ⊥平面ABC 则DE PD ⊥,又ED AB ⊥,PD ⋂平面AB D =,DE ⊥平面PAB过D 做DF 垂直PB 与F ,连接EF ,则EF PB ⊥,DFE ∠为所求二面角的平面角,32DE =,2DF =,则tan DEDFE DF∠==A PB E --大小为60°法二:∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PD AB ⊥,PD ⊥平面ABC 如图,以D 为原点建立空间直角坐标系,∴()1,0,0B ,()0,0,3P ,30,,02E ⎛⎫⎪⎝⎭,∴()1,0,3PB =-,30,,32PE ⎛⎫=- ⎪⎝⎭设平面PBE 的法向量()1,,z n x y =,∴30,330,2x z y z ⎧-=⎪⎨-=⎪⎩令3z =,得()13,2,3n = ∵DE ⊥平面PAB ,∴平面PAB 的法向量为()20,1,0n = 设二面角A PB E --大小为θ,由图知,1212121cos cos ,2n n n n n n θ⋅===⋅, 所以60θ=︒,即二面角的A PB E --大小为60°19.(1)70.5分;(2)634人;(3)0.499 (1)由题意知: 中间值 45 55 65 75 85 95 概率0.10.150.20.30.150.1∴450.1550.15650.2750.3850.15950.170.5x =⨯+⨯+⨯+⨯+⨯+⨯=, ∴4000名考生的竞赛平均成绩x 为70.5分(2)依题意z 服从正态分布()2N μσ,,其中=70.5x μ=,2204.75D σξ==,14.31σ=,∴z 服从正态分布()()2270.5,14.31N N μσ=,,而()()56.1984.810.6826P z P z μσμσ-<<+=<<=,∴()10.682684.810.15872P z -≥==, ∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=,而()~4,0.8413B ξ,∴()()44431410.841310.5010.499P P C ξξ≤=-==-⋅=-=20.(1)证明见解析,21nn a =-;(2)11202(1)证明:因为n ,n a ,n S 成等差数列,所以2n n S n a +=,① 所以()()11122n n S n a n --+-=≥.②①-②,得1122n n n a a a -+=-,所以()()11212n n a a n -+=+≥. 又当1n =时,1112S a +=,所以11a =,所以112a +=, 故数列{}1n a +是首项为2,公比为2的等比数列, 所以11222n n n a -+=⋅=,即21n n a =-(2)根据(1)求解知,()22log 12121n n b n =+-=-,11b =,所以12n n b b +-=, 所以数列{}n b 是以1为首项,2为公差的等差数列又因为11a =,23a =,37a =,531a =,663a =,7127a =,8255a =,64127b =,106211b =,107213b =,所以()()1210012107127c c c b b b a a a +++=+++-+++()()127107121322272⨯+⎡⎤=-+++-⎣⎦()72121072147212-⨯=-+-281072911202=-+=21.(Ⅰ)见解析;(Ⅱ)k ,,1 解析:(Ⅰ)()()21ln 1x xf x x e x +'=++,易知()f x '在()0,e 上为正,因此()f x 在区间()0,1上为增函数,又1210xe ef e e -⎛⎫=< ⎪⎝⎭,()0f I e =>因此()10f f I e ⎛⎫< ⎪⎝⎭,即()f x 在区间()0,1上恰有一个零点, 由题可知()0f x >在()1,+∞上恒成立,即在()1,+∞上无零点, 则()f x 在()1,+∞上存在唯一零点(Ⅱ)设()f x 的零点为0x ,即000ln 0x x x e x +=,原不等式可化为ln 1x xe x k x--≥, 令()ln 1xxe x g x x--=,则()ln x xxe x g x x+'=,由(Ⅰ)可知()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,00x x e t =故只求()0g x ,设00x x e t =,下面分析0000ln 0x x x e x +=,设00x x e t =,则0ln x t x =-, 可得0000ln ln ln x tx x x t =-⎧⎨+=⎩,即()01ln x t t -=若1t >,等式左负右正不相等,若1t <,等式左右负不相等,只能1t =因此()0000000ln 1ln 1x x e x x g x x x --==-=,即k ,,1求所求 22.(1)S 的普通方程为:2240x y x +-=()04,0x y ≤≤≥或()0,0x y >≥或()0,0x y ≠≥方程写标准式也可S 的极坐标方程为:4cos 02πρθθ⎛⎫=≤< ⎪⎝⎭(不写范围扣2分) (2)0,3πα⎡⎤∈⎢⎥⎣⎦23.(1)见证明;(2)35,22⎡⎤-⎢⎥⎣⎦【详解】解:(1)由柯西不等式得)2222211x x ⎡⎤⎛⎡⎤++≥⋅+⎢⎥ ⎢⎥⎣⎦⎝⎢⎥⎣⎦ ∴()()222433x y x y +⨯≥+,当且仅当3x y =时取等号. ∴22334x y +≥;(2)()1111224y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 要使得不等式1121a a x y+≥-++恒成立,即可转化为214a a -++≤, 当2a ≥时,214a -≤,可得522a ≤≤, 当12a -<<,34≤,可得12a -<<, 当1a ≤-时,214a -+≤,可得312a -≤≤-, ∴a 的取值范围为:35,22⎡⎤-⎢⎥⎣⎦。
2021-2022年高三上学期期中统考数学(理)试题含答案
2021-2022年高三上学期期中统考数学(理)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共 4页.满分150分,考试时间120分钟. 考试结束,将试卷答题卡交上,试题不交回.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号涂写在答题卡上.2.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.第Ⅱ卷试题解答要作在答题卡各题规定的矩形区域内,超出该区域的答案无效.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.若,则=A. B. C. D.2.已知集合,,则A. B. C. D.3.已知向量, ,如果向量与垂直,则的值为A. B. C. D.4.函数的图像为5.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数: ①; ②; ③; ④. 其中“同簇函数”的是A.①②B.①④C.②③D.③④ 6.若数列的前项和,则数列的通项公式 A. B. C. D. 7.已知命题;命题,则下列命题中为真命题的是A. B. C. D.8.已知,满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若的最小值为,则A.B.C. D.9.在中,角的对边分别为,且22coscos sin()sin 2A BB A B B --- .则 A . B .C .D .10.函数是上的奇函数,1212()[()()]0x x f x f x --<,则的解集是 A . B. C. D.11.设函数2()2,()ln 3xf x e xg x x x =+-=+-,若实数满足,则A .B .C .D .12.给出下列四个命题,其错误的是①已知是等比数列的公比,则“数列是递增数列”是“”的既不充分也不必要条件. ②若定义在上的函数是奇函数,则对定义域内的任意必有(21)(21)0f x f x ++--=.③若存在正常数满足 ,则的一个正周期为 . ④函数与图像关于对称.A. ②④B. ④C.③D.③④第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中相应题的横线上.13.= . ( ) 14.122133434344nn n n n ---+⋅+⋅++⋅+= .15.在中,,,,则 .16.设, 则当 ______时, 取得最小值.三、解答题:本大题共6小题,共74分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知(2cos ,2sin )(cos ,sin )a b ααββ==,,. (Ⅰ)若,求的值;(Ⅱ)设,若,求的值.18.(本小题满分12分)已知函数和的图象关于轴对称,且. (Ⅰ)求函数的解析式; (Ⅱ)解不等式19. (本小题满分12分)设是首项为,公差为的等差数列,是其前项和. (Ⅰ) 若,求数列的通项公式; (Ⅱ) 记,,且成等比数列,证明:().20.(本小题满分12分)如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量,,. (Ⅰ) 求山路的长;(Ⅱ) 假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内? 21.(本小题满分12分)新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制CBA定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.(Ⅰ)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.(Ⅱ)下面是公司预设的两个奖励方案的函数模型: ①; ②试分别分析这两个函数模型是否符合公司要求.22.(本小题满分14分)设函数(Ⅰ)当时,求函数的最大值; (Ⅱ)令21()()22aF x f x ax bx x=-++(),其图象上存在一点,使此处切线的斜率,求实数的取值范围;(Ⅲ)当,,方程有唯一实数解,求正数的值.xx.11理科数学 参考答案及评分标准一、二、13. 14. 15. 16. 三.解答题17解: (Ⅰ)∵∴又∵2222||4cos 4sin 4a a αα==+=,1sin cos ||2222=+==ββ……3分 ∴()222244448a ba ab b =-=-+=+=, ………………5分∴.…………………6分(Ⅱ)∵a 2b (2cos 2cos ,2sin 2sin )(2,0)αβαβ+=++= ∴即 …………………8分两边分别平方再相加得: ∴ ∴ ……10分∵且 ∴ …………………12分18.解:(Ⅰ)设函数图象上任意一点,由已知点关于轴对称点一定在函数图象上,…………………2分代入,得 …………………4分 (Ⅱ)方法1或 ………8分112212x x ⎧-<<⎪⎪⇔⎨⎪≥⎪⎩或112212x x ⎧--<<⎪⎪⎨⎪<⎪⎩ …………………10分 或不等式的解集是x ⎧⎪<<⎨⎪⎪⎩⎭…………………12分 方法2:等价于或 解得或所以解集为11{|}22x x --<< 19解(Ⅰ)因为是等差数列,由性质知,…………2分 所以是方程的两个实数根,解得,………4分∴295,26,3,31n a a d a n ==∴=∴=-或2926,5,3,332n a a d a n ===-=-+ 即或.……………6分(Ⅱ)证明:由题意知∴∴ …………7分 ∵成等比数列,∴ ∴ …………8分 ∴ ∴ ∵ ∴ ∴…10分 ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边= 右边=∴左边=右边∴()成立. ……………12分 20解: (Ⅰ) ∵,∴∴, …………………2分∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π …………4分 根据得104063sin 12604sinC655AB AC B m ==⋅=所以山路的长为米. …………………6分 (Ⅱ)由正弦定理得50013565631260sin sinB===A AC BC () …………8分甲共用时间:,乙索道所用时间:,设乙的步行速度为 ,由题意得1265000(218)35v<-+++≤,………10分 整理得71500250062503,57114v v <-≤∴<≤∴为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在内. …………………12分 21.解:(Ⅰ)由题意知,公司对奖励方案的函数模型的基本要求是:当时,①是增函数;②恒成立;③恒成立………3分 (Ⅱ)①对于函数模型:当时,是增函数,则显然恒成立 ……4分而若使函数在上恒成立,整理即恒成立,而,∴不恒成立.故该函数模型不符合公司要求. ……7分 ②对于函数模型:当时,是增函数,则()()min 104lg10221f x f ==-=>. ∴恒成立. ………8分设,则.当时,()24lg 12lg 1lg 10555e e e g x x --'=-≤=<,所以在上是减函数, ……10分 从而()()104lg10220g x g ≤=--=.∴,即,∴恒成立.故该函数模型符合公司要求. ……12分 22.解:(Ⅰ)依题意,的定义域为, 当时,,21132()32x x f x x x x--'=--=……………………2分由 ,得,解得由 ,得,解得或,在单调递增,在单调递减;所以的极大值为,此即为最大值……………………4分(Ⅱ)1()ln ,[,3]2a F x x x x =+∈,则有在上有解, ∴≥, 22000111(1)222x x x -+=--+所以 当时,取得最小值……………8分(Ⅲ)方法1由得,令,令2()2ln 1,()10g x x x g x x'=+-=+>,∴在单调递增,……………10分 而,∴在,即,在,即,∴在单调递减,在单调递增,……………12分 ∴极小值=,令,即时方程有唯一实数解. 14分方法2:因为方程有唯一实数解,所以有唯一实数解,设2()2ln 2g x x m x mx =--,则令, 因为所以(舍去),, 当时,,在上单调递减, 当时,,在上单调递增,当时,取最小值. ……………10分 若方程有唯一实数解,则必有 即22222222ln 20x m x mx x mx m ⎧--=⎪⎨--=⎪⎩所以因为所以……………12分设函数,因为当时,是增函数,所以至多有一解.∵,∴方程(*)的解为,即,解得………14分25288 62C8 拈26628 6804 栄 22440 57A8 垨^22609 5851 塑Z34942 887E 衾23056 5A10 娐434858 882A 蠪3 32263 7E07 縇。
2021年高三上学期期中联考 数学(理)试题 Word版含答案
2021年高三上学期期中联考数学(理)试题 Word版含答案命题校:北京市第二十二中学 xx年11月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.若集合,,则=(A) (B)(C)(D)2. 命题“若,则”的逆否命题是(A)若,则(B)若,则(C)若,则(D)若,则3. “”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4. 已知数列为等差数列,且则等于(A)40(B)42(C)43(D)455. 下列函数中,图象关于坐标原点对称的是(A)(B)(C)(D)6.曲线在x=1处切线的倾斜角为(A)1(B)(C)(D)7. 要得到函数的图象,只要将函数的图象(A)向左平移单位(B)向右平移单位(C)向右平移单位(D)向左平移单位8.下列函数中,在内有零点且单调递增的是(A)(B)(C)(D)9.设,,,则(A)(B)(C)(D)10.如图,是函数的导函数的图象,则下面判断正确的是(A)在区间(-2,1)上是增函数(C)在(4,5)上是增函数(D)当时,取极大值11.已知数列为等比数列,,,则的值为(A)(B)(C)(D)12. 设函数,的零点分别为,则(A)(B)(C)(D)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.13. 函数的定义域是______________.14.已知,且为第二象限角,则的值为.15.若曲线的某一切线与直线垂直,则切点坐标为.16. 在中,若,,则____.17.已知函数y =f (x ) (x ∈R )满足f (-x +2)=f (-x ),当x ∈[-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点的个数为________.18.①命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是“存在x ∈R ,x 3-x 2+1>0”;②函数的零点有2个;③若函数f (x )=x 2-|x +a |为偶函数,则实数a =0;④函数图象与轴围成的图形的面积是;⑤若函数f (x )=⎩⎪⎨⎪⎧a x -5 (x >6),⎝⎛⎭⎫4-a 2x +4 (x ≤6),在R 上是单调递增函数,则实数a 的取值范围为(1,8).其中真命题的序号是 (写出所有正确命题的编号). 三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.19.(本小题满分14分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)当时,求函数的最大值及相应的的值.20. (本小题满分14分)在锐角中,角,,所对的边分别为,,.已知.(Ⅰ)求;(Ⅱ)当,且时,求.21.(本小题共14分)在公差不为的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和公式.22.(本小题共18分)已知函数.(Ⅰ)求函数在上的最小值;(Ⅱ)若存在(为自然对数的底数,且)使不等式成立,求实数的取值范围;(Ⅲ)若的导函数为,试写出一个符合要求的(无需过程).东城区普通校xx 学年第一学期联考试卷答题纸 高三 数学(理科) 命题校:北京市第二十二中学 xx 年11月 第Ⅰ卷 1_______2_______3_______4_______5_______6_______ 7_______8_______9______10______11_______12______ 第Ⅱ卷 13. 14. 15. 16 17. 18. 19解: 姓名 学号20. 解:21. 解:姓名学号22. 解:东城区普通校xx学年第一学期联考答案高三数学(理科)参考答案(以下评分标准仅供参考,其它解法自己根据情况相应地给分)命题校:北京市第二十二中学 xx年11月一.选择题1 A2 C3 A4 B5 D6 C7 C 8 B 9 B 10C 11D 12A二.填空题13. {x | x >1 } 14. 15.(1,2)16. 17. 6 18. ①③(写对一个给2分,写错一个不得分)三.解答题19.解:(Ⅰ)因为,所以,故的最小正周期为. ……………………7分(Ⅱ)因为,所以.所以当,即时,有最大值. ………………14分20.解:(Ⅰ)由已知可得.所以.因为在中,,所以.……………………………………………7分(Ⅱ)因为,所以.因为是锐角三角形,所以,.所以.由正弦定理可得:,所以. …………………………14分21.解:(Ⅰ)设数列的公差为,又,可得,,.由,,成等比数列得,即,整理得,解得或.由,可得.,所以.…………………7分(Ⅱ)由,,可得.所以.因为,所以数列是首项为,公比为的等比数列.所以的前项和公式为.………14分22.解:(Ⅰ)由,可得,当时,单调递减;当时,单调递增.所以函数在上单调递增.又,所以函数在上的最小值为.…………………7分(Ⅱ)由题意知,则.若存在使不等式成立,只需小于或等于的最大值.设,则.当时,单调递减;当时,单调递增.由,,,可得.所以,当时,的最大值为.故.………………14分(Ⅲ)………………18分35379 8A33 訳40291 9D63 鵣27342 6ACE 櫎225918 653E 放37443 9243 鉃H29937 74F1 瓱O>!34764 87CC 蟌22346 574A 坊20645 50A5 傥。
2021-2022年高三上学期期中考试数学(理)试题 含答案(III)
2021-2022年高三上学期期中考试数学(理)试题 含答案(III)(考试时间:120分钟 满分:150分 )一、填空题(56分)1. 若全集,集合{|1}{|0}A x x x x =≥≤,则 .答: 2.方程 的解是 .3.函数sin cos ()sin cos 44xxf x x x ππ-=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的最小正周期 . 4. 满足的锐角的集合为 . 5. 函数的反函数是 .6. 满足不等式的实数的集合为 . 7.在的二项展开式中,常数项等于 . 8. 函数的单调递增区间为 .班级 姓名 班级学号 考试学号9.设等比数列的公比,且()135218lim ,3n n a a a a -→∞++++=则 . 210. 若()22,[1,)x x af x x x++=∈+∞的函数值总为正实数,则实数的取值范围为 .11.函数的值域为 .12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到). 答: 13.函数sin cos 237,,sin cos 244x x y x x x ππ-+⎡⎤=∈⎢⎥++⎣⎦的最小值为 .14. 设若时均有()()21110a x x ax ----≥⎡⎤⎣⎦,则_______.二、选择题(20分)15. 要得到函数的图像,须把的图像( )向左平移个单位 向右平移个单位 向左平移个单位 向右平移个单位16. 若函数为上的奇函数,且当时,则当时,有( )17. 对于任意实数,要使函数*215cos()()36k y x k N ππ+=-∈在区间上的值出现的次数不小于次,又不多于次,则可以取……………………………( B )A. B. C. D.18.对任意两个非零的平面向量,定义,且和都在集合中.若平面向量满足,与的夹角,则()A. B. C. D.三、解答题19.(满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)三角形的面积;(6分)(2)异面直线与所成的角的大小.(6分)[解](1)因为PA⊥底面ABCD,所以PA⊥CD,又AD⊥CD,所以CD⊥平面PAD,从而CD⊥PD. ……3分因为PD=,CD=2,所以三角形PCD的面积为. ……6分(2)[解法一]如图所示,建立空间直角坐标系,则B(2, 0, 0),C(2, 2,0),E(1, , 1),xy ABCDPE,. ……8分 设与的夹角为,则222224||||cos ===⨯⋅BC AE BC AE θ,=.由此可知,异面直线BC 与AE 所成的角的大小是 ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角 ……8分在中,由EF =、AF =、AE =2知是等腰直角三角形, 所以∠AEF =.因此异面直线BC 与AE 所成的角的大小是 ……12分20. (满分14分)如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解法一:如图,连结,………2分 由已知,北乙 甲ABCDPEF122060A A ==,……4分 ,又12218012060A A B =-=∠, 是等边三角形,………6分 , 由已知,,1121056045B A B =-=∠,………8分在中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22202202=+-⨯⨯ ..………12分因此,乙船的速度的大小为(海里/小时). 答:乙船每小时航行海里. ………14分解法二:如图,连结,………2分由已知,122060A A ==,………4分 ,乙cos 45cos60sin 45sin 60=-,sin 45cos60cos 45sin 60=+.………6分在中,由余弦定理:22221221211122cos105A B A B A A A B A A =+-2220220=+-⨯.. ………8分由正弦定理:11121112222(13)2sin sin 10(13)A B A A B B A A A B +===+∠∠, ,即121604515B A B =-=∠, ………10分2(1cos15sin105+==.在中,由已知,由余弦定理,22212112221222cos15B B A B AB A B A B=++22210(1210(14+=+-⨯+⨯.,………12分乙甲乙船的速度的大小为海里/小时.………14分 答:乙船每小时航行海里.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分)在平面直角坐标系O 中,直线与抛物线=2相交于A 、B 两点. (1)求证:“如果直线过点T (3,0),那么”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.[解](1)设过点T(3,0)的直线交抛物线y 2=2x 于点A(x 1,y 1)、B(x 2,y 2). 当直线的钭率不存在时,直线的方程为x=3, 此时,直线与抛物线相交于点A(3,)、B(3,-). ∴=3; ……… 2分当直线的钭率存在时,设直线的方程为,其中, 由得 2122606ky y k y y --=⇒=-………6分又 ∵ ,∴2121212121()34OA OB x x y y y y y y =+=+=,………8分综上所述,命题“如果直线过点T(3,0),那么=3”是真命题;(2)逆命题是:设直线交抛物线y 2=2x 于A 、B 两点,如果=3,那么该直线过点T(3,0). ………10分该命题是假命题. ………12分 例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB 的方程为:,而T(3,0)不在直线AB 上;……… 14分说明:由抛物线y 2=2x 上的点A (x 1,y 1)、B (x 2,y 2) 满足=3,可得y 1y 2=-6,或y 1y 2=2,如果y 1y 2=-6,可证得直线AB 过点(3,0);如果y 1y 2=2,可证得直线AB 过点(-1,0),而不过点(3,0).22. (本题满分16分)第1小题满分4分,第2小题满分12分设函数2()|2|(,f x x x a x R a =+-∈为实数).(1)若为偶函数,求实数的值; (2)设,求函数的最小值. 解:(1)由已知 ………2分|2||2|,0x a x a a -=+=即解得.……… 4分(2)2212,2()12,2x x a x af x x x a x a ⎧+-≥⎪⎪=⎨⎪-+<⎪⎩, ………6分当时,22()2(1)(1)f x x x a x a =+-=+-+, 由得,从而,故在时单调递增,的最小值为;………10分 当时,22()2(1)(1)f x x x a x a =-+=-+-, 故当时,单调递增,当时,单调递减,则的最小值为;………14分由22(2)(1)044a a a ---=>,知的最小值为. ……… 16分23. (本题满分18分,第1小题5分,第2小题6分,第3小题7分) 已知函数的定义域是且,,当时,. (1)求证:是奇函数; (2)求在区间)上的解析式;(3)是否存在正整数,使得当x ∈时,不等式有解?证明你的结论.23. (本题满分18分,第1小题5分,第2小题6分,第3小题7分) (1) 由得1(2)()(1)f x f x f x +=-=+, ----------------------3分由得, ----------------------4分故是奇函数.----------------------5分(2)当x ∈时,,. ----------------------7分 而)(1)(1)1(x f x f x f =--=-,. ----------------------9分当x ∈Z)时,,, ----------------------11分 (3)因此123)2()(--=-=k x k x f x f . 不等式 即为,即. ----------------------13分 令,对称轴为,因此函数在上单调递增. ----------------------15分因为1)21)(212(1)212)(1()212()212(2+-+=+++-+=+k k k k k k g ,又为正整数,所以,因此在上恒成立,----------------------17分 因此不存在正整数使不等式有解.----------------------18分精品文档34899 8853 術H40619 9EAB 麫Z26500 6784 构39895 9BD7 鯗"F39280 9970 饰L32305 7E31 縱36154 8D3A 贺实用文档。
山东省临沂市2022届高三上学期期中考试数学理试题 Word版含答案
高三教学质量检测考试理科数学2021.11本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟.留意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必需用0.5毫米黑色签字笔作答,答案必需写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}2log ,3,,,0A a B a b A B A B ==⋂=⋃=若,则A. {}03,B. {}013,,C. {}023,,D. {}0123,,,2.已知D 是ABC ∆的边AB 的中点,则向量CD 等于 A. 12BC BA -+ B. 12BC BA --C. 12BC BA - D. 12BC BA +3.某商场2022年一月份到十二月份销售额呈现先下降后上升的趋势,下列函数模型中能较精确 反映该商场月销售额()f x 与月份x 关系的是A. ()()0,1x f x a b b b =⋅>≠且B. ()()log 0,1a f x x b a a =+>≠且C. ()2f x x ax b =++D. ()af x b x =+4.下列说法正确的是A.命题“,20x x R ∀∈>”的否定是“00,20x x R ∃∈<”B.命题“若sin sin x y x y ==,则”的逆否命题为真命题C.若命题,p q ⌝都是真命题,则命题“p q ∧”为真命题D.命题“若ABC ∆为锐角三角形,则有sin cos A B >”是真命题 5.函数21x y e =+在点()0,1处切线的斜率为 A. 2- B.2 C. 12- D. 12 6.已知实数,a b 满足()23,32a b x f x a x b ===+-,则的零点所在的区间是 A. ()2,1-- B. ()1,0- C. ()0,1 D. ()1,2 7.在ABC ∆中,若()41cos ,tan ,tan 52A A B B =-=-=则 A. 12 B. 13 C.2 D.3 8.函数2sin 6241x x x π⎛⎫+ ⎪⎝⎭-的图象大致为 9.若22log ,a x b x ==,则“a b >”是“1x >”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 10.定义在R 上的奇函数()0f x x ≥,当时,()()[)[)132log 1,0,2147,2,2x x f x x x x ⎧+∈⎪=⎨⎪-+-∈+∞⎩,则关于x 的方程()()01f x a a =<<的全部根之和为 A. 31a -- B. 13a -- C. 31a - D. 13a -第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.函数cos 23y x π⎛⎫=- ⎪⎝⎭的最小正周期为_________. 12.函数()93lg 1xy x -=+的定义域为_________.13.已知等差数列{}n a 满足24354,10a a a a +=+=,则它的前10项和10S =_________.14.已知向量()2,1a =,向量()3,b k =,且a b 在方向上的投影为2,则实数k 的值为_______.15.定义在R 上的函数()f x 满足()11f =,且对任意x R ∈都有()12f x '<,则不等式()3312x f x +>的解集为_________.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程.16. (本小题满分12分)已知向量()()sin 2,cos ,sin ,cos m n R ααααα=--=-∈,其中.(I )若m n ⊥,求角α;(II )若2cos2m n α-=,求的值.17. (本小题满分12分)在用“五点法”画函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在某一周期内的图象时,列表并填入了部分数据,如下表:(I )请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数()f x 的解析式; (II )将()y f x =图象上全部点的横坐标缩短为原来的13,再将所得图象向左平移4π个单位,得到()y g x =的图象,求()g x 的单调递增区间. 18. (本小题满分12分) 数列{}n a 的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列. (I )求数列{}n a 的通项公式; (II )设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分) 在ABC ∆中,内角A,B,C 的对边分别为,,,2a b c C A =,且,,a b c 成公差为1的等差数列. (I )求a 的值; (II )求sin 26A π⎛⎫+ ⎪⎝⎭的值. 20. (本小题满分13分) 某市政府欲在如图所示的直角梯形ABCD 的非农业用地中规划出一个休闲消遣公园(如图中阴影部分),外形为直角梯形DEFG (线段ED 和FG 为两条底边),已知224BC AB AD km ===,其中曲线AC 是以A 为顶点,AD 为对称轴的抛物线的一部分. (I )求曲线AC 与CD ,AD 所围成区域的面积; (II )求该公园的最大面积. 21. (本小题满分14分) 已知函数()()()32ln 13x f x ax x ax a R =++--∈. (I )若()2x f x =为的极值点,求实数a 的值; (II )若()[)4y f x =+∞在,上为增函数,求实数a 的取值范围; (III )当1a =-时,方程()()3113x b f x x --=+有实根,求实数b 的最大值.。
高三上学期期中考试数学(理)试题 版含解析
2019届甘肃省兰州第一中学 高三上学期期中考试数学(理)试题数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷与答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸与答题卡上的非答题区域均无效。
3。
非选择题的作答:用签字笔直截了当答在答题卡上对应的答题区域内、写在试题卷、草稿纸与答题卡上的非答题区域均无效。
4、考试结束后,请将本试题卷与答题卡一并上交。
一、单选题1。
设全集U 是实数集R,集合M ={x|x 〈0或x 〉2},N ={x |y =l og2(x -1) },则(∁U M)∩N为A 、 {x |1<x <2}B 。
{x |1≤x ≤2} C、 {x |1〈x ≤2} D 、 {x|1≤x<2}2、下列结论中正确的是A、 命题“若x 2-3x +2=0,则x =1"的否命题是“若x2-3x +2=0,则x≠1” B、 命题p :存在x 0∈R,sin x 0〉1,则⌝ p :任意x ∈R,sin x ≤1 C 、 若p 且q 为假命题,则p、q 均为假命题 D 、 “x 2+2x-3<0”是命题、3、条件p :-2〈x 〈4,条件q :(x +2)(x +a )<0;若q 是p 的必要而不充分条件,则a 的取值范围是 A 、 (4,+∞) B 、 (-∞,-4) C 、 (-∞,-4] D 、 [4,+∞) 4、已知f (x )={log 3x x >0,a x +b x ≤0. 且f (0)=2,f (—1)=3,则f (f (-3))等于A、 -3 B 、 3 C 、 -2 D、 2 5、已知sin(π-α)=-23,且α∈(-π2,0),则tan(2π-α)的值为 A。
2√55B 、-2√55C 、±2√55D 、√526。
设函数f(x )=sin(x+π3),则下列结论错误的是A 。
陕西省西安市第一中学2021届高三上学期期中考试数学(理)试题 Word版含答案
市一中高校区2022—2021学年度第一学期期中考试 高三数学(理科)试题命题人:付 功一、选择题:(本大题共12小题,每小题5分,共60分). 1. 已知集合{11}A x x =+<,1{|()20}2x B x =-≥,则=⋂B C A R ( )(A))1,2(-- (B))0,1(- (C))0,1[- (D)]1,2(--2.下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π”是“1a =”的必要不充分条件; ③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立; ④“平面对量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”. (A)1 (B)2 (C)3 (D)43.复数z 满足i z i 34)23(+=⋅-,则复平面内表示复数z 的点在( )(A )第一象限 (B )其次象限 (C )第三象限(D )第四象限4.将函数()3cos sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) (A ) 12π (B )6π (C ) 3π(D )56π5. 已知数列{}n a 为等差数列,满足OC a OB a OA 20133+=,其中C B A ,,在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2015S 的值为( ) (A )22015(B ) 2015 (C )2016 (D )2013 6. 已知函数)91(log 2)(3≤≤+=x x x f ,则[])()(22x f x f y +=的最大值为( )(A )33 (B )22 (C ) 13 (D )67.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是 ( )A .(0,6π] B .[ 6π,π) C .(0,3π] D .[ 3π,π)8. 在ABC∆中,060=A ,2=AB ,且ABC ∆的面积为23,则BC 的长为( ) (A )2 (B )23 (C )32 (D )39.已知向量(,),(,),与的夹角为060,则直线021sin cos =+-ααy x 与圆()()21sin cos 22=++-ββy x 的位置 关系是( )(A )相交 (B )相离 (C )相切 (D )随的值而定10.设动直线m x =与函数x x g x x f ln )(,)(2==的图象分别交于点N M ,,则MN 的最小值为( )(A )2ln 2121+ (B )2ln 2121- (C ) 2ln 1+ (D )12ln - 11.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( ) (A )62 (B )92 (C ) 122 (D )15212.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).(A )f (x 1)>0,f (x 2)>-12 (B )f (x 1)<0,f (x 2)<-12 (C )f (x 1)>0,f (x 2)<-12 (D )f (x 1)<0,f (x 2)>-12二、填空题 :(本大题共4小题,每小题5分,共20分.把答案填在答题卡上). 13. 设向量)2,1(),1,(=+=b x x a ,且b a ⊥,则=x .14.已知函数)(x f =x+sinx.项数为19的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()()(191821=++⋯++a f a f a f a f ,则当k =______时,0)(=k a f15在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足2223()4S a b c =+- 则角C 的大小为。
高三上学期期中考试 数学 Word版含答案
长泰一中高三上数学期中考试卷(考试时间:120分钟 总分150分)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.每题仅有一个选项是正确的. 1.设全集{}{},|(3)0,|1,U R A x x x B x x ==+<=<-则图 中阴影部分表示的集合为 ( )A.(1,0)-B.(3,1)--C.[1,0)-D.(,1)-∞-2.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A . 15B . 16C .49D .643. 向量(12)a →=,,(1)b x →=,,2c a b →→→=+,2d a b →→→=-,,且//c d →→,则实数x 的值等于( ) A .21- B .61- C .61 D .21 4.“23πθ=”是“tan 2cos 2πθθ⎛⎫=+ ⎪⎝⎭”的 ( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,C a A c A b cos cos cos 3+=,则A tan 的值是 ( )A . 22-B . 2-C . 22D . 2 6. 定义运算⎩⎨⎧>≤=⊗)()(b a bb a a b a ,则函数xx f 21)(⊗=的图像大致为 ( )A .B .C .D . 7.若函数sin()y A x m ωϕ=++的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的一个解析式是 ( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝⎛⎭⎪⎫4x +π6+28.若x ,y ∈R +,且2x +8y -xy =0,则x +y 的最小值为( )A .12B .14C .16D .189.已知函数31()()log 5xf x x =-,若实数0x 是方程()0f x =的解,且100x x <<,则1()f x 的值为( )A.不小于0B.恒为正值C.恒为负值D.不大于0 10. 下列图象中,有一个是函数)0(1)1(31)(223≠∈+-++=a R a x a ax x x f ,的导函数()f x '的图象,则=-)1(f ( )A.3 B.37 C.31- D.31-或35 11. 已知m 、n 是两条不同的直线,α、β是两个不同的平面,则下面命题中正确的是( ) A.m n m ,,αα⊂⊂∥β,n ∥βα⇒∥β B.α∥β,βα⊂⊂n m ,m ⇒∥n C.n m m ⊥⊥,αn ⇒∥α D.m ∥n ,⊥n αm ⇒α⊥12. 设)(x f 的定义在R 上以2为周期的偶函数,当]3,2[∈x 时,x x f =)(则]0,2[-∈x时,)(x f 的解析式为( )A.|1|2)(++=x x fB.x x f -=2)(C.|1|3)(+-=x x fD.4)(+=x x f第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每题5分,共20分,把答案填在答题卷的相应位置.13. 一简单组合体的三视图及尺寸如右图示(单位:cm ), 则该组合体的体积为 cm 3。
高三上学期期中考试数学(理)试卷Word版含答案
数学(理科) 第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则=B A A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,32.设2:log 0,:24xp x q <≥,则p 是q ⌝的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 3.已知角a 的终边经过点()2,1P -,则sin cos sin cos a aa a-=+A. 3B. 13C. 13- D. -34.函数x xx f 2log 1)(+-=的一个零点落在下列哪个区间 A .)1,0( B .)2,1( C .)3,2( D .)4,3( 5.已知2.01.1=a ,1.1log 2.0=b ,1.12.0=c ,则 A .a b c >> B .b c a >> C .a c b >>D .c a b >>6.已知数列{}n a 满足12a =,()*111n n n a a n N a +-=∈+,则30a = A. 2 B. 13C. 12- D. -37.《九章算术》是我国古代数学名著,在其中有道 “竹九问题”“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容各多少?”意思为:今有竹九节,下三节容量和为 4 升,上四节容量之和为 3 升,且每一节容量变化均匀(即每节容量成等差数列).问每节容量各为多少?在这个问题中,中间一节的容量为 A.72 B.3733 C.6766 D.10118.函数ln x xy x=的图像可能是9.设数列{}n a 是由正数组成的等比数列,n S 为其前n 项和,已知24317a a S ==、则5S = A.152B.314C.334D.17210.若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A.(-2]∞, B.(-]∞,-1 C.[2,)+∞ D.[1,)+∞11.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,()2f x x =,则(2015)f 等于A .2-B .1-C .1D .212.已知函数04,()6,4,x f x x x <≤=->⎪⎩若方程()1f x kx =+有三个不同的实数根,则实数k 的取值范围是A .11(,)64- B .11(,)(,)64-∞-+∞ C .11[,)64- D .11(,]64-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卡的相应位置.13.已知向量()3,4a =,()1,r b k =-,且a b ⊥,则4r r a b +与a 的夹角为 ..14.定义运算a b ad bc c d=-,函数12()3x f x xx -=-+图象的顶点是(,)m n ,且,,,k mrl 成等差数列,则k r +== .15.在ABC ∆中,角A B C 所对应的边分别为,,a b c ,若4ac =,sin 2sin cos 0B C A += 则ABC ∆面积的最大值为 .16.设函数()πsin 3f x x ω⎛⎫=+ ⎪⎝⎭,其中0ω>.若函数()f x 在[]0,2π上恰有2个零点,则ω的取值范围是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知各项均为正数的等比数列{}n a 满足11a =,322a a -=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2n nnb a =,求数列{}n b 的前n 项和n S .18.(本小题满分12分)已知向量,1)x x =m ,(1sin ,cos )x x =-n,函数()f x =⋅m n + (Ⅰ)求函数()f x 的零点; (Ⅱ)若8()5f α=,且π(,π)2α∈,求cos α的值.19.(本小题满分12分)已知函数()(sin cos )xf x e x x a =++(a 为常数).(Ⅰ)已知3a =-,求曲线()y f x =在(0,(0))f 处的切线方程; (Ⅱ)当0x π≤≤时,求()f x 的值域;20.(本小题满分12分)已知函数()2sin()f x x ωϕ=+(0,)2ωϕπ><在一个周期内的图象如图所示,其中M (,2)12π,N (,0)3π.(Ⅰ)求函数()f x 的解析式;(Ⅱ)在ABC ∆中,角,,A B C 的对边分别是a,b,c ,且3,()2Aa c f ===,求ABC ∆的面积.21.(本小题满分12分)已知等差数列{}n a 的前n 和为n S ,且539a S ==. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ)设12n n n b a a +=,集合12{|,}n n n T T b b b n Ω==+++∈+N ,(ⅰ)求n T ;(ⅱ)若,i T j T ∈Ω(,1,2,,)i j n =,求i j T T ⋅的取值范围.22.(本小题满分12分)设函数2()4ln f x x ax bx =++(,)a b ∈R ,()f x '是()f x 的导函数,且1和4分别是()f x 的两个极值点.(Ⅰ)求()f x 的解析式;(Ⅱ)若()f x 在区间(,3)m m +上是单调函数,求实数m 的取值范围;(Ⅲ)若对于1[1,e]x ∀∈,2[1,e]x ∃∈,使得12()[()5]0f x f x λ'++<成立,求实数λ的取值范围.数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.1-5 DADBC 6-10 BCBBD 11-12 AA 二、填空题:本大题共4小题,每小题5分,共20分.13.4π 14.9- 15.1 16.54,63⎡⎫⎪⎢⎣⎭三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.解:(Ⅰ)设数列{}n a 的公比为q ,由11a =,322a a -=得:220q q --= …………………………………………………2分解得:2q =或1q =- …………………………………………3分 数列{}n a 的各项均为正数∴2q = …………………………………………………4分 ∴11122n n n a --=⨯= ………………………………………………5分(Ⅱ)2n nnb =∴23111111123...(1)22222n n n S n n -=⨯+⨯+⨯++-⨯+⨯ ……①∴1234111111123...(1)222222n n n S n n +=⨯+⨯+⨯++-⨯+⨯… ② ……7分 由①-②得:12311111222222n n n nS +=+++⋅⋅⋅+- …………………………8分 111[1()]221212n n n +-=--11122n n n +=-- …………………9分 11222n n nnS -∴=-- ………………………………………10分 注:答案为:222n n nS +=-或1222n n nn S +--=均可.18.解:(Ⅰ)22()cos f x x x x x =⋅=+m n +cos x x =+π2sin()6x =+,…………………………………………………………(3分)由π2sin()06x +=,得ππ()6x k k +=∈Z ,所以ππ()6x k k =-∈Z , 所以函数()f x 的零点为ππ()6x k k =-∈Z . …………………… ……………(6分) (Ⅱ)由(Ⅰ)知π8()2sin()65f αα=+=,所以π4sin()65α+=,………………(8分) 因为π(,π)2α∈,所以2ππ7π366α<+<,则π3cos()65α+=-,……………(10分) 所以ππππππcos cos[()]cos()cossin()sin 666666αααα=+-=+++341552=-+⋅=. …………………………………(12分)19、解:(Ⅰ)()(sin cos )(cos sin )2cos xxxf x e x x e x x e x '=++-= ……………2分(0)2f '=,(0)2f =- ………………………3分 ∴切线方程为:22(0)y x +=-,即220x y --=为所求的切线方程.…5分 (Ⅱ)由()2cos 0x f x e x '=≥,得02x π≤≤.,()2c o s 0xf xe x '=≤,得2x ππ≤≤.∴ ()y f x =在[0,]2π上单调递增,在[,]2ππ上单调递减. ………………8分∴2max ()2y f e a ππ==+ (0)1f a =+,()(0)f e a f ππ=-+<,min ()y f e a ππ==-+,…………11分∴()f x 的值域为2[,]e a e a ππ-++ …………………………………12分20.本题主要考查解三角形,三角函数的图象与性质等基础知识;考查运算求解能力,考查化归与转化思想、数形结合思想.满分12分.解:(Ⅰ)由图像可知:函数()f x 的周期4()312T πππ=⨯-=, ······· 1分∴22ωπ==π. ·························· 2分 又()f x 过点(,2)12π,∴()2sin()2126f ππϕ=+=,sin()16πϕ+=, ·············· 3分∵2πϕ<,2(,)633πππϕ+∈-, ∴62ππϕ+=,即3πϕ=. ······················ 4分∴()2sin(2)3f x x π=+. ······················· 5分(Ⅱ)∵()2sin()23A f A π=+=即sin()3A π+=,又4(0,),(,)333A A ππππ∈+∈ ∴233A ππ+=,即3A π=. ····················· 7分 在ABC ∆中,,33A a c π===,由余弦定理得 2222cos a b c bc A =+-, ··············· 8分 ∴21393b b =+-,即2340b b --=,解得4b =或1b =-(舍去). ··················· 10分∴11sin 43sin 223ABC S bc A π∆==⨯⨯⨯=. ·············· 12分21.解:(Ⅰ)设等差数列{}n a 的公差为d ,由1(1)n a a n d =+-,11(1)2n S na n n d =+-,且539a S ==,得1149,339,a d a d +=⎧⎨+=⎩解得11a =,2d =,所以数列{}n a 的通项公式为12(1)21n a n n =+-=-.…………………………(4分) (Ⅱ)由(Ⅰ)知21n a n =-,所以12211(21)(21)2121n n n b a a n n n n +===--+-+,(6分) (ⅰ)121111111(1)()()()335572121n n T b b b n n =+++=-+-+-++--+1121n =-+. ……… ……………(8分) (ⅱ)因为1112(1)(1)02321(21)(23)n n T T n n n n +-=---=>++++, 所以数列{}n T 是递增数列,即123n T T T T <<<<,所以当1n =时,n T 取得最小值为23,而,i T j T ∈Ω(,1,2,,)i j n =,…………(9分)故1i j ==时,||i j T T ⋅取得最小值为49. ………………………………………(10分) 又11()21n T n n +=-∈+N ,所以1n T <,则||1i j T T ⋅<,…………………………(11分) 因此419i j T T ≤⋅<. ……………………………………………………………(12分)22解:(Ⅰ)4()2f x ax b x'=++224ax bx x ++=(0x >),…………………(1分)由题意可得:1和4分别是()0f x '=的两根, 即142b a +=-,4142a ⨯=,解出12a =,5b =-. 21()4ln 52f x x x x =+-.……………………………………………………(3分) (Ⅱ)由上得4()5f x x x '=+-(1)(4)x x x--=(0x >), 由()0f x '>01x ⇒<<或4x >; 由()0f x '<14x ⇒<<.故()f x 的单调递增区间为(0,1)和(4,)+∞,单调递减区间为(1,4),………(5分) 从而对于区间(,3)m m +,有0,31,m m ≤⎧⎨+≤⎩或1,34,m m ≤⎧⎨+≤⎩或4m ≥,解得m 的取值范围:{1}[4,)+∞. ………… …………………………(7分)(Ⅲ)“对于1[1,e]x ∀∈,2[1,e]x ∃∈,使得12()[()5]0f x f x λ'++<成立”等价于“2[1,e]x ∃∈,使21min [()5][()]f x f x λ'+<-(1[1,e]x ∈)成立”.由上可得:1[1,e]x ∈时,1()f x 单调递减,故1()f x -单调递增,∴1min [()]f x -9(1)2f =-=; ……………… …………………………………………(9分) 又2[1,e]x ∈时,2224()50f x x x '+=+>且在[1,2]上递减,在[2,e]递增, 2min [()](2)4f x f ''==, ……………………………………………………(10分)从而问题转化为“2[1,e]x ∃∈,使49()2x xλ+<”,即“2[1,e]x ∃∈,使942()x xλ<+成立”,故max 999[]42482()x xλ<==⨯+.9(,)8λ∈-∞. ………………………(12分)。
2021年高三(上)期中数学试卷(理科) Word版含解析
2021年高三(上)期中数学试卷(理科) Word版含解析一、填空题(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.(5分)若集合M={x|x2﹣x≤0},函数f(x)=log2(1﹣|x|)的定义域为N,则M∩N=[0,1).考点:对数函数的定义域;交集及其运算;一元二次不等式的解法.专题:计算题.分析:先解不等式求出集合M;再利用对数的真数大于0求出N.相结合即可求出M∩N.解答:解:由题得:M={x|x(x﹣1)≤0}={x|0≤x≤1}=[0,1];N={x|1﹣|x|>0}={x|﹣1<x<1}=(﹣1,1).M∩N=[0,1).故答案为[0,1).点评:本题考查对数函数的定义域以及一元二次不等式的解法和集合之间的运算.考查学生发现问题解决问题的能力,是基础题.2.(5分)将函数的图象向左平移个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为.考点:函数y=Asin(ωx+φ)的图象变换.专计算题;三角函数的图像与性质.题:分析:直接利用左加右减、上加下减的平移原则,推出平移后的函数解析式即可.解答:解:将函数的图象向左平移个单位,得到=,再向下平移1个单位,得到函数的图象,所以g(x)的解析式为.故答案为:.点评:本题考查三角函数的图象的平移变换,值域左加右减以及上加下减的法则,值域平移的方向与x的系数的关系.3.(5分)已知向量与的夹角为,,则在方向上的投影为.考点:平面向量数量积的含义与物理意义.专题:平面向量及应用.分析:由投影的定义可得:在方向上的投影为:,代值计算即可.解答:解:由投影的定义可得:在方向上的投影为:,而=cos=故答案为:点评:本题考查向量投影的定义,熟练记准投影的定义是解决问题的关键,属基础题.4.(5分)给出下列命题,其中正确的命题是③(填序号).①若平面α上的直线m与平面β上的直线n为异面直线,直线l是α与β的交线,那么l 至多与m,n中的一条相交;②若直线m与n异面,直线n与l异面,则直线m与l异面;③一定存在平面γ同时与异面直线m,n都平行.考点:平面的基本性质及推论.专题:证明题.分析:当l可以与m,n都相交,但交点不是同一个点时,平面α上的直线m与平面β上的直线n为异面直线,由此可以判断①的真假;根据异面直线的几何特征,及空间线线关系的定义,可以判断②的真假;与异面直线m,n公垂线垂直的平面(不过m,n)均于异面直线m,n都平行,由此可以判断③的真假;进而得到答案.解答:解:①是错误的,因为l可以与m,n都相交;②是错误的,因为m与l可以异面、相交或平行;③是正确的,因为只要将两异面直线平移成相交直线,两相交直线确定一个平面,此平面就是所求的平面.故答案为:③点本题考查的知识点是异面直线的定义及判定,空间直线与直线关系的定义,异面直评:线的几何特征,熟练掌握空间直线与直线位置关系的定义,特别是正确理解异面直线的定义,几何特征,判定方法是解答本题的关键.5.(5分)函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(﹣1,+∞).考点:利用导数研究函数的单调性;其他不等式的解法.专题:计算题.分析:构建函数F(x)=f(x)﹣(2x+4),由f(﹣1)=2得出F(﹣1)的值,求出F(x)的导函数,根据f′(x)>2,得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集.解答:解:设F(x)=f(x)﹣(2x+4),则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,即F(x)在R上单调递增,则F(x)>0的解集为(﹣1,+∞),即f(x)>2x+4的解集为(﹣1,+∞).故答案为:(﹣1,+∞)点评:本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题.6.(5分)(xx•合肥模拟)△ABC中,若A=2B,则的取值范围是(1,2).考点:正弦定理的应用.专题:计算题.分析:先通过正弦定理及A=2B求出=2cosB,再根据A=2B和三角形内角和为180°求出B 的范围,进而根据余弦函数的单调性求出答案.解答:解:∵,∴==2cosB,∵A=2B∴A+B+C=3B+C=180°∴B=60°﹣∴B<60°又∵B>0°∴<cosB<1∴1<2cosB<2故答案为:(1,2)点评:本题主要考查了正弦定理的应用.在三角形中解题时要注意角的范围.7.(5分)(xx•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1 ∴=∴|2|==== 解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法8.(5分)(xx•江苏二模)如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1.上面结论中,所有正确结论的序号为①④.考点:空间中直线与平面之间的位置关系.专题:综合题.分析:①,可由线面平行的定义判断;②,可由公理三判断;③,可由线面垂直的判定定理判断;④,可由面面垂直的判定定理判断.解答:解:对于①,由于平面A1ABB1∥平面CDC1D1,而D1C⊂平面CDC1D1,故D1C与平面A1ABB1没有公共点,所以D1C∥平面A1ABB1正确;对于②,由于A1D1∥BC,所以A1D1⊂平面BCD1,错误;对于③,只有AD⊥D1D,AD与平面BCD1内其他直线不垂直,错误;对于④,容易证明BC⊥平面A1ABB1,而BC⊂平面BCD1,故平面BCD1⊥平面A1ABB1.正确.故答案为:①④.点评:本题考查直线与平面的位置关系中的直线在平面内的判定、直线与平面垂直的判定、直线与平面平行的判定、平面与平面垂直的判定,解题时要牢记这些判定定理的条件.9.(5分)设定义在区间(﹣b,b)上的函数是奇函数(a,b∈R,且a≠﹣2),则a b的取值范围是.考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:根据已知中定义在区间(﹣b,b)上的函数是奇函数(a,b∈R,且a≠﹣2),结合对数函数的定义域及奇函数的定义,可确定a=2,及b的取值范围,从而由指数函数的单调性,可求a b的取值范围.解答:解:∵定义在区间(﹣b,b)上的函数是奇函数∴f(﹣x)+f(x)=0∴+=0∴=0∴1﹣a2x2=1﹣4x2∵a≠﹣2∴a=2∴令>0,可得﹣<x<,∴0<b≤∵a=2,∴a b的取值范围是(1,]故答案为:(1,]点评:本题考查函数的性质,考查指数函数的单调性,解题的关键是确定a的值,及b的取值范围.10.(5分)(xx•辽宁一模)已知O是锐角△ABC的外接圆圆心,∠A=θ,若,则m= sinθ.(用θ表示)考点:正弦定理;平面向量数量积的运算;两角和与差的余弦函数.专题:计算题;压轴题.分析:根据题意画出相应的图形,取AB的中点为D,根据平面向量的平行四边形法则可得,代入已知的等式中,连接OD,可得⊥,可得其数量积为0,在化简后的等式两边同时乘以,整理后利用向量模的计算法则及平面向量的数量积运算法则化简,再利用正弦定理变形,并用三角函数表示出m,利用诱导公式及三角形的内角和定理得到cosB=﹣cos(A+C),代入表示出的m式子中,再利用两角和与差的余弦函数公式化简,抵消合并约分后得到最简结果,把∠A=θ代入即可用θ的三角函数表示出m.解答:解:取AB中点D,则有,代入得:,由⊥,得•=0,∴两边同乘,化简得:,即,由正弦定理==化简得:C,由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,∴m===sinA,又∠A=θ,则m=sinθ.故答案为:sinθ点评:此题考查了正弦定理,平面向量的数量积运算,三角形外接圆的性质,利用两向量的数量积判断两向量的垂直关系,诱导公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.11.(5分)正三棱锥S﹣ABC中,AB=2,,D、E分别是棱SA、SB上的点,Q为边AB的中点,SQ⊥平面CDE,则三角形CDE的面积为.考点:棱锥的结构特征.分析:利用条件判断M为SQ的中点,求出,代入三角形CDE的面积公式进行运算.解答:解:由Q为边AB的中点得SQ⊥AB,又SQ⊥平面CDE,得DE∥AB,SQ⊥CM,设SQ交DE于M点,另由,可得CQ=SC,∴M为SQ的中点,从而DE是SAB的中位线,求得,则三角形CDE的面积为DE×CM=,故答案为.点评:本题考查棱锥的结构特征,线线、线面平行垂直的判定,勾股定理求线段的长度以及求三角形的面积.12.(5分)若函数y=ax2﹣2ax(a≠0)在区间[0,3]上有最大值3,则a的值是1或﹣3.考点:二次函数在闭区间上的最值.专题:计算题;函数的性质及应用.分析:对函数y=ax2﹣2ax(a≠0)进行配方,求出其对称轴,研究函数的图象,对a值进行讨论:a<0或a>0,两种情况,从而进行求解;解答:解:函数y=ax2﹣2ax=a(x﹣1)2﹣a,对称轴为x=1;若a<0,f(x)在(0,1)上为增函数,在(1,3)为减函数,∴f(x)在x=1取极大值也最大值,f(x)max=f(1)=a﹣2a=3,推出a=﹣3;若a>0,f(x)在(0,1)上为减函数,在(1,3)为增函数,f(0)=0<f(3)=a×32﹣6a,可得f(3)=3a=3,∴a=1;综上a=﹣3或1;故答案为﹣3或1;点评:此题主要考查二次函数在闭区间上的最值问题,利用对称轴对函数的单调性进行判断,是解决本题的关键,解题过程中用到了分类讨论的思想,是一道中档题;13.(5分)设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36﹣x2)},设集合M由集合S中的两个元素构成,且集合M中的两个元素都是“酷元”,那么这样的集合M有5个.考点:元素与集合关系的判断.专题:新定义.分析:由36﹣x2>0可解得﹣6<x<6,又x∈N,故x可取0,1,2,3,4,5,由题意可知:集合M不能含有0,1,也不能同时含有2,4,通过列举可得.解答:解:由36﹣x2>0可解得﹣6<x<6,又x∈N,故x可取0,1,2,3,4,5 由题意可知:集合M不能含有0,1,也不能同时含有2,4故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5},共5个故答案为:5点评:本题为列举法解决问题,正确理解题目给出的新定义是解决问题的关键,属基础题.14.(5分)(xx•青岛二模)一同学为研究函数f(x)=+(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC点P是边BC上的一动点,设CP=x,则AP+PF=f (x),请你参考这些信息,推知函数g(x)=4f(x)﹣9的零点的个数是2.考点:根的存在性及根的个数判断.专题:计算题.分析:由题意可得当A、P、F共线时,f(x)取得最小值为<,当P与B或C重合时,f (x)取得最大值为+1>.g(x)=4f(x)﹣9的零点的个数就是f(x)=的解的个数,而由题意可得f(x)=的解有2个,从而得出结论.解答:解:由题意可得函数f(x)=+=AP+PF,当A、P、F共线时,f(x)取得最小值为<,当P与B或C重合时,f(x)取得最大值为+1>.g(x)=4f(x)﹣9=0,即f(x)=.故函数g(x)=4f(x)﹣9的零点的个数就是f (x)=的解的个数.而由题意可得f(x)=的解有2个,故答案为2.点评:本题主要考查方程的根的存在性及个数判断,体现了化归与转化的数学思想,属于中档题.二、解答题15.(14分)已知集合A={x|y=},集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m ﹣1}.(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.考点:集合关系中的参数取值问题;交集及其运算.专题:计算题;分类讨论.分析:(1)先化简集合,即解不等式x2﹣5x﹣14≥0和﹣x2﹣7x﹣12>0,再求交集;(2)根据A∪C=A,得到C⊆A,再﹣m进行讨论,即可求出结果.解答:解:(1)∵A=(﹣∞,﹣2]∪[7,+∞),B=(﹣4,﹣3)∴A∩B=(﹣4,﹣3)(2)∵A∪C=A,∴C⊆A①C=∅,2m﹣1<m+1,∴m<2②C≠∅,则或.∴m≥6.综上,m<2或m≥6.点评:本题主要考查集合的关系与运算,同时,遇到参数要注意分类讨论.体现了分类讨论的数学思想,考查了运算能力,属中档题.16.(14分)在△ABC中,内角A,B,C对边的边长分别是a,b,c,且满足a2+b2=ab+4,.(1)时,若sinC+sin(B﹣A)=2sin2A,求△ABC的面积;(2)求△ABC的面积等于的一个充要条件.考点:解三角形.专题:计算题.分析:(1)先对sinC+sin(B﹣A)=2sin2A化简整理求得sinB=2sinA进而根据正弦定理求得b=2a,与题设等式联立求得a和b,最后利用三角形面积公式求得答案.(2)先看当△ABC的面积等于,利用三角形面积公式求得ab的值,与题设等式联立求得a和b,推断出△ABC为正三角形求得c;同时看当,△ABC是边长为2的正三角形可求得三角形面积为,进而看推断出△ABC的面积等于的一个充要条件.解答:解:(1)由题意得sin(B+A)+sin(B﹣A)=4sinAcosA,即sinBcosA=2sinAcosA,由cosA≠0时,得sinB=2sinA,由正弦定理得b=2a联立方程组解得,.所以△ABC的面积(2)若△ABC的面积等于,则,得ab=4.联立方程组解得a=2,b=2,即A=B,又,故此时△ABC为正三角形,故c=2,即当三角形面积为时,△ABC是边长为2的正三角形反之若△ABC是边长为2的正三角形,则其面积为故△ABC的面积等于的一个充要条件是:△ABC是边长为2的正三角形.点评:本题主要考查了解三角形问题,正弦定理的应用.考查了学生综合分析问题和解决问题的能力.17.(15分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面PAB;(3)求三棱锥P﹣DEF的体积.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积;平面与平面平行的判定.专题:空间位置关系与距离.分析:(1)利用三角形的中位线定理、平行四边形的判定与性质定理及线面平行的判定定理即可证明;(2)利用线面垂直的性质定理和面面垂直的判定定理即可证明;(3)利用等积变形和三棱锥的条件计算公式即可得出.解答:(1)证明:取PD的中点为M,连接ME,MF,∵E是PC的中点,∴ME是△PCD 的中位线.∴ME∥CD,ME=.又∵F是AB的中点,且由于ABCD是菱形,∴AB∥CD,AB=CD,∴ME∥FB,且ME=FB.∴四边形MEBF是平行四边形,∴BE∥MF.∵BE⊄平面PDF,MF⊂平面PDF,∴BE∥平面PDF.(2)证明:∵PA⊥平面ABCD,DF⊂平面ABCD,∴DF⊥PA.连接BD,∵底面ABCD是菱形,∠BAD=60°,∴△DAB为正三角形.∵F是AB的中点,∴DF⊥AB.∵PA∩AB=A,∴DF⊥平面PAB.∵DF⊂平面PDF,∴平面PDF⊥平面PAB.(3)解:∵E是PC的中点,∴点P到平面EFD的距离与点C到平面EFD的距离相等,故V P﹣DEF=V C﹣DEF=V E ﹣DFC,又S△DFC=×2×=,E到平面DFC的距离h==,∴V E﹣DFC=××=.点评:熟练掌握线面、面面垂直与平行的判定定理和性质定理及利用等积变形计算三棱锥的体积的方法是解题的关键.18.(15分)如图,在边长为1的正三角形ABC中,E,F分别是边AB,AC上的点,若,m,n∈(0,1).设EF的中点为M,BC的中点为N.(1)若A,M,N三点共线,求证m=n;(2)若m+n=1,求的最小值.考点:向量的共线定理;向量的模.专题:计算题;证明题.分析:(1)利用向量共线的充要条件得到,据三角形的中线对应的向量等于相邻两边对应向量和的一半,将已知条件代入得到要证的结论.(2)利用向量的运算法则:三角形法则将用三角形的边对应的向量表示,利用向量模的平方等于向量的平方,将表示成m的二次函数,求出二次函数的最值.解答:解:(1)由A,M,N三点共线,得,设,即,所以,所以m=n.(2)因为==,又m+n=1,所以,所以=故当时,.点评:本题考查向量共线的充要条件;三角形的中线对应向量等于相邻两边对应向量和的一半;考查向量的运算法则:三角形法则;向量模的平方等于向量的平方;二次函数最值的求法.19.(16分)已知A、B、C为△ABC的三个内角,设f(A,B)=sin22A+cos22B.(1)当f(A,B)取得最小值时,求C的大小;(2)当时,记h(A)=f(A,B),试求h(A)的表达式及定义域;(3)在(2)的条件下,是否存在向量,使得函数h(A)的图象按向量平移后得到函数g (A)=2cos2A的图象?若存在,求出向量的坐标;若不存在,请说明理由.考点:二倍角的余弦;函数的定义域及其求法;函数y=Asin(ωx+φ)的图象变换.专计算题;三角函数的图像与性质.题:分析:(1)先对已知函数进行配方,结合完全平方数可求当)当f(A,B)取得最小值时,A,B的大小,进而可求C的大小(2)由(1)中C可求A+B,代入h(A)=f(A,B),结合诱导公式及辅助角公式对已知函数进行化简,可求(3)由(2)可求函数h(A)的单调区间,及函数g(A)=2cos2A在相应区间上单调性,根据其单调性是否相同即可判断解答:解:(1)配方得f (A,B)=(sin2A﹣)2+(cos2B﹣)2+1,∴[f (A,B)]min=1,当且仅当时取得最小值.在△ABC中,故C=或.…(6分)(2)⇔A+B=,于是h(A)===cos2A﹣+3=2cos(2A+)+3.∵A+B=,∴.…(11分)(3)∵函数h(A)在区间上是减函数,在区间上是增函数;而函数g(A)=2cos2A 在区间上是减函数.∴函数h(A)的图象与函数g(A)=2cos2A的图象不相同,从而不存在满足条件的向量…(16分)点评:本题综合考查了三角函数的诱导公式及辅助角公式及三角函数的单调性等知识的综合应用,解答本题要求考生具备综合应用知识的能力20.(16分)(xx•珠海二模)已知函数,(1)若x<a时,f(x)<1恒成立,求实数a的取值范围;(2)若a≥﹣4时,函数f(x)在实数集R上有最小值,求实数a的取值范围.考点:指数函数综合题;二次函数的性质.专题:综合题;函数的性质及应用.分析:(1)令2x=t,则有0<t<2a,f(x)<1当x<a时恒成立,可转化为,分离参数可得在t∈(0,2a)上恒成立,求出右边的最值,即可得到结论;(2)当x≥a时,f(x)=x2﹣ax+1,利用配方法,分类讨论,可求函数的最小值;当x<a时,f(x)=4x﹣4×2x﹣a,令2x=t,t∈(0,2a),利用配方法,分类讨论,可求函数的最小值,从而可得函数f(x)在实数集R上有最小值时,实数a的取值范围.解答:解:(1)因为x<a时,f(x)=4x﹣4×2x﹣a,所以令2x=t,则有0<t<2a,所以f(x)<1当x<a时恒成立,可转化为,即在t∈(0,2a)上恒成立,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分).令,则,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分).所以在(0,2a)上单调递增,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分).所以,所以有:.所以,所以(2a)2≤5,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分).所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分).(2)当x≥a时,f(x)=x2﹣ax+1,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分).①当,∴a≥0时,此时对称轴在区间左侧,开口向上,所以f(x)在[a,+∞)单调递增,所以f(x)min=f(a)=1;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分).②当,∴﹣4≤a<0时,此时对称轴在区间内,开口向上,所以f(x)在单调递减,在单调递增,所以.所以由①②可得:当x≥a时有:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分).当x<a时,f(x)=4x﹣4×2x﹣a,令2x=t,t∈(0,2a),则,③当,∴22a>2,∴时,h(t)在单调递减,在上单调递增;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分).④当,∴22a≤2,∴时,h(t)在(0,2a)单调递减,h(t)∈(h(2a),h(0))=(4a﹣4,0)所以,此时,h(t)在(0,2a)上无最小值;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分).所以由③④可得当x<a时有:当时,;当时,无最小值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分).所以,由①②③④可得:当时,因为,所以函数;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分).当时,因为4a﹣4<0<1,函数f(x)无最小值;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分).当﹣4≤a<0时,,函数f(x)无最小值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分).综上所述,当时,函数f(x)有最小值为;当时,函数f(x)无最小值.所以函数f(x)在实数集R上有最小值时,实数a的取值范围为.﹣﹣﹣﹣﹣﹣﹣﹣﹣(16分).点评:本题考查分段函数,考查函数的最值,考查配方法的运用,考查分离参数法,属于中档题.20925 51BD 冽p 28515 6F63 潣33427 8293 芓C&34404 8664 虤25028 61C4 懄39593 9AA9 骩38423 9617 阗24943 616F 慯T22349 574D 坍。
高三数学上学期期中试卷理含解析试题
日期:2022 年二月八日。
密
2021 届第一中学高三上学期期中考试数学〔理〕试题
考前须知: 1.在答题之前,先将本人的姓名、准考证号填写上在试题卷和答题卡上,并将准考证号条形 码粘贴在答题卡上的规定的正确位置。 2.选择题的答题:每一小题在选出答案以后,需要用 2B 铅笔把答题卡上对应题目之答案标 号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非 选 择 题 的 答 题 :用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 域 内 。写 在 试 题 卷 、草 稿 纸 和 答题卡上的非答题区域均无效。 4.在在考试完毕之后以后,请将本试题卷和答题卡一并上交。
4.B
【解析】
【分析】
日期:2022 年二月八日。
运用向量的数量积表示出向量点乘结果,然后求出 的值 【详解】
,
根据题意可得:
即 两边平方化简可得
应选
【点睛】
此题主要考察了平面向量的数量积,属于根底题。
5.C
【解析】由等差数列的性质可得:
S9
6
9a1 a9
2
9a5 ,∴ a5
2 3
,那么
tana5
其中正四棱锥底面边长为 ,棱锥的高为 1,
那么多面体的体积为: 应选 【点睛】
日期:2022 年二月八日。
此题主要考察了空间几何体的体积,考察了学生的空间想象才能和运算求解才能,考察的核心素 养是直观想象,数学运算。
9.A 【解析】试题分析:先画出当 时,函数 的图象,又 为偶函数,故将 轴右侧的函数 图象关于 轴对称,得 轴左侧的图象,如以下图所示,直线 与函数 的四个交点横坐标从左到
三、解答题 17.〔1〕函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度高三年级上学期期中考试
数学试卷(理科)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分。
考试时间120分钟。
第I 卷(选择题 共60分)
注意事项:答卷I 前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。
一、选择题(每小题5分,共60分。
下列每小题所给选项只有-项符合题意。
请将正确答案的序号填涂在答题卡上)
1.已知曲线f(x)=xcosx +3x 在点(0,f(0))处的切线与直线ax +4y +1=0垂直,则实数a 的值为
A.-4
B.-1
C.1
D.4
2.已知各项不为0的等差数列{a n }满足a 5-2a 72+2a 8=0,数列{b n }是等比数列且b 7=a 7,则b 2b 12等于 A.49 B.32 C.94 D.23
3.对于函数f(x),若存在区间A =[m ,n]使得{y|y =f(x),x ∈A}=A 则称函数f(x)为“同域函数”,区间A 为函数f(x)的一个“同城区间”。
给出下列四个函数:
①f(x)=cos 2
πx ;②f(x)=x 2-1;③f(x)=|x 2-1|;④f(x)=log 2(x -1)。
存在“同域区间”的“同域函数”的序号是
A.①②
B.①②⑧
C.②③
D.①②④
4.设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1。
则
A.若θ确定,则|b |唯一确定
B.若|b |确定,则θ唯一确定
C.若θ确定,则|a |唯一确定
D.若|a |确定,则θ唯一确定
5.已知点P(x ,y)是直线y =x -4上一动点,PM 与PN 是圆C :x 2+(y -1)2=1的两条切线,M ,N 为切点,则四边形PMCN 的最小面积为 A.43 B.23 C.53 D.56
6.已知函数f(x)=Asin(ωx +φ)(A>0,ω>0,0<φ<
2π)的部分图像如图所示,则3()4f π=
A.-1
B.12
- C.- D.2 7.已知函数f(x)=|
12
-4sinxcosx|,若f(x -a)=-f(x +a)恒成立,则实数a 的最小正值为 A.2π B.π C.2π D.4π 8.设S n 为数列{a n }的前n 项和,a 1=1,a n+1=2S n ,则数列1{}n
a 与的前20项和为 A.1931223-⨯ B.1971443-⨯ C.1831223-⨯ D.1871443
-⨯ 9.椭圆22
221(0)x y a b a b
+=>>的左右焦点分别是F 1、F 2,以F 2为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线PF 1恰好与圆F 2相切于点P ,则椭圆的离心率为
A.12 1 C.2
D.12
10.已知函数f(x)=asinx cosx 的图像的一条对称轴为直线56
x π=
,且f(x 1)·f(x 2)=-4,则|x 1+x 2|的最小值为 A.3π-
B.0
C.3
π D.23π 11.若函数f(x)=e x (x -3)-13kx 3+kx 2只有-个极值点,则k 的取值范围为 A.(-∞,e) B.(0,e] C.(-∞,2) D.(0,2]
12.双曲线22
221(0,0)x y a b a b
-=>>的左右焦点分别为F 1,F 2,过F 1的直线交曲线左支于A ,B 两点,△F 2AB 是以A 为直角顶点的直角三角形,且∠AF 2B =30°。
若该双曲线的离心率为e ,则e 2=
A.11+
B.13+
C.16-
D.19-
第II卷(非选择题共90分)
二、填空题(每题5分,共20分。
把答案填在答题纸的横线上)
13.己知向量a,b,|a|=1,|b|=2,且|2a+b|a·b=。
14.己知抛物线E:y2=12x的焦点为F,准线为l,过F的直线m与E交于A,B两点,过A 作AM⊥l,垂足为M,AM的中点为N,若AM⊥FN,则|AB|=。
15.已知函数f(x)=(x2-2x)e x-1,若当x>1时,f(x)-mx+l+m≤0有解,则m的取值范围为。
16.数列{a n}为1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…,首先给出a1=1,接着复制该项后,再添加其后继数2,于是a2=1,a3=2,然后再复制前面所有的项1,1,2,再添加2的后继数3,于是a4=1,a5=1,a6=2,a7=3,接下来再复制前面所有的项1,1,2,1,1,2,3,再添加4,…,如此继续,则a2019=。
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.如图为-块边长为2km的等边三角形地块ABC,为响应国家号召,现对这块地进行绿化改造,计划从BC的中点D出发引出两条成60°角的线段DE和DF,与AB和AC围成四边形区域AEDF,在该区域内种上草坪,其余区域修建成停车场,设∠BDE=α。
(1)当a=60°时,求绿化面积;
(2)试求地块的绿化面积S(α)的取值范围。
18.(本小题满分12分)
己知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,且a1=1,b1=1,a2+b2=4。
(1)若a3+b3=7,求{b n}的通项公式;
(2)若T3=13,求S5。
19.(本小题满分12分)
己知圆D:(x-2)2+(y-1)2=1,点A在抛物线C:y2=4x上,O为坐标原点,直线OA与圆
D 有公共点。
(1)求点A 横坐标的取值范围;
(2)如图,当直线OA 过圆心D 时,过点A 作抛物线的切线交y 轴于点B ,过点B 引直线l 交抛物线C 于P ,Q 两点,过点P 作x 轴的垂线分别与直线OA ,OQ 交于M ,N ,求证:M 为PN 中点。
20.(本小题满分12分)
已知等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N *}。
(1)若a 1=0,d =
23π,求集合S ; (2)若a 1=2
π,求d 使得集合S 恰有两个元素; (3)若集合S 恰有三个元素,b n +T =b n ,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的-个等差数列{a n }的通项公式及集合S 。
21.(本小题满分12分)
己知函数f(x)=(x -1)lnx ,g(x)=x -lnx -
3e 。
(I)求函数f(x)的单调区间;
(II)令h(x)=mf(x)+g(x)(m>0)两个零点x 1,x 2(x 1<x 2),证明:121x e x e
+>+。
22.(本小题满分12分)
已知椭圆C :22221(0)x y a b a b
+=>>,且过定点M(1)。
(1)求椭圆C 的方程;
(2)已知直线l :y =kx -13
(k ∈R)与椭圆C 交于A ,B 两点,试问在y 轴上是否存在定点P ,使得以弦AB 为直径的圆恒过点P?若存在,求出点P 的坐标和△PAB 的面积的最大值;若不存在,请说明理由。