第五章 半导体探测器

合集下载

粒子物理学中的基本粒子探测技术

粒子物理学中的基本粒子探测技术

粒子物理学中的基本粒子探测技术粒子物理学是物理学的重要分支之一,它主要研究各种基本粒子之间的相互作用、性质及其规律。

探测技术是粒子物理学中不可或缺的一个重要部分。

粒子物理学需要借助探测技术收集、测量基本粒子的性质与行为,从而推进粒子物理学的发展和进步。

本文将介绍粒子物理学中的基本粒子探测技术,包括探测器的分类、探测器的组成结构、探测原理及其应用。

一、探测器的分类探测器是粒子物理学中进行探测的主要工具。

探测器按照其原理,可以分为以下几类。

1. 材料探测器材料探测器是利用基本粒子在材料中沉积能量,经过电离过程产生载流子的原理。

最常见的材料探测器就是测量辐射的GM计数器。

同时,用于探测粒子径迹经过的凝胶、液体或气体也属于材料探测器,比如伽马射线探测器、电离室等。

2. 半导体探测器半导体探测器是利用基本粒子在半导体中放电,将芯片内的电子引入电路的原理。

半导体探测器具有极高的分辨率和精度,用于探测高能粒子的径迹和电荷。

一些常见的半导体探测器有硅器件和锗器件。

3. 闪烁体探测器闪烁体探测器是利用反应后产生的光子发出强烈的闪烁光,通过探测器探测光子的原理。

闪烁体探测器广泛用于探测中子、伽马射线、X射线、带电粒子等,如闪烁计数器、正电子探测器等。

4. 气体探测器气体探测器利用基本粒子在气体中产生电离,在电场作用下引起电流变化,从而进行探测的原理。

气体探测器通常用于探测高能粒子,如闪烁室、多丝电晕计数器等。

二、探测器的组成结构探测器是粒子物理学中进行探测的主要工具,其基本组成结构包括探测器外壳、前端电子学、计算机控制系统等。

1. 探测器外壳探测器外壳是指保护探测器内部的外部结构,具有良好的密封、隔绝和抗辐射能力。

不同的探测器具有不同的外壳材料和结构。

2. 前端电子学前端电子学是指探测器信号的处理和放大电路,包括前置放大器、信号形成器、可编程逻辑数组(FPGA)等,用于将探测器探测到的信号进行放大和处理,并输出数字信号。

半导体探测器的发展简介

半导体探测器的发展简介

半导体探测器的发展1.1半导体探测器的发展半导体探测器的前身可以认为是晶体计数器。

早在19世纪20年代末就有人发现某些电介质(固体)在核辐射的作用下会产生电导现象。

随着科技的不断发展,相继出现了金刚石、CsI等晶体计数器。

但是,由于无法克服晶体的极化效应问题,迄今为止只有金刚石探测器可以达到实用水平。

半导体探测器起步比较晚,1949年才有人用α粒子照射锗半导体点接触型二极管时发现有电脉冲输出。

到1958年才出现第一个金硅面垒型探测器[1]。

直到60年代初,锂漂移型探测器的研制成功是半导体探测器应用的里程碑,从此半导体探测器得到了迅速的发展和广泛的应用。

通常使用的半导体探测器主要有以下几种分类见表1.1表1.1 半导体探测器种类1.2碲锌镉半导体探测器1.2.1 历史研究碲锌镉材料的研究最早开始于上世纪90年代,由于其具有高分辨率的潜质以及可以在室温环境下工作的显著特性,曾经引起了业界的轰动。

自那之后,碲锌镉基质探测器几乎没有什么突出的进展。

但是2000年一项生长工艺的新进展,使得更大型碲锌镉晶体的生产成为可能。

然而,由于晶体内的杂质过多且无法除去,导致其分辨率仍然不理想。

近年来,美国布鲁克海文国家实验室(BNL)的科研人员经过几年的不懈努力终于在碲锌镉晶体探测技术方面取得了突破性的进展,该项技术将有可能大大改进远距离探测核辐射物质。

该实验室的科研人员使用美国国家同步加速光源对碲锌镉材料进行不断地测试,结果发现以往常常被忽略的碲锌镉晶体内的“死区”造成了晶体结构内出现大量Cd沉积,这是导致γ射线分辨率大大降低的主要原因。

美国布鲁克海文国家实验室的科研人员通过不断尝试发现如果想要提高碲锌镉探测器的分辨率,目前可以采用的方法是通过特殊和先进的加工技术发现和去除“死区”,这样才能制作出更大型、更精确、应用领域更广泛的碲锌镉半导体核辐射探测器。

1.2.2 发展方向目前碲锌镉探测器有多块大体积并行探测器和面元阵列探测器两个重要发展方向。

第五章(全)--光电子技术

第五章(全)--光电子技术

工作原理:常作成长条形,如图所示。当光点沿长条方向扫过时, 外加电场驱使光生载流子沿光点扫描方向迁移,并保证光点扫描速 度等于载流子迁移速度,光场在元件上产生的载流子被外加电场扫 在一起,最后堆积到元件末端的两电极之间,从而改变该区域的光 电导,在外回路得到光信号电流。在光电扫描与载流子迁移过程中, 信号经累积(积分)输出,而噪声由于其不相关特性,不会像信号— 样累积,从而大大提高了器件的灵敏度,比通常的8-14um波段的红 外探测器背景限提高了几倍。
I
•光电导的驰豫特性限制了器件对 较高调制频率的光功率的响应。
63 37 0 1 0 1
பைடு நூலகம்t/τ
图5.7、光电导的驰豫特性
ξ5.3 实用光电导探测器
5.3.1 单晶光电导探测器
(一)本征型: (1)碲镉汞 (HgCdTe)(2)锑化铟(InSb)(3)碲锡铅(PbSnTe) (二)杂质型: (1)锗掺汞 (Ge:Hg)(2)锗掺镓 (Ge:Ga)(3)硅掺砷(Si:As)
i
2 N
2 iN f i2 Ng r
i
2 NJ
1kHz
1MHz
图5.2、光电导探测器的噪声分布
二、光电导探测器的性能参数 A. 响应率
IS 电流响应率: RI P
前面的推导我们已经得到 可以得到响应率为:
VS 电压响应率: RV P
e IP GP hv
e RI G hv e RV GRd hv
P( x)
hv P( x) wLhv
:在x处单位时间吸收的光子数
n( x )
:在x方向上单位长度体积内的被吸收的光子数 密度,由于α 包含了量子效率在里面,因此也 等于单位时间、单位体积产生的光电子数。

半导体探测器的工作原理

半导体探测器的工作原理

半导体探测器的工作原理半导体探测器是一种利用半导体材料制成的探测器,它可以用于测量辐射、粒子和光子等。

半导体探测器的工作原理主要基于半导体材料的特性以及辐射或粒子与半导体材料相互作用的过程。

本文将从半导体材料的基本特性、探测器的结构和工作原理等方面进行介绍。

半导体材料的基本特性。

半导体材料是介于导体和绝缘体之间的一类材料,它的导电性介于导体和绝缘体之间。

半导体材料的导电性主要取决于其杂质浓度和温度。

在半导体材料中,掺杂了少量的杂质可以显著地改变其导电性能,形成n型半导体和p型半导体。

n型半导体中电子是主要的载流子,而p型半导体中空穴是主要的载流子。

探测器的结构。

半导体探测器通常由半导体材料制成的探测器本体和前端电路、后端电路组成。

探测器本体是由高纯度的半导体材料制成的,通常是硅(Si)或锗(Ge)材料。

前端电路主要用于收集和放大探测器本体中产生的电荷信号,而后端电路则用于信号的处理和数据的采集。

工作原理。

当辐射或粒子穿过半导体探测器时,会与半导体材料发生相互作用,产生电荷对。

这些电荷对会在半导体材料中产生电场,并在电场的作用下分离,形成电荷信号。

前端电路会收集并放大这些电荷信号,然后将其送入后端电路进行进一步处理和数据采集。

半导体探测器的工作原理主要基于半导体材料的能带结构和电荷输运的过程。

当辐射或粒子穿过半导体材料时,会激发半导体材料中的电子和空穴,形成电荷对。

这些电荷对在半导体材料中运动,产生电荷信号。

通过对电荷信号的收集和处理,可以获得辐射或粒子的能量和位置信息。

在实际应用中,半导体探测器可以用于核物理实验、医学成像、核辐射监测等领域。

由于半导体探测器具有高能量分辨率、快速响应速度和较高的空间分辨率等优点,因此在科学研究和工程应用中得到了广泛的应用。

总结。

半导体探测器的工作原理基于半导体材料的特性以及辐射或粒子与半导体材料相互作用的过程。

通过对电荷信号的收集和处理,可以获得辐射或粒子的能量和位置信息。

核电子学习题解答

核电子学习题解答

习题解答第一章绪论1、核信息的获取与处理主要包括哪些方面的?①时间测量。

核信息出现的时间间隔是测定核粒子的寿命或飞行速度的基本参数,目前直接测量核信息出现的时间间隔已达到皮秒级。

②核辐射强度测量。

核辐射强度是指单位时间内核信息出现的概率,对于低辐射强度的测量,要求测量仪器具有低的噪声本底,否则核信息将淹没于噪声之中而无法测量。

对于高辐射强度的测量,由于核信息十分密集,如果信号在测量仪器中堆积,有可能使一部分信号丢失而测量不到,因此要求仪器具有良好的抗信号堆积性能。

对于待测核信息的辐射强度变化范围很大的情况(如核试验物理诊断中信号强度变化范围可达105倍),如测量仪器的量程设置太小,高辐射强度的信号可能饱和;反之,如量程设置太大,低辐射强度的信号又测不到,因此对于这种场合的测量则要求测量仪器量程可自动变换。

③能谱测量。

辐射能谱上的特征是核能级跃迁及核同位素差异的重要标志,核能谱也是核辐射的基本测量内容。

精确的能谱测量要求仪器工作稳定、能量分辨力达到几个电子伏特,并具有抑制计数速率引起的峰位和能量分辨力变化等性能。

④位置测量。

基本粒子的径迹及空间位置的精确测定是判别基本粒子的种类及其主要参数的重要手段。

目前空间定位的精度可达到微米级。

⑤波形测量。

核信息波形的变化往往反映了某些核反应过程的变化,因此核信息波形的测量是研究核爆炸反应过程的重要手段,而该波形的测量往往是单次且快速(纳秒至皮秒级)的。

⑥图像测量。

核辐射信息的二维空间图像测量是近年来发展起来的新技术。

辐射图像的测量方法可分为两类:第一种是利用辐射源进行透视以摄取被测物体的图像;第二种是利用被测目标体的自身辐射(如裂变反应产生的辐射)以反映目标体本身的图像。

图像测量利用计算机对摄取的图像信息进行处理与重建,以便更准确地反映实际和提高清晰度。

CT技术就是这种处理方法的代表。

2、抗辐射加固主要涉及哪些方面?抗辐射加固的研究重点最初是寻找能减弱核辐射效应的屏蔽材料,后来在电路上采取某些抗辐射加固措施,然后逐渐将研究重点转向对器件的抗辐射加固。

5-5半导体探测器的应用

5-5半导体探测器的应用

å S µZ
i
2
Front-end electronics
p-side
n-side
VA64hdr
10 VAs on the p-side (Y direction) 6 VAs on the n-side (X direction)
Each VA reads 64 channels
• Each VA produces a signal with different characteristics • In particular differences in the gain are observed • FEE response curve is deliberately non-linear, different for p and n
2012/11/14
12
CMS硅微条径迹探测器
• 每个花瓣安装17-28个 不等的硅探测器
2012/11/14
Байду номын сангаас
中国科大 汪晓莲
13
五、在空间物理和宇宙线实验中的应用
1. AMS
丁肇中先生领导的AMS组, 计划 把磁谱仪AMS(Alpha Magnetic Spectromenter) 送到国际空间站 ISSA (International Space Station Alpha), 在宇宙线中寻找反物质和 暗物质。AMS 的中间核心部分的 多层径迹室都是采用双边读出的 硅微条探测器。谱仪的体积不大 (直径和高才1m多) , 但这些精密 的径迹探测器与谱仪中的永久磁 铁、飞行时间计数器、契伦科夫 探测器、量能器等紧密配合, 可能 会为天体物理和宇宙线科学作出 非常卓越的贡献。
每一片SVXIIb就有128 路读出。

半导体光电探测器的原理及其应用

半导体光电探测器的原理及其应用

半导体光电探测器之阳早格格创做纲要:本文介绍了光电与系统的组成、一些半导体光电探测器的处事本理及其个性,末尾叙述了光电导探测器与光伏探测器的辨别.闭键词汇:半导体光电探测器,光电系统,光电导探测器,光伏探测器弁止光电探测器是一种受光器件,具备光电变更功能.光敏器件的种类繁琐,有光敏电阻、光电二极管、光电三极管、光晶闸管、集成光敏器件等;有雪崩型的及非雪崩型的;有PN 结型、PIN结型及同量结型的等.由于光电探测器的赞同速度快,体积小,暗电流小,使之正在光纤通讯系统、光纤尝试系统、光纤传感器、光断绝器、彩电光纤传输、电视图象传输、赶快光源的光探测器、微小光旗号的探测、激光测距仪的接支器件、下压电路中的光电丈量及光电互感器、估计机数据传输、光电自动统造及光丈量等圆里得到了广大应用.半导体光电探测器是用半导体资料创造的能接支战探测光辐射的器件.光映照到器件的光敏区时,它便能将光旗号转形成电旗号,是一种光电变更功能的测光元件.它正在国防战工农业死产中有着要害战广大的应用.半导体光电探测器可分为光电导型战光伏型二种.光电导型是指百般半导体光电导管,即光敏电阻;光伏型包罗光电池、P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等.本文最先介绍了光电系统的组成,而后分别介绍其处事本理及其个性,末尾将那二类探测器举止比较.一、光电子系统的组成系统又称为收射天线,果为光波是一种电磁波,收射光教系统所起的效率战无线电收射天线所起的效率真足相共.收支进去的光旗号通过传输介量,如大气等,到达接支端.由接支光教系统或者接支天线将光散焦到光电探测器上,光电过少距离传输后会衰减,使接支到的旗号普遍很强,果此需要用前置搁大器将其搁大,而后举止解码,还本成收支端本初的待传递旗号,末尾由末端隐现器隐现出去.图1-1光电子系统图二、半导体探测器的本理1、光电导探测器光电导探测器主假如通过电阳值的变更去检测,以下尔将以光敏电阻为例介绍其处事本理.光敏电阻又称光导管, 它不极性, 杂粹是一个电阻器件, 使用时既可加曲流电压, 也不妨加接流电压.无光照时, 光敏电阻值(暗电阻)很大, 电路中电流(暗电流)很小. 当光敏电阻受到一定波少范畴的光照时, 它的阻值(明电阻)慢遽缩小, 电路中电流赶快删大. 普遍期视暗电阻越大越佳, 明电阻越小越佳,此时光敏电阻的敏捷度下. 本量光敏电阻的暗电阻值普遍正在兆欧级, 明电阻正在几千欧以下.它的处事本理图如2-1图当不光照时,Rd=10断路当有光照时,Rd= 导通2、光伏探测器光伏探测器鉴于光照爆收电势好,用测电势好的本理.它分为光电池与光电二极管二种典型,光电池主假如把光能变更为电能的器件,暂时有硒光电池、硅光电池、砷化镓及锗光电池等,但是暂时使用最广的是硅光电池.光电二级管分为P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等.以下尔将分别介绍其处事本理及其个性. 1)P-N结光电二级管2)PIN光电二级管PIN光电二极管又称赶快光电二极管,与普遍的光电二极管相比,它具备不的时间常量,并使光谱赞同范转背少波目标移动,其峰值波少可移至1.04~1.06um而与YAG激光器的收射波少相对于应.它具备敏捷度下的便宜,所以通时常使用于强光检测(线性).它的结构图如2-3所示,它是由P型半导体战N型半导体之间夹了一层本征半导体形成的.果为本征半导体近似于介量,那便相称于删大了P-N结结电容二个电极之间的距离,使结电容变得很小.其次,P型半导体战N型半导体中耗尽层的宽度是随反背电压减少而加宽的,随着反偏偏压的删大,结电容也要变得很小.由于I层的存留,而P区普遍干得很薄,进射光子只可正在I层内被吸支,而反背偏偏压主要集结正在I区,产死下电场区,I区的光死载流子正在强电场效率下加速疏通,所以载流子渡越时间常量()减小,进而革新了光电二极管的频次赞同.共时I层的引进加大了耗尽区,展宽了光电变更的灵验处事地区,进而使敏捷度得以普及.3)雪崩光电二级管雪崩光电二级管(APD)是得用光死载流子正在下电场区内的雪崩效力而赢得光电流删益,具备敏捷度下、赞同快等便宜,通时常使用于激光测距、激光雷达、强光检测(非线性).APD雪崩倍删的历程是:当光电二极管的p-n结加相称大的反背偏偏压时,正在耗尽层内将爆收一个很下的电场,它脚以使正在强电场区漂移的光死载流子赢得充分的动能,通过与晶格本子碰碰将爆收新的电子-空穴对于.新的电子-空穴对于正在强电场效率下,分别背好同的目标疏通,正在疏通历程中又大概与本子碰碰再一次爆收新的电子-空穴对于.如许反复,产死雪崩式的载流子倍减少.那个历程便是APD的处事前提.APD普遍正在略矮于反背北脱电压值的反偏偏压下处事.正在无光照时,p-n结不会爆收雪崩倍删效力.但是结区一朝有光映照,激励出的光死载流子便被临界强电场加速而引导雪崩倍删.若反背偏偏压大于反背打脱电压时,光电流的删益可达(十的六次圆)即爆收“自持雪崩倍删”.由于那时出现的集粒噪声可删大到搁大器的噪声火仄,以以致器件无法使用.4)光电三级管光电三级管与光电二极管比较,光电三级管输出电流较大,普遍正在毫安级,但是光照个性较好,多用于央供输出电流较大的场合.光电三极管有pnp战npn型二种结构,时常使用资料有硅战锗.比圆用硅资料创造的npn型结有3DU型,pnp型有3CU型.采与硅npn型光电三极管,其暗电流比锗光电三极管小,且受温度变更效率小,所以得到位广大应用.底下以3DU型光电三极管为例证明它的结构、处事本理与主要个性.3DU型光电三极管是以p型硅为基极的三极管,如图2-4(a)所示.由图可知,3DU管的结媾战一般晶体管类似,不过正在资料的掺杂情况、结里积的大小战基极引线的树立上战一般晶体管分歧.果为光电三极管要赞同光辐射,受光里即集电结(bc结)里积比普遍晶体管大.其余,它是利用光统造集电极电流的,所以正在基极上既可树立引线举止电统造,也不妨不设,真足共光一统造.它的处事本理是处事时各电极所加的电压与一般晶体管相共,即要包管集电结反偏偏置,收射正偏偏听偏偏置.由于集电结是反偏偏压,正在结区有很强的内修电场,对于3DU管去道,内修电场目标是由c到b的.战光电二极管处事本理相共,如果有光照到集电结上,激励电子-空穴对于,接着那些载流子被内修电场分散,电子流背集电极,空穴流背基极,相称于中界背基极注进一个统造电流Ib=Ip.果为收射打队结是正偏偏置的,空穴则留正在基区,使基极电位降下,收射极便有洪量电子经基极流背集电极,总的集电极电流为Ic=Ip+βIp=(1+β)Ip,式中β为电流删益系数.由此可睹,光电三极管的集电结是光电变更部分.共时集电极、基极、收射极形成一个有搁大效率的晶体管.所以正在本理上不妨把它瞅万里一个由光电二极管与一般晶体管分散而成的拉拢件,如图2-4(b)所示.光电三级管另一个个性是它的明暗电流比要比光电二极管、光电池、光电导探测器大,所以光电三极管是用去做光启闭的理念元件.3.光电导探测器与电伏探测器的辨别1)光电导探测器是均值的,而光伏探测器是结型的.2)光。

半导体探测器的探测原理

半导体探测器的探测原理

半导体探测器的探测原理
半导体探测器的基本结构是p-n结。

它由p型半导体和n型半导体材料组成,这两种材料通过接触形成一个结。

在p-n结中,p型的材料处于正电位,n型的材料处于负电位。

当半导体处于不受光照射时,两种材料之间会形成一个正电势差,形成电场。

当有入射光照射到半导体探测器中时,光子将撞击半导体材料中的原子。

这将导致一些电子被激发到能量较高的能级。

在p-n结的界面处,正电势差会使得被激发的电子向p型区移动,而正空穴则向n型区移动。

这些移动的电子和空穴将导致电流的变化。

这是因为电子和空穴在移动的过程中会与材料中的原子相互作用,发生电离和复合等过程。

被激发的电子和正空穴将继续与周围的离子产生相互作用,形成一系列电子空穴对。

这些电子空穴对会以电流的形式流动,形成一个电信号。

此外,半导体探测器还可以通过对电信号的时间参数进行分析来获取更多的信息。

不同入射光子的能量会导致电信号的上升时间和下降时间不同。

通过测量电流的上升和下降曲线,可以确定入射光子的能量范围和事件的时间特征。

总结起来,半导体探测器的探测原理是通过入射光子激发半导体材料中的电子空穴对,产生电信号。

该电信号的强度和时间特征可以用于确定入射光子的能量和其他信息。

这使得半导体探测器成为许多领域中不可或缺的工具。

核辐射探测学习题参考答案(修改)

核辐射探测学习题参考答案(修改)

第一章射线与物质的相互作用1.不同射线在同一物质中的射程问题如果已知质子在某一物质中的射程和能量关系曲线,能否从这一曲线求得d (氘核)与t (氚核)在同一物质中的射程值?如能够,请说明如何计算?解:P12”利用Bethe 公式,也可以推算不同带点例子在某一种吸收材料的射程。

”根据公式:)()(22v R M M v R b ab b a a Z Z =,可求出。

步骤:1先求其初速度。

2查出速度相同的粒子在同一材料的射程。

3带入公式。

2:阻止时间计算:请估算4MeV α粒子在硅中的阻止时间。

已知4MeV α粒子的射程为17.8μm 。

解:解:由题意得 4MeV α粒子在硅中的射程为17.8um 由T ≌1.2×107-REMa,Ma=4得 T ≌1.2×107-×17.8×106-×44()s =2.136×1012-()s3:能量损失率计算课本3题,第一小问错误,应该改为“电离损失率之比”。

更具公式1.12-重带点粒子电离能量损失率精确表达式。

及公式1.12-电子由于电离和激发引起的电离能量损失率公式。

代参数入求解。

第二小问:快电子的电离能量损失率与辐射能量损失率计算:()20822.34700700()rad iondE E Z dx dEdx*⨯≅=≈4光电子能量:光电子能量:(带入B K ) 康普顿反冲电子能量:200.511m c Mev =ie hv E ε-=220200(1cos ) 2.04(1cos 20) 4.16160.060.3947(1cos )0.511 2.04(1cos 20)0.511 2.040.06Er Ee Mev m c Er θθ--⨯====+-+-+⨯5:Y 射线束的吸收解:由题意可得线性吸收系数10.6cm μ-=,311.2/pb g cm ρ=12220.6 5.3610/11.2/m pb cm cm g g cmμμρ--∴===⨯质量吸收系数 由r N μσ=*可得吸收截面:12322230.61.84103.2810/r cm cm N cm μσ--===⨯⨯ 其中N 为吸收物质单位体积中的原子数2233.2810/N cm =⨯ 0()t I t I e μ-=要求射到容器外时强度减弱99.9% 0()0.1%0.001t I t e I μ-∴=∴=即t=5In10 =11.513cm6:已知)1()(tι--=e A t f t 是自变量。

核辐射探测第五章 辐射测量方法

核辐射探测第五章 辐射测量方法
由此决定物理分辨时间。
慢符合:成形脉冲宽度>108sec. ; 快符合:成形脉冲宽度<108sec. 。
快符合的符合曲线宽度主要 是脉冲时间离散的贡献。
1
DET1
60 Co *
2
DET2
n(td ) nco nrc
23
0
t
2.符合测量装置 1)、多道符合能谱仪
加速器带电粒子核反应:
d 3H 4He n 17.6MeV
2)用吸收法测得粒子的最大射程,再根据经 验公式求得其最大能量。对衰变伴有射线发 射的样品,一般都通过能谱的测量来确定核素 的含量。
43
5.4 射线能谱的测定
1. 单能能谱的分析 1) 单晶谱仪
常用NaI(Tl),Cs(Tl),Ge(Li),HPGe等探测器
2) 单能射线的能谱
主过程:全能峰——光电效应+所有的累 计效应;康普顿平台、边沿及多次康普顿散 射;单、双逃逸峰。
同步信号频率nco ;
不存在时间离散;
成形脉冲是理想的矩形波。
DL1 DL2
0
td
符合曲线的高度为nco ,半宽度为:
FWHM 2
由此决定电子学分辨时间为: FWHM/2 = 。
电子学分辨时间与成形脉冲宽度、形状、符
合单元的工作特性等因素有关。
22
物理瞬时符合曲线: 探测器输出脉冲时间统计涨落引起的时间晃动; 系统噪声引起的时间晃动; 定时电路中的时间游动。
张立体角为4,减小了散射、吸收和几何 位置的影响。测量误差小,可好于1%。
流气式4正比计数器;(适用于固态放射 源)
内充气正比计数器和液体闪烁计数器; (适用于14C、3H等低能放射性测量,将14C、 3H混于工作介质中)

半导体探测器的工作原理

半导体探测器的工作原理

半导体探测器的工作原理
半导体探测器是一种利用半导体材料制成的探测器,用于检测辐射或粒子的能量和位置。

它在核物理、医学成像、天体物理等领域有着广泛的应用。

半导体探测器的工作原理主要包括能量沉积、载流子产生和电荷收集三个过程。

首先,当辐射或粒子穿过半导体探测器时,会与半导体原子核或电子发生相互作用,导致能量的沉积。

这些能量沉积会激发半导体材料中的原子或分子,使其电子从价带跃迁到导带,产生电子-空穴对。

其次,产生的电子-空穴对会在半导体中以载流子的形式移动。

在电场的作用下,电子和空穴会向着半导体的正负极移动,并在移动过程中产生电荷。

这些电荷将被收集到探测器的电极上,形成电信号。

最后,通过测量电信号的幅度和时间信息,可以确定辐射或粒子的能量和位置。

这样,半导体探测器就能够实现对辐射或粒子的探测和测量。

除了能量和位置的测量,半导体探测器还具有高分辨率、快速响应和较低的噪声等优点。

这使得它在科研和工业领域得到广泛应用。

例如,在医学成像中,半导体探测器可以用于正电子发射断层扫描(PET)和计算机断层扫描(CT)等影像学技术;在核物理实验中,它可以用于测量粒子的能谱和散射截面;在天体物理研究中,它可以用于探测宇宙射线和暗物质等。

总之,半导体探测器通过能量沉积、载流子产生和电荷收集等过程,实现了对辐射或粒子的高精度探测和测量。

它的工作原理简单清晰,应用广泛丰富,是现代科学技术中不可或缺的重要工具之一。

辐射探测学复习要点

辐射探测学复习要点

辐射探测学复习要点辐射探测学复习要点第⼀章辐射与物质的相互作⽤(含中⼦探测⼀章)1.什么是射线由各种放射性核素发射出的、具有特定能量的粒⼦或光⼦束流。

2.射线与物质作⽤的分类有哪些重带电粒⼦、快电⼦、电磁辐射(γ射线与X射线)、中⼦与物质的相互作⽤3.电离损失、辐射损失、能量损失率、能量歧离、射程与射程歧离、阻⽌时间、反散射、正电⼦湮没、光⼦与物质的三种作⽤电离损失:对重带电粒⼦,辐射能量损失率相⽐⼩的多,因此重带电粒⼦的能量损失率就约等于其电离能量损失率。

辐射损失:快电⼦除电离损失外,辐射损失不可忽略;辐射损失率与带电粒⼦静⽌质量m 的平⽅成反⽐。

所以仅对电⼦才重点考虑辐射能量损失率:单位路径上,由于轫致辐射⽽损失的能量。

能量损失率:指单位路径上引起的能量损失,⼜称为⽐能损失或阻⽌本领。

按能量损失作⽤的不同,能量损失率可分为“电离能量损失率”和“辐射能量损失率”能量歧离(Energy Straggling):单能粒⼦穿过⼀定厚度的物质后,将不再是单能的(对⼀组粒⼦⽽⾔),⽽发⽣了能量的离散。

电⼦的射程⽐路程⼩得多。

射程:带电粒⼦在物质中不断的损失能量,待能量耗尽就停留在物质中,它沿初始运动⽅向所⾏径的最⼤距离称作射程,R。

实际轨迹叫做路程P。

射程歧离(Range Straggling):由于带电粒⼦与物质相互作⽤是⼀个随机过程,因⽽与能量歧离⼀样,单能粒⼦的射程也是涨落的,这叫做能量歧离。

能量的损失过程是随机的。

阻⽌时间:将带电粒⼦阻⽌在吸收体内所需要的时间可由射程与平均速度来估算。

与射程成正⽐,与平均速度成反⽐。

反散射:由于电⼦质量⼩,散射的⾓度可以很⼤,多次散射,最后偏离原来的运动⽅向,电⼦沿其⼊射⽅向发⽣⼤⾓度偏转,称为反散射。

正电⼦湮没放出光⼦的过程称为湮没辐射光⼦与物质的三种作⽤:光电效应(吸收)、康普顿效应(散射)、电⼦对效应(产⽣)电离损失、辐射损失:P1384.中⼦与物质的相互作⽤,中⼦探测的特点、基本⽅法和基本原理中⼦本⾝不带电,主要是与原⼦核发⽣作⽤,与射线⼀样,在物质中也不能直接引起电离,主要靠和原⼦核反应中产⽣的次级电离粒⼦⽽使物质电离。

半导体探测器原理和性能以及碲锌镉探测器原理

半导体探测器原理和性能以及碲锌镉探测器原理

半导体探测器原理和性能以及碲锌镉探测器原理2.1 基本半导体探测器原理2.1.1 基本半导体探测器原理如图2.1.1-1所示,半导体探测器有两个电极,并且在两个电极上加有偏压。

当入射粒子进入半导体探测器的灵敏区时,粒子与晶体发生相互作用产生电子-空穴对。

在外电压的的驱动下,电子-空穴对分别向两级做漂移运动,从而在收集电极上产生感应电荷。

产生的感应电荷将在外电路上产生脉冲信号[5]。

图2.1.1-1 半导体探测器的工作原理图2.1.2 基本半导体探测器性能半导体探测器的主要优点[5]:(1)具有很高的能量分辨率。

电离辐射在半导体介质中产生一对电子-空穴对平均所需能量大约为在气体中产生一对离子所需要能量的十分之一,即:同样能量的带电粒子在半导体中产生的离子对数要比在空气中产生的大约多一个数量级,因此电荷数的相对统计涨落也就小很多,所以半导体探测器的能量分辨率很高。

(2)具有极高的空间分辨率和快时间响应特性。

由于半导体晶体密度远大于空气的密度,所以粒子在半导体中产生的电离密度大约是在一个大气压的气体中产生的1000倍,因此当测量具有较高能量的电子或γ射线时气体探测器的尺寸要比半导体探测器的尺寸大很多,因而半导体探测器具有高空间分辨率和快时间响应的特性。

(3)测量电离辐射的能量时,线性范围很宽。

半导体探测器的主要缺点:(1)半导体材料在受到强辐照后性能就会变差。

因此半导体探测器对辐射损伤较灵敏。

(2)有些半导体探测器对工作环境的条件要求比较苛刻,需要在低温条件下工作,甚至需要在低温下保存,使用很不方便。

2.2 伽马射线与半导体探测器的相互作用2.2.1 光电效应光电效应[6]是具有一定波长的伽马光子将自身的能量全部转移给靶物质中原子的束缚电子,导致束缚电子发射出去变为自由电子,而伽马光子自身消失的过程,如图2.2.1-1所示。

而发射出去的电子称为光电子。

伽马光子被吸收的能量并不是全部转化为了光电子的动能,其中有一部分能量转化为了电子脱离原子束缚所需要的电离能。

半导体核探测器

半导体核探测器

半导体核探测器SQ10068273012 赵乐绪论以半导体材料作为探测介质的和探测器是20世纪60年代发展起来的一类固体探测器,它有着突出的优点,如能量分辨率较高,线形范围较宽,输出脉冲的上升时间快,而且体积小等等。

由于这些优点,使半导体核探测器得到广泛的应用。

如在γ射线能谱测量方面锗锂漂移探测器与Nal谱仪相比,能量分辨率大约要高一、两个量级,因而使和γ能谱分析有关的工作带来了巨大的变化。

但半导体核探测器的重要缺点也影响了它的应用。

如受强辐射后性能变坏,输出脉冲幅度小,性能随温度变化较大等等都尚待进一步改善,或开发新半导体材料来发展新型探测器。

1.半导体核探测器的基本原理以p-n结型探测器为代表来说明半导体核探测器的基本原理。

由于在p-n结区截留子很少,电阻很高,所以,当探测器加上反向电压以后,电压几乎完全降落在结区,在结区形成一个足够强的电场,但几乎没有电流通过。

当带电粒子射入结区后,通过与半导体材料的电子相互作用,很快地损失掉能量。

带电粒子所消耗的能量将使电子由价带跃迁到导带,于是在导带中有了自由电子,在价带中留下了自由空穴,也就是形成了可以导电的电子—空穴对。

在电场作用下,电子和空穴分别向两级漂移,于是在输入回路中形成信号。

当电场足够强时,电子和空穴在结区的复合和俘获(陷落)可以忽略。

这时,输出信号的幅度与带电粒子在结区消耗的能量成正比。

如果带电粒子的全部能量都消耗在结区,则通过测量信号脉冲的幅度就可以测定带电粒子的能量。

能做半导体探测器的半导体材料,必须满足一定的条件:1).射线在半导体材料中,产生一对电子—空穴所需的能量越小越好;2).为了在外回路中形成信号,当加上电压以后,电子—空穴必须很容易穿过半导体材料。

这就要求电子、空穴的迁移率高,复合和俘获都可以忽略,以保证电子—空穴到达电极之前不致损失掉。

3).为了保证电荷收集,需要加一个足够强的电场。

在电场作用下,漏电流必须足够小才能使信号的测量不受影响。

02核辐射探测器(半导体探测器)

02核辐射探测器(半导体探测器)

半导体探测器半导体探测器是一种以半导体材料作为探测介质的新型核辐射探测器,它有很好的能量分辨能力。

随着半导体材料和低噪声电子学的发展以及各种应用的要求,先后研制出了P-N结型探测器、锂漂移型探测器、高纯锗探测器、化合物半导体探测器以及其它类型半导体探测器。

第一节半导体的基本知识和半导体探测器的工作原理根据物质导电能力,物质可分为导体、绝缘体和半导体。

物质的导电能力可用电阻率ρ来表示,单位为Ω·cm。

导体的电阻率在10-5Ω·cm以下,绝缘体的电阻率在1014Ω·cm以上,半导体的电阻率介于它们之间,一般在(10-2~10-9 )Ω·cm范围内。

半导体通常以晶体形式存在,晶体可分为单晶体与多晶体。

在单晶体中,所有原子都连续地按同一规律整齐地排列,这称为晶格。

多晶体是由许多小晶体颗粒杂乱地堆积起来的,因此多晶材料是不均匀的。

半导体探测器多是由单晶材料制造的。

一、半导体材料的电特性在单晶中,原子紧挨形成晶格排列, 相互之间有电磁力作用。

因此晶体中电子的能量就和孤立原子不同。

孤立原子中的电子只能存在于一定能级上,能级之间是禁区,电子不能存在。

对于单晶体,原子间存在着电磁力,相应孤立原子的能级就分裂成很多十分靠近的新能级,由于单位体积内原子数目非常多,这些分裂彼此之间非常靠近,可以看作连续的,这种连续的能级形成一个能带。

导体、绝缘体和半导体的能带如图3.1所示图 3.1半导体、导体和绝缘体的能带图图 3.1 所示的满带是由各孤立原子的基态分裂出来的能级,导带是由孤立原子各激发态分裂出来的能级。

满带和导带之间的禁区称为禁带,禁带宽度称为能隙,用Eg 表示,单位为eV 。

半导体与绝缘体、导体之间的差别在于禁带宽度不一样。

由于导体不存在禁带, 满带和导带交织在一起,导电性能好; 绝缘体的禁带最宽,约(2~10)eV,导电性能最差;半导体的禁带较窄。

约(0.1~2.2)eV,导电性能比绝缘体好,而次于导体。

5半导体探测器 (1)

5半导体探测器 (1)

2. 光生伏特效应
半导体材料吸收光能后,在PN结上产生电动势的效应。
半导体光吸收的五种机理
本征吸收:电子吸收能量大于Eg的光子由价带 跃迁至导带,产生电子-空穴对.(带间跃迁光 吸收) 激子吸收:处于亚稳状态的电子 - 空穴组成的 激子,吸收入射光子能量而产生电子-空穴对. 晶格振动吸收.
不同材料吸收系数()与波长的关系
截止波长c由其带隙能量 Eg决定: c = hc / Eg (1) 入射 > 截止 hv入射不足以激励出电子
(2) 入射 < 截止 材料对光子开始吸收
(3) 入射 < < 截止 材料吸收强烈 (很大) 光的透射力变得很弱

有一个GaAs光电二极管,在300 k时其带隙能量为 1.43 eV,其截止波长为:
半导体探测器
Semiconductor Detectors
1
光探测器的机理分类 外光电效应 普通光电发射 金属光电效应—光电倍增管 光电导:本征,非本征
光子效应
内光电效应
光伏效应:PN结,PIN结,雪崩, 异质结
肖特基势垒 量子阱,体光伏效应 光电晶体管
热效应
波相互作 用效应
热辐射效应,热电效应,温差电效应,液晶
w
)
实际检测器的量子效率一般在30%-95%之间。增加量子效 率的办法是增加耗尽区的厚度,使大部分的入射光子可以被 吸收。但是耗尽区越宽,pin的响应速度会变慢。因此二者 构成一对折衷。
• 改变入射面上的反射率(抗反射膜) • 改变吸收系数 • 改变吸收区的厚度
为什么光电二极管选择强反偏的工作模式?
16
p-i-n光电二极管
反偏PIN光电二极管的结构、能级图、电荷和电场分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ca C C
2) 输出信号
当 R0(Cd+Ca) >> tc ( tc为载流子收集时间 )时, 为电压脉冲型工作状态: N e 辐射在灵敏体积内产 h V (t ) 生的电子-空穴对数 Cd Ca
N e t / R0 ( Cd Ca ) e Cd Ca
N e h Cd Ca
3、半导体作为探测介质的物理性能 1) 平均电离能 (w)
入射粒子在半导体介质中平均产生一对电子 空穴需要的能量。
Si Ge 2.96eV
300º K 77º K
3.62eV 3.76eV
半导体中的平均电离能与入射粒子能量无 关。在半导体中消耗能量为E时,产生的载流 子数目N为:
N E/w
2) 载流子的漂移
对N型半导体,电子的漂移速度为 un n E 对P型半导体,空穴的漂移速度为u p p E
由于 电子迁移率n 和 空穴迁移率p 相近,与 气体探测器不同,不存在电子型或空穴型半导体 探测器。 电场较高时,漂移速度随电场的增加较慢,最 后达到载流子的饱和速度~107cm/s。
第十章
半导体探测器
Semiconductor Detector
半导体探测器的基本原理是带电粒子在半导 体探测器的灵敏体积内产生电子-空穴对,电子 -空穴对在外电场的作用下漂移而输出信号。
我们把气体探测器中的电子-离子对、闪烁 探测器中被 PMT第一打拿极收集的电子 及半导 体探测器中的电子-空穴对统称为探测器的信息 载流子。产生每个信息载流子的平均能量分别为 30eV(气体探测器),300eV(闪烁探测器)和3eV(半 导体探测器)。
n p ni pi n p
2 i 2 i
2) 补偿效应 对本征半导体: ni pi 2 n p n p n 对杂质半导体: ,但仍满足 i
当 n = p 时,载流子总数 ni pi 取最小值。
对N型半导体:n > p,可以加入受主杂质,使 之成为本征半导体,此时n = p = ni,也称为“准本 征半导体”;进一步加入受主杂质,可变为P型半导 体,即p > n。但其代价为载流子的寿命将大大缩 短。
受主杂质浓度
Doping with valence 5 atoms Doping with valence 3 atoms
N-type semiconductor
P-type semiconductor
2、载流子浓度和补偿效应 1) 载流子浓度
电子浓度: n Cn e ( E F E2 ) / kT 空穴浓度: p C p e
(1) 结区的空间电荷分布,电场分布及电位分布
P-N结内N区和P区的电荷密度分别为:
eN D (a x 0) ( x) eN A (0 x b)
n-type p-type
N
P
+++++ +++++ +++++
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
t
tc 脉冲前沿从粒子入射至全部载流子被收集(tc)。 脉冲后沿以时间常数R0(Cd+Ca) 指数规律下降。
但是,由于输出电压脉冲幅度h与结电容Cd有关, 而结电容 Cd 1 / V0 随偏压而变化,因此当所加偏 压不稳定时,将会使 h 发生附加的涨落, 不利于 能谱的测量;为解决该矛盾,PN结半导体探测器 通常不用电压型或电流型前置放大器,而是采用 电荷灵敏前置放大器。电荷灵敏放大器的输入电 容极大,可以保证 C入 >> Cd ,而 C入是十分稳定 的,从而大大减小了Cd变化的影响。若反馈电容 和反馈电阻为Cf和Rf,则输出脉冲幅度为:
载流子寿命--载流子在俘获以前,可在晶体中自由运
动的时间。只有当漂移长度 L E 大于灵敏体积的 长度才能保证载流子的有效收集。对高纯度的Si和Ge ~10-3s,决定了Si和Ge为最实用的半导体材料。
高的电阻率和长的载流子寿命是组成半 导体探测器的关键。
10.2 P-N结半导体探测器
3、半导体探测器的输出信号 1) 输出回路
RL
CS
RS Cd Rd
I 0 (t )
C
R C
测 量 仪 器
须考虑结电阻Rd和结电容Cd,结区外半导 体材料的电阻和电容RS,CS。
CS
RS
RL
C
I 0 (t )
Cd
Rd
R C
R0 Rd // RL // R
I 0 (t )
Cd
R0 Ca
E
P
N
If
IG g W e
IS- 少子扩散到结区。 IG,IS的方向为顺内电场方向。
IG , IS
平衡状态时:
I f IG I S
(3) 外加电场下的P-N结:
在P-N结上加反向电压,由于结区电阻率很高,电 位差几乎都降在结区。 反向电压形成的电场与内电场方向一致。 外加电场使结区宽度增大。反向电压越高,结区 越宽。
3) 电阻率与载流子寿命
1 半导体电阻率: e n n p p


cm
本征电阻率:
掺杂将大大降低半导体的电阻率,对硅来说掺杂对电 阻率的影响比锗显著得多。当半导体材料被冷却到液氮 温度时将大大提高电阻率。
Si
2.3 105 cm
Ge 50 ~ 100 cm
ni和pi为单位体积中的电子和空穴的数目,
2) 杂质半导体
杂质类型:替位型,间隙型。 (1) 替位型:III族元素,如B,Al,Ga等; V族元素,如P,As,Sb等 (2) 间隙型:Li,可在晶格间运动。
3) 施主杂质(Donor impurities)与施主能级
施主杂质为 V 族元素,其电离电位 ED 很低,施 主杂质的能级一定接近禁带顶部 ( 即导带底部 ) 。在 室温下,这些杂质原子几乎全部电离。由于杂质浓 度远大于本征半导体导带中的电子浓度,多数载流 子为电子,杂质原子成为正电中心。掺有施主杂质 的半导体称为N 型半导体。
当ND>>NA时,b>>a。则 W b 当NA>>ND时,a>>b。则 W a 1/ 2 0V0 一般可写成:W 2eN V0 i
Ni为掺杂少的一边的杂质浓度。
(3) 结区宽度的限制因素 受材料的击穿电压的限制: W V0 受暗电流的限制,因为: I G W (4) 结电容随工作电压的变化
采用扩散工艺——高温扩散或离子注入; 材料一般选用P型高阻硅,电阻率为1000; 在电极引出时一定要保证为欧姆接触,以 防止形成另外的结。
2) 金硅面垒(Surface Barrier)探测器
一般用N型高阻硅,表面蒸金50~100g/cm2 氧化形成P型硅,而形成P-N结。工艺成熟、 简单、价廉。
主要用于测量重带电粒子的能谱,如,p等, 一般要求耗尽层厚度大于入射粒子的射程。 影响能量分辨率的因素为: (1) 输出脉冲幅度的统计涨落
E F w 2.36v N 2.36 E E 式中: F为法诺因子,对Si,F=0.143;对 Ge , F=0.129 。 w 为产生一个电子 — 空穴对所 需要的平均能量。
在外加反向电压时的反向电流:
少子的扩散电流,结区面积不变,IS 不变; 结区体积加大,热运动产生电子空穴多,IG 增大; 反向电压产生漏电流 IL ,主要是表面漏电流。
即在使结区变宽的同时,IG 增加, IS不变,If减小, 并出现IL,此时表现的宏观电流称为暗电流。
2) P-N结半导体探测器的特点
a
0
b
式中 ND 和 NA 分别代表施主杂质和受主杂质浓度; a,b则代表空间电荷的厚度。一般a,b不一定相等,取 决于两边的杂质浓度,耗尽状态下结区总电荷为零, 即ND a=NA b。
电场为非均匀电场:
E( x) E( x) 4 eN D 4 eN A
0
( x a)
( a x 0)
( E1 EF ) / kT
式中,E1为导带底;E2为价带顶。Cn和Cp为与禁 带内能级分布无关的常数。
所以: n p C nC p e
E g / kT
可见,对半导体材料,在一定温度下,n· p仅与禁带 宽度有关。因此,在相同温度下,本征半导体的相等 的两种载流子密度之积与掺杂半导体的两种载流子密 度之积相等,即:
根据结区电荷随外加电压的变化率,可以计 12 算得到结区电容:
1 eN i Cd 4 W 2 2 V0
即:
1 1 Cd W V0
结区电容随外加电压变化而变化,外加电压的 不稳定可以影响探测器输出电压幅度的不稳定。
2、P-N结半导体探测器的类型 1) 扩散结(Diffused Junction)型探测器
0
(b x )
(0 x b)
电位分布可由电场积分得到:E (d / dx )
( x)
2eN D
( x)
2eN A
0
( x a )2 V0 ( a x 0)
(0 x b)
0
( x b) 2
(2) 结区宽度与外加电压的关系 当x = 0时,P区和N区的电位应相等,即 2eN D 2 2eN A 2 V0 a b 0 0 0V0 又因: N D a N Ab 所以: (a b)b 2eN A 耗尽区的总宽度: W a b
1、P-N结半导体探测器的工作原理 1) P-N结区(势垒区)的形成
相关文档
最新文档